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PREFACE TO THE

FIRST EDITION

M ATRIX THEORY, or more generally linear algebra, is a relatively recent
mathematical development. Its roots extend back 100 years to the work of

Hamilton, Cayley, and Sylvester, but it has attracted widespread interest

only in the past two or three decades. Today matrices are effective tools in

quantum theory as well as classical mechanics; in aeronautical, mechanical,

and electrical engineering; in statistics and linear programming and therefore

in all the social sciences which these theories serve.

Even a cursory glance at current mathematical literature reveals that

matrix theory is in a stage of active growth. It is rather surprising therefore

that the mathematical background required for an understanding of matrix

theory is sufficiently modest that a substantial first course can be mastered

by undergraduates. The major prerequisite is not a specific list of courses in

mathematics, but rather the ability to reason abstractly, to proceed logically

from hypothesis to conclusion. Anyone who possesses this quality, even la-

tently, is capable of understanding the material presented here, whether he

be an economist, psychologist, engineer, chemist, physicist, or mathematician.

The necessary mathematical background is normally acquired in one or two

years of college mathematics.

Courses in matrix theory are currently presented in several ways. A com-

putational course can be offered in which the calculations themselves are

emphasized more than their meaning. Alternately, the study of matrices can

be motivated from the familiar problem of solving systems of linear equa-

tions, the important connection between matrices and linear transformations

being deferred until the end of the course. A third procedure, and the one

chosen here, systematically employs the elegant techniques of abstract algebra

to develop simultaneously the algebra of matrices and the geometry of linear

transformations.

Although an axiomatic approach places a greater burden at the outset of

the course on both the instructor and the student, the ultimate gain in under-

standing linear algebra, and indeed modern mathematics as a whole, amply

justifies this extra effort. Undeniably, the understanding of abstract concepts

is aided by frequent illustrations from familiar contexts, and a serious at-
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tempt has been made here to retain firm contact with concrete ideas while

steadily developing a higher degree of generality.

The obvious purpose of this book is to present a lucid and unified intro-

duction to linear algebra at a level which can be understood by undergradu-

ates who possess reasonable mathematical aptitude, and thus to lay a solid

foundation from which each student can apply these notions and techniques

to the field of his interest. A more subtle but equally serious objective is to

prepare the student for advanced scientific work by developing his powers of

abstract reasoning. Linear algebra is admirably suited to this purpose.

The present text is a revised form of mimeographed lecture notes written

in 1951 for the second semester of a survey course in abstract algebra at

Kenyon College. Because linear algebra is a cohesive body of knowledge

which blends a variety of algebraic and geometric concepts, I believe that it

provides a more natural introduction to abstract algebra than does the usual

survey course. The first chapter, supplemented by Appendix A, presents the

algebraic notions needed for this study; thus the text can be used by students

who have no previous experience with modern algebraic techniques.

The remaining material has been selected and arranged to proceed directly

to the problem of equivalence relations and canonical forms. The duality of

geometry and algebra is emphasized, but computational aspects are not ig-

nored. Metric notions are deferred until Chapter 9, principally because they

are not essential for the major part of this work. Depending upon the ability

of the class, there is adequate material for a course of 60 class hours. Chapter

10, and to a lesser extent Chapter 9, may be omitted without interfering

seriously with the major aims of this presentation.

Since some results of general interest are stated as exercises, each student

is urged to make a practice of reading all exercises and learning the facts

stated therein, even though he might choose not to prove all of them.

Revision of the original notes was performed during my tenture as a Science

Faculty Fellow of the National Science Foundation. I am greatly indebted

to the Foundation for its support, to Princeton University for the use of its

facilities during this period, and to Kenyon College for assistance with the

original version. Personal gratitude is expressed to J. G. Wendel for mathe-

matical discussions extending over a decade, to A. W. Tucker for making

available his recent work on combinatorial equivalence, to W. D. Lindstrom

for reading critically selected parts of the manuscript, and to the editors and

advisers of the publisher for many helpful suggestions. Appreciation is ex-

pressed also to Mrs. Riehard Anderson and Mrs. Charles Helsley for their

help in preparing the original and revised manuscripts.

February, 1960 D. T. FINKBEINER
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CHAPTER 1

Abstract Systems

§1.1. Introduction

When a student begins the study of matrices he soon discovers properties

which scem to have no counterpart in his previous mathematical experience.

This is as unavoidable as it is exciting. The concepts he considers and the

methods he employs are markedly different from those he has encountered

in mathematics through school and into college.

Elementary school mathematics is concerned primarily with the arithmetic

of number systems, beginning with the positive integers and developing grad-

ually to include all of the integers and the rational numbers. The later use of

letters to represent numbers is a real stride toward abstraction, and the

corresponding study is called algcbra instead of arithmetic. The algebraic

problem of solving quadratic equations reveals the need for still more com-

prehensive number systems, which leads to the study of real and complex

numbers.

An exception to the emphasis on numbers occurs in plane geometry, where

the elements studied are called points and lines rather than numbers and

equations, and where the relations between geometric figures are no longer

numerical equality or inequality but congruence, similarity, parallelism, or

perpendicularity. Geometry normally is the student’s first excursion from

the world of numbers to a realm of deductive thought which is essentially

nonnumerical.

Trigonometry and analytic geometry provide a bridge between numerical

and geometric concepts by using numbers and equations to describe geometric

figures. The objects studied are geometric, but the methods used in investi-

gating their properties are numerical. This gradual transition from the study

of numbers to the study of nonnumerical elements is continued in calculus,
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in which functions and operations on functions are described numerically but

have significant geometric interpretations.

Likewise, matrices are described numerically and have important geometric

interpretations. Matrices form # type of number system, and in this study

we shall be concerned with developing the algebraic properties of this system.

However, since matrices are intrinsically related to geometry, while their re-

lation to arithmetic is comparatively superficial, a geometric interpretation

of matrix theory is both natural and efficient. After this introductory chapter

we turn immediately to a description of the geometric setting for our later

work, finite-dimensional vector spaces. In Chapter 3 we study linear transforma-

tions of such spaces, and not until Chapter 4 do we study matrices themselves.

It is evident from the Table of Contents that various mathematical sys-

tems are discussed in this book, many of which may now be unfamiliar to

you. Therefore, we shall begin by describing mathematical systems generally.

In order to suggest that our present interest lies primarily in the internal

structure of the system, rather than in its relation to the physical world, we

speak of an abstract system. You are asked not to interpret the word “abstract”

as meaning that familiar systems will not arise as particular examples of

abstract systems. As we shall sec, an abstract system is often defined as a

synthesis of some concrete system.

This introductory chapter, which discusses abstract systems from the point

of view of modern algebra, has three objectives: to introduce the basic nota-

tion used in this book, to extend and modernize the student’s mathematical

vocabulary, and to capture some of the spirit of abstract mathematics.

To most mathematicians the esthetic appeal of an abstract system is suffi-

cient justification for its study. From a more practical standpoint, the investi-

gation of abstract systems has greatly clarified and unified the fundamental

concepts of mathematics, and has provided a description of such important

notions as relations, functions, and operations in terms of the simple and

intuitive notion of set. Such a description is given in Appendix A. If you

have a flair for abstraction or a desire for more precision than is afforded in

this introductory chapter, you may wish to study Appendix A immediately.

Or you may prefer to proceed more gradually, deferring a general study of

basic concepts until you have acquired some experience with these ideas in

the specific systems considered in this book. In either event, you should not

expect to attain immediate and comfortable familiarity with all of the ideas

presented here. You should study the text material carefully and work

through the examples and exercises in detail, steadily increasing your facility

for abstract thought and enhancing your insight into the nature of mathe-

matics.
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Exercises

1. Assume that a club of two or more students is organized into committees

in such a way that each of the following statements (postulates) is true.

(a) Every committee is a collection of one or more students.

(b) For each pair of students there is exactly one committee on which

both serve.

(c) No single committee is composed of all the students in the club.

(d) Given any committce and any student not on that committee, there

exists exactly one committee on which that student serves which has no

students of the first committee in its membership.

Prove each of the statements (theorems) in the following sequence,

justifying each step of your proof by appealing to one of the five postulates

or to an earlier theorem of the sequence. (Although this system may appear

more concrete than abstract, its general nature 1s indicated by Exercise 2 of

this section and Exercise 2 of § 1.2.)

(i) Every student serves on at least two committees.

(ii) Every committee has at least two members.

(111) There are at least four students in the club.

(iv) There are at least six committees in the club.

2. (i) Translate the description of the system of the previous exercise into

geometric language by calling the club a “geometry,” a student a “point,”’

and a committee a “line,” and by making other changes as needed to carry

out the geometric flavor without changing the inherent meaning of the

statements.

(ii) Translate the four theorems into geometric language, and similarly

translate your proof of the first theorem.

(iii) Find the geometric system with the smallest number of points which

satisfies the four postulates. (Such a system 1s called a finite geometry ; other

theorems about the system can be discovered and proved.)

(iv) Which of the four postulates are consistent with the axioms of

Euclidean plane geometry?

$1.2. Sets

Before we attempt to describe abstract systems, we should first recognize

that it is quite hopeless for two individuals to try to carry on an intelligent

conversation unless they share some basic knowledge. We now state two
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general assumptions about the basic knowledge that is used as a foundation

for our later discussion:

There is a common understanding of the basic language which we shall use

to define other terms.

There is a common understanding of the system of logical reasoning with

which we proceed from hypothesis to conclusion.

These assumptions are so general that they now appear to be quite elusive;

presently we shall be more specific. In effect, the first assumption recognizes

the futility of trying to define all terms which will be needed, and thereby

establishes the need for undefined terms. The second assumption is a declara-

tion that no formal treatment of the rules of deduction will appear in this book.

More specifically, as part of our basic language we assume an intuitive

understanding of the notion of a set. The word set is used to denote a collection,

class, family, or aggregate of objects, which are called elements or members of

the set. It is evident that this explanation does not define a set or the concept

of membership in a set. These concepts are part of the undefined language

which is assumed for this book.

It is customary to denote a set by a capital letter and the elements of a set

by small letters. To denote that an element b 7s a member of a set S, we write

bES,

which can also be read as ‘‘b belongs to S.’’ To denote that b does not belong

to S we write

beES.

There are two common ways of specifying a set:

by listing all its elements within braces,

by stating a characteristic property which determines whether or not any

given object is an element of that set.

The notation which we adopt for the second method comprises two parts,

separated by a vertical line, within braces. The first part tells us what type

of elements are being considered, and the second part specifies the character-

istic property. For example, let 7 denote the set of all integers, and let S

denote the set of all integers whose square is less than seven. The two methods

of writing S are

S= {—2, —1, 0,1, 2},

where we attach no importance to the order in which the elements are listed,

and

S= {1 EI |x? < 7},

which is read, “‘S is the set of all integers z such that 2? is less than 7.”

We use the symbol © to denote the void or empty set, which contains no
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elements at all. While the void set. may seem at first to be an artificial notion,

its acceptance as a bona fide set is convenient.

Sets S and T are said to be equal if and only if they contain exactly the

same elements. In terms of the membership relation, this is expressed as:

T = S means “zx € T if and only if r € S.”

The next concept is that of a subset. If S and T are sets, T is said to be a

subset of S, written 7 C S, if and only if every element of 7 is an element of

S; that is,

T CS means “if x € T, then x € S,”’

The subset notation 7 CS can also be written S D T. This notation is

analogous to the notation for inequality of numbers: a < b means the same

as b > a. It is readily verified that equality of sets can be expressed in terms

of the subset notation as:

T = S means “7 C Sand S C T.”

It is clear from the definition of subset that any sct 1s a subset of itself.

Also, since the void set has no elements, the statement “If ze, then

x € S” is logically valid for any set S. Thus we have

@C Sand S CS for every sct S.

T is said to be a proper subset of S if and only if every element of T is an

element of S, but not every element of S is an element of 7. This is written:

T Sif and only if 7 C Sand T # S.,

In practice it is sometimes useful to adopt geometric language for sets,

calling an element a point even though the element may have no obvious

geometric character. When we adopt such descriptive language we must

bear in mind that this is done only for convenience, and we must carefully

refrain from assuming any properties which

may be suggested by our language but which Ss

are not otherwise legitimately established.

A geometric interpretation of sets suggests

the use of sketches, called Venn diagrams, to

represent sets and relations between sets. Thus

the subset relation T C S can be shown graph-

ically as in Figure 1.1. Such diagrams provide

insight concerning sets, and often they suggest methods by which statements

about sets can be proved or disproved. However, diagrams are not valid sub-

stitutes for formal proofs.

We now turn our attention to several ways in which sets can be combined

to produce other sets. Let S be any set, and let K denote the collection of

Figure 1.1
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all subsets of S. (The elements of K are the subsets of S.) We shall define three

operations on sets, called union, intersection, and complementation:

Union: AUB= {(xES|rEA orze B},

Intersection: ANB= {reS|rEA andr eé B},

Complementation: A'={zESixz€A}.

Thus if A and B are any elements of K, the set ‘‘A union B”’ consists of all

elements of S which belong to A, or to B, or to both. The set “A intersec

tion B” consists of all elements of S which belong to both A and B. The

“complement of A in S” consists of all elements of S which do not belong to A.

If An B = & (the void set), we say that A and # are disjoint. Venn diagrams

which illustrate these operations are shown in Figure 1.2. More generally,

p yy
AvUB shaded AnB shaded A’ shaded

Figure 1.2

\
CG)WNWV

the union and intersection of any family F of subsets of S are defined in an

analogous way:

UU A= {reES|rxr EA forsomed € F},
ACF

(\ A= {reEeS|xeEA forall A € F}.
ACF

Having made these definitions, we now have before us a concrete example

of an abstract system, the general nature of which will be discussed in § 1.5.

To pave the way for that description, it will be useful to recognize that we

have been developing an algebraic system in which the objects of our attention

are the various subsets of a fixed set S. We have defined two relations for

subsets, the equality relation and the subsct relation. Furthermore, we. have

introduced two methods, union and intersection, by which any two subsets

of S may be combined to produce another subset of S. A third operation,

complementation, provides a means by which each subset of S determines

some other subset of S. If we chose to do so, we could now undertake a

thorough investigation of the properties of this system, proving theorems

about the algebra of sets. A few such theorems are listed below as exercises,

while a more complete and systematic discussion is given in Appendix A, § A.6.
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Exercises

1, (i) List all the subsets of S = {a, b,c, d}.

(ii) If S is a finite set having m elements, how many subsets does S

have? Prove your answer.

2. Referring to Exercise 1, § 1.1, translate the description of the system

into the abstract language and notation of sets. Also translate the four

theorems (but you need not prove them again).

3. Let A and B be arbitrary subsets of a given set S. Use the definitions of

set theory to prove the following theorems.

(1) A C Bif and only if A U B = B.

i) AU(BNC)=(AUB)N(A UC).

(iii) (A U BY = A'NB’.

4, The difference of two subsets of S is defined by

A-B={reA|azé€B}.

(i) Find and prove an equation which expresses A — B in terms of the

basic set operations (U, N, and ’). Draw an illustrative Venn diagram.

(ii) Prove: (A — B)’ = A’ UB.

(iii) Is set difference a commutative operation? That is, are A — B and

B — A equal? Prove your answer.

5. The symmetric difference A © B of two subsets of S is the set of all

elements which belong either to A or to B, but not to both A and B.

(1) Find and prove an expression for A © B in terms of the basic set

operations (U, N, and ’). Draw an illustrative Venn diagram.

(ii) Prove that (A © B)’ = (A’U B) nN (A U B’).

(iii) Is symmetric difference a commutative operation? That is, are

A © Band B © A equal? Prove your answer.

(iv) Discover a simple description of the set (A © B) OC.

(v) Is symmetric difference an associative operation? That is, are

(A © B) OC and A © (B © C) equal? Prove your answer.

6. Show that set union can be expressed in terms of intersection and

complementation.

7. Considering only finite sets, let n(S) denote the number of elements in S.

(i) Prove n(A U B) = n(A) + n(B) — n(A 2 B).

(ii) Discover and prove a similar result for n(A U BUC),
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§1.3. Relations

Given any set S, it is often necessary to know how the elements of S are

related, one to another. Two objects might be of the same color, but one

might be heavier than the other. Line L might intersect line M but be parallel

to line N. In general, then, we wish to consider all ordered pairs (a, b) of

elements of S, and to have some means of distinguishing certain of those

pairs from other pairs. The pairs which are thus distinguished constitute a

binary relation on S, and we say that a is related to b if and only if the pair

(a, b) is a distinguished pair.

To proceed more formally, we first define the cartesian product of a set S

with itself to be the set S X S of all ordered pairs of clements of S:

SX S = {(a,b)|aeSandbeES}.

Two pairs are equal if and only if their first components are the same and their

second components are the same. Then a binary relation R on S is simply

e, subset of S S. If (a, b) € R we say that a ts related to b by the relation R,

and we write a Rb. If (a, b) € R, we write a K b.

Examples

(a) If R is the set of all real numbers, representing the points on a real

coordinate axis, then R X R is the set of all ordered pairs of real numbers,

representing the points on a real coordinate plane. The relation of equality

is described by the set {(a, a) | a © F}, consisting of all points on the line

y = x. The relation a < b is represented by all points which lie above the

line y = 2.

(b) If Z is the set of integers, J X J is represented by the set of all points

of the plane for which both coordinates are integers, called “lattice points.”’

The relation ‘“‘a — b is evenly divisible by 3,” written a = b (mod 3), is rep-

resented by all lattice points which lie on any line of slope 1 through the

points (3n, 0), n € I.

In linear algebra, as elsewhere throughout mathematics, we are particularly

interested in binary relations which have the abstract properties of equality.

These are

Reflexiity: a Ra for every a € S,

Symmetry: ifa Rb then d Ra,

Transitivity: ifaRbandbRe, thenaRe.

Any relation R on S which has these three properties is called an equzvalence

relation.

One of the major investigations that we shall undertake in this book con-

cerns a description of various equivalence relations which arise in a natural
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manner in the study of matrices. Therefore, before reading Chapter 6 you

will need to become thoroughly familiar with the coneept of binary relations

and especially equivalence relations. These notions are developed more gen-

erally and completely in Appendix A.

Exercises

1. Given the set S = {1, 2, 6, 8}.

(1) Represent S X S geometrically.

(11) Represent geometrically the subset of S * S which is determined

by the relation ‘‘a divides b evenly” for a,b € S.

(ii) Represent geometrically the subset of S * S which is determined

by the relation “a > 6” fora,b e&S.

2. Show that if S has more than three elements, then S * S has more thar

60,000 subsets.

3. Since the void set @ and A X A are subsets of A & A, each represents

a relation on A. Deseribe cach of these two relations.

4. Let J be the set of all positive integers. For any fixed n € J we define

on J the relation congruence modulo n by writing

a = )(mod n)

if and only if a — 6 is divisible by n.

(i) Prove that this is an equivalence relation on J.

(ii) Prove that if a = b(mod n) and if c = d(mod n), then

at+ec=b6+d(modn) and ac = bd(modn).

(iii) Show by an example that if c #0(mod 7) and if ac = be(mod n),

it does not necessarily follow that a = b(mod n).

§1.4. Functions and Mappings

It is assumed that you are familiar with numerical functions from your

previous mathematical experience; our purpose here is to describe functions

in a more general setting. Recall that each numerical function f has a domain

of definition (a set D of numbers), and that to each z € D the function f

assigns a unique number f(r), which is called the value of f at z. As x varies

over D, the numbers f(z) form a set 2 which is called the range of f.

A generalization from numerical functions to arbitrary functions is made

very easily—we simply drop the requirement that D and # be sets of numbers,

and consider them to be abstract sets.
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A function F from a set A into a set B consists of

1. a nonvoid subset D C A, called the domain of F,

2. a correspondence such that to each a € D there is associated one and

only one b € B.

The element b € B which is associated with a € D by the function F is

often denoted F(a). The range of F is the subset R C B, defined by

R = {b € B|b = F(a) for somea € D}.

If R = B, we say that F is a function from A onto B.

Here again a translation to geometric language is useful. The domain D

and range &# are sets of points, and the function F associates with each point

of D exactly one point of R.

A reasonable geometric synonym of function is mapping, a terminology

suggested by Figure 1.3. Likewise, the point F(x) is called the image of x

F (x,)=F (x)

~ F'(x;)

D=dom F’ R=range F

Figure 1.3

under the mapping F. For functions of abstract sets this geometric terminology

1g more descriptive than that used for numerical functions. There is also a

useful notational change which we shall adopt— instead of denoting the image

of x under F by the functional notation F(z), we shall omit the parentheses

and show F in boldface type to the right of z. In this new notation a function

will be indicated thus:

F:2— xF, for allz ¢ domF.

Thus for each z € dom F the symbol zF denotes the image of x under the

mapping F.

It is important to observe that although a mapping F assigns a unique

image xzF to each x € dom F, it is quite possible that a point of range F is

the image of more than one point of dom F; that is, from the equation 71F = 2.F

we cannot deduce that z,; = x: Therefore, mappings in general are many-

to-one, in the sense that many distinct points of the domain may be mapped

into the same point of the range. Just as with numerical functions, if it

happens that each point of range F is the image of exactly one point of dom F,

then an inverse mapping F* can be defined from range F onto dom F, such

that if y = zF € range F, then

yF* = (cF)F* = z for every zx € dom F.
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<) |
F*

dom F = range F°* range F = dom F*

Figure 1.4

In summary, we say that a mapping F is one-to-one (or reversible) if. and

only if 1,F = r2F implies 2; = 22. If F is one-to-one, then an inverse func-

tion F* can be defined from range F to dom F such that for each x € dom F,

(tF)F* = x.

The equation (7F)F* = 7 states that. if 1 is mapped first by F and if the

image «rF is then mapped by F*, the resultant image is x itself. This is a

special instance of the more general concept of successtre mappings. Suppose

that A, 8, and C are sets, that F is a mapping from A into B, and that G is a

mapping from # into C. Whenever the range of F is a subset of the domain

of G, we can define a direct mapping FG from A into C as

FG:2 — srFG = (rF)G for all z € domF.

The concept of composite function is very important in linear algebra

because matrix multiplication can be interpreted in terms of successive map-

pings of vector spaces into vector spaces. The right-hand notation which we

have adopted for functions places the symbol for a mapping to the righi of
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the symbol for the object which is mapped, a convention which is particularly

convenient for composite functions. Thus, the image of x under the composite

mapping ‘“F followed by G” is denoted by zFG, the individual symbols

written from left to right in their natural order of occurrence. By contrast,

in the familiar left-hand notation which is used for functions in introductory

analysis the corresponding notation is G(F(z)), and the term “function of a

function” is used. As we shall see later when we represent linear mappings by

matrices, there are important differences in the form of that representation,

depending upon whether mappings are written in right-hand or left-hand

notation. Both systems are widely used.

Exercises

1. Let S, T, U, and V be sets, and let F, G, and H be mappings whose

domains are S, 7’, and U, and whose ranges are subsets of 7, U, and V,

respectively.

(1) Describe the domain and range of FG and GH.

(ii) Show that F(GH) = (FG)H.

(iii) Suppose that F and G are both reversible (one-to-one). Show that

(FG)* = G*F*, and that (F*)* = F.

(iv) Suppose U = S. Describe the domain and range of FG and GF.

Are these two functions equal? Explain.

(v) Suppose U = T = S. Are FG and GF equal functions? Explain.

2. Let. F and G both be mappings from the real numbers to the real num-

bers. Since multiplication of real numbers is defined, a product F © G of

mappings can be defined by

z(F © G) = (zF)(zG).

(The symbol © 1s used to prevent confusion with the successive application

of mappings, FG, as in Exercise 1.) Prove FO G = G OF.

3. The zero mapping QO is defined by xO = 0 for all real x. Let

zF = |z| + 2,

zG = |z| — z.

Prove F ~ O, G ¥ O, but F © G = O, where © is defined as in Exercise 2.

§1.5. Abstract Systems

We are now ready to describe the nature of an abstract system. First a

system must have a nonvoid set of elements, the building blocks of the system.

These elements are regarded as having no properties other than those which
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are prescribed by the system, even though we might use geometric terms or

other descriptive names for them.

Example

To illustrate this discussion we shall use the specific example of the collec-

tion K of all subsets of a given set S. The system which we describe in this

example has K as its set of clements. Thus an element of the system is a

subset of S, not an element of S.

Next we need a set. of relations between elements. One of the relations must

be a definition of equality, which provides a criterion for distinguishing one

element from another. Generalized forms of equality, called equivalence rela-

tions, play a vital role in matrix theory. (See § 6.1 and Appendix A.)

Example

Equality of two elements of A means that they are the same subset of S.

Furthermore, a second relation, denoted C, is defined between various cle-

ments of A.

A system will also include a set. of operations, ways of combining elements

to produce other elements of the system. Since we are working entirely within

a given system, we require that the result of an operation on any elements

of the system be an clement of that system. Such an operation is called a

closed operation, and we consider only operations with this property. An

operation which combines any two elements of a system to produce a single

element of the system is called a inary operation. Similarly, a unary opera-

tion maps each single clement of the system into a corresponding element of

the system.

Example

For the elements of AK we list three operations: union, intersection, and

complementation. Union and intersection combine two elements of K to

produce an element of A, and therefore can be regarded as mappings of

K X K into K. Complementation operates on any clement of A to produce

another element of A, and thus can be considered as a mapping of A into A.

To endow the elements, relations, and operations of a system with desired

properties, a set of postulates is prescribed. These are statements or axioms

which are assumed to be valid for the system. Indeed, the postulates are

initially the only description of the system.

From the postulates certain deductions can be made by means of the rules

of logic which are part of the basic knowledge underlying the system. These
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deductions are theorems of the system and, once proved, they possess the

same validity in the system as do the original postulates.

Another important feature of a system is its set of definitions, which are

agreements concerning terminology for concepts constructed from the skeleton

of the system. By means of definitions, new relations and operations can

be introduced, or elements with special properties can be given distinctive

names. As theorems are proved and the known facts of the system grow in

number and complexity, a proper use of definitions helps to classify the infor-

mation of the system and to simplify its internal language.

A brief discussion of the postulates, theorems, and definitions of the system

of all subsets of a given set is contained in § A.6.

In summary, an abstract system § consists of

a sct &£ of elements,

a set /? of relations,

a set O of operations,

a set of postulates,

a set of theorems,

a set of definitions.

Of course, the heart of the system is the set of postulates, and all else is

derived from the postulates. For notational purposes, however, it 1s con-

venient to emphasize the elements, relations, and operations by writing

S = {E;R;0}

to denote the system. Here EL denotes a set of elements, ? a set of relations,

and O a set of operations.

When we speak of an element zx of a system S, we refer to a member of EF.

However, it is customary in mathematical literature to ignore the distinction

between the system itself and the set of elements of the system; thus we shall

often write x € § when, strictly speaking, we mean x &€ IZ.

Most of the systems which we shall study are defined by postulates which

describe the clements and the operations. A few of the postulates occur in so

many different systems that it is convenient to assign special terminology to

them. To do so, we suppose that § is an abstract system whose set of elements

is denoted by &. For the sake of clarity you might wish to interpret the

following discussion in terms of a familiar example, such as the system of

integers with addition and multiplication as operations, or the system of

subsets of a set with union and intersection as operations.

Iirst we consider three properties of binary operations.

Associativity: The operation * is assoczative if and only if for alla, b, ¢ € E,

a*(b*c) = (a *b) *¢.
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Commutatiwity: The operation «* is commutative if and only if for all a, b € E,

aehb = bea.

Distributivity: The operation © is distributive over the operation « if and

only if for all a, b,c € £,

aQ® (b*c) = (a©b)*(aQo),

(bec) Oa= (bOa)*(c Oa).

We say that. © is left-distributive over »* if the first of these two conditions

is satisfied, and that © is right-distributive over « if the second condition is

satisfied.

Observe that for integers, both addition and multiplication are associative

and commutative, and multiplication is distributive over addition. For sub-

sets, both union and intersection are associative and commutative, and each

operation 1s distributive over the other.

Postulates about elements most often assert the existence of elements with

unusual properties. We give three examples of such elements.

Identity element: An element 7 € Jf is called an identity relative to the

operation * if and only if, for-every 7 € I,

aec=7=T ¥*1z.

Inverse element: Given an identity relative to * and an arbitrary element

x © /, an element x’ is called an inverse of x relative to * if and only if

cer = t=7' ee.

Idempotent element: An element z € EF is said to be idempotent relative to »*

if and only if

net =.

In the system of integers, 0 is an identity of addition, and 1 is an identity

of multiplication. Both are idempotent relative to multiplication, but 0 is the

only integer which is idempotent relative to addition. Each integer z has an

additive inverse, —z, but 1 and —1 are the only integers that have a multi-

plicative inverse which is an integer.

In the system of subsets of S, the void set ® is an identity of set union

and S is an identity of set intersection. Every set is idempotent relative to

both union and intersection. The void set # is self-inverse relative to union,

and S is self-inverse relative to intersection, and these are the only sets which

have either type of inverse.

Exercises

1. Prove the following about an abstract system § = {E;*, ©}, assuming

no properties of the system other than those stated for each case.



16 Abstract Systems fcun. 1]

(1) Each operation can have at most one identity element.

(it) If * is associative and has an identity « © /, then each x € E can

have at most one inverse clement relative to *.

(iii) If an identity clement of an operation exists, it is idempotent rela-

tive to that operation.

(iv) If © is distributive over *, if ¢ is an identity of ©, and if e is an

identity of *, then e is idempotent relative to both © and +. Is 7 idempotent

relative to *?

Interpret these results for the special case of addition and multiplication of

real numbers.

2. In each case below determine whether or not the given function describes

a closed operation on the given set.

(i) Multiplication of even integers.

(ii) Multiplication of odd integers.

(iii) Addition of odd integers.

(iv) Addition of even integers.

(v) Multiplication of real functions which are differentiable.

(vi) Differentiation of real functions which are differentiable.

(vii) Differentiation of polynomials.

3. Let P be the set of points of the plane. For p, g € P define p *q to be

the midpoint of the segment from p to q.

(i) Is * a closed operation on P?

(ii) Is * commutative?

(ii) Is * associative?

Substantiate your answers.

4. Let a mapping T, of the points of the real coordinate axis into itself

be defined by

rT; = a, + Gz,

where a; and }, are fixed real numbers with 6; # 0. Another mapping T: of

this form would be defined by

xT; = do + box, be ~~ Q.

We define the “‘product” T, * T2 of such mappings by

x(T, * T:) = (xT,)Ts.

Prove that

(i) * Is associative,

(ii) an identity of * exists,

(ili) each T has an inverse,

(iv) * is not commutative.
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Interpret cach such mapping geometrically as a change of coordinates on the

real line, after considering the two special cases

aarbitrary, b = 1;

a = 0, b arbitrary.

§1.6. Fields

To illustrate the discussion of § 1.5 let us turn our attention to several

familiar systems of numbers—rational numbers, real numbers, and complex

numbers—which occupy a central position in many phases of mathematics.

In all of these number systems the four fundamental operations of arithmetic

can be performed, and many algebraic properties are shared in common. Our

aim is to extract these common features and thereby to construct an abstract

system which is a useful generalization of each of the three concrete examples.

We begin by recognizing that the three examples comprise different number

systems; that is, the set of elements is different in each case. Thus for the

abstract representation, we consider an unspecified nonvoid set F of elements;

we may Call any such element a ‘‘number”’ if we wish, but we take the position

that the only properties these objects possess are those which we specify in

the stated postulates and their logical consequences. Next we turn our atten-

tion to the arithmetic operation of addition, which in the abstract system

we denote by the symbol @. In each example, the sum of two numbers of a

given type is again a number of that type; hence @ denotes a closed operation

on F. Of the many general properties of addition we select the following as

postulates.

Al. © is associative.

A2. @ is commutative.

A3. There exists in F an identity element o, relative to @.

A4. For each element a € F there exists in F an inverse element a_, relative

to @.

In each of the three concrete examples, subtraction can be defined in terms

of addition, so we make no specific assumptions about subtraction in the

abstract system; our definition of subtraction would take the form

aQGb=a@b.

in imitation of the known examples.

Multiplication in the general system will be denoted ©; it is a closed

operation on F and possesses properties similar to those we have postulated

for ©, with one notable exception—the number zero does not have a multi-

plicative inverse. Hence we adopt the following postulates.



34 Vector Spaces [cH. 2]

linear combinations of the void set is defined to be the set consisting of the

zero vector alone. Thus [#] = [@] by definition. By adopting these conven-

tions for the void set, we can obtain a consistent theory of vector spaces in

which many theorems concerning nonvoid sets of vectors remain valid ¢ even

for the void set. The following is an example.

Theorem 2.6. Any subset. of an independent set is independent, and

any set containing a dependent subset is dependent.

PROOF: Exercise.

On many occasions we shall need to construct linearly independent sets

of vectors. We can begin by choosing any nonzero vector, but how should

the next choice be made? The following theorem provides an answer.

Theorem 2.37. Let S € U be linearly independent and let 3 = [S}. Then

for any vector &, S U {é&} is linearly independent if and only if & € 3.

PROOF: Let S, 3, and & be as described. First suppose that & € 3;

then for suitable scalars a, and vectors a, E'S,

£ = aya + Goa, + -°* + Aye. |

If a, = 0 for each 7, then § = 6 and SU {€} is linearly dependent. If

some a, * 0, again S U {} is linearly dependent. Conversely, suppose

that & € 3, and consider any equation of the form

Bian + boas + ++ + mam + Omit = 8,

where each a; € S. If bay: # 0, then ¢ is a linear combination of vectors

of S, and so ¢ €3, contrary to our assumption. Hence bn, = 0, and

since S is linearly independent, b; = 0 for alli < m. Then SU {&} is

linearly independent.

Thus a linearly independent set S of vectors may be extended to a larger

linearly independent set by adjoining any vector which does not lie in the
space spanned by S; of course it is possible that no such vector exists, since

S might span U. The next two theorems concern the selection of a linearly

independent subset of a dependent set of vectors.

Theorem 2.8. Let S = {ai,..., a} be a finite set of nonzero vectors.

Then S is dependent if and only if

On E€ [on, ou ey Om]

for some m < k.

PROOF: If for some m, am €[a,...,@m-1], then {a1,...,@m} 18

dependent and so is S (Theorem 2.6). Conversely, suppose S. is de-
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pendent and let m be the least integer such that {a),..., am} is depend-

ent. Then for suitable scalars c,... , cm, not all zero,

TM

>. ca, = 8.
i=l

If cm = 0, then {a1,...,@a@m—1} is dependent, contradicting the defini-

tion of m. Hence

Om = —Cm (Cra, + + + lm—1m-1) © [ou,..., Oma].

Theorem 2.9. If 3 + [6] is spanned by the set S = {a,,..., ax, there

exists a linearly independent subset. of S which also spans 3.

FIRST PROOF: If S is independent, there is nothing to prove.

Otherwise, by Theorem 2.7 there is a least integer 7 such that a, €

[a,,...,@.-1]. Let S,; = S — a,. Clearly 3 = [S,], and the argument

can be repeated on §;. Either S, is independent, in which case the proof

is complete, or for some 7, S; = S; — a, spans 3. The theorem follows

by repeating the argument a finite number of times.

SECOND PROOF: Let a,, ~ 6 and let 3; = [a,,]. Then 3; C5, and

equality holds if a, € 3, for 7 = 1,...,k, in which case the proof is

complete. Otherwise, by Theorem 2.6, {a,,, a;,} is linearly independent

for some a,,. Let 3, = [a,,, a,,]. Clearly 3, € 3, and the argument can be

repeated to construct a linearly independent subset of S which spans 3.

In each of these proofs we constructed an independent subset S’ of S such

that [S’] = [S]. Thus for every — €3, {S’, &} is dependent, and if S” is

any set of vectors of 3 which contains S’ as a subset, either S’” = S’ or S” is

dependent. An independent sé which has the property that it cannot be

extended in 3 to a larger independent set is called a maximal independent

subset of 3. This concept is used in the next section.

Corollary. Any finite set of nonzero vectors contains a maximal inde-

pendent subset.

This corollary may be strengthened by dropping the word “finite,” but

we have no need here for the stronger result, and shall pursue the idea no

further.

Exercises

1. (i) Referring to the vectors of Exercise 4, § 2.3, select an independent

subset of {a, 8, y, 6}, containing three vectors.
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(ii) Prove that the vectors of your answer to (i) form a maximal

independent subset of VU.

(iii) Still referring to Exercise 4, § 2.3, choose any nonzero vector

£,€8N 3. Find vectors & and & such that S = [#, &] and 3 = [&, &].

Prove that [#, &, &] = 8 + 3.

2. Select a maximal linearly independent subset of each of the following

sets of vectors.

(1) (1, 0, 1, 0), (0, 1, 0, 1), (1, 1,1, 1), (-1, 0, 2, 0).

(ii) (0, 1, 2, 3), (3, 0, 1, 2), (2, 3, 0, 1), (1, 2, 3, 0).

(ii) (1, —1, 1, ~1), (-—1, 1, —1, —1), (1, —1, 1, —2), (0, 0, 0, 1).

3. For each example of the preceding exercise in which the largest inde-

pendent subset contains fewer than four vectors, adjoin vectors (a), da, @3, @4)

to obtain a linearly independent set of four vectors.

4. Prove Theorem 2.5.

5. In the space of real n-tuples prove that the vectors

a = (1,1,1,...,1,)),

a= (0,1,1,...,1,1),

aa = (0, 0, l,. . .,1, 1),

(0, 0, 0, . ° . 0, 1),

are linearly independent.

§2.5. Basis

At the beginning of the chapter, when we first discussed the physical con-

cept of a vector in three-dimensional space, our description was made in

terms of that ordered triple of numbers which specified the coordinates of

the end point of the ‘arrow,’ relative to a rectangular coordinate system.

We shall now examine this idea more carefully. First we observe that

(G1, G2, 3) = a;(1, 0, 0) + a2(0, 1, 0) + a,(0, 0, 1)

= A1€, + Ac€o + Ase,

where ¢;,7 = 1, 2, 3, represents the triple whose 7th component is 1 and whose

other components are zero. Clearly, {e:, 2, ¢3} spans the space and is linearly

independent. Therefore, this set is a maximal linearly independent subset of

the space. These three vectors are unit vectors along three coordinate axes,

and every point in the space acquires a unique system of coordinates relative
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to these vectors, the coordinates being the three scalars used to represent a

given vector as a linear combination of the e,.

From the proofs of Theorem 2.9 it is clear that there is nothing unique about

the way we might choose a maximal independent subset of a space. Many

such subsets exist for three-dimensional space, and indeed for any space

U ~ [6]. For example, a second maximal linearly independent set in three-

dimensional space is

B, = (0, 1, 1),

8, = (1, 0, 1),

8; = (1, 1, 0),

and if we let s = 3(a; + a2 + a;) we have the linear representation

(a1, @2, a3) = (s — a;)Bi + (8 — a2)Be + (s — a3) 83.

The scalars of this representation are uniquely determined, but they are dif-

ferent from the scalars which represent the same point. relative to the e, vec-

tors. We now turn to a general consideration of these observations.

Definition 2.9. A maximal linearly independent subset of a vector

space VU is called a basis of U. If U contains a finite basis, U is said to be

finite-dimensional; otherwise ‘0 is infinite-dimensional.

In this book we shal] devote our attention to finite-dimensional spaces

except for occasional comments and examples to illustrate similarities or

differences between the two types of spaces.

Since a basis for U spans VU, every vector — € VU is a linear combination of

basis vectors,

& = cia, t+: + Cyay.

The scalars in this representation are unique; for suppose

E = bia, t+ +++ + Oyen.

Then @=£&—£ = (cq, — liar + --- + (ce — be)ax, and since the a, are

linearly independent, c, — b, = 0 for every 7 = 1,...,k. We have proved

the following theorem.

Theorem 2.10. If 0 # [6], every vector of U has a unique representa-

tion as a linear combination of the vectors of a fixed basis of VU.

This theorem reveals a significant interpretation of bases. Given a basis

{ay,...,a@,}, each vector £ can be represented in one and only one way as a

linear combination of basis vectors:

€ = cya, + -ee + CaQn.
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Thus £ determines uniquely an n-tuple of scalars, (c,..., Ca), which can be

regarded as the coordinates of & relative to the a-basis. Hence each basis of

© determines a system of coordinates for U. This suggests that any

n-dimensional vector space is not unlike the space of all n-tuples of scalars,

a fact which we later prove. We shall make repeated use of this interpreta-

tion of a basis as a coordinate system for VU.

Examples of Bases

(a) Consider the space of ordered pairs of real numbers, represented geo-

metrically by the cartesian plane. The unit vectors (vectors of unit length

along the chosen x- and y-axes) are «, = (1,0) and e, = (0, 1), respectively.

These two vectors form a basis since they are independent, and (z, y) =

re, + Yeo, SO that « and e, span the space. But also, a, = (a,0) and

a, = (0,l) form a basis for any a and 6 different from zero. Furthermore,

8B, = (1,1) and 6. = (—2, 1) form a basis. As shown in Figure 2.5, any pair

of vectors which do not he on the same line forms a basis for the plane.

(lb) More generally for the space of all real n-tuples, let e, be the n-tuple

whose 7th component is 1, the other components being zero, 2 = 1, 2,..., 7.

The e, are linearly independent, and (a), ..., dn) = die + --- + Gren, SO the

é, form a basis. Throughout this

y | book we shall reserve the symbols

e, to represent the vectors of this

particular basis, and reserve the

symbol &, to represent the space

of real n-tuples with this choice of

basis.

(c) Consider the space of all real

polynomials of degree not exceeding

a fixed natural number n. Then

Figure 2.5 x = 1,x',...,2" form a basis.

(d) An example of an infinite-

dimensional space is the space of all real polynomials. Kach polynomial

is of finite degree but we include all finite degrees. The polynomials 2‘,

k=0,1,2,..., form a basis.

We have seen that any vector space has many bases; however, every basis

has the important property stated in the following theorem.

Theorem 2.11, E:very basis for a finite-dimensional vector space U has

the same number of elements.

PROOF: Let A = {a,..., a4} and B = {@,,..., Ba} be bases for V.

Each set is a maximal independent set, so B, = fa, 81, B,..., Ba is



[§ 2.5] ‘ Basis 39

dependent. By Theorem 2.8 some 8, is a linear combination of the

vectors which precede it, and there exists a subset #87 of By, which con-

tains a; as the first vector and which is a basis for U. Then By = {aa, By}

is dependent, and some vector is a linear combination of the ones which

precede it. This vector cannot be a; or ae since 1 is linearly independ-

ent. Hence there exists a subset BS of Be which contains a» and a, as

the first and second vectors and which is a basis for C. Let Bs; = faj, Bot

and repeat the argument. If all the 8, are removed in this way before

k steps, we obtain the basis 2B, = {a,,a,-1.,...,an for 7 <k, which

contradicts the independence of A, since a, € [B,]. Henee k steps are

required to remove all of the 8,, one or more at a time, so A < m. Revers-

ing the roles of A and # in the replacement process, we obtain m < &,

so the proof is complete.

Exercises

1. Verify that the several sets described in Examples (a) to (d) of this

section are bases.

2. Let {a.,...,a@,n} be a basis for U, and let c, be arbitrary nonzcro

scalars, 7 = 1,2,...,n. Prove that {cian, ceae,..., Cada} 18 & basis for V.

Interpret geometrically for n = 3.

3. Show that any three points which do not he in a plane through the

origin determine a basis for three-dimensional space.

4. Beginning with a, = (—1, 1, 2), eunstruct two bases for the space of

all real triples in such a way that if fay, ae, ay and {a), a3, a3; are the two

bases, then {a2, a3, a3) 1s also a basis,

®. Given the basis aq = (1,1,1,1), a2 = (0,1,1,1), a3 = (0,90, 1, 1),

as = (0, 0, 0, 1), express each vector ¢,, 72 = 1, 2, 3, 4, as a near combination

of the a’s. Likewise express each a, as a linear combination of the e's.

6. Let {ai,...,a,! and {@,..., Bat be two bases for the space of all

real n-tuples. Define the mapping T of the space into itself by the statement,

if & = > ja, then ¢T = 3 cB.

Verify that = -
(i) T maps a, onto 8,,27 = 1,...,%,

(ii) T is a one-to-one mapping,

(i) (€ + 9)T = &F + of,

(iv) (hE)T = kT).

7. Let U be a finite-dimensional vector space.

(i) Prove that if {a,,...,a,} is a basis for U, if 8 = [a1,..., a],

and if 3 = [ag43,..., an], then 0 = S$ @ 4.
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(ii) Prove, conversely, that if S and 3 are any subspaces of U such

that U = 8 @43, if {a,...,a4$ is a basis for &, and if {8,,..., Bm} 1S &

basis for 3, then {a,,..., ax, B1,..., Bm} is a basis for V.

§2.6. Dimension

Now that the number of elements in any basis for U has been shown to be

unique, we use this number as a definition of the dimension of a vector space.

Definition 2.10. The dimension of a finite-dimensional vector space is

the number of vectors in any basis. The dimension of UV is denoted d(v).

By definition, a set of vectors is a basis of U if and only if two conditions

are satisfied:

1, the set must be linearly independent, and

2. the set must span V.

However, for an n-dimensional space and a set. of n vectors, these two condi-

tions turn out to be equivalent. This result) (Theorem 2.13) simplifies the

task of verifying that a given set is a basis. We first prove another useful

theorem.

Theorem 2.12. Any linearly independent set of vectors in an n-dimen-

sional space U can be extended to a basis.

PROOF: Let {a,..., a} be linearly independent, and let {61,..., Ba}

be a basis. Let & = [ay,...,a.}. If 6. E% for i= 1,...,n, then

3. = VU. Otherwise, for some), 8, € 3,80 by Thecrem 2.7 {a,..., ax, 8}

is independent. Thus the original set has been extended to a larger inde-

pendent set, and the theorem follows by repeating the argument until

the enlarged set: spans V.

Theorem 2.13. Let A = {a1,...,a@n} be an arbitrary set of m vectors

of an n-dimensional space V.

(a) A is a basis for VU if and only if A is linearly independent.

(b) A is a basis for U if and only if [A] = v.

PROOF: If A is linearly independent, A may be extended to a basis by

Theorem 2.12. But a basis contains only n vectors, so A is a basis. To

prove the second statement, suppose U = [A]. By Theorem 2.9 a linearly

independent subset of A also spans VU and hence is a basis. But any basis

contains n vectors, so A itself must be that subset. The ‘‘only if” state-

ments of (a) and (b) are valid by the definition of a basis.
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If § and 3 are subspaces of VU, what can be said about the dimensions of

the spaces § + J and § N35 (§ 2.3)? A partial answer is available.

Theorem 2.14. d(S + 3) + d(8N 3) = d(S) + d(3).

PROOF: Of the four subspaces involved in this theorem, §N 3 is a

subspace of each of the others, and both $ and 5 are subspaces of § + 3.

Our proof begins with the choice of a basis {a1,..., a} for 8 N 35, where

k=d(SN3). Then d(S)=k+7 and d(3) =k+ 7 for some non-

negative 2 and j. The basis for § 9 3 ean be extended to a basis

{a1,..., &, Beyi,-. +. Be4.} for $ A different extension similarly pro-

duces a basis {a,..., ai, Yeq1,+ +--+, Yers) for 3. Combining these two

bases gives a set {a1,..., ai, Bist, . - +) Beare Vat +) Yeqgt OK I+

vectors. The theorem follows immediately when it is proved that this

set 1s a basis for S§ + 3, which is left as an exercise. (Remember that

since the dimension of § + 3 is not yet known to be k + 7+ 7, it must

be shown that this set is linearly independent and spans § + 3.)

It should be noticed that Theorem 2.14 is similar in form to Exercise 7 of

§ 1.2, concerning the number of elements in the union and intersection of

finite sets. In geometric terms, Theorem 2.14 proves, for example, that in

three-dimensional space any two distinct planes through the origin intersect

in a line through the origin.

Exercises

1. Prove Theorem 2.14 in detail.

2. Determine the dimension of each of the five spaces given as examples

in § 2.2.

3. Show that if subspaces @ and §S have the same dimension and if ® C 8,

then & = §.

4, Let § be a k-dimensional subspace of the n-dimensional space U, k > 1.

(i) Show that an (n — k)-dimensional subspace 3 exists such that

Sn3 = [6].

(ii) Deduce that 8 @ 3 = UV.

(iii) Show that 5 is not uniquely determined by § and V.

5. (i) Referring to Exercise 5, § 2.3, if necessary, prove that for sub-

spaces &, 8, 3 of U d(R+8+3) < d(R) + a(S) + d(3) —aA(RNS) —

d(an3) — d(S$N3) + d(RNS§N3).

(ii) Compare (i) with the corresponding formula for the number of

elements in finite subsets (Exercise 7(ii), § 1.2).

(iii) Show that the result of (i) cannot be strengthened to equality

in all cases (Exercise 5, § 2.3).
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§2.7. Isomorphism of Vector Spaces

We now turn our attention to a problem which has been constantly in the

background of our development of vector spaces. We began by making an

informal description of the spaces & and &3, which were familiar from our

knowledge of analytic geometry, and then generalized the form of our observa-

{ions in order to define an abstract vector space. Abstract. vector spaces are

of two types —finite-dimensional or infinite-dimensional-—and we agreed that

we shall study only finite-dimensional spaces in this book. But in considering

bases we began to suspect that any n-dimensional space over a field is essen-

tially the same as the space F, of m-tuples of field elements.

In order to formulate our suspicions more precisely, we must first agree

upon a meaning of the phrase “essentially the same.’”’ This is a problem of

importance for all abstract systems, but we confine our attention here to

vector spaces; a more general discussion is given in Appendix A.

Consider two vector spaces,

U= {V, F; +, *y ®, O}
and

w= {W,F;+,-,+, e},

over the same field $. The vectors of the two systems might have different

mathematical names, as suggested by the various examples of vector spaces

given in § 2.2, and the vector operations of the two systems might be defined

in different ways. However, suppose we can rename the vectors of the first

system, assigning to each vector of the first system the name of a vector of

the second system, with different names being given to distinct vectors.

Suppose further that the new names are assigned in such a way that the

vector operations of the renamed first system coincide exactly with the

corresponding operations of the second system. Then we would agree that

the two systems are identical twins which are distinguishable by name only,

and not by behavior. This is what we mean by “essentially the same’’; the

mathematical term for this concept is zsomorphism. We first define the more

general notion of homomorphism.

Definition 2.11. Let

V {V, F; +, -, ®, O}i

and

Ww = {W, F; +, ‘+, e}

be vector spaces over a field 5. A mapping H of V into W is called

a homomorphism, provided that for all a, 8 € U and alla é€ §,
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(a @ 6)H all + 8H,

and

(a © a)H =a e all.

If every vector of W is in the range of H, H is said to be a homomorphism

of U onto W.

Definition 2.12. A one-to-one homomorphism J of U onto ‘W is ealled

an isomorphism. If such &@ mapping exists, U and W are said to be

isomorphte.

Thus, to establish that two vector spaces U and W over the same field

are isomorphic, we need to exhibit a one-to-one mapping of UV onto ‘W which

preserves the two operations of vector sum and multiplication of a vector by a

scalar. We are now ready to prove the following theorem.

Theorem 2.15. Any n-dimensional vector space U over F is isomorphic

to the space §, of all n-tuples of elements of 5.

PROOF: Let {a1,...,@a) be a basis for U. By Theorem 2.10 every

fe VU has a unique representation as a linear combination of the a;,:

i Ca, + se. + Cnn.

To each € VU we associate the corresponding n-tuple (c,...,¢n) © Fn

This 1s a mapping of U onto $,, and distinct vectors of U map into

distinct vectors of 5,. Furthermore, let & = )°7.1 ca, and» = 5 7., b,a,.

Then

E4+= Ye (C2 + bade —> (er + bays Om + bn)

= (¢y, . . »,Cn) + (bi, . . . , On)

and

n

> (ke,)a, —> (ka,..., ken) = kaa... , en).
4=i

kg

Hence vector sum and scalar multiplication are preserved by the map-

ping, and the systems are isomorphic.

This result tells us that any two vector spaces of the same finite dimension n

are isomorphic, since each is isomorphic to S,. (See Exercise 4, below.) It

allows us to think of any such abstract space in terms of the more familiar

space of n-tuples.

The isomorphism theorem suggests that for finite-dimensional spaces our

attempt to obtain generality by giving an abstract definition of vector spaces

was not wholly successful. Any n-dimensional space over 5 is isomorphic to



44 Vector Spaces [cu. 2]

the space of n-tuples of elements of 5. However, the n-tuple notation is often

unnecessarily cumbersome, so we prefer to use the general notation for vec-

tors, remembering that we can represent vectors as n-tuples of field elements,

without loss of generality, whenever that particular representation proves to

be convenient. We shall denote by U, a vector space of dimension n with

any basis.

Exercises

1. Establish an isomorphism between the space of all polynomials of

degree not exceeding n and the space $,4;. What are the images of the basis

vectors under the isomorphism?

2. Let J be an isomorphism of the spaces U, and W,. Let {a,..., ax} be

a linearly independent set of vectors in Un, k < n. Prove that {a,J,..., aJ}

is linearly independent in W,. Deduce that the isomorphic image of a basis

is a basis.

3. Let H be a homomorphism of U, into W,. Prove that H is an iso-

morphism if and only if, for every & # 6 in U,, fH # 8 in W,,.

4. Suppose that vector spaces U and W are both isomorphic to the same

space U. Show how these two isomorphisms can be combined to yield an

isomorphism of VU onto ‘W.

5. Let 0 and W be vector spaces over the same field 5, and let 3¢ denote

the collection of all homomorphisms from VU into W. The sum of two homo-

morphisms is defined by

§(H, + H.) = &H, + &H, for all f € VD.

Also, the product of a scalar and a homomorphism is defined by

(aH) = a(éH) for alla Ee F,& € WV.

Show that Hj, + H, and aH are also homomorphisms from VU into ‘W and

that 3C forms a vector space over § relative to these operations.

6. Referring to Exercise 5, if W = VU, then it is possible to define the

product of two homomorphisms in &X in terms of the rule for successive

mappings:

¢(H,H.) = (£H))H, for all € E VD.

Show that H,H, is a homomorphism from V into V.

7. If we specialize Exercise 5 by choosing ‘W 1o be the field 5, considered

as a vector space over itself, then the members of 3C are scalar valued functions

defined on U and satisfying the properties of a homomorphism. Any such

function Is called a linear functional, and the vector space 3C of all linear

functionals from VU to § is called the dual space of U. Determine whether or

not each of the following mappings is a linear functional.



[ § 2.7] Isomorphism of Vector Spaces 45

(1) In §,, the mappings

(a1, beey aH = 201,

(m,...,a,)H = a, + 2,

(11) In the space of all real-valued functions which are differentiable

on the interval —1 < x < 1, the mappings

ft = f'0),

fH = s(0)f'(0).

(iii) In the space of all real-valued functions which are continuous on

the interval 0 < r < 1, the mappings

ft = [sera

fi = f * ftom Dl,

f= [, eS Odd,

8. Associated with any subspace § of U there tsa family of homomorphisms

from U to § called projections. Fach such projection Ps is determined by the

choice of a subspace 3 such that U = 8 © 3 (Exereise 4, § 2.6). Since each

£ eV has a unique representation £ = ¢ +7, where ¢ ES and 7 €4, the

mapping Ps is defined by

tP; =o

and is called the projection of U onto § along 3, Similarly, the mapping P;,

EPs = 1,

is called the projection of U onto J along 8. Prove that

(1) Py and P; are homomorphisms of V onto § and onto J, respectively.

(il) Ps and Py are idempotent relative to the operation of successive

mapping operations (Lxereise 6).

(iil) PsP; = Z = P5Ps, where &Z = 6 for every & € V.

(iv) Ps + Ps = 1, where &1 = £ for every & € 0.



CHAPTER 3

Linear Transformations

§3.1. Homomorphisms of Vector Spaces

A study of vector spaces can be extended beyond the preliminary investi-

gations of the preceding chapter, and we shall develop further theory as it is

needed. For the present, however, we turn our attention from the spaces

themselves to the subject of homomorphisms of vector spaces. In this chapter

and the next we shall see that such homomorphisms are intimately related

to matrices.

We assume that U and W are vector spaces over the same field ¥. From

Definition 2.11, a homomorphism of V into W is a mapping H which preserves

the two operations involving vectors; that is, for all a, 8 € 0, a EF, the

following equations hold in ‘W:

1. (a+ 8)H = aH + 86H,

2. (aa)H = a(aH).

We now show that equations 1 and 2 can be replaced by the single condition

3. (aa + b8)H = a(aH) + 6(6H).

Clearly, equation 1 follows from equation 3 by selecting a = 1 = b, and

equation 2 follows by choosing b = 0. Conversely,

(aa + b8)H = (aa)H + (66)H

by equation 1, which then reduces to a(aH) + b(8H) by equation 2.

Condition 3 is the requirement of linearity, and since a homomorphism is 8

mapping, it is reasonable to use geometric language to describe mappings.

Henceforth we shall call such a homomorphism a linear transformation. The

terms linear mapping and linear operator are also used as synonyms.
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Definition 3.1. A linear transformation T from a vector space U to a

vector space W, both over the scalar field 4, is a mapping of VU into W

such that for all a, 8 € VU and for alla, b € 5,

(aa + b8)T = alaT) + D(8T).

This definition is stated more clegantly in the form “a linear transformation

from U to W is a homomorphism of U into W.” We remark that either form

of the definition includes the possibility that W and U are the same space.

Before proceeding we call attention to our choice of notation for linear

transformations, which will have important consequenees for the notation

which we later adopt for matrices. Since a linear transformation Tis a

function from U to W we could use standard funetional notation in which

T(a) represents the “value” of the function T at the vector a. But, as we

observed in § 1.4, if we wish to emphasize the geometric character of T as a

mapping, and particularly if successive mapping (function of a function) is

considered often, the notation aT is a useful substitute for T(a). In this

respect the notation for linear transformations is not. standardized, and you

are advised when consulting other books to ascertain whether the author uses

T(a) (left-hand notation) or aT (right-hand notation) for linear transforma-

tions and matrices. Right-hand notation is used in this book. However, to

facilitate the translation of major results from one notational system to the

other, a summary of results in both systems is given in Appendix B.

We shall regard linear transformations as the clements of an abstract system

whose nature is to be investigated. First we need to decide upon the relations

and operations of the system. Since linear transformations are functions, we

accept the notion of equahty of functions as a definition of equality of linear

transformations.

Definition 3.2. Two linear transformations T, and T, from U to W

are said to be equal if and only if aT, = aT, for all a € V.

This means that equal transformations determine the same mapping of the

vectors of U into vectors of W, and that a linear transformation is determined

by its effect on the vectors of U. We use this method of description to define

operations on linear transformations.

Definition 3.3. The sum T, © T, and scalar multiple c © T, of linear

transformations from U to W are defined, respectively, by

(a) a(T, ® T2) = aT; + aT, alla eé VU,

(b) a(c © Ti) = c(aT)), alla EU, c ES.
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Thus, given a field § and two vector spaces U and W over §, the set ZL of all

linear transformations forms a system £& for which two operations are defined.

Sum: T; @ Ta, all Ti, T, Ee L,

Scalar multiple: cOT,, allc e F, T, € L.

Theorem 3.1. Let & be a field, © and ‘W vector spaces over F, and L the

set of all linear transformations from VU to W. The system

£= {L, F; +, *, @, Of

is a vector space over S.

PROOF: Exercise. Except for minor changes of terminology, this is

Exercise 5, § 2.7.

Most of our attention in the rest of this book will be devoted to the study

of properties of the space £ and its elements. Generally we shall consider

linear mappings from one vector space U to another space W. But frequently

we shall specialize this general study by choosing ‘W in one of two ways:

cither W = U or W = 5, where we regard the field 5 as a vector space over

itself. These special cases are investigated in § 3.6 and § 3.4, respectively.

Definition 3.4. Let 0, W, and y he vector spaces over F, let T; be a

linear transformation from VU to W, and let T, be a linear transformation

from W to Yy. Then the product transformation T, © T, is the mapping

from VU to Y defined by

a(T, © T:) = (aT,)T2 for every a € WV.

It is easily verified that T, © Te is near. We note in particular that if

we restrict our attention to the set Z of linear transformations from VU Into

© itself, then in addition to sum © and scalar multiple ©, a third opera-

tion ©) is defined for the system £. Sinee © is the suceessive mapping opera-

tion, it is associative. We shall return to this point in § 3.6.

Several special linear transformations merit our attention. The zcro linear

transformation Z is defined from VU to W by

aZ = 9 for every a € V.

Corresponding to each linear transformation T from U to W, there is the

negative linear transformation, denoted —T and defined by

a(—T) = -aT for every a € V.

For each space VU there is an identity lincar transformation I from VU onto UV,

defined by

al = a for every a € V.

Of course, if T is a linear transformation from U to W, then both I O T and
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T © I are defined, but in the former I represents the identity mapping on U

and in the latter T represents the identity mapping on W. You should verify

that these names are justified; that is, that

TOZ=T for every T,

TO -T=Z for every T,

TOI=I10T=T for every T.

Once again we simplify our notation by using customary symbols for the

operations on linear transformations.

Examples of Linear Transformations

(a) The space & of pairs of real numbers is represented geometrically by

the plane. The transformation defined by (7, y)T = (kr, ky) for fixed scalar k

is a linear transformation which maps each point P into the point Q which

is collinear with 7? and the origin and * times as far from the origin as P is.

(x, y)T
¥, 7

“”
ao”

a

ane

oS (x,y¥)
”

a“ a
7 x

Figure 3.1

(b) Again in &, the transformation defined by

(xz, y)T = (rcos¥ — ysnV,z7sin ¥ + y cos V)

is a linear transformation which rotates cach point of the plane about the

origin and through the angle W.

J + (x,9)f
/oTM

Figure 3.2
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(c) In & let T,, Tz, and T; be defined by

(z,y)T; = (z, 0),

(x, y)T2 = (0, y),

(1, y)Ts = (y, 2).

(x.y) Ts ye
NY
MZ
/ NY

(x.y) T jor —=4 fy)
/

/

/

/ (x, 7) T,

Figure 3.3

All of these transformations are linear. T; is a projection of each point of the

plane onto the z-axis; T: is a projection onto the y-axis; Ts; is a reflection

across the line y = xz. Observe that (2, y)T,T: = (x, 0)T, = (0,0), so T:T, = Z

but T, #~ Z and T;, ¥ Z. Hence a product of nonzero transformations can

be the zero transformation. Also, (2, y)T:T; = (0, y)Ts = (y, 0); however,

(7, y)T3T2 = (vy, r)T2 = (0, 7). Hence T.T; # T3;T., so the multiplication

of transformations is not commutative. Finally, observe that (7, y)TiT, =

(r,0)T, = (x, 0) = (7, y)T;, so that Ti = T,. Thus there czxist idempotent

transformations other than I and Z.

(d) In the space of polynomials P of degree not exceeding n, let

P(r)D = + P(2).

Familiar properties of the derivative show that D is linear. Observe also

that ?(7)D"*! = 0 for every polynomial in the space, so D7t! = Z, Thus

there crist nonzero transformations T such that a finite power of T is Z. A

transformation T is called nilpotent of index k if T' = Z but T*"' # Z.

Exercises

1. Prove that the sum and scalar multiple of linear transformations are

linear.

2. Show that the transformations Z, I, and —T are entitled to the names

zero, identity, and negative.
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3. Verify that cach transformation listed in Examples (a) to (d) is linear.

4. Prove that 6T = @ for any linear transformation T.

d. If we regard the complex numbers as a vector space over the real field,

is the conjugate mapping, (a + 7b)T = a — 1b, a linear transformation?

6. Let T be a linear transformation of U into W.

(4) Show that any subspace of U is mapped by T into a subspace of W.

(ii) Conversely, show that if Y is a subspace of W, the set of all vectors

mapped into Y is a subspace of V.

7. (G) Show that a linear transformation T from VU, to W is determined

by the effect of T on any basis of Un.

(11) Conversely, ict {ai,..., an} be a basis of U, and let. {6;,..., Ba}

be any set of » vectors in ‘W. Show how the correspondence a, —- 8, can

be used to define a linear transformation from all of U, into W.

8. Which of the following transformations on &3 are linear? Describe the

geometric effect of each.

(i) (a), @2, @3)T = (a; + 1, a2 + 1, 0),

(11) (@i, G2, @3)T = (a2, ai, a3),

(iil) (a), @z, a3)T = (ay, ae, 1),

(iv) (a), Qe, a3)T = (a), —a2, — a3).

9. Let 0, W, XL, Y be vector spaces over ¥ and Iet R, S, T be linear map-

pings, respectively, of U into W, W into X, and & into Y.

(i) Prove that R © S is a linear mapping of VU into &.

(ii) Prove that ROS)OT=RO(8O0 1).

10. In the space of all polynomials P of all degrees define mappings M and

D by

) _f4pP(7)D = Tr P(x),

P(r)M = rP(z2).

(i) Prove that both D and M are linear transformations.

Gi) Is D nilpotent on this space? Compare with D in I:xample (d).

G11) Prove that MD — DM = 1.

(iv) Deduce that (DM)? = D?M? + DM.

§3.2. Rank and Nullity of a Linear Transformation

We recall that a linear transformation T is, by definition, a homomorphism

from a space U into a space W, where U and W may be the same space, but
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are not necessarily so. The domain of T is the space U, and the range of T

is a subset Gr of W, the set of all images aT of the vectors of U:

Gy = {8 © W|B = aT for somea € VU}.

It is easily proved that Mr 1s actually a subspace of W, for if 8, y € Rr, then

B=aT and y=aT. Hence B+ y = aT + wT = (a; + a)T € Rr.

Similarly for c € F, cB = c(aiT) = (ca,;)T € Rr. By Theorem 2.2, Rr is a

subspace of W.

Another important set associated with any vector space homomorphism T

is the kernel Ny of the homomorphism, which is defined to be the set of all

vectors in © which are mapped into @:

Nr = {aE V{[aT = 6.

To see that. Ir is a subspace of V, let a, 8B E Nr, c € F. Then (a + B)T =

aT + BT =6+0=86, so atBeEMNy; also (ca)T = c(aT) = cO = 6, so

ca E Ny. Thus Wr is a subspace of V.

These two subspaces, @y and Ir, called, respectively, the range space of T

and the null space of T, are of major importance in the study of linear algebra,

as are their dimensions.

Definition 3.5.

(a) The range space Gy of a lincar transformation T is the set of all

images aT € W as a ranges over V.

(b) The rank p(T) of a linear transformation T 1s the dimension of its

range space.

Definition 3.6.

(a) The null space Nr of a linear transformation T is the set of all

vectors a € VU for which aT = 6 EW.

(b) The nuliity »(T) of a linear transformation T is the dimension of its

null space.

Theorem 3.2. If T is a lincar transformation from U to W and if S 1s

a linear transformation from W to Yy, then

(a) Rrs C Rg and p(TS) < p(S),

* (b) Nrs D Ny and »(TS) > »(T).

PROOF: Exercise.

Thus we sce that cach linear transformation T from VU to W automatically

sclects a subspace Wr of U and a subspace Gr of W. These two subspaces

are related in an interesting manner, as indicated by the following theorem

and its corollaries.
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Theorem 3.3. Let {a,...,acm! be a basis for Nr. Extend this

basis to any basis {qa,...,a,cm, ocrdi,.--,@n¢ for VU, Then

{a,cr)4iT,...,anT} is a basis for Rr.

PROOF: Let {a,..., an} be chosen as in the statement of the theorem.

Any vector of ®r is of the form £T for some § € U,. Let & = }-7.; aa;

then

tT = (= a,c.) T= 2) a(a,T) = ~ a,(a,T),
i=] ‘al e=r(T) +1

since a,.T = 6for? = 1,2,...,»(T). Hence fan4iT,...,a,T} spans

Gr. Since we do not know the dimension of Gy we must also prove

linear independence. Suppose scalars b,, not all zero, exist such that

n nm

¥(T T)+

Then Sraiibia. € Nr; but {a1,..., a.m) spans Nr, so for suitable

scalars ¢,,

n »(T)

ba, = CQ,
vV(T)+1 1

This contradicts the linear independence of {a),..., an}, so the vectors

{ayr+i11T,..., nT} are linearly independent and therefore form a

basis for ®r.

Theorem 3.4. If T is a linear transformation from VU, to W, then

e(T) + o(T) = 2.

PROOF: Exercise.

Now if we consider W and VU, to be the same space, then T, T?, T’,... are

all well-defined transformations of 0, into itself. The corresponding range

and null spaces form chains, as indicated in the following result.

Theorem 3.5. If T is a linear transformation on U,, then

(a) Un D@rWArD-:: Darn D:::= }

(b) (J ONWrONPS---CUWC---

Furthermore, if p is a positive integer such that Gre = Arex, then for

every integer k > 1 we have Qr = Gy and Np. = N+.

PROOF: The chains are established by repeated application of The-

orem 3.2. Furthermore, in a finite-dimensional space equality must hold

somewhere in each chain. The dimension relation of Theorem 3.4 shows

that Qr = Rr if and only if Nr = Nan. Now assume Nrr = Wren,

and let & € Na. Then
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@= ET e+ = (ET!) Tet,

Hence ¢T*—' € Nyon = Nr. If k > 1, the argument may be repeated

to give &T*? € Ny, etc., so finally & € Wr. Thus Naw C We, and

the chain relation gives Nr. € Wrex, so equality holds.

This result gives us a fairly clear picture of the range and null spaces of

an iterated transformation. As T is iterated on U,, the corresponding null

spaces form a strictly increasing sequence of subspaces up to a certain number

p <n of iterations, at which point the increase stops. Thereafter, further

application of T maps into @ only those vectors which are mapped into @ by

T». Likewise, the range spaces form a strictly decreasing sequence up to p

iterations, and further application of T maps &r» onto itselt.

Exercises

1. Prove Theorem 3.2.

2. Prove Theorem 3.4.

3. Let S and T be linear transformations from U, to U,; prove the follow-

ing relations for rank and nullity.

(1) p(T +S) < o(T) + ofS).
(i) v(T + S) => o(T) + (8) — 1.

(ini) »(T) + »(S) > »(TS) > max {»(T), »(S)}.

(iv) p(T) + p(S) — n S p(TS) < min (0(T), (S)}.

4. Specify the range space and null space of cach of the linear transforma-

tions given in the examples of § 3.1.

5. Illustrate the statements of Exercise 3 above by using the linear

transformations T; and T; of Example (c), § 3.1.

6. Demonstrate by specific examples that the second inequality of Exer-

cise 3(iii) and the first inequality of Exercise 3(iv) need not be valid when

T is a linear transformation from VU, to W,, and S a linear transformation

from Wm to Y>.

7. If T is a linear transformation of rank 1 from VU to VU, prove that

T? = cT for some scalar c.

8. Let T be a nilpotent lincar transformation on U, so that for every

n€ 0, 1T? = 0, but for some — € 0, ET?! ¥ 0.

(i) Show that {, &T, ¢T?,... , €T7~'} is linearly independent.

(ii) If § is the subspace spanned by the vectors of (i), show that

oT & § for every o € S. (That is, T maps the space § into itself. Such a space

is said to be invariant under T, or T-invariant.)
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9. Let T be a linear transformation from U into W. A mapping T is

defined from U/Nr (Exercise 8, § 2.3) into W as follows:

(E+ Xr)T = ET.

Show that the mapping T is unambiguously defined, linear, one-to-one, and

onto Rr. In short, T is an isomorphism of U/9tr onto Rr.

§3.3. Nonsingular Transformations

The range and null spaces of a linear transformation T have an intrinsic

connection with the coneept of nonsingularity of T, which can be characterized

In numcrous ways. The essential idea is one-to-one-ness. A nonsingular linear

transformation is distinguished from an arbitrary linear transformation in

the same way that an isomorphism is distinguished from a homomorphism.

This means, of course, that the null space of a nonsingular transformation

is [6], and therefore the mapping thus defined is reversible.

Definition 3.7. A linear transformation T from VU into W is said to be

nonsingular if and only if there exists a mapping T* from &r onto V such

that TT* = I, where I is the identity mapping on V.

Although this definition does not explicitly require T* to be linear, it is

necessarily so. To deduce this fact, let T* be a mapping from Rr onto VU such

that TT* = I. If a, 8 € Gr, there exist ~,» € UV such that &T = a, nT = 8.

Then &TT* = aT* = £ and @T* = 7. Vor any a,b €F,

(aa + b8)T* = (a&T + bn T)T* = (a& + bn) TT*

= (a& + by)I = alaT*) + b(nT*).

Thus the linearity of T and the property TT* = I imply that T* is linear.

Furthermore, T* is uniquely determined by T if T is nonsingular.

Theorem 3.6. Let T be a linear transformation on U, to W; the follow-

ing statements are equivalent.

(a) T is nonsingular.

(b) For all a, 8 € Vs, if aT = ST, then a = 8.

(c) Nr = [6].

(d) »(T) = 0.

(e) p(T) =n.
(f) T maps any basis for U, onto a basis for Rr.

PROOF: Qur proof consists of a cycle of implications.
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(a) implies (b). Assume T is nonsingular and that aT = BT. Then

(aT)T* = (8T)T*, al = BI, and a = 8B.

(b) implies (c). If € € dtr, then ET = 6 = 6T, so — = 6, Hence Nr = [6].

(c) implies (d). Definition 3.6.

(d) implies (e). Theorem 3.4.

(e) implies (f). Theorem 3.3.

(f) implies (a). Let {a1,..., aa} bea basis for U,; then {aT,..., anT}

is a basis for Rr. Hence each n € Ry has a unique expression of

the form » = d07.10.(a,.T). Let T* be the mapping from @r to U,

defined by 1T* = 77.1 ),a, We must show that TT* = I on 0,.

For each £ © Un,

ri

t= u a,
=

ET (x a.a,] T= x a,(a,T) € &r,
tml

(kT)T* = XS aa,= by definition of T*,
‘<1

Hence TT* = I on U,.

Since a linear transformation is a homomorphism of U onto ®r, @ non-

singular transformation is simply an isomorphism of U onto ®r. This inter-

pretation lends intuitive feeling to the statements of the preceding theorem,

since in an isomorphism distinct vectors have distinct images, the kernel is

trivial, and it seems entirely reasonable that dimension must be preserved.

We remark that if T maps 0 into U, then T ts nonsingular if and only if

Rr = VU. If we insist on distinguishing VU and W, then it is still true that

T is an isomorphism between U and &r if and only if T is nonsingular.

Interestingly enough, these observations remain valid even when VU and W

are infinite-dimensional spaces. Of course in that case Theorem 3.6 must be

amended by deleting statement (e) and the subscript on U,; otherwise, the

theorem and most of the proof remain valid. In contrast to the definition

of nonsingularity given here, a linear transformation T from VU to W is some-

times defined to be nonsingular if and only if there exists a mapping T*

from W to U (instead of from Ry to UV) such that TT is the identity mapping

on U and T*T jis the identity mapping on W (instead of on Rr). The two

definitions coincide if U and W are finite-dimensional spaces of the same

dimension, but not otherwise. (See Exercise 5.)

The significance of Theorem 3.6 (as well as other results we prove about

linear transformations) will become more evident when the theory of matrices

is developed in subsequent chapters. Indeed, for every theorem we prove
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about linear transformations there is a corresponding theorem about matrices.

The next result is surprisingly simple to prove in terms of linear transforma-

tions, but a matrix proof of the corresponding result is relatively obscure.

Theorem 3.7. If T is a linear transformation from U to ‘W and if T* is

& mapping from Rr to VU such that TT* = Ion VU, then T*T = I on @r.

PROOF: By hypothesis, T is nonsingular, so any 8 € @r can be rep-

resented uniquely as 8 = aT for some a € V, by Theorem 3.6(b). Then

B(T*T) = (aT)(T*T) = a(TT*)T = aT = 8. Hence T*T = I.

Thus in algebraic language T is nonsingular if and only if there exists a

transformation T* which is both a left inverse and a right inverse of T. Hence

we call T* the inverse of T and write T-! instead of T*. Observe that not

every nonzero linear transformation has an inverse; for example, T, of Exam-

ple (c), §3.1, has a one-dimensional range space and hence is singular but

nonzero.

Theorem 3.8. Let 0, W,, X, Y be vector spaces, and let S,, T, and S,

be linear transformations defined, respectively, from U into ‘W,, from

‘W,, into X, and from ®y into Y. If T is nonsingular, then p(S:T) = p(S,)

and p(TS:) = p(S:).

PROOF: Since T is nonsingular, dim &s,T = dim &s,; but Rs,T = Rsg,1,

so p(S:) = o(Si:T). Also Gi. = ArSe = Rs,, so p(TS:) = p(S.). As a

particular case, if U =v . = X = Y and if S,; = S,, we have p(TS,) =

p(SiT) = p(S,) whenever 7 1s nonsingular.

It should be observed that. Gisr and &s need not be equal, since T might

map a vector of Rs into a vector which is not in Rs. All we know is that Qsr

and ®s have the same dimension. As an example, let T be the rotation of

the plane through an angle of 45°, and let S be the projection of (z, y) onto

(x, 0). Then @g is the line y = 0 and @sr is the line y = z.

Theorem 3.9. Let T be a linear transformation from VU into ‘W, and

let S be a linear transformation from @r into Y. Then TS 1s nonsingular

if and only if T and S are nonsingular. If TS is nonsingular, then

(TS) = S'T",

PROOF: Exercise.

Theorem 3.10. If T is nonsingular, then T—' is nonsingular, and

(a) (T-')-! = T,
(b) (cT)-! = c'T"', if c ¥ 0.

PROOF: Exercise.
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Exercises

1. Prove Theorem 3.9.

2. Prove Theorem 3.10.

3. Any linear transformation of the plane is determined by its effect

on the two vectors « = (1,0) and e = (0,1). Suppose «T = (a,b) and

eT = (c,d). Express in terms of a, b, c, d a necessary and sufficient condi-

tion that T be nonsingular. Interpret geometrically.

4. Show that the set of all nonsingular linear transformations on U, form

a group. This group is called the full linear group £,(3).

®). Let & be the infinite-dimensional space of all real polynomials and let

Py be the subspace of all polynomials 2 for which P(0) = 0. Consider the

linear transformations defined as follows:

P@)J = I, *P()dt for all P(x) € @,

P(r)D = “ P(x) for all P(x) € @,

P(c)Dy = £. P(r) for all P(x) € Gs.

GQ) Determine the domain and range of cach of the transformations

J, D, Do, JD, DJ, JDo, Dud. |
(11) Which of the four product transformations in (i) is the identity

transformation on its domain?

Gi) Which of the seven transformations jn G) are nonsingular?

(iv) Explain wherein these results are consistent with Theorem 3.7

and Theorem 3.9.

U. Let & be a A-dimensional subspace of U,.

GQ) Show that 8 is the null space of a suitably defined linear trans-

formation T from U, Into U,. (Exereise 8, § 2.7.)

Gi) Deduce that the dimension of U,/S_ isn — k. (xereise 9, $3.2.)

(ii) Deseribe a basis for 0,,’S, which is related in a natural way to a

suitably chosen basis for U,.

$3.4. Dual Space

Up to this point we have been studying linear transformations from one

vector space © over F to any other vector space W over 3, a study which

is resumed in $3.7. But now we digress slightly im order to investigate two

special choices for W; in this section and the next we let W = 5, and in
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§ 3.6 we let W = V. In each case we obtain results which are peculiar to that

situation, yet important for an understanding of general topics which will

arise later in our study of linear algebra. A reader who prefers to move

directly to § 3.7 may do so without any knowledge of the intervening topics,

returning to these sections later.

We therefore turn our attention to scalar-valued lincar functions defined

on @ vector space VU over §, Since 5 may be regarded as a vector space over

itself, we consider the set of all linear transformations from U to ‘W’, spe-

cialized to the case where W = S. (Ixercise 7, § 2.7.) In this case a linear

transformation T from ‘U to & assigns to each vector — € Ua sealar tT € 5;

of course linearity means that for all &, 7 © U and all a, b € 5, (at + byn)T =

a(t€T) + b(7T) in S. From Theorem 3.1 it follows that the set of all linear

functions from VU to § forms a vector space over F.

Because this is a particular situation, rather than general, we shall introduce

special terminology and notation.

Definition 3.8. Let © be a vector space over 5. A lincar transformation

from VU into §& is called a linear functional; linear functionals will be

denoted by small Latin Ictters, usually in boldface type. The vector

space of all linear functionals on VU is called the dual space of U and is

denoted by V’.

Examples of Linear Functionals

Several important examples of linear functionals on infinite-dimensional

spaces are familiar from our study of elementary analysis.

(a) Let U be the space of all real-valued functions integrable fora < t < b,

and let j be the functional defined by fj = [ ° f{(d dt for each f € V. Thus

j is a linear mapping which assigns to each integrable function f a real num-

ber fj, called the integral of f on the interval a < t <b. More generally,

if ¢ is a fixed function which is integrable for a < t < b, then h is a linear

functional where

fh = [so at.

(b) Let & be the space of all real polynomials, and let d. be defined for

each P € @ by

Pd, = P"(a),

where P’ denotes the derivative of P?. Then d, is a linear functional.

(c) Let © denote the space of all convergent sequences of real numbers.

A linear functional is obtained by associating with each sequence the real

number to which it converges.

(d) If U is any n-dimensional space over F and if & € U, let & = D07., ria.
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where {a,..., an} is any fixed basis. Let y = }-%., c,a, be any fixed vector

of U0. The mapping f,, defined by

fy = cri + Core + +++ + Cada,

is a linear functional on 0.

The last example reveals the nature of linear functionals on U, so com-

pletely that we repeat a description of the ideas involved. We begin with

any basis [a1,..., an} for U,; each fixed y &.U, determines a linear func-

tional f, on U,. The scalar value éf, which is assigned to the vector — by the

linear functional f, is a fixed linear combination of the coordinates of &

(relative to the a-basis), and the coefficients of that linear combination are

the coordinates of y (relative to the a-basis). As y is varied, we obtain various

linear functionals. In particular, if y = 6, then f~ maps each é onto 0; if

y = a, f, maps each & into its first a-coordinate, and so on. We consider,

therefore, the n linear functionals (fa, ..., fa,$ whieh correspond in this

manner to the vectors of the chosen basis, and we investigate the role they

play in the dual space VU’.

To begin with, fa, maps a, into | and a, into 0 if 7 # /. Hence

af. = 5,,, forz,j = 1,...,%,

where the symbol 5,, is called the Kronecker delta and is defined by

5 = {o fa =,

" 0 ifi #7, fori7,j7 = 1,2,...,n. |

Next we show that (f.,,...,f.,} forms a basis for U0’. Clearly the zero

element of U’ is the linear functional f which maps each £ into 0. To verify

that the f, are linearly independent, we suppose that

y cafe, = fo.
kml

Then fort = 1,...,%,

Q = af = a, > fa, = y. Ca fa, = > CrOik = Cy.
kml | k-m 1]

To verify that the f,, span U’, we Iet f be any element of 0’, and let a, € 5

be defined by

a,=a,f fori =1,...,%7.

Then

a,f =a, = > a,6,; = ~ a, (fa )
3=1 j=l

a( 5 af.,)
Hence both f and 5-?_, a,f, are linear functionals on U, whose values coincide
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on the basis {a,...,a,}. Linearity then implies that these values coincide

on all of U; that is, they are equal elements of 0’. We have therefore proved

the following theorem.

Theorem 3.11. Let {a:,...,an} be a basis for U,, and let f; be the

linear functional defined on U, by prescribing

af, = 5,; fort = 1,2,...,m.,

Then {f,,..., f,} is a basis for U,. Hence VU; is n-dimensional.

The basis for 0’ which is described in Theorem 3.11 is called the dual basis

of {a, ey a,}.

Theorem 3.12. If & is any nonzero vector of U,, there exists a linear

functional f € U0) such that ¢f = 0.

PROOF: Let {m,...,an} be any basis for U,, and let {fi,...,f,} be

its dual basis for U,. Let & = 3-21 2,0,. If & # 6, there exists at least

one index 7 for which z, + 0. Then éf; # 0.

It follows immediately that if & ¥ » in U,, then for some f € Us, Ef # nf;

we shall make use of this observation in Theorem 3,13.

But first we return to the general case in which VU is not specifically assumed

to be finite-dimensional. Since VU’ is a vector space, it has a dual space of

its own which is denoted (U’)’ or simply 0’’. 0” is called the second dual

space or the bidual space of 0. Thus any element f of U0’ can be given two

interpretations; sometimes we wish to regard it as a linear mapping from

~ to 5, while at other times we wish to regard it as a vector which is mapped

into ¥ by each element of 0’’. In order to distinguish between these two roles

of the elements of U’, we shall modify our notation slightly, writing f for an

element of 0’ regarded as a mapping from VU to §, but writing f for the same

element of U’ regarded as a vector which is mapped into $ by an element

of 0’. An element of U’’ will be denoted by x. Thus we have ¢ € 0, f or

fe’, and x € 0”; then éf € 5 and fx ES.

Now we turn our attention to an important correspondence between the

elements of a vector space U and some of the elements of its bidual space, 0”.

Let & be a fixed vector of U. For each f € 0’, tf € 5; this means that & can

be used to attach a scalar value to each f € U’—in other words, £ determines

a mapping from VU’ into §. Furthermore, that mapping 1s linear on VU’, because

t(af; + bf) = aff, + b& fs.

Thus with each — € U we associate the linear functional x, € U’’ which is

defined by

fixe = tf for each f € VU’.
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Furthermore, this correspondence or mapping from V to 0” is linear (a vector

space homomorphism), since if corresponds to x; and & to xe, then for each

fev’ and all a,b) € &F,

(at, + bé)f = aéif + b&f = afx, + bfxe = flax + bx].

Henee VU is homomorphic to a subspace of 0’. We naturally wonder whether

the homomorphism is an isomorphism (that is, whether the mapping from VU

to 0” is one-to-one), and if so whether VU is isomorphic to the full space 0”

(that is, whether the mapping is onto 0” rather than into 0”), The answers

to these questions are that the mapping 7s an isomorphism whether VU

is finite-dimensional or not, but the mapping is onto 0” if and only if VU is

finite-dimensional. However, we shall prove these assertions only for the

finite-dimensional ease.

Theorem 3.13. Let U be an n-dimensional vector space. Each & € VU

determines a mapping x; from VU’ into F, defined by fx, = éf for all

fev’. Then x» € 0”, and the correspondence — —- x; 18 an_ 1S0-

morphism of © onto 0",

PROOF: Our previous remarks show that the given correspondence is

a homomorphism of U onto a subspace W” C0”. By Theorem 3.12,

if §; ~ f& in VU, then for some f € 0’, df ¥ ff; thus fx: + fxe, and

x1 ¥ x2 in 0”. By Theorem 3.11, U’ is 2-dimensional, and therefore so

is UO". If {a1,..., an! isa basis for U and if a, —> x,, then {x,..., Xs}

is a basis for W”", so WwW" = 0”,

Exercises

1. Given c ¥ 0 in ¥ and f # @ in U’, show that there exists § # @ in UV

such that éf = c.

2. In & the scalar or dot product of two vectors a = (a), d2, a3) and

B = (by, be, bs) 1s defined by

a8 = abi + debe + asbs.

(i) Given any linear functional f on &,, let Br = (af, ef, «f). Show

that af = afr for every a € &;.

(ii) Converscly, given any 8 & &, let fa be the linear functional defined

by efe = b,, 7 = 1,2,3. Show that afs = a-8 for every a © &;, and that

fz = 6 in &3 if and only if 8 = @ in &s.

3. In & the following vectors form a basis:

a= (0, 1, 1),

a= (1, 0, 1),

a, = (1, 1, 0).
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Determine a basis {f), fo, f3} for &; which is dual to {a1, a2, a3}, and compute

(21, Zs, 23)f; for each 7.

4. Let U be a vector space over § and let S # © be a subset of U. The

annthilator S° of S is defined to be the set of all linear functionals on VU which

map each vector of S into 0:

S° = {f € 0’ | of = 0 for each o € S}.

Prove the following properties of annihilators.

(i) If SC Tin v, then 7 C Sin Vv’

(ii) If Nt is a subspace of U, 3° is a subspace of VU’. Furthermore,

if U has dimension n and 91 has dimension m, then ‘m° has dimension 2 — m.

(ui) If U is finite-dimensional, the mapping of Theorem 3.13 is an

isomorphism from SN to (9N°)?.

(iv) If 0 is finite-dimensional and if 9% and N are subspaces of VU, then

(MN 92)° = I + N°,

(Mm + 9)? = MN MN?

5. Let U, be a vector space over F, and let f be a fixed, nonzero linear

functional on U,. Show that 3c = {f © U, | &f = 0} isan (mn — 1)-dimensional

subspace of U,. [In geometric language any (n — 1)-dimensional subspace of

an n-dimensional space is called a hyperplane. |

6. Let @ be the infinite-dimensional space of all polynomials with real

coefficients, and let 8 be the infinite-dimensional space of all infinite sequences

of real numbers. With each real sequence {c,} we associate the mapping

f € &’, which is defined from @ to the real numbers by specifying that f is

linear and that r'f = c, for k = 0,1,2,.... Show that ©’ is isomorphic

to &. (Theorem 3.11 shows that U and VU’ are isomorphic when V is finite-

dimensional. This example shows that the corresponding result is not valid

for infinite-dimensional spaces, since it is known that @ and § are not iso-

morphic. )

§3.5. Transpose of a Linear Transformation

Next we shal! show that each linear transformation T from a vector space U

to a vector space W is associated in a natural way with a linear transforma-

tion T’ from the dual space W’ to the dual space UV’, as indicated in Figure 3.4.

T’ is defined as the transformation from W’ to VU’ which maps each linear

functional g on ‘W into the linear functional gT’ on VU, the value of gT’ for

each a € VU being the scalar (aT)g. Thus in F

a(gT’) = (aT)g for each a € VU and each g € 'W’.



64 Linear Transformations [cu. 3]

T

Vv - W

oT” /.
F

V! « any!
vy’

Figure 3.4

This condition can be expressed as an equation in VU’:

gl’ = Teg for each g & ‘W’.

Since T is a linear mapping from VU to W and g is a linear mapping from ‘W

to §, the composite mapping Tg is linear from VU to 5. Hence gT’ € VU’ for

each g € W’, and T”’ is indeed a mapping from W’ to U’. As an exercise you

may verify that T’ is linear.

Definition 3.9. Let and W be vector spaces over 5, and let T be a

linear transformation from U to W. The transpose T’ of T is the linear

mapping from 'W’ into U’, which is defined by

gI' = Tg for each g € ‘W’.

As another exercise you may verify that I’ = I, (cT)’ = cT’ for each

cé, and (8+ T)' = 8S’ + T’ if both S and T are linear transformations

from VU to W. The equation I’ = I is interpreted as meaning that if I is the

identity mapping on VU, then I’ is the identity mapping on VU’.

Theorem 3.14. Let T be a linear transformation from U to W and Sa

linear transformation from W to Yy. Then

(TS)' = S'T’.

PROOF: Since TS is a mapping from U to y, (TS)’ is a mapping from

ry’ to 0’; S’ is a mapping from ‘y’ to W’ and T’ a mapping from W’ to VU’.

For each h € Y/’,

h(TS)’ = (TS)h

= T(Sh)

= T(hS’)

== (hS')T’

= h(S’T’).

The key observation in the preceding proof is that hS’ € W’, say AS’ = g.

Then, by the definition of T’,

T(AS’) = Tg = gT’ = (hS‘)T’.
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By applying Theorem 3.14 to the case in which T = S-!, you may prove

that if S is nonsingular, then S’ is nonsingular and

(S‘)-? = (S~})’.

Theorem 3.15. Let T be a linear transformation from U,, to W,. Then

T and T’ have the same rank.

PROOF: Let p(T) = k; then &r is a k-dimensional subspace of W,.

By Exercise 4(ii), § 3.4, the annihilator ®t of Rr is a subspace of Wi,

of dimension n — k.

Then we have

f € Gf if and only if nf = 0 for every » € @r,

if and only if («T)f = 0 = £(fT”’) for every & © Un,

if and only if fT’ = 6 in Uy,

if and only if f € Nr.

Thus QT = Ny and »(T’) = n — k. Since T’ is a linear mapping of ‘W,,

p(T’) = k = p(T).

Exercises

1. Prove that the transpose of a linear mapping is linear.

2. Prove that I’ = I, (cT)’ = cT’, and (89 + TT)’ = S’+ T’.

3. Prove that if S is nonsingular, then S’ is nonsingular and (S’)-! = (S-)’,.

4. If T is a linear transformation from VU to W, state precisely what is

meant by (T’)’. If © and W are finite-dimensional, use Theorem 3.13 to

interpret the equation (T’)’ = T, and then prove it.

§3.6. Linear Algebras

In § 3.1 we observed that a special situation arises when we consider the

system. -£ of all linear transformations of a vector space U into VU itself.

& is.a vector space in which the “vectors” are linear mappings of U into 0;

therefore a product S ©) T of “‘vectors’”’ can be defined by means of the

operation of successive mapping ST. In general, a vector space over § in

which a suitable product of vectors is defined is called an algebra over §;

there are various types of algebras, classified according to the properties of

that product.

Definition 3.10. A linear algebra £ over a field F is a system

L= {L, F;+, ‘*,@,0, O}
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which satisfies the postulates:

(a) the system {[L, F; +, -, ®, ©} is a vector space over F,

(b) © is a binary operation on £ which is closed, associative, and

bilinear.

This second postulate requires elaboration, but first we agree to dispense

with the special notation. Then (b) simply asserts that for all a, b € 5 and

all T,, T2, T; € & the product operation is

Closed: TiT, € &,

Associative: T,(T2T;) = (T\T:)Ts,

ope T, (aT, + bT3) = aT,T, So 5T,T;
Bil : ,menear {on -++ bT3)T, = aT.T, + bT3T;.

The dimension of £ is defined to be its dimension as a vector space.

Theorem 3.16. The system £ of all linear transformations from a vector

space U over § into VU is a linear algebra over 5. If U is of dimension n,

then & is of dimension n?.

PROOF: We have already verified that £ is a vector space over 5 and

that the product of linear mappings is linear and associative (Theorem 3.1

and Exercise 9 of § 3.1). Hence we need only show that the product is

bilinear:

a(T,(aT, + bT;)] = (aT) (aT. + bT3)

(aT))(aT2) + (@T,)(6Ts)

a(a«T;)T, + b(aT\)T;

a(aT\T.) + b(aTiT;)

a(aT,T:) + a(bT,Ts)

a(aT,T, + bT,T3).

A similar calculation verifies the second condition of bilinearity. Thus £

is a linear algebra. To prove that the dimension of £ is n*? we use The-

orem 2.14 to represent U, as n-tuples of elements of 5, and’define’ the

n? linear transformations T,,, where 7,7 = 1,..., 7, by |

(x1,...,%n)T,; = (0,...,0,27,,0,..., 0)

where the jth component of the image vector is z,, and all other compo-

nents are zero. It can be shown that the T,, are linearly independent

linear transformations which span £. However this fact is more readily

seen in terms of matrices, so the completion of this proof is deferred

until § 4.3.
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One additional remark is of interest here. An abstract linear algebra may

or may not have an identity of multiplication. However, rt can be shown that

any linear algebra with an identity and of dimension k is isomorphic to a

subalgebra of the algebra of all linear transformations on U,. This fact pro-

vides a concrete representation of any such abstract linear algebra and a

striking illustration of the generality of linear transformations and_ their

importance in linear algebra.

Exercises

1. Let @ be a linear algebra over § and let {a1,..., am} be a basis for @.

The product of any two elements of @ is an element of @ and hence is a

linear combination of the a,. Hence each pair a,, a; of basis vectors deter-

mines m scalars c,, kK = 1,...,m such that

m

aa, = De Creer for allz,j = 1,...,m.

(i) Show that the product of any two elements of @ is determined

by the m scalars c,,..

(ii) Find a necessary and sufficient condition on the scalars c,;;, that

tne algebra be commutative (é = 7é for all &, 7 € @).

Gi) Show that any finite-dimensional vector space can be made into a

linear algebra by defining the trivial product in which ¢;,, = 0 for all 7, 7, k.

2. An important example of a linear algebra of dimension four, given a

century ago by Hamilton, was a forerunner of the study of matrices. The

elements of the algebra are called quaternions, and the scalars are the real

numbers. In a notation similar to that of the complex numbers, a quaternion

is an expression of the form

al + Aot + Qs) + ayk.

Equality, sum, and scalar multiple are defined component by component;

quaternion product is defined by bilinearity and the following multiplication

table for the basis elements, wherein the product xy appears in the row

labeled z at the left and in the column labeled y at the top:

1 i j ok

1} 1 a gj sk

i |i -1 k-

j |g -k -1 3

k kK gj -t —!l

(i) Verify that this product is closed. All other postulates of a linear

algebra are also satisfied.
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(ii) Show that every quaternion except 0+ 0: + 07 + 0k has an

inverse relative to this product; that is,

(ay + aot + a37 + ask) (bi + bot + b37 + bak) = 1 + OF + 07 + OK

for suitable bi, by, bs, by.

(ii1) Is the product commutative?

From this we conclude that the quaternions form a noncommutative

“division algebra.”” An important theorem of Frobenius proves that the

quaternions form the only noncommutative division algebra over the real

numbers.

§3.7. Specific Form of a Linear Transformation

Finally we approach the bridge which connects linear transformations and

matrices. Let T be a linear transformation from U,, into W,. We choose any

basis {a;,...,am; for U, and any basis {@,...,8,} for W,, and then

consider the images a,T of the basis vectors of U,,, expressed in terms of the

basis vectors of W,. Since a,T € W, for cach 7, there is a unique representa-

tion for a,T as a linear combination of the vectors in the @-basis; that is,

a,T = a8) + 2B» + “ee + OinBn

= s a,,B;, for each 7 = 1,2,...,m.
jm]

This set of m linear equations describes the effect of T on the vectors of the

a-basis. But any vector § € U,, can be represented uniquely as a linear

combination of the vectors in the a-basis:

f= ¥ za,

Hence

T= (Fra) T= ¥ 20)
ami

a= +=]

= a (x z.a1;) B;.
gull \iml

Therefore the effect of T on any vector & is described in terms of the scalars z;

(which represent é in terms of the a-basis) and the scalars a,, (which describe

the effect of T on the vectors of the a-basis, expressed in terms of the 8-basis).

This representation of T is so vital in our future work that we repeat,

for emphasis, the idea involved. Given a linear transformation T from U,
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to ‘W, we choose a basis for U,, and a basis for W,. The image of each of

the m basis vectors of U,, is described by n scalars which depend upon T

and upon the basis for Wn. Furthermore, these mn scalars describe T com-

pletely since the image of any given vector can be determined from the

mn, scalars.

Conversely, with respect to a fixed choice of bases for Um and W,, any

mn scalars determine a linear transformation; given a,;,7 = 1,2,...,m and

7=1,2,...,n, let T be the linear transformation defined by the equations

oT = ayBy + ay. + +++ + GinBn

a2T = anBi + AmB. + °-+ + GanBn

Ont = AmB} + An 2B» + eee + AmnBn-

Since a linear transformation is determined by its effect on any basis (Exer-

cise 7, § 3.1), éT is defined for all — € U. These results are summarized in

the following theorem.

Theorem 3.17. Let T be a linear transformation from V,, to W,, both

over ¥. With respect to a chosen pair of bases, T determines a sct of

mn scalars, arranged in a rectangular array of m rows and n columns.

Conversely, each such array of mn scalars determines uniquely (using

the convention just described) a lincar transformation from U,, to W,.

In the next chapter we shall consider rectangular arrays of scalars, calling

each such array a matrix. Theorem 3.17 tells us that every linear trans-

formation determines an array of this type, relative to fixed bases, and every

array determines a linear transformation, again with fixed bases being used

to define the transformation. In order that these arrays be useful in repre-

senting facts about linear transformations, we shall define operations on

matrices in such a way as to imitate the corresponding operations on linear

transformations.

For linear transformations which map WV into itself, only one basis is

needed. To illustrate, let us consider the representation of the product of

two linear transformations T and S from U to 0. Let fa,...,a,! bea

basis for U. Then, using the method just described, we obtain 2? scalars a,

which represent T and n? scalars 6, which represent S, both in terms of the

a-basis:

nr

aT = 2 OQ, 7=1,...,N,
=1

aS = >, byex;, k=1,...,%.
youl
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To find a representation of TS we calculate as follows:

(a,T)S = eI aa S= x, Qu(a,9)a,(TS)

5 au( > bai)
k=] yml

3 (= a.b1,a;)
k=l \j=1

~ (= aubi,as
k=ljal

= > (= ash) Q;.
y=l \k@=l

The last form of the equation can be written

a(TS) = (= aubus) on + (= abi) ay foe $ (= aubis) On

for72 = 1,...,2. Hence the n? scalars which represent TS relative to the

a-basis are

rn

2 aDe;, i,j =1,2,...,n.
=1

This observation 1s precisely what guides us in the next chapter, where the

product of matrices is defined formally.

We now return to the simpler case of representing a single transformation

relative to a chosen basis. To illustrate how the a,, depend on the chosen

basis as well as on T, let us consider the rotation of the plane through an

angle of 90°. Referring to the usual coordinates, choose e«, = (1,0) and

é. = (0, 1) as a basis. Then

ar =(1,0T= (0,1) = 06+ le,

ef = (0,1)T = (-1,0) = —le + Oe,

and the four scalars which represent T are

a= 0 dy = 1

ay = —1 Ax = 0.

Now let us choose a different basis, say a: = (1,1) and a, = (—1,0). Then

ar= Q,)T=(-11)= lat 2a,

oT = (—1,0)T = (0, —1) = —la, + (—1)az,

and the four scalars which represent T with respect to the new basis are

bin =] bie = 2

bey = —1 be = —1.,
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In our thinking about linear transformations we have hitherto used the

phrase “image of a under T” to describe aT. Using the plane for simplicity,

the geometric picture we have of T is that T performs a rearrangement of

the vectors (points) of the plane. Each point is moved by T into a new

position (which might happen to coincide with the old one). In case T is

nonsingular, a second means of interpreting T is sometimes convenient. If

T is nonsingular, the image of a basis is again a basis. But in Chapter 2 we

saw that each basis determines a coordinate system, so a change of basis is

nothing more than a change of coordinates. Thus we may picture the points

of the plane not being moved about by T but remaining fixed and acquiring

a new set of coordinates.

To summarize, a nonsingular transformation may be interpreted in two

ways:

Dynamic (Alibi). T moves each point P into a point PT in such a way that

if P ~ Q then PT ¥ QT.

Static (Alias). T assigns new coordinates to each point in such a way that

if the old coordinates of P and Q are different, then the new coordinates of

P and Q also differ.

For the example given above, the dynamic interpretation is illustrated by

Figure 3.5. Alternately, in the static interpretation we consider the four pairs

ee

Figure 3.5

of vectors as defining four coordinate systems in the plane. If a point P has

coordinates (a,b) in the «, « basis, then by direct computation P has

coordinates
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(6, —a) in the «,T, eT basis,

(b, b — a) in the a, az basis,

(—a, —a — b) in the aT, a:T basis.

Exercises

1. A linear transformation T of the plane is known to carry the point

P(1, 1) into the point P’(—2, 0) and to carry Q(0, 1) into Q’(—1, 1).

(i) Choose {e, 6} as a basis, and determine eT and eT.

(11) What scalars represent T relative to {e, e}?

(111) What is the image under T of an arbitrary point R(a, 6)?

(iv) Choose the basis vectors {8;, 82} to be the points P and Q. What

scalars represent T relative to {8,, B.}?

(v) Show that T is nonsingular, and find scalars which represent T~!

relative to {e, €}.

2. Let a; = & + 26, a2 = —e€, + &, and let S be the linear transforma-

tion determined by this change of basis; that is, .S = a), eS = ap.

(1) What scalars represent S relative to {e, €}?

(ii) What scalars represent S relative to {a1, a2}?

(iii) What scalars represent S~! relative to {é, 6}?

(iv) Find the image under S of the vector ae, + be.

3. Referring to Exercises 1 and 2 for the definitions of S and T, consider

the product transformations TS and ST.

(i) What scalars represent TS relative to {e, ¢}? Answer in two

ways: first by determining «TS and «TS, and second by applying the for-

mula Cy = > fe abi, of § 3.7.

(ii) Similarly, calculate the scalars which represent ST relative to

{€ ? €} .

(iii) Find the images of the point (a, b) under the transformations TS

and ST.

4. Consider a linear transformation T of U,, onto ‘W, and a linear trans-

formation S of W, onto Y,. Choose bases {a1,..., am} for Um, {B1,..., Bra}

for W,, and {y1,...,Y,} for Yp,. Then T is represented relative to the

a-basis for U,, and the §-basis for W, by the mn scalars a,, where

n

aT = 2 OxnBx, += 1, oe ey M,

Likewise, S is represented relative to the 6-basis for W, and the y-basis for

- Y, by the np scalars b;,, where
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BS = > bi k=l,...,"
j®*

Show that the product transformation TS of U. onto Y, is represented rela-

tive to the a-basis for U,, and the y-basis for y, by mp scalars:

y= 2h dub, fort=1,...,mandj=1,...,p.
=1

5. (i) Prove that T is idempotent if and only if 7T = » for every 7 € @r.

(1) Prove that if T is idempotent, there exists a basis for U such that

a,T =a, for] <7 < p(T) anda,T = 6 for p(T) <i <n.

(ii) What array of scalars represents an idempotent transformation

relative to the basis described in (ii)?



CHAPTER 4

Matrices

§4.1. Matrices and Matrix Operations

The considerations of the last section show that each linear transformation

T from U, to ‘W, determines an array of mn scalars which describe T com-

pletely. The determination of these scalars requires the choice of a basis for

Um and a basis for ‘W,, and various choices of bases lead to different sets of

scalars, each set representing T relative to a suitable pair of bases. A funda-

mental method of linear algebra is to investigate the nature of T by observing

properties of an array of scalars which represent T, and vice versa.

Let Um be a vector space with an arbitrary but fixed basis {a,,..., am}.

Let T be a linear transformation of U,, into a vector space W,, and let

{8i,..., Ba} be any fixed basis for W,. For each i = 1, 2,...,m,a,T isa

uniquely determined vector of W, and hence is uniquely represented as a

linear combination of the 8,,7 = 1,2,..., 7:

oT = ay,8; + a8. +--+: + QinBn,

ag T = dB, + dB, + +++ + AsnBn,
(4. 1) . . . .

mT = OmiB: + Om2Be + +++ + OmnBn.

Notice the meaning of the subscripts: the first subscript 1 of a,; means that

a,; 1s one of the coefficients of the representation of the vector a,T relative to

the 6-basis, and the second subscript j of a,, means that a,, is the coefficient

of 8, in that representation. Relative to the two bases, T is completely de-

termined by the mn scalars a,;, together with this interpretation of the mean-

ing of the subscripts. This means not only that we have selected bases for

Un, and ‘W,, but that we have written the basis vectors in a specific order in
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each case, and we tacitly agree to observe this order. If we were to inter-

change the order, say of a, and a2, then we would merely interchange the

first two lines of (4.1), whereas an interchange of 8, and 8: would interchange

the first two columns on the right hand side. The mn scalars representing T

would be the same, but they would be written in a different arrangement

from that of (4.1). To avoid ambiguity, therefore, we agree to pay attention

to the order of the basis vectors.

With this convention understood, we can dispense with writing the a, and

8;, and represent T by the rectangular array of scalars,

Amt Ome... - Amn

This array of m rows and n columns of ficld elements is denoted more com-

pactly by (a,;), 7 = 1,...,m andj = 1,...,n. The component a,; is the

scalar in the 7th row and the jth column, so the first index 7 is called the row

index, and the second index 7 is called the column indez.

Before we proceed it is appropriate to emphasize that we have agreed to

represent T by the set of scalars arranged exactly as they appear as coefficients

in (4.1). This convention is adopted in order that the algebraic properties of

such arrays reflect corresponding properties of the linear transformations

which they represent, and it is closely related to our earlier decision to use

right-hand notation for linear transformations. Had we chosen to use left-

hand notation, writing T(é) instead of £T, we would represent T by a different

array of scalars, namely

Qi, Qgq... Am

Qin Gog... Ame

Ain don * oe ¢€ Amn

This new array is obtained by interchanging the roles of rows and columns in

the previous array. That is, in left-hand notation the first column of scalars

specifies the coefficients of the vector T(a,), the second column those of

T (as), and so on. In right-hand notation the first row specifies the coefficients

of aT, the second row those of a:T, and so on.

Definition 4.1. A rectangular array containing m rows and n columns

of elements of a field $ is called an m X n matriz over &.
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More completely, a matrix is an element of an abstract system for which

several relations and operations are defined, and a study of this system

comprises matrix theory. In defining relations and operations for matrices

we shall be guided by the principle that if matrices are to be used to represent

linear transformations, their algebraic properties must reflect those of linear

transformations.

First let us consider equality; two linear transformations are equal if and

only if they have exactly the same effect on each vector, and therefore if

and only if they have the same effect on cach vector of a basis. The latter

means that two equal linear transformations have identical matrix repre-

sentations relative to a fixed choice of ordered bases for U, and ‘W,.

Definition 4.2. Two m X nmatrices A = (a,,) and B = (6,,) are equal if

and only if a,, = 6.,forevery? = 1,2,..., mandeveryj = 1,2,...,n.

The matrix representations of the transformations T + S and cT, expressed

in terms of the representations of T and S, provide the motivation for the

following two definitions.

Definition 4.3. The sum of two m X n matrices A = (a,,) and B = (5,,)

is the m X n matrix C = (c,,), where

Ciy = Ay + b,;

for every? = 1,2,..., mandeveryj = 1,2,..., 7.

Definition 4.4. The scalar multiple of an m X n matrix A = (a,,) by

a scalar c is the m X n matrix C' = (c,,), where

Cy = Cay;

for every 1 = 1,2,..., mand everyj = 1,2,...,n.

Notice in particular that equality, sum, and scalar multiple are all defined

component by component. Also note that equality and sum are defined only

for matrices of the same dimensions. An example for 2 X 3 matrices will

make the definitions clear. Let

1 -2 0 0 2 1

A=(, 1 ) B=() —1 _1}

_f/1+0 -24+2 0+1\_/1 0 1

A+B=(57) 1-1 Oa) (0 i)
3-6 O34 ( ° 3)

Then

and
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Since addition and scalar multiplication of matrices are defined in terms

of the field operations, we may expect certain properties of the field operations

to be inherited by matrices. For example, matrix addition is associative and

commutative, and scalar multiplication is distributive over matrix addition.

These properties, and others listed below, may be proved as exercises.

LA+B=B+4.

2(A+ B)+C=A4+ (B40).

3. cA + B) = cA + cB.

4. (e+ d)A =cA +dA.

In particular, the m X n matrix Z, all of whose components are zero, is the

identity of addition for all m X* n matrices.

5. A+Z=A.

6. A+ (-1)A = Z.

7. O(A) = Z.

Next consider how matrix multiplication should be defined in order to

simulate the product of lincar transformations. The product TS was defined

as a successive mapping, and this is possible only when T maps U,, into W,,

and S maps W, into Y,. The corresponding matrix product AB should be

defined whenever the number of columns of A equals the number of rows of

B, since each represents the dimension of W,. The exact form of the multi-

plication is indicated by Exercise 4, § 3.7, which calculates the representation

of TS in terms of bases for U,,, Wr, and Y>.

Definition 4.5. If A = (a,x) is an m Xn matrix and if B = (b,) is

ann X p matrix, the product AB is the m X p matrix C = (¢,,), where

Cj = >. aubk;
ken}

for every? = 1,2,...,mandeveryj = 1,2,...,p7.

Some of the time we shall be concerned with transformations of a space

into itself. The corresponding matrices will be square, n rows and n columns,

if n is the dimension of the space. Thus if A and B are square matrices of

the same dimension, then AB and B.A are both defined, but not neccessarily

equal.

We refer to Definition 4.5 to learn a technique for matrix multiplication.

Each element in the product 4B of anm X n matrix A by ann X p matrix B

is the sum of n products of scalars. To find the element c,, which is in the

ith row and jth column of AB we multiply each element in the 7th row of A by

the corresponding element in the jth column of B, and then add:
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Cj = aabs; + Ande; +e eet GinDn;:

’} i|

b

bo; ;
¢ a a a ‘ ;a= el Wees im = —> Cij

bn

In practice we can perform this computation easily by the technique of using

the left index finger to run across the zth row of the left-hand matrix and

simultaneously using the right index finger to run down the jth column of

the right-hand matrix, multiplying elements in corresponding positions and

adding successively the products obtained. An example may help to clarify

the proceedure.

l 0 -l 6 1

A= (: 4 ) B= ( 0 )
5 3 0 —2 3

(1)(6) + (0)() + (—1)(-2) GQ) + 0)G) + (—D@)

AB = | (2)(6) + (4)0) + @)(—2) (2) (1) + (4) G) + (7)Q)

(5)(6) + (3)O) + O)(—2) 5) A) + B)) + ())

g§ -2

= (-: 39 |.
30. 17

Exercises

1. Verify properties 1 through 7, page 77, for addition and scalar multi-

ples of matrices. Deduce that the set of all m & n matrices over a field F forms

a commutative group relative to addition.

2. Compute AB, AC, B?, BC, CA, given that

—1 4 0 2\2

A=(j ~4) a ( 0 -2) c= (- 0
0 3 1 3 1/

Are any other binary products possible for these three matrices?

3. Referring to Example (c) of § 3.1, recall that {e, 2} is the basis chosen

for &.

(i) Find. the matrices A, B, and C which represent Ti, T:, and Ts,

respectively.

(ii) Calculate AB, BC, CB, and A?, and from the results deduce state-
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ments for matrices which are analogous to the statements observed in the

discussion of these linear transformations.

4. (i) Relative to the preferred basis {e, ¢, ..., ént for &, find the ma-

trix #,, which represents the linear transformation T,,, where (a,..., 2n)Th;

is the n-tuple with z, in position j and 0 elsewhere.

(ii) Show that any n Xn matrix is a linear combination of the

matrices /),,, for?,j = 1,...,7.

(111) Show that if a linear combination of the matrices E,, equals Z

then each coefficient of that linear combination is zero.

5. Show that the system of all 1 X 1 matrices over a field 3, together

with matrix addition and multiplication, is a field which is isomorphic to 5.

6. Prove that the set of all real 2 K 2 matrices of the form

(i.

—b a

forms a system which is isomorphic to the field of complex numbers.

7. Prove that the set of all complex 2 XK 2 matrices of the form

a+ 7b e+id 2a |

—c tid a — iby’

forms a system which is isomorphie to the algebra of quaternions as described

in Exercise 2, § 3.6.

8. Read “What is a Matrix?” by C. C. MacDuffee, American Mathe-

matical Monthly, volume 50 (1943), pp. 360-365.

§4.2. Special Types of Matrices

Before proceeding with a general study of matrix operations, we shall

consider certain classes of matrices which play an important role in matrix

theory. The few calculations we have madc in the examples and exercises

have warned us to expect the unexpected; from lxercise 3, § 4.1, we see that

matrix multiplication is not commutative (even when both AB and BA are

defined) and also that a product of nonzero matrices can equal the zero

matrix.

Identity matrix. We seek a matrix J such that 1X = XI = X for every

matrix X. But if X is m X n, J must have m columns in order that JX be

defined and n rows in order that XJ be defined. But then 1X isn Xn, XI

is m X m, and X is m X n. Hence m and n must be equal, so X must be

square, say n X n, and J must be likewise. Thus we must speak of the tdentity

matriz of dimension n, which 1s easily seen to be
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100. 0

010. 0

001...0

I = (6,,) = mot "fs

000...1

where 6,, is the Kronecker delta, defined in § 3.4.

Scalar matrices. Although matrix multiplication is not commutative, the

n X n identity matrix commutes with every n X n matrix. Are there other

square matrices 4 = (a,,) which have the property that AX = XA for every

nXnmatrix X = (r,,)? A straightforward approach would be to determine

scalars a,, which satisfy the n? equations,

n n

2 Ante, = Do Lud, 1,j3=1,2,...,n.
=1 k=l

This is a somewhat fearful task. Instead, we argue as follows: let F,, be

the n * n matrix with e,, = 1 and e,, = 0 if 7 # r ory # s. If A commutes

with all n & n matrices, then in particular we must have

0 0....0
O...a),...0 ° e °

+ QO...a,...0 ° . .
AEy, = . e ® = Q¢) (yo. . - Aen = EWA,

O...Qnr...0 "ot
0 9....0

where every clement not in column s of the first matrix is zero, and every

clement not in row r of the second matrix is zero. Hence we have ay = Gas,

a, =O if t #7, anda,, = 0 if 7 # s. Thus if A commutes with all the /,,

matrices, .4 must have the same element / in every position of the main

diagonal and zeros elsewhere:

a., = ké.,, 1,j=1,2,...,n,

ko. . 0

Ok. 0
A= ° e e = kl

00... ik

Sueh a matrix is called a scalar matrix, being merely a scalar multiple of J.

Clearly, a scalar matrix commutes with every matrix, so the question is

answered completely.

Diagonal matrices. Scalar matrices form a subclass of the class of diagonal

matrices, which are defined by the property that a.; = 0 if ¢ ¥ j. Thus zeros
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appear everywhere except possibly on the main diagonal. Clearly, the sum

of diagonal matrices is diagonal; so is the product, for if A and B are diagonal

and AB = C, then

n aba Of jG =
C, = ude, = Ob, = PON Ip= 2 duis = ands 0 fj <4.

a3, 0 wees 0 b1; 0 vee oe 0) C1, 0 see 0

O dos 0 O be....0 O crx 0

00..... Ann 0 0..... Ban 0 0..... Can

Triangular matrices. A still more inclusive class of square matrices is that

for which a,, = 0 whenever 2 > 7. Such a matrix is called (upper) triangular

because all the nonzero elements lie on or above the main diagonal:

Qi; Ajo... . An

0 Ao e e 8s 6 Qon

0 0..... Ann

A triangular matrix for which a,; = 0 for? = 1,...,n is called strictly tri-

angular. Clearly, any triangular matrix is the sum of a strictly triangular

matrix and a diagonal matrix.

Idempotent matrices. A matrix A is said to be idempotent if and only if

A? = A. An example other than Z and J is ¢ o)

Nilpotent matrices. A matrix A is said to be nilpotent of index p if A? = Z

but A?-! # Z. Any strictly triangular matrix is nilpotent. (See Exercise 3.)

Nonsingular matrices. This special type of matrix is of great importance,

since it corresponds to nonsingular linear transformations. We recall from

Theorem 3.6 that a nonsingular linear transformation T from VU into W is

simply a one-to-one linear mapping of U onto ®r. Hence, by regarding T as

a linear transformation from VU to Ry, we can represent T by a square matrix.

Definition 4.6. An n Xn matrix A is said to be nonsingular if and

only if a matrix B exists such that

AB = I,

Otherwise A is said to be singular.
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First we point out the formal similarity of Definition 4.6 to Definition 3.7

which concerned nonsingular linear transformations. For transformations

we proved in Theorem 3.7 that if TT* = I then T*T = I. Is the corre-

sponding result valid for matrices? We would like to prove that if AB = J,

then BA = 7. In terms of matrix multiplication we would have to prove

that if

2 OOK; = 615, 1,J = l, 2, oe eM,

then

> bya; = 5,3, 1,7 = 1, 2, oo og KN,
k=]

which is true but by no means obvious. However, after the discussion of the

following section we prove this result merely by pointing to Theorem 3.7.

Anticipating this proof, we call B the inverse of A, denoted A-!. Thus non-

singular matrices are those which possess a multiplicative inverse.

For the next two types of matrices considered here, we need the notion of

the transpose of A, which is simply the matrix obtained by reflecting A

across its main diagonal.

Definition 4.7. Let A = (a.,) be any m X n matrix. The transpose of

A, denoted A’, is the n X m matrix defined by

A’ = (Dre),
where b,, = Qaer.

Theorem 4.1. Let {a,...,am} be a basis for Un and {@;,..., Bn}

be a basis for W,; let {f},..., fn} and {g:,..., gn! be the corresponding

dual bases for U,, and W,, respectively. If a linear transformation T

from U,, to W, is represented relative to the a, 8 bases by a matrix A,

then the transpose transformation T’ from W, to VU; is represented

relative to the g, f bases by the transpose matrix A’.

PROOF: From § 3.4 we recall that the dual basis for U,, is defined by

of; = 6, for 2, k= 1,2,..., m; similarly, the dual basis for W, is de-
fined by Bg; = 6, fork, 7 = 1, 2,...,n. The transpose T’ of the trans-

formation T is the linear mapping from W, to U,, defined in § 3.5 by

gl’ = Tg; g=1,2,...,7.

Relative to the g, f bases, T’ is represented by the n X m matrix B =

(b,.), determined by the equations
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g;T' = 2, by fe, jg=1,2,...,7.

Thus,

ag;l’ = (a,T)g; = (= a8) Si

= 2D aun(6ig,) = Lo aude) = iy.
kel kel

However,

agjl’ = a, (= buts) = D(a fi)
k=l kel

= DD dba = ,,.
k=l

Hence b,, = a,,,80 B = A’,

In Exercise 7 you may prove that (A’)’ = A, (A + B)! = A’ + B’, and

(AB)’ = B’A’. Notice in particular that the transpose of a product of matrices

is the product of the transposes in the reverse order.

Symmetric matrices, Ann K n matrix A is said to be symmetric if and onlv

if A = A’, Obviously any diagonal matrix is symmetric.

Skew-symmetric matrices. An n X n matrix A 1s said to be skew-symmetric

(or simply skew) if and only if A’ = —A. This implies of course that if

1+ 1 # 0 in the base field, then every diagonal element of a skew matrix is

zero. We exclude from our consideration any field in which 1+ 1 = 0.

(See § 1.6.)

Now let A be any square matrix. If 1 + 1 # 0 ing,

A = 3(A + A’) + 3A — A’).

Since A + A’ is symmetric and A — A’ is skew (sec Exercise 8), this ex-

presses A as a sum of two matrices, the first of which is symmetric and the

second skew.

Row vectors and column vectors. Relative to a fixed basis, every vector of

U, has a unique representation as an n-tuple of scalars, (a;,...,a,). Except

for the presence of commas, this is formally the same as a matrix of one row

and n columns. Accordingly, a 1 X n matrix is called a row vector. The trans-

pose of a row vector is an n X 1 matrix, of 7 rows and one column, and is

called a column vector. If A is a row vector, where A = (a, a2...4a,), and if

B’ is a column vector, where B = (b, b:... bn), then both AB’ and B’A are

defined:
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by

by

AB = (a dy ++: Gy) = (a,b, + debe +--+ + Anta),

b,,

which isa 1 X 1 matrix, or by Itxercise 5, § 4.1, a scalar:

b; bia, bas wee bid

by beat bette eee bed,

BA = (a, 2 -** Qn) = me " ;

b,, b,0, b,,de eee brQn

which Is an n X n matrix.

Exercises

1. Prove that JA = AJ = A for every square matrix A.

2. Show that for each n the set of all n X n scalar matrices cver F forms

a field which is isomorphic to 5.

3. (i) Prove that all n X n diagonal matrices commute.

(11) Prove that if A commutes with all n X n diagonal matrices, then

A is diagonal.

4. Prove that the set of all » X n triangular matrices is closed under

matrix sum and product. Deduce that the set of all nonsingular n xX n

triangular matrices forms a multiplicative group.

5. Show that any 4X 4 strictly triangular matrix is nilpotent. How

would you gencralize your proof for the n X n case?

6. Prove that if A is idempotent and A ~ J, then A is singular.

7. Prove that

(i) (A’)' = A,

(ii) (A + B)! = A’ + B’,
(iii) (AB) = B’A’ if 1B is defined.

8. Prove for every square matrix A that

(i) AA’ is symmetric,

(ii) A + A’ is symmetric,

(ii) A — A’ is skew.

9. Prove that. A? is symmetric if either A is symmetric or 4 is skew.

10. If A and B are both symmetric, prove that

(i) A + B is symmetric,

(ii) AB is symmetric if and only if A and B commute.
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11. If A and B are skew, prove that A + B is skew.

12. Prove (A’)—! = (A-!)’ if A is nonsingular.

13. Let {a;, a2, a3} be a basis for Us, and let

B) = a — 2a»,

Br =a + a + as,

Bs = 2 —~ By.

(i) Prove {6;, 82, 83} is a basis, and express each a, as a linear com-

bination of the 8;.

(ii) If T is defined by a,T = &@,, find the matrix A which represents T

relative to the x-basis.

(iii) If S is defined by 8,S = a,, find the matrix B which represents S

relative to the G-basis.

(iv) Prove by matrix calculations that AB = I.

$4.3. Fundamental Isomorphism Theorem

We might expect that the next step in our development of the theory of

matrices would be to establish various properties of matrix operations. This

is correct, but instead of verifying such properties directly we prove a theorem

which clarifies the connection between matrices and linear transformations.

This connection is an isomorphism, and therefore we can obtain properties

of matrices from theorems already proved about linear transformations.

Not only does this method avoid duplication of effort, but it substitutes

geometric insight for involved arithmetic calculations.

From Theorem 3.16 we know that the set of all linear transformations on an

n-dimensional vector space over 5 forms a linear algebra

£= {L,F;+,-, O, O, B}

cer 5. We wish to show that the set of all » X n matrices, together with

the matrix operations, form a linear algebra 9M which is isomorphic to &.

Since a linear algebra is a vector space on which 1s defined a suitable multi-

plication of vectors, the concept of isomorphism of linear algebras is defined

to be a vector space isomorphism which also preserves the multiplication of

vectors.

Theorem 4.2. Let U be an n-dimensional vector space over ¥. The set

of all n X nm matrices over 5 forms a linear algebra SN which is isomorphic

to the linear algebra £ of all linear transformations on V.

PROOF: Fix a basis {a;,...,an} for U. Let A = (a,,;) be any nxn
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matrix over $. With A we associate the linear transformation T of U

into U defined by

n

a,T = XL O4jOlj, 2 = I, es ee » nN.
jTM

It was established in Theorem 3.17 that this correspondence is one-to-

one, provided we regard a fixed ordering of the basis vectors. We next

show that the correspondence preserves the three operations of scalar

multiplication, matrix addition, and matrix multiplication. The matrix

kA = (ka,,) determines the linear transformation S, defined by

aS: = ¥ (ka,)a; = kX aa; =ko,T = a,(kT),
j= 1 y=

so if A corresponds to T, kA corresponds to kT. Let A = (a;,) corre-

spond to T, and let B = (6,,) correspond to U. Then A + B = (a,;.4+ 0b,,)

corresponds to the transformation S, defined by

aSe= (ai; + b,;)a; = a Q,;0; + x b, ja;
jg=l g=1 j=l

=a. +a,U = a,(T + UV),

so A + B corresponds to T + U. Finally, the matrix AB = (c,;), where

C4 = >f-1 aub,,, corresponds to the transformation S; defined by

aS3 = > (= cubs) aj= > > kD j00;

» Ark (= bai)
k=l jel

x Giz(a,U) = (= duct) U

= a,TU.

Hence AB corresponds to TU, and the correspondence is an isomorphism.

Theorem 3.16 showed that £ is a linear algebra; hence SM, the set of all

n Xn matrices over 5, forms a linear algebra (since SM and £ are iso-

morphic), and the proof is complete.

Recall that Theorem 3.16 stated that £ is of dimension n?, but we deferred

the proof that the n? linear transformations T,; form a basis for £. T.; was

defined by

(x, . . - Xn) Tj = (0,. e. , 0, z,, 0, . ae , 9),

where the jth component is z;. Now the matrix corresponding to T,,; is the

matrix £,; in which every element is zero except the element in the 7th row

and jth column, which is 1. It is clear that any matrix is a linear combination

of the Z,,,7,7 = 1,...,n, and that the Z,,; are linearly independent (see Exer-
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cise 4, § 4.1). Hence they form a basis for SW, and by the isomorphism the T,,

form a basis for £. This completes the proof of Theorem 3.16.

The argument of the preceding paragraph indicates the power and useful-

ness of Theorem 4.2. To prove a result about linear transformations we may,

if convenient, prove the corresponding result about matrices, and vice versa.

In the next section we list a number of theorems about matrices which have

already been proved in the language of linear transformations.

However, we note that Theorem 4.2 concerns only n X n matrices; for the

corresponding theorem for m X n matrices we recall from Theorem 3.17,

that a linear transformation from U,, to W, is represented, relative to a pair

of bases, by an m X n matrix. Also, from Theorem 3.1, the set of all linear

transformations from U, to ‘W, forms a vector space. It is not difficult to

verify that the dimension of this vector space is mn, and that the set of all

m Xn matrices forms a vector space isomorphic to it.

Exercises

1. Describe the linear transformation on & which is represented by the

scalar matrix al in case

(i) a> 1,

Gi) 0O<a<l,

Gili) a < 0.

2. Describe the linear transformation on & which is represented by each

of the following matrices:

@ (5-1)

(i) (op)

(i) (5 ob

(iv) ( , 3)

(v) (_7 _5)

3. (i) Determine all possible 2 X 2 real matrices which represent idem-

potent linear transformations on &:.

(ii) Determine all possible 2 X 2 real matrices which represent nil-

potent linear transformations of index 2 on &:.

4. Prove that the set of all m < n matrices over ¥ forms a vector space
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of dimension mn which is isomorphic to the space of all linear transformations

from Un to Wa.

§4.4. Rank of a Matriz

Referring now to § 4.1, we see that properties 1 through 7 of matrices all

follow by the isomorphism theorem from the corresponding properties of

linear transformations. (See Exercise 1, § 4.1, which asked for direct matrix

proofs.) In the same way, other properties of matrices can be derived from

the corresponding properties of linear transformations. Before doing this

we introduce the notion of the rank of a matrix.

First recall that the vector & = }/7L, 2.0, can be represented relative to

the a-basis as = (2),...,2m). This representation defines a 1 X m matrix

(row vector) X = (1 -++ Im). If A = (a,,) is m X n, then the product XA

is defined, and
TM

XA = (Yi +++ Yn); where y, = x VA;

Let 7 = )-3.1 y;8,, and let T be the transformation which corresponds to A,

relative to the fixed bases {a,,..., am} and {@,,...,8,}. Then

‘eT = (= t.2,) T= x r,(«,T)

> Ty (x a.) = > ( 3 za.) 8, = > y,B,
j=l 1 gui

= %.

Hence if X represents the vector § and A represents the transformation T, then

XA represents the vector &T. This is a generalization of the observation that

the image a;T of the jth vector of the basis is represented relative to the

6-basis by the row vector which is the jth row of the matrix A. |

Had we chosen left-hand notation for linear transformations, the situation

would be different. (See the remarks following Definition 3.1 and those pre-

ceding Definition 4.1.) Relative to the a, 8 bases the vector — would be rep-

resented by the column vector X’; T would be represented by the n X m

matrix A’; T(a,) would be represented by the 7th column vector of A’; and

T(é) would be represented by A’X’ = (XA)’. Thus one is able to pass from

one notation to the other simply by taking transposes of appropriate matrices.

The simplicity of representing T by the array of scalars as they stand in the

arrangement (4.1) is one reason for preferring right-hand notation.

Definition 4.9. The rank of a matrix A, denoted (A), is the maximal

number of linearly independent row vectors of A.
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An immediate question is the following: What is the relation (if any)

between the rank of a matrix and the rank of the linear transformation it

represents relative to a chosen basis? Notice that p(A) as defined is an in-

trinsic property of the matrix A and is independent of any bases we choose

in order to represent A as a linear transformation. Likewise, the rank of a

linear transformation is defined to be the dimension of its range space and

thus is an intrinsic property of the transformation, independent of any choice

of bases.

Theorem 4.3. Let T be the transformation corresponding to the m X n

matrix A relative to chosen bases. Then

e(T) = pA).

PROOF: Let {a,...,am} be any basis for Um. Any vector in Rr is

a linear combination of the row vectors of A, since if — = >of, ca,

ET = 57.1 ¢,(a,T). Hence any maximal independent subset of the row

vectors of A is a basis for Rr.

Theorem 4.4. For any matrix A, p(A) = p(A’).

PROOF: Given an m X n matrix A, choose vector spaces Up,» and W,

and a pair of bases, and let T be the linear mapping from Um to W, rep-

resented by A relative to that pair of bases. By Theorem 4.1, the trans-

pose transformation T’ from W, to U,, is represented by A’ relative

to the corresponding pair of dual bases. By Theorem 4.3, we have

p(T) = p(A) and p(T’) = p(A’), and by Theorem 3.15, p(T) = p(T’).

Hence any matrix and its transpose have the same rank; this means

that in any matrix the number of linearly independent row vectors equals

the number of linearly independent column vectors.

We conclude this section with a list of theorems, all of which are readily

proved by the isomorphism theorem and a corresponding theorem for linear

transformations.

Theorem 4.5. Matrix multiplication is associative and bilinear.

Theorem 4.6. If A and B are n X n matrices such that AB = 7, then

BA = I.

Theorem 4.7. The following are equivalent for an n Xn matrix A:

(a) A is nonsingular,

(b) p(A) = n,
(c) The row vectors of A are linearly independent.
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Theorem 4.8. If A is a nonsingular n X n matrix, B an m X n matrix,

and C an n X p matrix, then p(BA) = p(B) and p(AC) = p(C).

Theorem 4.9. Let A and B be n X n matrices. AB is nonsingular if

and only if A and B are both nonsingular. If AB is nonsingular, then

(AB) = BA7),

Exercises

1. Using the isomorphism theorem and appropriate theorems for linear

transformations, prove Theorems 4.5-4.9.

2. Prove directly by matrix calculations that

A(bB + cC) = bAB + cAC

for all n K n matrices A, B, C.

3. Prove that a triangular matrix is nonsingular if and only if every

diagonal element is different from zero.

4. Let & © Un, & + 6. Prove that the set of all linear transformations T

on U, such that &T = @ forms a linear algebra whose dimension Is n? — n.

5. Let A, B be n X n matrices. What statements can you make about

p(A + B) and p(AB)?

6. State as a theorem for matrices the assertion of Theorem 3.6, state-

ments (a), (6), and (c).

7. State as a theorem for matrices the assertion of Exercise 7, § 3.2.

8. An n Xn Markov matrix is defined to be any n Xn real matrix

A = (a,;) which satisfies the two properties

0<a,, <1,

ya, = 1 fort = 1,2,...,n.
i=

Prove that the product of two Markov matrices is a Markov matrix. Do

such matrices form a multiplicative group?

9. A Markov (stochastic) matrix is called doubly stochastic if the sum of

the elements in each column is unity. Is the product of two doubly stochastic

matrices doubly stochastic?

10. If M is a Markov matrix, show that the value of every element of

column j of M? is between the values of the minimal and maximal elements

of column j of M.

11. In quantum mechanics the Pauli theory of electron spin makes use of

linear transformations T., T,, T,, whose complex matrices in the preferred

coordinate system are, respectively,
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0 1
A= (10)
Y= € 3) where 2? = —1I,

t 0

NX fl os
—_— 0

> 1)
(i) Show that X? = Y? = Z? = J, and therefore that each is non-

singular.

(ii) Form a multiplication table of the four matrices J, X, Y, Z, and

observe that any product of these matrices is a scalar times one of these

matrices.

(111) List the elements of the smailest multiplicative group which con-

tains X and Y.

12. In the special theory of relativity, use is made of the Lorentz trans-

formation,

x’ = b(x — v0),

, vx’ = »(-3 + ‘),

where |v] represents the speed of a moving object, c the speed of light, and

b = c(c? — v?)—!”2, The corresponding matrix is

1 —v\

Liv) = b —1

e tl
c

(i) Show that L(v) is nonsingular for |v| < c.

(ii) Show that the set of all L(v) for |v| <c forms a multiplicative

group. This group 1s called the Lorentz group.

§4.5. Block Multiplication of Matrices

Although our emphasis in this book is on the theory of matrices rather

than on the practical problems which arise in applications, it would be mis-

leading to pretend that such problems do not exist. For example, the form

of the product of two matrices may be unfamiliar to a beginner, but it is

conceptually simple. In the product of an m Xn matrix and an n X p

matrix there are mp terms to be calculated, and each term requires n binary

products and m — 1 sums. Hence, there are altogether mpn products and

mp(n — 1) sums to be performed. For square matrices, this reduces to n®

products and n? — n? sums.
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In matrices which arise from experimental work the individual entries are

decimal numbers which are seldom integral, so that multiplication is consid-

erably more tedious than addition. For this reason the amount of work

required for a matrix calculation is usually expressed in terms of the number

of multiplications involved. Since the product of two n Xn matrices re-

quires n? multiplications, it 1s clear that a tremendous amount of computation

is required when n is large. Even for n = 10 the work is sufficiently long to

discourage mental computation. The recent development of high-speed com-

puters has reduced this problem considerably, and thereby has opened to

solution by matrix methods many applied problems for which theoretical]

solutions were known but were computationally unfeasible. But even a large

electronic computer has a limited storage space, and the practical question

of computational technique remains.

We now indicate a device, known as block multiplication of matrices,

which can be used to decompose the product of two large matrices into nu-

merous products of smaller matrices. Let A be m XK n and B ben X p. Write

n=m+n+--- +m, where each n, is a positive integer; partition the

columns of A by putting the first n, columns in the first block, the next nz

columns in the second block, and so on. Partition the rows of B in exactly

the same way. Then

"By

By
12

A = (A,|A,|---|Ay), B=

Bi,
where A, is the m X n, matrix consisting of columns of A beginning with

column n + --- + 7,-; + 1 and ending with column n, + --- + 7,, and

where B; is the n; X p matrix consisting of rows of B beginning with row

mt+:-+ +27,, + 1 and ending with row n, + --- + n,. Then the method

of block multiplication asserts that

AB = A,B, + A.B, + eee + A, By.

More generally, suppose that having partitioned the columns of A and

the rows of B as described above, we partition the rows of A in any manner

and the columns of B in any manner. We obtain

Ay Ar eee Au By Bis eee Bi,

Ag Ag...Ax Bs Bw... Bs,

Ay Aw... Are Bu Bia... Bee
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where A,, is a matrix (rectangular array) having 7, rows and n, columns and

B,, 18 a matrix having n, rows and s, columns. Then for fixed 7, 7 the product

A,B, is defined and yields an r, X s, matrix; therefore >-f.,; AWB; is an

r, X s, matrix. The method of block multiplication asserts that

"Cr Cre ws C1.

C2 Con se 8 Co
AB = e ° e

Cn Cr... Crs

where C,; = of AWB.

This is in the same form as the element-by-element definition of the product

of matrices in which each element is considered as a 1 X 1 block. The im-

portant thing to remember in block multiplication of AB is that the column

partition of A must coincide with the row partition of B, in order that all the

matrix products A,,B,, be defined. Since matrix multiplication is noncom-

mutative, it is essential that the proper order be maintained in forming

products of blocks.

The proof of this result is not difficult, but 1t does require care in choosing

notation and manipulating indices. Since we do not. require the result for

the development of theory, a general proof is omitted. To understand the

application of block multiplication to the problem of large-scale computations,

consider two 50 X 50 matrices. There are 2500 elements in cach matrix;

the multiplication of two such matrices requires 125,000 multiplications and

almost as many additions. One method of performing such calculations on a

computer whose storage capacity is exceeded by the magnitude of the prob-

lem would be to partition each of the matrices into smaller matrices, perhaps

into four 25 X 25 blocks,

( Ay Ais ( By By
A= , B = {| —-—/|-—-— }.

An Age Bo Boe

If the blocks are suitably small, the machine can successively compute the

products A1By, AuBi2, A182, Ai2B2, and so on, record the results on punched

cards to clear the machine storage for the next block of calculations, and

finally compute Cy, = AyBiu + Aj2B2, and so on.

Even for human calculators, block multiplication is useful in case special

patterns appear in the matrix. For example, let

0 2/0 0 0

0 2 0 oO 0 aA

A= -(; ae)1 0 | a b c 0
0 1 d e f
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_ (Bo
B= (2)

where B, has two rows and C, has three rows. Then

2By )
AB = ( + AoC

Hence the only nontrivial computation required for AB is the product of

the 2 X 3 matrix Apo with the 3 & p matrix C>.

To observe that it is sometimes possible to introduce convenient patterns

in a matrix by judicious selection of bases, consider a linear transformation T

from Um to ‘W,. Choose a basis for Sty and extend it to a basis {a,..., am}

for Um, numbered so that the basis {am—.41,...,@m} for Sr appears last.

Now in W, choose any basis {61,..., 8m—»} for Ry and extend it to a basis

{B:,..., Bn} for W,. Then relative to these bases T is represented by an

m Xn matrix A of the block form

“(7 2)Ze Z3)

where B is (m — v) XK (m — v), and Z, Ze, Z3 are zero matrices of dimensions

(m—v) X (n—m+y),v XK (m — v), andy X (n — m+ »v), respectively.

In particular, T is nonsingular if and only if vy = 0. In that case we have

and let

A = (B\Z,).

The m XK m matrix B is nonsingular since its m rows represent the linearly

independent vectors a,;T,7 = 1,...,m. Let Cbe then X m matrix defined by

B-

- (7, )
where Z, is the (n — m) X m zero matrix. Then we compute

AC = In,

In Zca (> 2)

These calculations should help to make clear the distinction between our

definition of nonsingular linear mappings and that of nonsingular matrices.

If T is a nonsingular linear transformation from U, to W,, then m <n,

and T can be represented by a rectangular matrix consisting of an m X m

block which is a nonsingular matrix and an m X (n — m) block of zeros.

Exercises

1. Prove the first of the two assertions of the text concerning block mul-

tiplication: If A = (A,|---|Ax) and
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By

B,

then AB = A,B, + --» + A,B...

2. Calculate AB in three ways: directly without partition; with the parti-

tion indicated; with a different partition of your own choosing.

2 3 {4+;0 «0

ds 1/101 0

1 0 1 | 0 4

-l 0} 0 1 0

0 -1 4} 0 1

1; 0 9

3 | 0 0

B= 0,2 1

-1 ;} 0 0

-1 | 0 0

3. Suppose an n X n matrix A is of the form

A, | Z

A ~— | -
Ay | Ag

where Z isa k X (n — k) block of zeros.

(1) Consider the linear transformation T determined by A relative to

a chosen basis {a,..., an}. What is the geometric meaning of the block of

zeros?

(ii) Suppose an n X n matrix B is also of the form described above

for the matrix A. Prove by block multiplication that AB has this same

property.

(1) Prove the result of (ii) by a geometric argument.



CHAPTER 5

Linear Equations

and Determinants

§5.1. Systems of Linear Equations

One of the most frequent applications of matrices to modern science arises

from the need to solve a system of linear equations:

1% + det tees $ Ont, = Y

a) Xy + Ae Ze + +++ + Aan In = Ye
(6.1) s a e e

AmiX) + Omel2 ++ * + Omntn = Ym

Here we consider the mn scalars a,, and the m scalars y, as fixed. By a solu-

tion of the system (5.1) we mean an n-tuple of scalars z;,7 = 1,...,7, for

which each of the m equations is satisfied. To solve the system means to

find all solutions.

The system can be written in compact form by using matrix notation; let

fay dw... On Ty Yi

Qa, Ase . . . Aon ro Ye

A=|° " X={ °° f, Y=

, Gm. Ome...» Ann Ln

-Then the system is represented by the single matrix equation,

(6.2) AX = Y.

By taking the transpose of each side we obtain

(5.8) X'A’ = Y’,
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which is in the form we have adopted for linear transformations: X’ is a row

vector of nm components, A’ ann X m matrix, and Y’ a row vector of m compo-

nents. Therefore, if we choose {@;,..., Bn} as a basis for W, and {a;,..., amt

as a basis for Um, then A’ represents a linear transformation T from W, to Um,

X’ a vector ¢ in W,, and Y’ a vector n in Un:

(5.4) tT = n.

In this section we shall develop the theory concerned with the existence

and uniqueness of solutions, deferring several observations concerning specific

methods of obtaining solutions until further properties of matrices are estab-

lished. We remark first about notation; our choice of right-hand notation

for linear transformations has led to the necessity of considering transposes

of the natural arrangement of the scalars of a system of lincar equations, in

order to reduce the system to right-hand matrix notation. Thus, while right-

hand notation seems preferable for the matrix representation of linear trans-

formations, left-hand notation is more natural for the matrix representation

of systems of linear equations. This intrinsic difference is the underlying

reason for a lack of uniformity in notation for matrix representations. Since

the passage from either notation to the other is easily performed by means of

transposes, no real difficulty is encountered in consulting various refe.ences,

provided we remember to asccrtain which notation is adopted in each case.

To return to the problem of solving a system of linear equations, we have

a given linear transformation T from W, to Um, @ given vector 7 © Um, and

we seek to find all — € W, which are mapped by T into 7:

ET = ».

In solving this problem we shall consider separately the cases n = @ and

n x 9; alsd, some of our conclusions will depend upon the relative magnitudes

of the three positive integers m, n, p(A), where (6./) is a system of m equations

in nm unknowns whose matrix of coefficients has rank p(A). Since p(A) =

p(A’) = p(T), p(A) cannot exceed either m or n.

The homogeneous case. If » = 6, or equivalently y; = yw. = -+- = yn, =O,

the system is said to be homogeneous. In this case the set of all solutions £ is

simply the null space Ity, whose dimension is »(T) = n — p(T) =n —

p(A) > 0. The zero vector 6 is always a solution, called the trivial solution.

There will exist nontrivial (nonzero) solutions if and only if »(T) > 0. This

simple geometric argument has provided a full description of the solution of

a homogeneous system of linear equations.

Theorem 5.1. If y, = yo = +--+ = ym = 0, the solutions of (6.1) form

a vector space of dimension n — p(A). Nontriviai solutions exist if and
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only if n — p(A) > 0. Thus, if m =n = p(A), the trivial solution is
unique.

For n = 3, the geometric interpretation is that either z, = z. = 23 = 0 is

the only solution, or that every point on a certain line through the origin is

a solution, or that every point on a certain plane through the origin is a solu-

tion. (The case p(A) = 0 is not considered, since then a,; = 0 for all i, j.)

The nonhomogeneous case. If yn ¥ 6 (or, equivalently, if some y, + 0), the

system is said to be nonhomogeneous. In this case the solution is the set of

all vectors § which are mapped by T into 7. Since T and 7 are fixed by the

given scalars a,, and y,, there is no assurance that even one solution exists.

Clearly, a solution will exist if and only if 7 € Rr. But Rr is spanned by

the rows of A’, which are the columns of A. Hence, a solution exists if and

only if the column vector Y is a linear combination of the columns of A. Let

us form a new matrix Ay, called the augmented matrix of the system (6.1), by

adjoining the column vector Y to the matrix A: in partitioned form,

Ay = (A{Y).

By our previous remark, a solution to (6.1) exists if and only if Y is a linear

combination of the columns of A. Taking transposes, Y’ must then be a

linear combination of the rows of A’, so

p(Ay) = p(Ay) = p(A’) = (A).

We have proved the following result.

Theorem 5.2. A solution of (5.1) exists if and only if p(Ay) = p(A),

where Ay is the augmented matrix

Gy, 2. - Ain Yi

Qo, ..-. Aan Y2

Ami.» + Amn Ym

Our next theorem describes the set of all solutions of the nonhomogeneous

system.

Theorem 5.3. If & is a solution of the nonhomogeneous system (35.4),

then ¢ is a solution if and only if

£=+» forsomerv € Nr.

PROOF: Let & and & be solutions. Then §T = 7 = fF. Hence «T —

tol = (€ — &)T = » — 7 = 0,80 & — £o © Nr. Conversely, if
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= &-+v for some vy € Nr,

then

fT = (& + +)T = &T + +T=1+6=7,

so £ is a solution.

The geometric meaning of this theorem is interesting. There may be no

solutions to (6.4). If one solution & exists, then the set of all solutions is a

translation by £ of the subspace 9tr of all solutions of the associated homoge-

neous system. Hence, the solution set for n = 3 is void, a single point P,

a line through P, or a plane through P. These are not subspaces in the non-

homogeneous case, because then FP is not the origin.

It is appropriate to comment further about Theorem 5.2. The condition

that the rank of A equal the rank of the augmented matrix Ay is called the

consistency condition, and a system which satisfies this condition is said to be

consistent. Thus a consistent system is simply one which has a solution. This

is equivalent to saying that any linear dependence of the rows of A produces

an identical dependence of the components of Y. More precisely, if y, denotes

the ith row of A,

> cy. = 6 onlyif > cy; = 0.
ta} =i

We conclude with a uniqueness theorem which is valid for both homoge-

neous and nonhomogeneous systems.

Theorem 5.4. If m = n = p(A), there is a unique solution of (6.1).

PROOF: By hypothesis, A is a square matrix which is nonsingular.

Clearly, Xo = A-'Y is a solution to (5.2), and for any solution X,

AX = Y,soX = AY = Xp.

Exercises

1. Find a necessary and sufficient condition on p(A) that the system (4.2)

have a solution for all possible choices of Y. Prove your result.

2. (i) Describe geometrically the solutions of the single equation

Gnt1 + V2%e + Ayt3 = Ys.

What if yy; = 0?

(ii) Describe geometrically the solutions of a system of two equations

(¢ = 1, 2) of the type in (i). Need solutions exist? Discuss fully.

(111) In the nonhomogeneous case with m = n = 3, discuss the geo-

metric meaning of p(A) = 1, 2, 3, including in your discussion both consist-

ency and nonconsistency for each value of p(A).
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3. Solve the system

y— wet BH Ut 4 =i,

24, — + 323 + 47, = 2,

34, — 242 + 2273+ H+ = 1,

ty + G3 SU + Us

4. Solve the system

X1 + 2re + 2,= —l1,

62+ m+ w= —4,

22 _ 322 —- %= 0,

—2Z1— T2Z9 _ 223 = 7,

XL} — Xe = l

5. Solve the system

22 + v2 + 523 = 4,

32) _ 2X9 + 273

52) _ 82ro _ 473 = |,

§5.2. Determinants

It is quite likely that you have encountered determinants in your pre-

vious study of the solution of a system of n linear equations in n unknowns,

particularly for the cases n = 2, 3. If so, your estimate of their efficiency as a

computational device may be unrealistically high, for while determinants are

manageable enough for low values of n, they become quite unwieldy as n in-

creases. Since more economical methods of solving linear equations are

available, determinants actually have little value as a general technique

computation. However, they do possess definite value as a theoretical tool,

and for this reason we include a self-contained exposition of the basic prop-

erties of a determinant.

Our point of departure may appear at first to be outrageously abstract,

but we shall soon see that this abstraction pays handsome dividends in the

simplicity of the proofs of the properties of n X n determinants. This will be

especially apparent to anyone who has worked through an inductive definition

of determinants.

In formulating any definition abstractly we usually are guided by some

‘knowledge of a special system which we wish to generalize. Here it suffices

to consider the determinant of a 2 X 2 matrix,

a

Cc

an od — be
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First we recognize that a 2 X 2 determinant associates a ficld element with

each 2 X 2 matrix, so this determinant is a function whose domain is the set.

of all 2 X 2 matrices over a field and whose range is a subset of the field.

This function has many properties: of these we mention four, which are easily

verified.

a kb a b
1, =f .c kd c i
> |a b+e _ {a b 4 a c

“Tle d+fl le dl le ff

3. {7 To,
Cc c

4. |! f=
0 1

Since all of these properties, except the last, are assertions about columns,

we shall agree to write 4, for the 7th column vector of an 2 XX n matrix; also,

to make clear the separation between columns, we insert commas:

A = (Ay, om ,1,).

We are now ready to give an axiomatic definition of determinant.

Definition 5.1. A function “det” whose domain is the set of all n kK n

matrices over F and whose range is a subset of F is called a determinant,

provided det satisfies three conditions:

(a) det isa linear function of each column; that is, forany k = 1,2,...,n

and all b,e € &, if A; = bB, + eC;, then

det (A;, eae , OB, + cc}, cae An)

= b det(Ai,. oe , B, see , A,) + ce det (Aj, . oe Ci, - os ,A,)}

(b) if two adjacent columns of A are equal, det A = 0;

(c) det J = 1, where J is the identity matrix and | is the unity element

of 5.

Notice that (a) combines the first two properties listed for the 2 x 2

example. It is a remarkable fact that we are able to derive most of the es-

sential properties of determinants from the first and second axioms of Defi-

nition 5.1. The third axiom is a normalizing assumption which guarantees

that det is uniquely defined, for we must prove that such a function is unique,

and even that a function with these properties exists. Three problems are

of immediate concern: to prove that det exists, to prove that det. is uniquely

determined, and to derive properties of det. We shall consider these problems

in the reverse order.
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Theorem 5.5. If det is a function with properties (a) and (b) of Defi-

nition 5.1, then

(a) det(A,,...,cAs,...,4n) = cdet(Ai,...,An,..., An),

(b) det(A,,..., Be + Ci... , An)

= det(Ai,...,Bi,..., An) + det(Ay,...,C;,..., An),

(c) if A, = 6, then det A = 0,

(d) det(Ai,...,Aa,..., An) = det(Ay,..., Ar + cAag,..., An),

(e) det(Ay,..., An, Angt,...,An) = —det(di,..., Agar, Any. .., An),

(ff) if A, = A, for any 7 # k, then det A = O,

(zg) det A = det(A,..., Acs + cA,,...,A,) for any] # k,

(h) det(4,,...,A.,...,A;,...,An)

= —det(.h,,...,4,,...,A,..., An).

PROOF: Before proving each statement, we translate it into words to

emphasize its meaning.

(a) A common factor of each element of a fixed column muy be factored out

asa multiplicative constant. Let 6 = 0 in Definition 5.1 (a).

(b) If a fixed column of A is written as the sum of two column vectors, the

determinant of A is the sum of the two determinants as indicated. Let

b= c¢c = 1in Definition 5.1 (a).

(c) Tf any column of A consists entirely of zeros, then det A = 0. Use

(a) to factor out 0.

(d) Any secular multiple of a column may be added to an adjacent column

without changing the value of the determinant. Use (b) to expand the

altered determinant into the sum of two determinants. One of these

two is det 4; the other is det(Ay,....¢4gai, lagi... , An) = 0,

since c factors out and then Pefinition 5.1 (b) may be applied.

(e) If two adjacent columns are interchanged, the value of the determinant

merely changes sign. First add Ai4; to Ax, using (d); then subtract

the new kth column from A,4;. This gives

det A = det (Ai, ee oe 4a + Anas, _ An, see , An)

det (A, ce » Ana, _ Ay, ae , «1,)

— det CAq, wee JA ky Ay, cee y A,).

The interchange of two adjacent columns is called a transposition.

(f) If any two columns are equal, the determinant is zero. Use (e) repeat-

edly to bring the equal columns into adjacent position, changing the

sign of the determinant at each transposition. Then apply Defini-

tion 5.1 (b).

(g) Any constant multiple of a column may be added to any other column

without changing the value of the determinant. Transpose one of the
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two columns repeatedly until it is adjacent to the other, and apply

(d). Then transpose the moving column back to its original posi-

tion. The number of transpositions needed to do all of this 1s even,

so the result follows from (e).

(h) If any two colwmns are interchanged, the determinant mercly changes

sign. Transpose .1, repeatedly until it replaces .4,. If this requires

p transpositions, then 4, can be moved from its new position (adja-

cent to its old one) to the original position of .1, in p — 1 transposi-

tions. The interchange can be accomplished in an odd number of

adjacent interchanges, and (e) may be applied.

Exercises

1. Consider Definition 5.1 for n = 2. Let A, B be any 2 X 2 matrices.

(i) Caleulate det(B.1), using only the properties proved in Theorem

5.5, to obtain an answer in the form & det B, for some sealar k which is a com-

bination of the entries of A.

(ii) Specialize the result in (i) to the case B = 7, thus showing that.

the specific form stated in the text for 2 & 2 matrices ts actually a consequence

of Definition 5.1.

2. Show that in & the absolute value of det A is the area of the parallelo-

gram determined by the row vectors of <1.

3. If not all of a, b, c, d are zero, consider the system of equations

ax + by = e,

cx + dy = f.

(i) Express the consistency condition in determinant form.

(ii) [xpress the solution, assuming existence aud uniqueness, in deter-

minant form.

§5.3. An Explicit Form for det A

We continue with the program declared in the last section—to investigate

properties of det, and particularly to show that such a function exists and is

uniquely defined by Definition 5.1. The first step is to obtain an explicit

form for det A. For any n X n matrix B let C = BA; then the Ath column

of C is given by C, = 3-*.., B,a,., where B, is the jth column of B. Hence

det C = det(C}, ony C,) = det (= B,ay, ce ey > Bay),
ITM JTM
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where cach index of summation runs independently of the others. Each col-

umn is the sum of n columns, and we may use Definition 5.1 (a) on each col-

umn in succession to expand det C to a sum of n" determinants:

det C = >, det (B;,45,1, B,.0,.2, oe ey B,.Qyan)s

where the summation is extended over all possible values of the indices, each

running from 1 to n. By Theorem 5.5 (f), the only nonzero determinants of

this sum are the ones in which ),,...,j, are all different—in other words,

the subscripts of the various B’s form a permutation of 1,...,n. Hence

det C = >. det (Baadpan,; cee » Bow Apiyn)

Le Lapa ++ Apinyn det (Bpay,. - ~, Boww)],

since, for each 7, Qi), factors out of the jth column. Here the summation is

extended over all permutations p of 1,. . . , n. It is well known (sce References,

1 or 2) that each permutation p can be classified as even or odd according to

whether p can be represented as a product of an even or an odd number of

transpositions. But cach transposition of columns of B produces a change in

the sign of det B. Hence

det (Ba), or 0g Bay) = +det B,

where the + sign is used if p is an even permutation and the — sign is used

if p is odd. Then we have

(5.3) det C = det B ° >. f+apayt .. Apinyn |.
all p

Now for the first time we use property (c) of Definition 5.1. Since equation (3.5

is truc for all n XK n matrices A and B, we may specify B = J. Then C

IA = A,and det B = det J = 1, yielding an expression for det 1 in terms of

the clements of A.

We have proved several important results, which we now state explicitly.

ee”

Theorem 5.6. If a function det exists with the properties of Definition

5.1, then for every square matrix A,

det A = >. + [apan@per me Aponyn],
Pp

where the sum is extended over all permutations p of the integers

1,2,...,nand where a + or — sign is affixed to cach product according

to whether p is even or odd.

Thus det A is an algebraic sum of all products of n terms which can be

formed by selecting exactly one term from each row and each column of A.

Theorem 5.7. If A’ is the transpose of .1, then

det A’ = det A.
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Theorem 5.7 follows from the representation of det A as a sum of signed

products of elements of A, each product containing exactly one element from

each row and each column. Hence in Theorem 5.5 the statements about

columns are valid for rows.

Theorem 5.8. det(AB) = (det A)(det B) = det(BA).

PROOF: Exercise.

Theorem 5.6 is a uniqueness theorem because it states that any function

det which satisfies Definition 5.1 must assign to 4 a value det A which is

completely described by the elements of A. But we have not yet proved

that a function exists which has the properties assumed for det. One way to

settle the existence question is to verify that the specific function described

by Theorem 5.6 satisfies the three properties of Definition 5.1. Such a proof

is possible, but an alternative method is chosen here.

To prove that det exists for every n, we proceed by induction. For n = 1,

A = (a), and we let det A = a. This function trivially satisfies Definition 5.1.

Now assume that such a function exists for square matrices of dimension

n— 1. For ann X n matrix A, define

detA=> a,,|A jl,
zal

where 7 is any fixed value 1, 2,..., 7, and |A,,| is the (n — 1) X (n — 1) de-

terminant obtained by deleting the 7th row and the jth column of A and

affixing the sign (—1)'+’. Thus,

‘el « . e » '

ska!
_¢ Agje'a oy Bin -

.

"42 gk, 1
oe

i” 4

Qi sf
yah oo. ‘

e

[As] = (—1)** det

i

Ant.» «Ong. ++ nn

We next verify that det has the three properties of Definition 5.1.

(a) First, suppose A; = bB, + cC,. Then

A = (A,,...,Ai,..., An).

Let

B= (A,,...,0Bi,..., An)

and

C= (A;,.. ., CC, . ‘ ., An),

so that B and C coincide with A except in the kth column. If 7 = k,

On|An| = (bbs + ccen)|Aul = bbulBul + ceulCu,

since [Ax] = |Bu| = |Cul|. If 7 ¥ k,
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|A,,| = (—1)*? det

where ay, = bb + coum. By the induction hypothesis, an (n — 1) X (n — 1)

determinant is a lincar function of any column, so for 7 # k

a.,|A,,| = a,,(0|B,,| + elC,,|) = bb,,|B,,| + cc,,|C,,].
Finally,

det A = y aJAyl = X (bb,|B,| + ce,
j= jal

C1, ) = bdet B+ cdet C.

(b) Next, suppose A, = A,,, forsomes. Ifj 4 k,j #k + 1,then|{A,,! = 0,

since two adjacent columns of this determinant are equal. Hence

det A = ay|A th | + Qh rileliccgal = Q,

since a4 = 444, and |Ay| =

(c) Finally, if A = 7p,

det I, = y a,l4,| = |A4ul = det In = 1.
4

— Avail.

Thus a determinant function exists for all n.

While an existence proof is necessary for logical completeness, the fact

that det exists does not surprise us. However, in the proof we have estab-

lished a useful method of evaluating determinants. In the notation used

above, |A,,| is called the cofactor of a,,, and the equation

det A = 3d. a,,|A,,| for fixed i
j=l

is the rule for expanding det A according to the elements of the 7th row. The

corresponding result,

det A = 3 a,,|A,,| for fixed j
a=]

holds for columns. These results are summarized below.

Definition 5.2. The cofactor |A,,| of @,; in det A is (—1)'*? times the de-

terminant of the matrix obtained by deleting the ith row and jth col-

umn of A.

Theorem 5.9.

(a) det A = 32 ,]A,| for fixed i.
j=l

(b) det A > a,,|A,,| for fixed 7.
i=]
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Theorem 5.10.

5,det A = x a,,|Axsl,
jTM

where 4,, 18 the Kronecker delta.

PROOF: Exercise.

The following example illustrates some of the properties discussed above.

The common notation which replaces det A by |.4] is employed here.

3 1 —2 4 3 1 -2 4

2 0 —5 1} 2 0 —5 1

1 —1 2 6 Add R, 4 0 0 10

—2 3 —2 3/ to Rs |—2 3-2 3}

ee -
_ “ — (—1) 4 Q 10

Add “3m é 0 Oi Expand by i—I11 4 -—9
to R, —1] 0 4 —VJelements of C,

oO 8 -16 50
= (—1)|—16 00 1( = (—1) 7 4]

Add —2C, to C; 7 —A4l Qi Expand by ~
and 5C; to Ces “elements of Ry

= —[{(—16)(—41) — (50)(7)] = —306.

Exercises

1. Prove Theorem 5.8.

2. Prove Theorem 5.10.

3. Illustrate Theorem 5.10 by calculating >>}., a.,|A,,| for 7 = 1, k = 2,

and for 1 = 2, k = 2, given

1 -1 —-2

a-(-2 3 )
2 —2 x

4. By applying the remark which immediately follows Theorem 5.6,

show that if ann X n matrix can be partitioned in the form

_ ££ Z

A= ,

G H

where FE is a square matrix and Z consists entirely of zeros, then det 4

(det E)(det H).
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5. (i) How many terms are involved in the representation of det A by

the method of Theorem 5.6?

(ii) How many multiplications are required to evaluate det A by the

method of Theorem 5.6?

(iii) How many multiplications are required to evaluate det A by the

method of Theorem 5.9?

6. The Vandermonde matrix of order n is, by definition,

‘| 1 e a e 1

Ty v9 eo. In

2 2 2
1 V1 wy ~ + ody

V(a,...,%n) =

Nap) ag an

(i) For n = 2, 3 verify that det V = I (2, —2z,), where II de-
l<t<jSn

notes ‘product.’

Gi) Prove this statement for all n > 1.

§5.4. The Inverse of a Matrix: Adjoint Method

One of the most. useful properties of the determinant function is that it

provides a simple characterization of nonsingular matrices. I*urthermore,

the cofactors of a nonsingular matrix can be used to calculate its inverse by

method which is inefficient for large n, but quite easy for n < 4. Other

methods for computing A~! are deseribed in the next chapter.

Theorem 5.11. A is nonsingular if and only if det A # 0. If A is non-

singular, det(A7!) = (det A)71.

PROOF: If A is singular, then its rows are lincarly dependent, by The-

orem 4.7. Using the results of Theorem 5.5 for rows instead of columns,

we can obtain a row of zcros in a determinant whose value is det A.

Hence det A = 0. Conversely, if A is nonsingular, A-! exists and

det A det A“! = det (AA) = det J = 1,

so dct A ¥ 0.

The first method we describe for calculating A-! is called the adjoint

method. We now define the term adjoint.

Definition 5.3. The adjoint of an n X n matrix A = (a,,) is then Kn

matrix adj A = (af), where at, = |A,,| = cofactor of a;, in det A.
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We note in particular two things about the adjoint: first, the elements of

adj A are determinants formed from A, each with a suitable sign attached

(see Definition 5.2); second, the clement in the (7, 7) position of adj A is the

cofactor of the element in the (j, 7) position of A.

Theorem 5.12. If A is nonsingular, then

A) = [det A]~' adj .4.

PROOF: We calculate A adj A = (b,,), where

n n

b= Y anat, = Y aulAy!
Ko kat

= 6,,det A by Theorem 5.10.

Henee A adj A = (6,, det .1) = (det A)/, from which the theorem follows.

Example

Let

—2 1 3

A= 0 —-1 1}.

1 2 (0)

Then det 4 = 8. To compute as, we find the cofactor of a2:

1 3
|An| = (—1) > 9

Similar computations yield

= 6.

—2 6 4

adj A = 1 -—3 2 |,

and therefore

—1i

An adj A ‘

5 oe oe mie walt gale
It is simpler of course to leave } factored in front of adj A.

Now let us return to the problem of solving a system of n linear equations

in m unknowns. In the notation of §5.1, AX = Y, where A is an n Xn

matrix which we here assume to be nonsingular. The unique solution is

given by the column vector,

X = A-'Y = (det A)-'(adj A)Y

Hence

x; = (det A)" ay aiy; = (det A)" x [A j.1y;-
< =

The terms undcr the summation sign are easily seen to be the terms of the

expansion by elements of the 7th column of the determinant
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ay eee ay yt] Y1 a; stl eee din

det Ay) = det . . ’

Ant... Qn ,i-1 Un Op ,i4t ~ « - Ann

where A y,,) agrees with A except in the ith column, where Y has replaced A,.

This result is known as Cramer’s rule.

Theorem 5.13. If the determinant of coefficients of the system of

linear equations

Qnt, +e + + Ointn = YN

AnD, + oes + Qnntn = Yn

is not zero, then the unique solution is given by

_ det (A), ee .» Aaa, Y, Ais, sey An) -

n= det(A,, ee ey Ay4, A,, Ass, sey An) = 1, 2, seal

The amount of work involved in the solution of a linear system by Cramer’s

rule is the same as in solving by calculating A-! by the adjoint method.

Both methods are unnecessarily cumbersome for large n, and for small values

of n the method of direct algebraic elimination 1s often simpler than either

the adjoint method or Cramer's rule.

To underline the practical importance of these remarks, consider the prob-

lem of solving a system of 25 linear equations in 25 unknowns. Cramer’s

rule requires the evaluation of 26 determinants of order 25; if either Theo-

rem 5.6 or Theorem 5.9 is used to evaluate these determinants, more than 26!

multiplications are required, a number of the order 1076. A computer which

performs 1000 multiplications per second would require 10'® years for the

calculation. However, by making use of other computational techniques,

systems of more than 2000 equations have been solved recently. In the next

section a method is described in which a system of n equations can be solved

by means of only n? multiplications, and n*? < n! whenever n > 5.

Exercises

1. Solve the following system of equations,

22, — 2X2 + 323 = 3,

Le

224, + 22+ 23 =
|
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(i) by the adjoint method of calculating A,

(ii) by Cramer’s rule,

(iii) by direct algebraic elimination.

2. Prove that every square skew-symmetric matrix of odd dimension is

singular.

3. In &3, let A(q, a2, a3), B(b:, be, bs), C(c1, ce, c3) be three points, not all on

the same line. Prove that an equation for the plane determined by A, B, and

C is

Xi Ze X3 1

a, Qo a3 J _ 0.

b; be bs ]

C1 Co C3 ]

4. Prove that det(adj A) = (det A)*TM"?.

5. For what values of x is the following matrix singular?

3-2 2 2

1 4—g7 1

—2 —4 —l—~@7

6. Show that A is nonsingular, where

1° Poo... ye

2° 2... QM

(n — 1)° (n—1)'...(n—1)"7,

7. Show that the determinant of a triangular matrix is the product of its

diagonal elements. Use this fact to solve Exercise 3, § 4.4.

8. Let A be a singular n & n matrix.

(i) Prove that if n = 1, 2, then A? is proportional to A.

(ii) Show that A? need not be proportional to A whenever n > 2.

(113) How are these results related to Exercise 7, § 3.2?

9. Read ‘Solving linear equations can be interesting,” by G. E. Forsythe,

Bulletin of the American Mathematical Society, vol. 59 (1953), pp. 299-329.

§5.5. Operations on Linear Systems

In spite of its apparent simplicity, the solution of a system of linear equa-

tions by direct algebraic elimination is of such fundamental importance that

it deserves analysis here. When we first considered the system (5.1) or equiv-

alently (5.2), we regarded the column vector Y as fixed and sought to deter-
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mine all column vectors X for which AX = Y. In these terms the system

represented m linear equations in n unknowns. Sometimes it is useful to

regard the vector Y as variable, in which case we have a system of m linear

homogeneous equations in m + n variables:

—-Y+AX =Z.

It is convenient to eliminate the minus sign by letting V = —Y, to obtain
in block form

V
1A) (y) = 2,

or, in extended form,

v1 + ay% + :+:: +a,7, = 0,

Ue + dnt, +--+: + Amt, = 0,

(5.6)

Um + AmiX, + +++ + Amntn = 0.

When any system of m lincar equations in m + n unknowns is written in

the form (5.6), it is a trivial matter to solve for the v’s in terms of the 2z’s.

However, the usual objective is to solve for as many as possible of the 2,

in terms of the v’s and the remaining x’s. The idea which underlies most

inethods of solution is akin to horsetrading: to solve (5.6) we exchange this

system for another system which has exactly the same solution but which

is preferable in some sense, until we arrive at a system of the form

Zi" + bites)? + see + by.2n + Cy) Vi + se. + Cim Um = 0,

(5.7) + by (r+)? + se" + DyyLn' + Cri Vy + an + Crm Um = 0,

Ox (41) tists ONa + candy + ee) + CimUm = 0,

O21 + ee Orn + Cmts + +++ + Camm = 0,

where {l’,...,’} is a permutation of {1,...,n}, r<m,s =n-—r, and

¢=r-+ 1. Of course r is simply the rank of the matrix A of coefficients of

(6.6), and any solution of (5.7) is obtained by assigning to the v’s any set of

values which satisfy the last m — r equations and assigning arbitrary values

tO Tinga’, . - « , In’ In case the values of the v’s are specified, (5.7) has a non-

vacuous solution if and only if the last m — r equations reduce to 0 = 0.

Now let us formalize these ideas: Two systems of linear equations are said

to be equivalent if and only if any solution of either system is a solution of the

other. In manipulating equations we wish to be certain that any operations

we perform will produce a system which is equivalent to the original system.

What operations are permissible under this requirement? lirst, it is appar-
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ent that the solution is not affected by the order in which the equations are

written. Hence any permutation of the arrangement of the equations will

produce an equivalent system. Second, any equation may be replaced by a

nonzero scalar multiple of itself. Since such a scalar has a reciprocal, the

process can be reversed, and so the two systems are equivalent. Third, an

equation can be replaced by the sum of itself and any other equation in the

system. In summary, we consider three types of elementary operations:

P: permutation of any two equations,

M: multiplication of any equation by a nonzcro scalar,

A: addition of one equation to another.

It will be noted that the three elementary opcrations correspond to row

operations which are useful in evaluating determinants by replacing a given

determinant by an equal determinant which 1s simpler. In this connection,

“simpler” usually means that the new determinant contains more zeros, or at

least a more useful arrangement of zeros. The effect of each of these oper-

ations on a determinant is described by- Theorem 5.5 (h), (a), and (g), inter-

preted for rows instead of columns. The effect of each of these row operations

on a matrix will be considered in some detail in the next chapter.

There is another general approach to the solution of (5.1) which leads us to

a different type of operation on matrices and which has recently received

recognition as being the essential arithmetic process of the simplex method

for solving problems in linear programming. The forms of (5.6) and (3.7)

show clearly that the process of solving a system of linear equations is simply

to reverse the roles of the v’s and some of the z’s. This is so whether the v’s

are regarded as known scalars or as variables, and it can be done systemat-

ically, as in elementary algebra, by selecting an equation, solving that equa-

tion for one of the x, in terms of the v’s and the other z’s, and substituting

the resulting expression for z, in all the other equations of the system.

Specifically, suppose that a,, ¥ 0 in (5.6). Then

(6.8) 2, = —ag"[v. t+ Qutb oee Fig ty HF Gi git Foote Ht Aint a].

A new system having the same solutions as (5.6) is obtained as follows:

for k # i, equation k of the new system is the one obtained by substituting

(5.8) for x, in equation k of (5.6); equation 7 of the new system is (5.8). The

new system can be written in the form

1 + bia +-s> $b,v; +--+ +b,7, = 0

qT; bat tees thy tees + bint, = 0

Vn + Omit + vee + bm): +++ Ht Omni, = O.
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Note that the roles of v, and z; have been interchanged; in matrix form the

original system

(I|A) (3) =Z

has been replaced by the new system

IB) (ys) = 2,

where V* coincides with V except that z, has replaced v, in the ith com-

ponent, and X* coincides with X except that v, has replaced x, in the jth

component. The entries of the matrix B are given by

a re a;Ore — Ay 'Ay,)0,, = a! det ( ) ifr ~#izands # j,
ws iy

b, = 4—a,;'a,, ifr #iands = J,

aj'a, ifr=iands ¥ j,

ay’ ifr=dzands = yj.

An operation of this type is called a pivot operation on the nonzero element

a,;. Since all steps are reversible, the new system has the same solutions as

the original system. Whenever a succession of m pivot operations replaces

all of the v’s by z’s, the system is solved. The calculations needed to perform

one pivot operation can be arranged so as to require only one division and

mn — 1 multiplications. In particular, if A isn X n and nonsingular, n pivot

operations will suffice to find A-! with at most n divisions and n? — n multi-

plications. This shows that pivot operations form a relatively efficient method

of computation, especially for large n.

Example

To illustrate the use of pivot operations in solving linear systems, we con-

sider the example of Exercise 1, § 5.4:

22; — X2 + 323 3,

1) . —2,

24, + ae+ 23= (12.

A pivot operation on a,, interchanges v, with 2; and replaces the matrix A

with the matrix B. Hence we adopt a computational format which keeps

track of all the essential information. A is written in table form with each

column labeled by the corresponding z and each row by the corresponding 2.

Each pivot operation will produce a new table of coefficients and interchange

the row and column labels corresponding to the pivot element:
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T L Ls

V1 2 —!1 3

Ve 0 1* 0

D3 2 1 1

where v; = —3, v2 = 2, vs = —1. A pivot on the element marked with an

asterisk solves for zz In terms of 2), x3, and v2, and produces the following

table:

Ty Ve I3

V1 2 1 3

a) 0 0

15 2 —_ l 1 *

A second pivot solves for x3 in terms of x, t'2. and v3 and produces the following

table:

xy Yo sD

vy —4 * 4 — 3

I9 QO 1 QO

Ly 2 —J] l

A final pivot solves for x, in terms of v;, ?2, and vs:

vy De U3

wy — ‘ — i
Lo QO 0

Is 3 1 —- 4

The solution is read from this table by writing

Ty = — 40, — lve + 402,

Lt, = Ov, + lve + Ov,

X3 = fu, + lve — 43.

Using the given values of the v,, the solution is

ty = 2,

tg = —2,

3 >= —],

Further examples are suggested in Exercise 1 below.

Pivot operations can also be used to define an interesting relation between

matrices, called combinatorial equivalence. However, since combinatorial

equivalence is not used to develop the fundamental ideas of the next three

chapters, its discussion is deferred to Chapter 9. Other equivalence relations

are studied in Chapters 6 and 8.
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One further comment should be made. The particular form for a pivot

operation, derived above, is a consequence of our having started with a system

of equations in the form (6.6), or equivalently, in the form

V(I|A) ( x) = Z.

Had we begun with equations in the form (5.1),

(-114) (y) = 2,

which is obtained simply by making the substitution V = — Y, then a second

form of pivot operation would be obtained. After a pivot on a,; #0, the

system

Y
(-114) (y) = 2

is replaced by the system
y *

(-11B*) (4) = 2,

where (as before) Y* coincides with Y except that x; has replaced y, in the

ith component, and X* coincides with X except that y, has replaced z, in

the 7th component. B* can be obtained from the matrix B obtained in the

pivot operation as originally defined by multiplying each element of row 7

and each element of column j by —1; this implies that bf = 6,,, but other-

wise the minus signs that appeared in column 7 of B have been shifted to

appear along row 7 of B*.

Both forms of pivot operations appear in the literature; the only difference

is in a few signs, and being aware of the existence of both forms you should

have no difficulty in following both.

Exercises

1. Solve the following systems by the use of pivot operations:

(i) Exercise 3, § 5.1,

(11) Exercise 4, § 5.1,

(iii) Exercise 5, § 5.1.

2. Let A be an n X n matrix, let a,, + 0, and let B be the matrix ob-

tained from A by pivoting on a,,. Prove that

det B = ag '|A,;|.

1 -—-2 -l

3. Given A =[2 3 )
0 5 =
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(i) Compute det A.

(ii) Pivot on ay = 1 to obtain a matrix B, and verify the result of

Exercise 2.

(iii) Pivot B on by = 7 to obtain a matrix C, and again verify the

result of Exercise 2.

(iv) Pivot C on ¢3 = —4* to obtain a matrix D.

(v) Show that D = AW,

(vi) Show that det A equals the product of the pivots used in trans-

forming A to Aq}.

4. Let A be an n X n matrix, let a,; + 0, and Iet B be the (n — 1) X

(n — 1) matrix obtained by pivoting A on a,, and then deleting the ith row

and jth column. Prove that

det A = (—1)'*"a,, det B.

5. Let A be an » X n matrix partitioned as follows:

(9
where A; is a (n — 1) X (n — 1) matrix, 8 is an (n — 1) column vector, ¥ is

a (n — 1) row vector, and d is a nonzero scalar. Then in terms of matrix

multiplication By is an (n — 1) X (n — 1) matrix.

(i) Show that det A = d?" det(dAi — By).

(ii) Show also that dA, — By can be computed with at most 2(n — 1)?

multiplications, and therefore by successive applications of this method det A

can be computed by no more than 2n3/3 multiplications.

(iii) For what values of n does this method of evaluating det A require

more multiplications than those of Theorem 5.6 and Theorem 5.9?

6. As discussed at the close of this section, begin with a system of the

form

(-114)(y)

where a,; # 0. Pivot on a,, and verify that the resulting system is

y*

(—1|B*) (ys) = 4,
as described in the text.



CHAPTER 6

Equivalence Relations

on Matrices

§6.1. Introduction

In §5.5 we skirmished tentatively with the central problem of matrix

theory ; we now need to describe the problem in more definite terms, because a

major portion of the next three chapters will bear directly on its solution.

First we should recognize that we have already used matrices to describe

two different mathematical entities: linear transformations and systems of

linear equations. In Chapters 8 and 10 we shall sec that matrices can repre-

sent still other mathematical structures, each of which has its own distinctive

problems and methods, which in turn can be used to define corresponding

matrix concepts.

For the case of linear transformations the matrix representation was made

in terms of preselected bases which were fixed throughout the discussion.

Presumably then, a different choice of bases would have resulted in a differ-

ent matrix representation of the same transformation. But since a linear

transformation is a vector space homomorphism, it is intrinsically independent

of the coordinate systems (bases) of the spaces involved, and any matrix which

represents a fixed linear transformation reflects the properties of that trans-

formation. Therefore, as we vary the bases we can expect to obtain different

representative matrices which share certain common properties. We wonder

how such matrices are related to each other, and particularly how we can

select a ‘‘simplest’’ matrix to represent that linear transformation.

Now let us return to the problem of solving a system of linear equations.

As described in $5.5, the general method is to exchange the given system
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for an equivalent system—that is, one with precisely the same solutions as

the original. By so doing we exchange the given coefficient matrix for an-

other matrix. Since a matrix reflects the properties of the system it repre-

sents, different matrices which represent equivalent svstems must have

certain properties in common. Again we wonder how such matrices are

related to each other and how we can find a ‘‘simplest”’ representative matrix.

In order to deal effectively with such problems we need to use the concept

of equivalence relation. Relations are discussed in § 1.3 and § A.2, and equiv-

alence relations are treated in § A.9, but for convenience we summarize here

some essential facts concerning equivalence relations. Let 3% denote any

nonvoid set; as a specific example we might think of Af as the set of all

m Xn matrices whose entries are clements of a field J. Let the symbol ~

denote a relation between the elements of Mf. Then the relation ~ is called

an equivalence relation on M if and only if three properties are satisfied:

1. ~ is reflerive; A ~ A for every A € M.,

2. ~ is symmetric; if A ~ B, then B ~ A.

3. ~ is transitive; if A~ Band Bw~ C, then A ~ C.

Any equivalence relation, ~, on Af separates Vf into disjoint subsets, called

equivalence classes. Each equivalence class (J/] has the property that

if A € [EF], then B € [E] if and only if B~ A;

that is, all equivalent elements belong to the same equivalence class, and any

two elements of the same class are equivalent.

As we shall see, many different equivalence relations arise naturally in the

study of matrices. For each equivalence relation we shall want to deseribe

the matrices which appear in each of the corresponding equivalence clusses

and, if possible, to find a simple standard form such that each equivalence

class of M7 contains one and only one matrix which is in that form. Such a

form is called canonical. Sometimes we are content to settle for less; namely,

it might suffice to obtain a standard form such that each equivalence class

contains more than one matrix in standard form, but if two matrices have

the same standard form they must be in the same equivalence class.

Exercises

1. Determine which of the three properties of an equivalencefrelation are

satisfied by each of the following relations.

(i) Similarity of plane triangles.

(11) Parallelism of lines on a plane.

(iii) Strong inequality of real numbers.
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(iv) Divisibility of integers.

(v) Perpendicularity of lines on a plane.

2. Describe a simple canonical form for each of the equivalence relations

defined in Exercise 1 (i) and (ii).

3. For fixed m and n, consider all real m X n matrices. We define A ~ B

to mean that A has the same rank as B.

(i) Verify that ~ is an equivalence relation.

(ii) Describe the corresponding equivalence classes.

(iii) Describe a simple canonical form for this notion of equivalence.

4. A student waiter drops a plate, thereby separating it into a finite num-

ber of disjoint pieces. Describe how this act defines an equivalence relation

on the molecules of the plate such that the pieces of the decomposition form

the equivalence classes.

§6.2. Elementary Matrices

We now consider the matrix interpretation of the elementary operations

which were introduced in § 5.5. There we were concerned with equivalent

systems of linear equations, where two systems were considered equivalent

if and only if they have the same solutions. Clearly, this defines an equiva-

lence relation on the collection of all systems of linear equations with coefhi-

cients in a field $. Each such system determines a unique rectangular matrix A

according to the representation of § 5.1. The elementary operations were so

chosen that the application of each operation to a system produced a new

system which was equivalent to the original. We shall see that a correspond-

ing equivalence relation is induced on the matrices which represent the sys-

tems. For this purpose we focus our attention on three elementary row opera-

tions for matrices:

P: permutation of two rows,

M: multiplication of a row by a nonzero scalar,

A: addition of one row to another.

We first examine the effect of these operations on the identity matrix.

Definition 6.1. An elementary matrix is any matrix which can be ob-

taine@ by performing a single elementary row operation on the identity

matrix.

There are three types of elementary matrices, one for each type of elemen-

tary row operation. To describe these we recall the notation of § 4.2; E,,

denotes the square matrix with e,; = 0 if i = rorj # sande,, = l.
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P: Let P,; denote the matrix obtained from I by permuting the ith and

jth rows. Then

P,=I-E,+ EE, — E,, + Ey.

M: Let M,(c) denote the matrix obtained from J by multiplying the 1th

row by c ¥ 0. M,(c) is obtained by adding c — 1 to the element in the (¢, 2)

position, so

Mic) = 1+ (ce — 1)Ey.

A: Let A,, denote the matrix obtained from J by adding row 7 to row J,

where i ~ j. Clearly,

A, =I+E),.

The usefulness of the three elementary matrices P,,, Mf,(c), and A,, stems

from the fact that an elementary row operation on an arbitrary rectangular

matrix A may be performed by premultiplying A (j.e., multiplying A on the

left.) by the corresponding clementary matrix. But there is more to be said

in order to make our meaning precise. Since there is an identity matrix of

each dimension, there are three elementary matrices of each dimension. If A

ism X n, then any premultiplying matrix B must have m columns for BA to

be defined.

Theorem 6.1. Any elementary row operation can be performed on an

m <n matrix A by premultiplying A by the corresponding m XX m

elementary matrix.

PROOF: Exercise.

Theorem 6.2. Every m & m elementary matrix is nonsingular.

PROOF: Exercise. Show that each has m linearly independent rows.

Theorem 6.3. The inverse of an elementary matrix of type P or type

M is an elementary matrix of the same type. The inverse of an elemen-

tary matrix of type A is the product of elementary matrices of type M

and type A.

PROOF: By expressing each of the elementary matrices in terms of the

E,, and using the results of Exercise 1, below, it is easy 10 verify that

Py! = Py,

M,*(c) = M.(c~),

Ayi=I-E£E, = M(-1)A,MA(—}).

It should be observed that any type P elementary matrix is a product of

elementary matrices of type M and type A (see Exercise 5, below). If we

were interested in the most concise axiomatic treatment of row operations,
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we would consider only the latter two types. However, once we have ob-

served this relationship there is little to be gained by insisting upon using

it to replace the natural operation of interchanging rows.

Exercises

1. Prove that LyA,, = 5.£.,, and therefore that each £,; is either idem-

potent or nilpotent of index 2, according to whether 7 = j ort ¥ j.

2. Prove Theorem 6.1.

3. Prove Theorem 6.2.

4. Carry out the calculations which establish the statements made in the

proof of Theorem 6.3.

5. Using Exercise 1, or otherwise, show that

P,, = M,(—1)A,M.(—1)A,.M,(—1)A,;.

6. Write a sequence of elementary row opcrations whose only effect on A

is to add a constant multiple of the 7th row of A to the jth row of A.

7. Calculate the determinant of each type of elementary matrix.

§6.3. Row Equivalence

The three types of elementary row operations were selected by a considcra-

tion of algebraic processes which lead from one system of linear equations to

an equivalent system—that is, onc with the same solutions as the original.

While it is clear that. elementary row operations transform any system into

an equivalent system, the converse is not so obvious—that any two equivalent

systems can be derived from each other by a finite sequence of these elemen-

tary row operations. Our investigation of this question will provide a non-

trivial example of the general problem of equivalence and canonical forms, as

discussed in § 6.1. As is often the case, side results of the investigation will

prove to be more important than the answer to the original question.

Definition 6.2. An m X n matrix B is said to be row equivalent to an

m Xn matrix A if and only if B can be obtained by performing a finite

number of elementary row operations on A.

The relation of row equivalence of m X n matrices is easily seen to be an

equivalence relation. It is reflexive and transitive by its nature, and sym-

metrie because if B can be obtained from A by elementary row operations,

then the reversed sequence of inverse operations applied to B will yield A.
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The collection of m X n matrices is thus partitioned into disjou:t classes of

row equivalent matrices.

Theorem 6.4. Row equivalent matrices have the same rank.

PROOF: If B is row equivalent to A, then

B=E,... EEA,

where the EZ, are elementary matrices and hence nonsingular. By The-

orem 4.8, A and B have the same rank.

Now let A = (a,,) be an m X n matrix and suppose that the gth column is

the first column in which a nonzero clement, say a,,, appears. If we multiply

row p by a;¢ and then interchange row p and row I, we obtain a matrix with

1 in row 1 and column q. Then by adding suitable multiples of row 1 to the

other rows we obtain a matrix of the following form which is row equivalent

to A,

0...0 .1 #*...*

0...0 0
B= . +

R

0...0 0

where each * denotes some scalar and where F is an (m — 1) X (n — qg)

matrix. We continue the process by operating with the last m — 1 rows of

B. In R we find the first column in which nonzero element b,, appears, and

multiply row r by b7;. We then interchange row r of B with row 2 of B,

and as before produce zeros in column s of every row below row 2. Eventually

we obtain a matrix which is row equivalent to A and has the following

properties:

1. The first k rows are nonzero; the other rows are zero.

2. The first nonzero element in each nonzero row is 1, and it appears in a

column to the right of the first nonzero element of any preceding row.

An example of a matrix in this form, for k = 4, m = 5, n = 8, 1s

QO l« * * * * *

0 01* x * * &

00001 * « »«

000000 0 1

00000 0 0 0

A matrix which satisfies properties 1 and 2 is said to be in echelon form.

Suppose B is a matrix in echelon form, and consider any nonzero row. The
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first nonzero element of that row is b;, = 1. In column 7 above b,; there are

elements which may or may not be zero. Below 6,; the jth column contains

only zeros. Clearly, by a succession of row operations, the elements above

b,; in column 7 can be replaced by zeros, and the resulting matrix will still

be in echelon form with the additional property,

3. The first nonzero element in each nonzero row is the only nonzero

element in its column.

Any matrix which is in echelon form and also satisfies property 3 is said to

be in reduced echelon form.

A reduced echelon form for the matrix of the preceding example is

010 * QO « « Q

001 * 0 * « O

00001 * « 0

00000001

00 0 0:0 0 0 0

Theorem 6.5. Any m Xn matrix of rank k is row equivalent to a

matrix in echelon form (also, reduced echelon form) with k nonzero rows.

PROOF: Our previous discussion established the row equivalences which

the theorem asserts, so we need only prove the statement concerning

rank. The rank of any matrix cannot exceed the number of nonzero

rows in that matrix, and the nonzero rows of an echelon matrix are

linearly independent. Hence its rank is the number of its nonzero rows,

and by Theorem 6.4 any matrix row equivalent to it has the same rank.

We now apply the concept of row equivalence to give an independent

proof of Theorem 4.4—a matrix and its transpose have the same rank. Let

E be a matrix which is row equivalent to A and in reduced echelon -form. If

p(A) = k, consider the k column vectors whose only nonzero element is a 1

which is the first nonzero element of the row in which it appears. These k

column vectors are linearly independent, and every other column vector is a

linear combination of these. Since the columns of EF are the rows of E’,

p(k’) = k = p(E) = p(A). Also, E = E,k,1--- E\A,so0 BE’ = A'E,E, --+ E’.

Since the transpose of an elementary matrix is an elementary matrix, and

therefore nonsingular, p(A’) = p(i’). Hence p(A’) = p(A).

Theorem 6.6. The rank of any matrix is the dimension of its largest

nonsingular submatrix.

PROOF: Exercise. (By a submatriz of A we mean the urray which is

obtained by deleting a set of rows and a set of columns from A.)
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Theorem 6.7. An n X n matrix is nonsingular if and only if it is row

equivalent to the identity matrix.

PROOF: If A is row equivalent to /, then A must have rank n, and

thus be nonsingular. Conversely, suppose that A is nonsingular. Then

it is row equivalent to a matrix # in reduced echelon form and of rank n.

Hence £ = I,

Theorem 6.8. A square matrix is nonsingular if and only if it is the

product of elementary matrices.

PROOF: If A Is nonsingular, then by Theorem 6.7

Ey ++ EpfyA = 1

for suitable elementary matrices. Henee A = Ky 'ky! --- Ey'. Sinee the

inverse of each elementary matrix is the product of elementary matrices,

A 1s a product of elementary matrices. The converse is trivial, since the

product of nonsingular matrices is nonsingular.

The usefulness of this theorem actually lies in its proof, because we have

Ei ses Fell = A-',

which gives us a second way of calculating the inverse of a nonsingular matrix.

We determine the row operations needed to reduce A to J. Those same row

operations when applicd to J yield A-!. A similar method of calculating

A~' is given in the next section.

Example

To calculate the inverse of

12 8

A={2 3 O},

0 1 2

we write the block form (/|A) and perform on this 3 X 6 matrix a sequence

of row operations which reduces A to J, yielding (B|Z). Then B = A-,

10 0([1 2 3 1100/1 2 8
(0 1023 o)——>(-2 1 o|o 1 =
001}/01 2, 001{0 1 2

f/10 011 2. 8 1 0 O{12 8
=-2 10/0 -1 -6)——>[2 -1 0/01 6

se \-2 1 1/0 0 -4/ <i \Yo-k -2:10 01

f1 0 O]1 2 8 3 -} -21/1 0 0
~1 & 3/01 0 —~1 4 3/010mon fb -b10 0 ) a 4 -t -2]0 0 )



126 Equivalence Relations on Matrices [cu. 6]

Thus

6-1 —9

A-!=i{ -4 2 6)

2-1 —-!1

a result which should be checked by showing that A“'A = I.

Theorem 6.9. B is row equivalent to A if and only if B = PA for some

nonsingular matrix P.

PROOF: Exercise.

Finally we return to the question posed at the beginning of this section.

x1ven any two systems of lincar equations having the same solutions, are their

corresponding matrices row equivalent? To answer this we first determine

what meaning row equivalence of matrices has for the corresponding linear

transformations. Let A, B be m X n matrices; choose a basis {a,..., am}

for Um and {@:,..., Bn} for W,. Let T and S be the linear transformations

from Um to W, determined by A and B relative to this choice of bases; that

is, a, and a@,S are respectively represented in the §-basis by the ith rows of

Aand B,i=1,...,m.

Theorem 6.10. Relative to a pair of bases, let matrices A and B rep-

resent linear transformations T and S. Then A and B are row equivalent

if and only if Rr = Ms.

PROOF: @r is the subspace of W, which is spanned by the rows of A.

If B is row equivalent to A, the rows of B are linear combinations of the

rows of A. Hence @s € Rr, and equality must hold since row equiva-

lence is a symmetric relation. Conversely, if Rr = Rs, the row vectors

of B are linear combinations of the row vectors of A, and each linear

combination of rows can be performed by elementary row operations.

Theorem 6.11. Two matrices A and B in reduced echelon form are

row equivalent if and only if A = B.

PROOF: [iqual matrices are row equivalent. Conversely, let A and B

be row equivalent matrices, both in reduced echelon form; as above,

A and B correspond to linear transformations T and S. A and B have

the same rank r, so the first r rows of A and B, and only those rows, are

nonzero. For each k = 1, 2,...,7 the first nonzero element of row k

of A and of B must be 1; Iet ¢ denote the column in which that element

occurs in A, and s the ec’umn in which it occurs in B. From the form

of a reduced echelon mat we observe that
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if 7 * k, then t, ¥ &,

ak = 1

O for all: # &,

with similar properties holding for B.

We assert that s, = & for each k. Suppose that for some index p < r,

s; <t, but that s, = 4 for k < p. Since RS = R? by Theorem 6.10,

there exist scalars c,....,¢,, not all zero, such that

Qrt

a, = 2 ca.T = y C, (= a,.8;) = > (= ca..] 8,
= = J= )= io |

= > b.8,.

Hence for each; = 1,2,...,7n,

;

b,, = L C,0,).
I=

Thus in particular,

(6.1) Bp, = x Cau, = Cp
t= |

and

by», =1= ay Cid. ys,
1

But A is in reduced echelon form and s, < ftp, SO Qi, = 0 for 7 > p.

Hence for some q < p,

Cqlgs, H OY.

Then t, = 8. < sp since B is in reduced echelon form. Thus ag, = 1,

ay, = Oif 2 # g, and
r

bot, = >, Cit, = Cq x 0.
v=

Since t, < sp, this contradicts the statement that row p of B has its

first nonzero clement in column s,. Hence the assumption that sp < ¢t,

is false. If tp < sy, we can repeat the entire argument, reversing the roles

of A and B to obtain a similar contradiction. Henee s = t, for k =

1,2,...,7r; it follows from the nature of the reduced echelon form that.

columns 1), t2,..., ¢ of A and B are identical. Furthermore, from (6./),

Cy = bot, = 1.

Let k ¥ p, k <r; we have

r

bot = 2d Cid, = Ce
l=

= Ann = 0,
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since column ¢, of B coincides with that of A. Thus, cp = 1 and ¢ =

if k ¥ p. Therefore,

r

bp, = ~ C:Q,, = Apj
=

for all p < rand all7,s0 A = B.

From this theorem we draw two conclusions.

There is one and only one reduced echelon matrix which is row equivalent

to a given matrix A; that is, the reduced echelon form is canonical with respect

to row equivalence.

Two homogeneous systems of m linear equations in n unknowns are equiva-

lent (have the same solutions) if and only if their coefficient matrices are row

equivalent.

We note also that if row equivalence had been defined to include the trivial

row operations of adding or deleting a zero row, then the latter statement

above would be valid for any two homogeneous systems of linear equations

in n unknowns.

Exercises

1. Use the method of this section to calculate the inverse of each of the

following matrices:

—2 ] 3

(1) 0 —1 )
1 2 0

1-1 1-1

. 0 1 0 1

(1) i 0-1 Oo
0 1 0 —1

2. Determine which of the following matrices are row equivalent:

5 3 8

A= 3 1 )
-~1 3 2

-~1 -3 -2

B= 5 7 2)
-3 1 4

—1 5 6

1 2 1}:

—-1 -3 -2
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3. Prove Theorem 6.6.

4. Prove Theorem 6.9.

5. Show in detail how the two statements at the end of this section follow

from previous theorems.

6. Prove that if A ism X nand P,, isn X n, then AP,, coincides with A

except that columns 7 and 7 are interchanged.

7. (3) Let A be an m X (m+n) matrix of rank m, and Jet E be the

reduced echelon form of A. Show that a permutation of the columns of E

transforms E into block form (/|B) where B is m X n.

(ii) Using Exercise 6, or otherwise, show that there exist nonsingular

matrices P and Q such that

PAQ = (I|B).

§6.4. Equivalence

If we consider matrices as rectangular arrays, without regard to any sys-

tems which they represent, it is as natural to perform elementary operations

on columns as on rows. | or this purpose we observe that a column operation

on A is the same as a row operation on A’. Hence A may be transformed

into B by a succession of elementary column operations if and only if A’ can

be transformed into B’ by the same succession of row operations. That is, if

B' = PA’,

then

B = (PA’)' = Al” = AQ,

where Q is nonsingular, since Q is the transpose of the nonsingular matrix P.

Hence column operations can be performed on A by postmultiplying A by a

suitable nonsingular matrix.

We next propose to study the effect of changing A by both column opera-

tions and row operations. If B is the resulting matrix, then

B = PAQ,

where FP is the nonsingular matrix which performs the row operations and Q

is the nonsingular matrix which performs the column operations.

Definition 6.3. B is said to be equivalent to A if and only if B can be

obtained from A by a finite number of elementary row and column

operations.

Theorem 6.12. B is equivalent to A if and only if B = PAQ for suit-

able nonsingular matrices P and Q.

PROOF : See the remarks preceding Definition 6.3.
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Theorem 6.13. Equivalence of matrices is an equivalence relation.

PROOF: Exercise.

Theorem 6.14. An m X n matrix of rank k is equivalent to the m X n

matrix B in which 6), = be = --- = bys = 1, and b,, = 0 otherwise.

PROOF: Let A be of rank k. If k = 0, then A = Z, and there is nothing

to prove. Otherwise, by row opcrations we obtain the reduced echelon

form of A, with & nonzero rows, the first nonzero element of each of which

is 1, and it is the only nonzero clement in its column. By permuting the

columns we place these 1’s in the first & diagonal positions, obtaining

the block form

( k M )

Z Z

’olumn operations are then used to produce zeros in the last n — k

columns of the first k rows.

Theorem 6.15. Two m X n matrices are equivalent if and only if they

have the same rank.

PROOF: If A and B are equivalent, p(A) = p(B) since B = PAQ.

Conversely, if A and B have rank k, each is equivalent to the matrix

described in Theorem 6.14.

From. Theorem 6.15 we derive two immediate corollaries. The first is that

the form described in Theorem 6.14 is canonical with respect to equivalence.

The second we state formally.

Theorem 6.16. A square matrix is nonsingular if and only if it 1s equiv-

alent to the identity matrix.

PROOF: Apply Theorem 6.15.

Therefore, if A is nonsingular, there exist nonsingular matrices P and Q

such that

I = PAQ,

P-1Q-) = A,

At=QP.

Recall that P is obtained by performing on J the same row operations which

were performed on 4, and that Q is obtained by performing on J the same

column operations which were performed on A, the combination of row and

column operations transforming A into J. This gives us another method of

computing A—', and the following scheme simplifies the calculation of P and

Q. Write J to the left of 4A and below A:

I|A

I



[ § 6.4 ] Equivalence 131

Perform row and column operations on A as needed to transform A into J.

As each row operation is performed on A, perform the same row operation

on the matrix at the upper left of the array. Similarly, as each column opera-

tion is performed on A, perform the same column operation on the lower right-

hand matrix. Then the final array is

PTI

Q ’

and A-! = QP.

Example

Let

2 —! 0

A= ( l 2 }
—1 U 3

1 0 2—1 0 J 0 1 2 |]

0 1 O 1 2 1 1 oO O 2-1 0

0 1 j-1 O 38. Inter- 0 oO 1 {-1 O 8
; change ;

1 0 gg RandR, 1 0 O

1 1 QO 0 1 O

0 O 1 0 0 1

0 1 90 1 0O 9O 1 0O 1 0 O

1 O 2-5 -—2 1-2 0 —5 —2

C, — 2C,: 0 O 1 j-1l 2 4 Ry — 2K: 1 1 0 2 4

C-G 1-2 —-]) Bt+h 1-2 -1
0 1 Q0 0 1 Q

0 O 1 0 0 1

0 1 O 1 0 90 0 1 O 1 OO QO

0 4 ¢§$ 0 1 2 4 3 0 1 O

4R;;inte- 1 —2 O 0-5 -2 1-2 0 0-5 8
change , Cs — 2Cy ,

Re and Rs 1 —2 -—1 1-—2 3

0 1 QO 0 1-2

0 O 1 0 oO 1

0 1 =O 1 0 O 0 1 O 1 oO 0O

0 4 3 0 1 O 0 4 3 0 1 0

1 3 ¢§ 0 0 8 t ds fs | O O 1

Rs + 5R: » &Rs
1-2 3 1-2 3

0 1-2 0 1-2

0 OO 1 0 O 1
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We have

0 16 0 1 —2 3

P= y,| 0 8 8} and Q=10 1 —2})

2 1 5 0 0 1

and therefore

6 3-1

A =QP=7,;[-4 6 -2

2 ] 5

This method of calculating A— is tedious to write, but all calculations are

easy ones.

Exercises

1. Use the method of § 6.4 to calculate the inverse of each matrix of

I-xercise 1, § 6.3.

2. Prove Theorem 6.13.

3. Show that the form described by Theorem 6.14 is canonical for matrix

equivalence.

4. Which of the matrices of E:xercise 2, § 6.3, are equivalent?

5. Show that if A isa symmetric n X n matrix of complex numbers, then

there exists a nonsingular matrix P? such that ?.AP’ is in canonical form for

matrix equivalence.

6. If A and B are equivalent, determine whether or not each of the

following pairs are equivalent:

(i) A’ and B’,

(ii) A? and B?,

(ii) AB and BA.

§6.5. Similarity

Thus far we have introduced two different equivalence relations for matrices

which were suggested by processes for solving a system of linear equations.

In this section we resume the study of linear transformations and their

representative matrices. In so doing we discover an important interpreta-

tion of equivalence of matrices, a special case of which leads us to a third

equivalence relation, called similarity. Other equivalence relations will be

considered in Chapter 8, where matrices are used to represent still another

mathematical structure.

In § 4.1 we derived the matrix representation of a linear transformation T

under the agreement that our discussion pertained to a fixed basis {a),..., am}
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of the domain U, of T and a fixed basis {6@,,..., 8.) of a space W, which

contained the range of T. With this understanding, T is represented uniquely

by a matrix, but the matrix representation of T depends upon the choice of

bases, Now we are ready to determine the relationship between two matrices,

each of which represents the same T with respect to independent choices

of bases for Up, and W,.

Let T be a linear transformation from U,, to W,. With respect to bases

{a,...,@m} and {@),..., 8}, T is represented by a uniquely determined

matrix A. With respect to bases {71,..., ym} and {5,...,6,}, T is repre-

sented by a matrix C.. Thus

n

a,T = » a,,B;,
j=l

n

v,T = 2 C 45k.

Let R be the linear transformation which maps y, onto a, in Un. Since R

maps a basis onto a basis, it is nonsingular, and relative to the y-basis it is

represented by a nonsingular matrix ?, where

m

a= v.R = 2, Puyo:
j=

Similarly, let S be the linear transformation which maps 6, onto 8, in W,,. § is

represented relative to the 5-basis by a nonsingular matrix Q, where

The situation is represented graphically by the following scheme, where sub-

scripts on the matrices indicate the bases concerned.

Un = [a] => W, = [6]

R f Py yy Qa { S

Cys .

Un = fy] Sew, = [2]

Figure 6.1

We compute the T-image of a; in two ways:

n n n n n

a,T = 2 0:58; = u a,, (5 ont) = > (= 0.03) bx,
jI@= jITM = kml \y=l

a,T = (= parr) T= x Pr) ( > cbs) = > ( - pu) Sky
j= i= k=1 kel \j=
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fort = 1, 2,...,m. Since a,T 1s a unique Imear combination of the 4,,

n mTM

zy ai;9j = pa DrjC jz.
j=l j=l

The left-hand side is the (z, k) element of AQ, and the right-hand side is the

(1, k) element of PC. Hence

AQ = PC,

A = PCO",

or, in a form which reminds us of the bases used to obtain each matrix,

Aap = Py Cy Qi -

Theorem 6.17. Two m XK n matrices A and C represent the same linear

transformation from U,, to W,, relative to two pairs of bases if and only

if A and C are equivalent.

PROOF: Our previous discussiqn has shown that if A and C represent

the same linear transformation, then

A = PCQ”

for some nonsingular m KX m matrix P and some nonsingular n X n

matrix Q. Hence A and C are equivalent. Conversely, if A and C are

equivalent, then for suitable nonsingular matrices P, Q

A = PCO".

Choose any basis pair, {y} for U,, and {5} for W,, and let T be the linear

transformation represented by C' relative to this choice of bases. Let R

be the linear transformation on 0U,, defined by the matrix P relative to

the y-basis, and let S be the linear transformation on ‘W, defined by the

matrix Q relative to the 6-basis.

Let a, = 7:R and B, = 6,S. Since PC = AQ we can reverse the order

of the calculations which follow Figure 6.1 to obtain

a;Ir = >, (= Ptr) O« = > (= 2.03) Ox = > 158).
k=l k= j=l j=lj=1

Hence A represents T relative to the a, @ pair of bases.

Now let us reverse the roles of matrices and linear transformations in this

discussion. Suppose we have a single m X n matrix A and two pairs of

bases, a, 8 and 7, 6. Relative to each basis pair, A determines a linear trans-

formation, say T; and T;. How are these transformations related?

As before, we let R and S be the linear transformations defined by y.R = a;

and 6,8 = 6;. We have
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v.12 = u a,j,
JTM

aT, = Xu 1,8).
j=

Hence

».RT, = a,T, = y a,,8, = x a,3,8 = vTS.

Therefore 7 -
RT, = T.S,

T; = R-'T.S.

Conversely, suppose that there exist nonsingular transformations R on VU,

and S on W, such that T,; = R-'T-,S. Choose a pair of bases {y!, (5! for D,,

and ‘W,, and define a, = y,.R, 6, = 6,8. Then (a!, {8} forms a pair of bases

also. Let A be the matrix which represents Ty? relative to the y- and 6-bases.

Then

n n

y RT; = aT, = 7, T.S = (= a,,) S = » 8),
a= i pel

so A represents T, relative to the a- and 8-bases. Now the pictorial scheme is

especially helpful:

Un = [a] FW, = (8)

Ay,

Um = [y] > Ww, = [6]

Figure 6.2

T, has the same effect on U,, as a change of coordinates in Up, (R-! indicated

by going against the arrow), followed by T2, followed by a change of co-

ordinates S in W,. Notice that in Figure 6.1 a similar interpretation can

be made only by considering the vertical arrows as being reversed. We have

proved the following analogue of Theorem 6.17.

Theorem 6.18. Two linear transformations T; and T, from U,, to W,

are represented relative to two pairs of bases by the same matrix if and

only if nonsingular linear transformations R on U0, and S on ‘W,, exist

such that T, = RT,S“.

We now specialize our consideration to linear transformations of an n-

dimensional space into itself; many of the important transformations of

mathematics and physics are of this type. The matrices which represent
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such transformations will be square, say n X n, and our work of the next

four chapters will principally concern square matrices.

For the present discussion, if U,, = ‘W, we can take the a- and §-bases to

be the same, and the 7- and 6-bases to be the same. In this case the transfor-

mations R and S are equal, and the relation between the two matrices A and C

which represent the same linear transformation relative to the a-basis and the

y-basis, respectively, is

A, = P,C,Py',

where FP represents relative to the y-basis the transformation which changes

bases from y to a. This relation between matrices exists only for square

matrices and is a special type of equivalence wherein Q = P-).

Definition 6.4. Two n X n matrices A and C are said to be similar if

and only if

A = PCP

for some nonsingular matrix P.

Theorem 6.19. Two n XK n matrices A and C are similar if and only if

there exist two bases {a} and {y} for U, and a linear transformation T

on 0, such that A represents T relative to the a-basis and C' represents T

relative to the y-basis.

PROOF: This theorem may be regarded as a special case of Theorem

6.17 in which only one space is involved, and therefore only two bases

rather than two pairs of bases are required. In the proof of Theorem 6.17

we Iet m =n, Um = Wa, 8B, = a, and 6, = y,. Then S =R, Q = P,

and the conclusions follow.

Theorem 6.20. Two linear transformations T, and T; on U, are repre-

sented relative to two bases for U, by the same matrix if and only if a

nonsingular transformation R on VU, exists such that T; = RT,R-.

PROOF: Exercise.

It is important to distinguish clearly between the relations of equivalence

and similarity. To begin with, equivalence is defined for m X n matrices,

while similarity is defined only for n X n matrices. But in obtaining Theorems

6.19 and 6.20 as special cases of Theorems 6.17 and 6.18, the specialization

occurred not only by choosing m = n but also in the selection of bases. Al-

though both equivalence and similarity are defined for n X n matrices, they

are different relations; similar matrices are equivalent, but equivalent n X n

matrices are not necessarily similar.

The notion of similarity is particularly important because of Theorem 6.19.
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Since similar matrices represent the same linear transformation, they must

share all properties of the transformation which are independent of any

coordinate system. These are the intrinsic geometric properties of the trans-

formation. A problem of special interest is to find a simple canonical form

for every similarity class; this problem is the same as that of selecting a

coordinate system in which a given linear transformation assumes a simple

form which is determined by intrinsic geometric properties. The next chapter

is concerned with its solution.

Exercises

1. Prove that similarity of matrices is an equivalence relation.

2. Prove that if A and B are similar, then

(i) p(A) = p(B),
(11) det A = det B.

3. Are AB and BA similar for all n * n matrices? What can be said if

either A or B is nonsingular?

4. In the analysis of three-phase power systems, an impedance matrix

often occurs in the form

2) 22 “3

C = 23 21 Ro ’

z2 23 2)

where z; is a complex number for 7 = 1, 2, 3. Let

1 1 1

P= {1 e€ e? |,

1 e* e€

where ¢ = }(—1 + iv 3). Show that C is similar to a diagonal matrix D
and compute D. (Observe that e?} = 1, so that e? + e + 1 = 0.)

5. Let T be the linear transformation on & whose matrix relative to the

{€1, €2, €3$ basis is

] 2 —4|

A=[2 0 2 |.

1 —2 3

(i) Show that the vectors y; = (1,1,0), ve = (1,0,1), and y; =

(1, —1, 1) are linearly independent and hence form a basis.

(ii) If R is the linear mapping defined by y.R = «, 2 = 1, 2, 3, show

that R is represented relative to the y-basis by the matrix

1 —1 ]

P= 0 1 —1}.

—1 2 —!]
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(iii) Calculate the matrix C which represents T relative to the y-basis

by two methods: first, express y,T in terms of the y’s for i = 1, 2, 3; then

compute P-'AP.

6. Let T be a linear transformation of & into &, whose matrix relative to

the bases {e,, 2} and {e1, és, €3} is

1 OO -38

4=() 1 o)
Let new bases be defined by

{* = €— 22,

@=eEt &,

and

B=at €2,

B, = € + €3,

3 = € + 6.

Compute the matrix which represents T relative to the a- and §-bases.

7. (i) Show that any two idempotent matrices of the same dimension

and rank are similar.

(ii) Describe a form for idempotent matrices which is canonical with

respect to similarity.

8. If A and B are similar, determine whether or not each of the following

pairs are similar:

(i) Aé and =e-«é&B,,

(ii) A’ and =s«é2®B’,"

(i) A~? and B-', assuming A is nonsingular.

9. Prove Theorem 6.20 in detail.



CHAPTER 7

A Canonical Form

for Similarity

lor the remainder of this book we shall restrict. our investigation in two

ways, sometimes by necessity and sometimes for convenience.

We shall consider only square matrices, unless otherwise noted; thus linear

transformations will be regarded as mapping a space into itself.

We shall assume that the scalar field is either the real or complex numbers,

By this time you should have little difficulty in discerning which theorems

can be extended beyond the limits imposed by these restrictions.

§7.1. Characteristic Vectors and Values

The general problem which we undertake in this chapter was stated at the

end of § 6.5. A linear wransformation T on U, may be regarded as a rearrange-

ment of the points of the space, without reference to particular coordinate

systems. Indeed, those properties which distinguish T intrinsically must hold

in any coordinate system and hence must be invariant under a change of

coordinates. Since equal transformations are represented by similar matrices,

our investigation will make heavy use of similarity, with a major objective

being the derivation of a canonical form for similarity. Another problem which

we shall solve in this chapter is to determine under what conditions a given

matrix is similar to a diagonal matrix. Since calculations with diagonal

matrices are quite easy, the relation of this problem to the simple representa-

tion of a linear transformation is apparent.

When we regard T as a rearrangement of the vectors of U, it is natural to
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look for vectors which are mapped by T in some simple way. The null space,

for example, is the set of vectors mapped into 6. Also, we might look for a

fized point—a vector which is mapped into itself. More generally, we search

for any vector which is mapped by T into a scalar multiple of itself:

ET = XE for some scalar X.

(The use of the Greek letter \ for a scalar is an exception to the notation

adopted for this book. It 1s used for characteristic values to conform with

generally accepted notation.) Clearly, for any T, @ is such a vector (indeed,

a fixed point), so we are interested only in nonzero vectors which have this

property.

For example, consider the linear transformation T defined on & by the

matrix

1 2 —-l

A=|2 0 2 |.

1 —2 3

The point (a, b, c) is mapped by T into (a + 2b + c, 2a — 2c, —a + 2b + 3c).

In particular, for any value of a, (a, 0, a)T = 2(a, 0, a) and (a, —a, a)T =

O(a, —a, a). Hence the vectors y2 and +3 of the new basis described in Exer-

cise 5, § 6.5, are mapped by T into scalar multiples of themselves: y.T = 27,2

and ysl = Qy;. The vector y; 1s mapped by T in a manner which is only

slightly more complicated: 7:,T = 27, + ye. This geometric simplicity makes

the y-basis a natural (although oblique) coordinate system for representing T

Figure 7.1

(Figure 7.1), and we have'seen that this geometric simplicity is reflected in

the algebraic representation of T relative to the y-basis:
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21 0

0 2 OF

0 0 0

The work which ensues will show that no simpler representation of T is

possible.

Definition 7.1. A nonzero vector £ such that

fT = AE for some scalar A

is called a characteristic vector of T. The scalar J is called the characteristic

value of T which is associated with the characteristic vector & The set

of all characteristic values of T is called the spectrum of T.

Tn the literature of matrices there is a wide variety of synonyms for charac-

teristic vectors (eigenvectors, proper vectors, proper states) and for character-

istic values (eigenvalues, proper values, characteristic numbers, characteristic

roots, latent roots).

Suppose that T is represented by A = (a,,) and é 1s represented by the row

vector X = (7,...2n), relative to a fixed basis. If € is a characteristic vector

associated with the characteristic value A, then

‘T = 2k,

XA =X,

X(A — 1) = Z.

This is the matrix form of a system of n linear homogencous equations, and

hy Theorem 5.1 a nonzero solution X exists if and only if A — AJ is singular.

This occurs if and only if

det(A — AJ) = 0.

I'rom our knowledge of determinants we see that

lan —xX Q42 woe Qin

A ao. — Awe Qon

det(A — XJ) = = 0

An} Ano ~— X:

is a polynomial equation of degree 7 in X, say

(—1)"\* + BAN + es + dA +b, =O,

where the b’s are sums of products of the a,,. If the scalar field is the field

of real or complex numbers, we know by the fundamental theorem of algebra

and its corollaries that there are exactly n complex numbers \ (not necessarily
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distinct from one another) which satisfy this equation. In order that we may

be sure that the characteristic values \ are in the scalar field of U, we shall

make the simplifying assumption during the remainder of this chapter that

§ is the field of complex numbers.

Definition 7.2. The polynomial det(A — AJ) is called the characteristic

polynomial of the matrix A. The equation det(A — AJ) = 0 is called

the characteristic equation of A.

Definition 7.3. The characteristic values of a matrix A are the roots of

the characteristic equation of A.

Our discussion has established the following result.

Theorem 7.1. The characteristic values of a matrix A are the charac-

teristic values of the linear transformation represented by A in any

coordinate system.

Theorem 7.2. If A and B are similar, then A and B have the same

characteristic polynomial and hence the same characteristic values.

PROOF: IfA = PBP-, then

A — dl = PBP- — Xd] = P(B — XAINPTM,

det(A — AJ) = (det /’)det(B — dAJ) (det P-!) = det(B — XJ).

Theorem 7.3. The characteristic values of a triangular matrix are the

diagonal elements. Thus the characteristic values of a diagonal matrix

are the diagonal elements.

PROOF: Exercise.

So far we have found out how to determine the characteristic values

A1,. ++ ,An Of A. To determine characteristic vectors associated with the

value A,, we solve for X the matrix equation

A(A — AJ) = Z.

Suppose that X, is the matrix representation of a characteristic vector asso-

ciated with A,. Then for any scalar c, cX, is also a characteristic vector

associated with \,. Similarly, if Y’, is a characteristic vector associated with

r,, then (X, + Y,) is also a charactcristic vector associated with A,.

Theorem 7.4. Let \ be a characteristic value of the linear mapping T.

The set of all characteristic vectors of T associated with A, together

with the zero vector, form a subspace @, of U, and éT € @, for every

FEC).
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Exercises

1. Find the characteristic polynomial, the characteristic values, and the

characteristic vectors of each of the following matrices:

(i) (1)
3 2 4

(ii) 2 0 2 |,

4 2 3

0 0 0

ves ] 2 0
(111) _ 0 ; 0

1 0 ]

2. Prove that if X is a row vector and D a diagonal matrix such that

XD? = Z, then XD = Z.

3. Prove Theorem 7.3.

4. Verify in detail the proof of Theorem 7.4.

5. Referring to Theorem 7.4, suppose that we choose any basis for @), and

extend it to a basis for 0. Describe the matrix which represents T relative

to that basis.

6. Prove that if A is nonsingular then the characteristic values of A! are

the reciprocals of the characteristic values of A. What can be said about the

corresponding characteristic vectors?

7. Show that if X is a characteristic vector of A associated with the

value \, then for any natural nuinber k, X is a characteristic vector of A+

associated with the characteristic value A*.

8. If \y,..., An are the characteristic values of A, show that

det A = Aiko = An

by relating each side to the constant term of the characteristic polynomial

of A.

9. Prove that if S = {&,...,&} is a set of characteristic vectors of T

associated respectively with distinct characteristic values \y,..., Ax, then

S is linearly independent.

10. A Markov matrix was defined in Exercise 8, § 4.4. Prove that every

characteristic value of a Markov matrix satisfies |A| < 1.

11. Prove that \ = 1 is a characteristic value of every Markov matrix.
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§7.2. A Method of Diagonalization

As a start on the problem of determining what matrices are similar to a

diagonal matrix, the next theorem gives us a sufficient condition, which is

later proved to be necessary also. In addition, we obtain a method of diag-

onalizing A; that is, we find P such that PAP! is diagonal.

Theorem 7.5. Let X, = (2n,.-.., Zin) be a characteristic vector of A

associated with A,, 7 = 1,2,..., 7. If the vectors X, span VU, then the

matrix 2? = (z,,) is such that

mr, 0 ..0

0 dr»... 0

PAPO =]- - - = diag(\;,...,An) = D.

00 ..A”,

PROOF: Notice that the row vectors of P are characteristic vectors X,.

If these n vectors span VU, they are linearly independent, so P is non-

singular. We have

XA =X.NX,,

SO

n

LixQi, = AN,
k=1

for7 = 1,2,...,n. Furthermore,

PA = (c.),

n

where c,, = YS 2udk; = A,1,,, and
k-1

DP = (b,,),

where 6,, = \,7,, (You should verify these calculations.) Hence

PA = DP.

Fxample

We shall find the characteristic values, characteristic vectors, and a diag-

onalizing matrix P for the matrix

1 0 -—2

A= 0 0 O }.

—2 0 4

The characteristic equation of A is
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1— 0 —2

0 = det(A — AJ) =| 0 —) 0

—2 0 4—\l

= (1 — A)(—A)(4 — A) — (—2)(—A)(—2)

= —)\? + 5yr?2,

Hence the characteristic values of A are \; = 0, Ax = 0, A3 = 5.

Let X = (x, 22, 23). Then

XA = (cy — 2X3, 0, —2r, + 473)

and

AX = (AX, ATe, ATs).

Necessary and sufficient conditions that NX be a characteristic vector asso-

ciated with \ are therefore

X, — 273 = AN,

0 = Ate,

— 27 + 4z, = AZ3.

For A = 0 these reduce to
zz) = 223.

Hence any vector of the form (2c, b,c) is characteristic. Two such vectors

which are linearly independent are

X, = (2, 0, 1),

Xo = (0, l, 0).

Notice in this case that it is possible to select two linearly independent char-

acteristic vectors both of which are associated with the same characteristic

value. For A; = 5 the conditions reduce to

—27) = 73,

tg = 0.

Hence any vector of the form (a, 0, —2a) is characteristic. As a simple vec-

tor of this form we choose

X3 = (1, 0, — 2)

as a characteristic vector associated with A; = 5. Then

2 0 1\

P={10 1 0

l 0 —2/

and det P = —5, which checks the linear independence of X;, X2, and X3.

You should check the calculations which show that
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—2 0 —1

Pi —-} 0 —35 0

—1 0 2

and

0 0 0

PAP-! 0 0 0 |}.

0 0 5

The geometric interpretation of these calculations is that in &3 each point 7

on the line determined by the origin and & = (1,0, —2) is mapped by T into

hn, while each point ¢ on the plane determined by the origin, & = (2, 0, 1),

and & = (0, 1,0) is mapped by T into 0-¢ = 6. The three characteristic

vectors &, &, and & are lincarly independent and may be chosen as a basis

z for U3. Relative to that basis, T 1s

“oe represented by the diagonal matrix

D = diag(0, 0, 5).

When we attempt to diagonalize

a given matrix A by the preceding

method there are three possible

situations:

If the characteristic values are all

distinct, then there exist 7 linearly

““-.\ independent characteristic vectors;

thus A can be diagonalized. (Proved

later.)

If the characteristic values are not distinct, as in the preceding example,

it might still be possible to find » linearly independent characteristic vectors

so that 4 can be diagonalized.

If the characteristic values are not distinct, it can happen that no set of

nm linearly independent characteristic vectors exists. Then A cannot be

diagonalized.

These three cases are illustrated in Exercise 1, below.

Exercises

1. For each of the following matrices determine the characteristic values

and corresponding characteristic vectors; if the matrix is similar to a diagonal

matrix, find ? and show that. P.4AP-' is diagonal:
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2-2 8 1 1 <1

(i) 1 1 1 (iv) 0 oOo 1

1 3 -1 0-2 -—3

7 4 -1 1 oO 0

dij) ( 4 #7 -1] (v) 3 -2 6

-4 -4 4 0 oOo 1

2 -—2 3)

(iii) 100 —4 5)

5-4 6/

2. Which matrices of Exercise 1, § 7.1, are similar to a diagonal matrix?

Without computing P, write the diagonal form of each such matrix.

3. Prove that a transformation is nonsingular if and only if none of its

characteristic values are zero.

4. Prove that a transformation is nilpotent if and only if all of its charac-

teristic values are zero. Show by a particular example that part of the pre-

ceding statement is false if one is restricted to work within the field of real

numbers.

5. (i) Without expanding a 4 X 4 determinant show that a — b, a — ¢,

and a — d are characteristic values of the matrix

a b c d

b a c d

b c a d

b Cc d a

(ii) What is the fourth characteristic value?

(ii) Find general conditions on the numbers a, b, c, d which are suffi-

cient that A be similar to a diagonal matrix.

6. Prove that AB and BA have the same characteristic values by estab-

lishing the following assertions.

(i) If D = PAQ is the canonical matrix equivalent to A (Theo-

rem 6.14) then DC and CD have the same characteristic equation for all C.

(i) PABP- and QBAQ-! have the same characteristic equation if

P and Q are as given in (i).

(iii) AB and BA have the same characteristic equation.

7. Prove that if either A or B is nonsingular, then AB and BA are similar.

8. Give an example of two matrices which have the same characteristic

equation but are not similar.

9. Prove Theorem 7.5 by means of a geometric argument.
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§7.3. Minimal Polynomial of a Matriz

In Theorem 4.2 and subsequent remarks it was proved that the set of all

2 Xn matrices over a field forms a linear algebra of dimension n?. Hence

in this algebra the n? + 1 clements

- I = A°, A, A*,...,ATM

are lincarly dependent. for any n K n matrix A. By Theorem 2.8, a set is

dependent. only if some “veetor” of the set. is a linear combination of the

ones which precede it. Let m be the integer such that (J, A,..., ATM7~!) 1s

independent but U7, A,..., A”) is dependent. For suitable scalars we have

HATM + AATM! + +++ + an31A + dnl = Z,

where ao # U. Hence for b, = a,ag' we have

ATM + bAm-t + se + bm aA + Dal = Z.

This is a polynomial equation in the matrix A. The corresponding scalar

polynomial is

M(x) = rTM + Dye) 4 ee + On.

A polynomial, such as AZ, which has 1 as the coefficient of its largest power

is called monic.

Definition 7.4. The minimal polynomial of the matrix A is the monic

scalar polynomial

Mr) = xTM + aquarTM| + ++: + an

of least degree such that

ATM+ aq,ATM!+ --- +4,]/ = Z.

We have seen that cach matrix has a minimal polynomial, and as an exer-

cise you may prove that the minimal polynomial of A is unique. A word of

caution is justified at this point. The form of Definition 7.4 tempts us to

define the minimal polynomial of A as “the monic polynomial of least degree

for which A is a zero.’”’? However, we must distinguish between matriz poly-

nomials and scalar polynomials. Since the properties of matrices and scalars

are quite different, there is no a priori justification for substituting the

matrix A for the scalar z. But every scalar polynomial determines a matrix

polynomial which is formed by replacing the scalar z by the matrix X and

each scalar coefficient a, by the scalar matrix a,/. In this sense it is correct

to say that the minimal polynomial of A is the monic polynomial Jf of

least degree and with scalar matrices as coefficients such that M(A) = Z.

The difficulties that arise in handling polynomials having matrices as
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coefficients are due principally to the existence of zero divisors and the

lack of commutativity. For example, the matrix polynomial equation

(X —A)(X —B)=Z

does not imply that X = A or X = B, because a product of nonzero matrices

may be zero. Also, the matrix polynomial

X?— AX — BX + AB

(X — A)(X — B) i’

unless it is known that X and B commute. On the other hand, we know

that any scalar matrix B = bJ commutes with any matrix, so that any

factorization of a scalar polynomial

zTM tt ayrTM + ee) tan = (ZX — 1) ++: (& — Tn)

determines 3 like factorization of the corresponding matrix polynomial

XTM + axTM!+ --- ta, = (X — nl) +++ (X — ral).

A remarkable result concerning matrix polynomials is the Hamilton-Cayley

theorem which may be stated looscly as ‘‘Every square matrix satisfies its

characteristic equation.”’ To see that this is so, consider a square matrix A

and assume for the present that its characteristic vectors span 0. Let the

characteristic polynomial of A be

(—1)"A" + DAR! + ++ + Oy.

Let B be the matrix defined by

B = (—1)*"A* + 0A"! + --- + 6,/.

If X is a characteristic vector of A associated with the characteristic value 4,

then by direct calculation using Exercise 7, § 7.1, we have

XB = [(—1)*\* + OAT + eee + bX = 0-X = Z.

The transformation S associated with B maps every characteristic vector of

A into zero. By assumption, the characteristic vectors of A span U, so S is

the zero transformation, and B must be the zero matrix. In the next section

we shall prove the same result for any square matrix.

The Hamilton-Cayley theorém shows that the degree of the minimal poly-

nomial of A does not exceed n. It can be proved that the minimal polynomial

of A divides any polynomial p such that p(A) = Z; hence the minimal

polynomial divides the characteristic polynomial.

cannot be factored as

Exercises

1. Show that the minimal polynomial of A is unique.

2. Prove that a matrix and its transpose have the same characteristic

polynomial.
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3. Prove the Hamilton-Cayley theorem for 2 < 2 matrices by direct cal-

culations with matrices.

4. Prove that if A is similar to B and if p(X) is any matrix polynomial

with scalar coefficients, then p(A) is similar to p(B).

5. Prove that if A is similar to the scalar matrix cJ, then A = cl.

6. (i) Determine all real 2 X 2 matrices A which satisfy A? = —I.

(11) Show that no real 3 X 3 matrix A satisfies A? = —J.

7. (i) Let C be a square matrix with 1 in every position on the super-

diagonal (c,,.41 = 1), Cni,.. +, Cnn in the last row, and zeros elsewhere. Show

that the characteristic polynomial of C is

(—1)"[\" — Cand”! — Cn,n-1ATM 2 —- seo CnoX — Cnt].

(ii) Deduce that every polynomial whose leading coefficient is +1,

according to whether its degree is even or odd, is the characteristic poly-

nomial of some matrix.

8. Use the Hamilton-Cayley theorem to solve Exercise 8, § 5.4.

§7.4. Invariant Subspaces

We have previously observed that the problem of finding a simple standard

form for cach similarity class of m X n matrices is equivalent to selecting

a coordinate system which takes full advantage of the intrinsic geometric

properties of the linear transformation which is represented by each matrix

of that class. One very useful geometric property, which we first met as a

special case in Exercise 8, § 3.2, is the existence of a subspace SM, which is

mapped into itself by T. Clearly the range and null spaces of T are such

spaces, as is the space €, of Theorem 7.4.

Definition 7.5. Let T be a linear transformation on U. A subspace SU of

VU is said to be invariant under T (or T-invariant) if and only if ET € om

for every § € SM.

A T-invariant subspace therefore has the property that each vector of the

subspace is mapped by T into a vector in the same subspace. A useful nota-

tion is to let MT denote the set of all images of the vectors of 37. Then a

space SN is invariant under T if and only if MT C om. If OM is a T-invariant

subspace of VU, it is possible to study the behavior of SW under T, ignoring

the effect of T on the rest of U, since vectors of IN are mapped into vectors

of ov. The transformation T on VU thus defines a transformation Ts; on SI,

called T restricted to MN.
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The matrix interpretation of this notion is illuminating. Let f{ay,..., ax}

be a basis for the invariant space 3M, and let {ai,...,a,} be a basis for V.

Then a,T = 3/j.: 4,,a, fori = 1,...,k, and the matrix of T in this new

basis is of the block form

Ay Z )

Ag Ao

where A; isa k X k matrix.

In the event that VU = MN © N where M and MN are both invariant under T,

a basis for IW together with a basis for 2 form a basis for VU, and relative to

that basis T is represented by a matrix of the form

Ay Z

(7 Ap
where A, is a square array of dimension equal to the dimension of ST and

A» is a square array of dimension equal to the dimension of 2.

Actually there is an abundance of T-invariant subspaces of a special type,

called cyclic subspaces, which also arose in Exercise 8, §3.2. Let T be a

linear transformation on a finite-dimensional space VU, and let & be any

nonzero vector of U. We consider the vectors &, &T, &T?, .... By Theo-

rem 2.8 for some value of k, {&, €T,..., &T*~'} is linearly independent but

tT* € [é, €T,..., €T*-']. Hence

k

eT = ¥ cgTH
t=]

for suitable c,. But this implies that the space [¢, &T,... , €T*—'] is T-invariant,

since

k k—-1

(Zee) T= Feet + wer
Definition 7.6. Let T be any linear transformation on VU, & any nonzero

vector of U, and k the largest positive integer for which {&, ET,... , £T*}

is linearly independent. The space [§&, &T,...,£€T*~'] is called the

T-cyclic subspace generated by £, and the basis {f, §T,..., &T*-'} for

that subspace is denoted {(t)1+} and called the T-cyclic basis generated

by & More generally, any linearly independent set of the form

{(:)4, (2)9,..., (&)r} is called a T-cyclic basis for the space which
it spans.

Again the matrix interpretation is useful. Let T be a linear transformation

on U,, and let $ denote the cyclic subspace, of dimension k, generated by a

vector § The transformation Ts; is represented relative to the basis

{é, €T,..., €T*-"} by the k X k matrix
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1 0

0 1

[
(7.1)

\
0 O «. J

Co C3 ese Cr

which has ¢,...,¢. in the last row, 1 in each superdiagonal position, and

0 elsewhere. A matrix of this form was studied in Exercise 7, § 7.3, where

you were asked to show that the characteristic polynomial of C; is

P(x) = (—1)¥(x* — xt! — - ++ — &).

C; is called the companion matriz of the polynomial P,.

It can be proved that U, is a direct sum of cyclic subspaces, and hence

that T can be represented by a matrix of diagonal block form

Cc=|~ 4,

ZZ ws

where each C, is the companion matrix of a particular polynomial which

divides the minimal polynomial of T. Also the product of these polynomials

is the characteristic polynomial of T. This form is canonical for the similarity

class of matrices which represent T, and is called the rational canonical form

(or sometimes the Jordan canonical form, a term that we reserve for the

form derived in § 7.7). For further information you may consult the references

given at the end of this book.

We are now ready to prove the Hamilton-Cayley theorem.

Theorem 7.6. (Hamilton-Cayley.) If A is a matrix with characteristic

equation

(—1)*\* + BAe! + - +> +O, = 0,

(—1)*A* + B,A%! + --- +0,7 = Z.

PROOF: Given an n X n matrix A, choose any basis for U, and let T

be the linear transformation represented by A relative to that basis.

Let P be the characteristic polynomial of A,

P(A) = det(A — AJ) = (—1)*(A" + DAM +--+ B,),

and consider the transformation P(T) defined by

P(T) = (—1)9(T* + 6:T*— + --- + 5,)D).

We shall show that £P(T) = 6 for every & € U,. Since P(T) is repre-

sented by the matrix P(A), we can then conclude that P(A) = Z.

then
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Let & be any nonzero vector of U,, and let & be the cyclic sub-

space generated by £, say of dimension k. Then relative to the basis

{t, &T,..., €T*-"} for &, the transformation Ts is represented by the

matrix C’, given by (7.1) above. The characteristic polynomial Q, of C,

is given by

Qi(d) = det(Ci — 7) = (— DAF — @AF! = + — &),

where the coefficients c, are obtained from the relation

ET* = qt + tT +--+ + TH.

Since T and Ts coincide on $, we combine the last two equations to

obtain

6 = §Ts — (cx€T§-? + +++ + co€Ts + C4)

= (Ts — (aTg-' +--+ + al]

= (—1)*Q,(Ts).

Now extend this basis for $ to a basis for U,. Then T is represented by

a matrix C, which is similar to A and of the form

C1 Z

(c, ca)
P(A) = det(A — AZ) = det(C — AJ)

= det(C; — AJ)det(C, — AJ)

= Qi(A)Q,(A),

where Q, is the characteristic polynomial of Cy. Hence P(Ts) =-

Q:(Ts)Qs(Ts). But & € S, so

EP(T) = EP(Ts) = €Q1(Ts)Qu(Ts) = 6Q,(Ts) = 8,

as we wished to prove.

Then

A stronger form of invariance occurs in connection with familiar mappings

called projections which are also intimately related to direct sums. A projec-

tion E is defined simply as any idempotent linear transformation:

E? = E.

In Exercise 5, § 3.6, it was shown that any idempotent linear mapping is the

identity transformation on its range space Re. Hence not only is Rg invariant

under E as a subspace, but each point of ®g is invariant: { = = for every

£ © Re. Furthermore, Re N Ne = [6], so U = Re © Ne. Hence any projec-

tion E on U decomposes VU into the direct sum of two subspaces; E is the

identity mapping on one of these subspaces and the zero mapping on the other.

Conversely, if U = 3% @ W:, each & € V has a unique expression
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E = w+ we, where pw, € MM; and we € Mz The mapping T defined by

tT = yu; is linear and idempotent, and hence a projection, called the projec-

tion of U on SN; along My. Clearly I; = Rr and M2 = Mr.

Projections have many important properties, some of which are developed

in Exercises 3 to 6 of this section. Although we shall not make systematic

use of projections, we shall see in the next section that they are closely

related to the diagonability problem for matrices. You are urged to study

these exercises and to prove the results stated therein.

Exercises

1. Refer to the linear transformation T; of Example (c), § 3.1.

(i) Find two invariant subspaces such that & is the direct sum of

these subspaces.

(ii) Write the matrix A for T; relative to the {e, 2; basis.

Gil) Write the matrix B for T; relative to a basis {61, 62}, where each

8; spans one of the invariant subspaces of (1).

(iv) Find a matrix P for which

B= PAP,

2. Prove that if § and @® are T-invariant subspaces, then so are SNR

and § + &.

3. Determine the possible characteristic values of a projection, and de-

scribe a simple matrix representation of a projection. (See Exercise 5, § 3.7.)

4. Let U = 9% © M,, and let E, and T be linear mappings of VU. Prove

the following theorems.

(i) E, is the projection on 91, along SM, if and only if I — E;, is the

projection on MN, along I.

(ii) 9, is T-invariant if and only if E,TE, = E,T, where E, is the

projection on 9% along MN.

(iii) SN, and MM, are T-invariant if and only if E,T = TE,, where FE, is

the projection on IN; along IM.

5. Let {Fi,..., Ex} be a set of projections. These projections are called

orthogonal if and only if E,E, = Z whenever: + j, and are called supplementary

if and only if I = E, + --- + E,. Prove the following theorems.

(i) If E;,...,E, are orthogonal, then E,,..., Ex, I — Sf, E; are

orthogonal and supplementary.

(ii) If E,,..., E, are orthogonal and supplementary, then

LD = Re, © Re, © --- © Rey.

(iii) Let VD=8, O08 @--- @& let &=H+H+--> +& where
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t; © §,, and let E, be defined for ¢ = 1,2,...,k by E, = &, Then

{E,,..., Ex} is a set of orthogonal and supplementary projections.

(iv) Describe a simple matrix representation for each projection E,

of (iii).

6. Let E be the projection of U on 9M, along SM; let F be the projection

of U on 9, along Ny. Prove that E + F is a projection if and only if E and F

are orthogonal, and in that case that E + F is the projection on 1% + 9G

along SMe N Ne.

§7.5. Diagonalization Theorems

In this section we shall establish a variety of criteria for determining

whether a given matrix A is similar to a diagonal matrix D. Since the diag-

onal elements of D are the characteristic values of J (hence of A), we need

only know that such a D exists in order to write one, merely by placing the

characteristic values of A along the diagonal.

Theorem 7.7. Each of the following conditions is necessary and suffi-

cient that A be similar to a diagonal matrix.

(a) There exist n linearly independent characteristic vectors of A.

(b) For every row vector X and scalar \, if X(A — AJ)? = Z, then

X(A —- AM) =Z

(c) If Xo is a characteristic row vector corresponding to the characteristic

value Xo, then there is no row vector Y such that Y(A — Al) = No.

(d) There exists a scalar polynomial P with distinct zeros such that

P(A) =Z

(e) There exist an integer r, distinct scalars a,,...,4a,, and nonzero

matrices £,,..., £, such that

x a,K; = A,
g=l

Le 47 =

EE, = if 2 x 7.

PROOF: Theorem 7.5 has ostablished that (a) implies that A can be
diagonalized. We shall show that diagonalization implies (b), (b) im-

plies (c), (c) implies (d), (d) implies (e), and (e) implies (a), thus com-

pleting the cycle.

Diagonalization implies (b): Let D = PAP —' he diagonal, let Y = XP!

for a given row vector X, and suppose X(A — AJ)? = Z for some

scalar \. Then
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(b)

(c)

(d)

Z= YP(A — XI)? = YP(P-'DP — dT)? = Y(D — AD)*P.

Since P is nonsingular, Y(D — AJ)? = Z, and hence Y(D — AJ) = Z

since D — XJ is diagonal (Exercise 2, § 7.1). Thus X(A — \J)P-! = Z,

so X(A — Al) = Z.

implies (c): Let A» be a characteristic value and Xp a corresponding

characteristic row vector. Then XoA = NoXp. If a vector Y exists

such that Y(A — ApJ) = Xo, then we have

Y(A — Aol)? = Xo(A — Aol) = Z,

so by (b) we have

Y(A — Al) = Z = Xo.

This contradicts the hypothesis that X> is a characteristic row vector,

so no vector Y exists with the stated property.

implies (d): We prove that the minimal polynomial M of A has dis-

tinct zeros if (c) is satisfied. Assume that M thas Xo as a repeated

zero. Then

M(x) = f(r)(% — o)?.

Since Af is minimal, f(A)(A — AJ) is a nonzero matrix, and for

some row vector Yo,

Yolf(A)(A — Aol)] # Z.

Let us call this nonzero row vector Xo. Then

Xo(A — Aol) = Yof(A)(A — Aol)? = YoM(A) = Z

since M(A) = Z. Hence Xp is characteristic, corresponding to Xp.

But then the equation

Y(A — Aol ) = Xy

has the solution Yof(A), which contradicts (c).

implies (e): Let P be a scalar polynomial of degree r such that its

zeroS Q,..., a, are distinct and such that P(A) = Z. Without loss

of generality we can assume that no polynomial of degree less than r

has these properties. We define r other polynomials p, by the relations

P(x) = (x — a,)p,(z), a=1,...,7.

Then p,(a,) = 0 if and only if ¢ # 7. Let the polynomial g be defined

by

gz) = 1 — © [p.(a,)}*pitz),

and observe that g is a polynomial of degree less than r such that

g(az) = 0 fork = 1,...,7. Hence g(z) = 0 for every z, and each

coefficient of g is zero. Hence g(B) = Z for every matrix B. Now

consider the r matrices
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E; = [p.(a,)]“p{(A), t= 1,...,7.

By our choice of r, E; + Z. We have })j_, E; = J. Also,

P(A) = (A — a,l)p(A) = Z,
80

aip,(A) = Ap,(A).
Thus

2 a,E; = 2. [p.(a,)]-'Ap,(A) = A z E,= A.

Finally, if « + j, we have

E,E, = [p.(a.)p,(a,)}-'p.(A )p,(A)

= cP(A)RA(A),

where c is a scalar and hA(A) is the product of the r — 2 matrices

A — ad, where k #1 and k # j. Therefore HE; = Z if 1 #7.

(e) implies (a): Assuming (e), we shall show that for an arbitrary vec-

tor X, XL, is either characteristic or zero:

(XE,)A xE,( y aE, ) =X > aE.E;
I= 1 gel

a,X E? = a,(XE,).

The last equality follows from the fact that the matrices £, are

idempotent. (See Exercise 4.) In addition, we have

X=XI=X> 4 = & (XE),
1=] =

so that any vector is a linear combination of characteristic vectors,

which means that there are n linearly independent characteristic

vectors. The proof of Theorem 7.7 is now complete.

Of these five criteria for diagonability the first is perhaps the most useful

for the problems we are considering. Given an n X n matrix A, we need only

compute the characteristic vectors and see if there are n of these which are

linearly independent. This usually requires a considerable amount of com-

putation. However, if the » characteristic values of A are distinct, the

diagonalization problem is easily solved. In that event, A is similar to a

diagonal matrix because the characteristic values are the distinct zeros of the

characteristic polynomial f, and f(A) = Z by the Hamilton-Cayley theorem.

Alternatively we could argue that by Exercise 9, § 7.1, n distinct character-

istic values determine a set of n linearly independent vectors, which guarantees

diagonability. In case the characteristic values are not all distinct, n linearly

independent vectors might still exist. This will occur whenever k linearly



158 A Canonical Form for Similarity [cu. 7]

independent characteristic vectors correspond to each characteristic value

of multiplicity k.

Theorem 7.8. A sufficient (but not necessary) condition that A be

similar to a diagonal matrix is that the characteristic values of A are

distinct.

Statement (e) of Theorem 7.7 also deserves special comment. Interpreted

in terms of lincar transformations, it says that a linear mapping T can be

represented by a diagonal matrix if and only if T is a linear combination of

a sct of orthogonal and supplementary projections (Exercise 5, § 7.4). The

cocfiicients a, of that linear combination are the distinct characteristic values

of T, as we observed in the last section of the proof of Theorem 7.7. Further-

more, E, 1s a projection on the space C,, spanned by the characteristic vectors

associated with a,. The decomposition

T= Sak,
el

is sometimes called the spectral form of T, and the diagonability problem

for matrices is equivalent to the problem of characterizing those linear

Inappings that possess a spectral form. We shall return to this problem

in § 8.6.

Exercises

1. Determine whether cach of the following matrices is similar to a diag-

onal matrix. (Exercise 7, § 7.3, may be of assistance.)

2 0 0 0 1 0

(i) 0 1 2], (iii) 0 0 1},

0 0 2 0 -9 6

f

0 ae
(ii) 0 QO 1 j, (iv)

1-3 _3 0 0 0 1

0 —4 4 1

2. Show that the following n X n matrices are similar:

1...1 n 0...0

_ 1...1 0 0...0
A=|[{.. -h Bet. . .

1...1, 0 0...90
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3. Show that the following n « n matrices are similar:

0 1 0...0 eae O 0...90

00 1...0 0 e 0...0
A= so | Be - oe .

0 0...1 sof

1 0 0...0 0 0 0O...¢,

where ¢), ¢2,...,¢, are the n distinct nth roots of unity,

2rk ... 2ak
¢, = cos —— +12s5In —.

n n

4. Let F),..., HF, be a set of matrices which have the second and third

properties of Theorem 7.7 (e). Prove that each 2, is idempotent.

5. Show that if A = >}°j.,a@,/., where the F, have the properties listed

in Theorem 7.7 (c), then each a, is a characteristic value of A. Find a corre-

sponding characteristic vector.

6. Give a necessary and sufficient condition for the diagonability of the

block matrix

Z D

in terms of the diagonability of the square blocks A and D.

§7.6. Nilpotent Transformations

Let us summarize the results concerning diagonalization obtained thus far.

Any square matrix is equivalent to a diagonal matrix, and a matrix is similar

to a diagonal matrix if-and only if the characteristic vectors span the full

space. Since similar matrices represent the same transformation, we are

particularly interested in the second result, and we recall that the diagonal

entries must be the characteristic values. The next question is this: Suppose

A cannot be diagonalized by a change of coordinates; how close can we come

to diagonalizing A? Or, is there some simple matrix form such that every

matrix is similar to a matrix in this canonical form and such that the form is

almost diagonal? We shall show that A is similar to a matrix J which is the

sum of two matrices, J = D + N, where D has zeros everywhere except on

the main diagonal and N has zeros everywhere except on the superdiagonal.

Thus N is nilpotent. Furthermore, the diagonal elements of D are the charac-

teristic values of A, and the superdiagonal elements of N are either 0 or 1.

An example of a matrix in this form is
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0

fo nu 0 0 0
J= 0 0 mm 0 0

0 0 0 we |

0 0 0 0 »

To be more precise, let T be a linear mapping on UV, having r distinct

characteristic values; \;,...,,. We shall show that there exists a basis

for U,, relative to which T is represented by a diagonal block matrix of

r blocks,

A

A,

A,y

The size of the block A, is s,, the multiplicity of \, as a characteristic value

of T; hence s; + s. + --: + 8, = n. Furthermore, for each 7 the block A, is

itself a diagonal block matrix of k(¢) blocks,

By

Bi

A; = .

Bu,

The blocks can be arranged in nonincreasing order of size; if p,, denotes the

size of the block B,,, then forz = 1, 2,...,7r,

Pa > Pi2 > an > Pik(a))

"Du + DP + vee + Dik(«) = §,.

For each i = 1, 2,...,7, each diagonal element of A, (and hence of each B,,)

is \,. Each superdiagonal element of J which lies within one of the sub-

blocks B,, is 1; each superdiagonal element of J which lies between adjacent

blocks or sub-blocks is 0, as is every other element of J.

To show the existence of such a basis, it is clear that we shall make frequent

use of the concepts of direct sum and invariant spaces. Also since A, — A,J

is a nilpotent matrix, we can anticipate that a detailed study of nilpotent

transformations will be required. We now undertake such a study.

From Exercise 8, § 3.2, we recall that if T is nilpotent of index p on U,

and if &T?-! = 6, then {&, éT,...,&T?~'} is linearly independent. In the

terminology of Definition 7.6, {(€)1} is a basis for the T-invariant, T-cyclic
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subspace generated by £ We now show that. VU is a direct sum of such spaces,

proving that result in a form given by H. F. Trotter.

Theorem 7.9. If T is nilpotent of index p on %U, then there exists a

T-cyclic basis for U. Moreover, any set of vectors {f,..., &} having

the property that

ff

> ¢.¢,1?-! = @ only ifeveryc, = 0
am]

can be extended to a set {%,..., &, ¢1,...,¢-} such that

v = [(&)r] © --- © [(&)r] © [(O1)7] © --- © [(E.)4].

PROOF: We procecd by induction on p. If p = 1, T is the zero mapping

and any linearly independent set {é,..., &} ean be extended to a basis

{f),...,&,m...., ms} for © for which all assertions of the theorem

are valid. lor p > 1, we first observe that T is nilpotent of index p — 1

on the T-invariant space Nr-. Let {a1,..., a} be any basis for Wea,

and Jet, jai,...,a@+,81,.-., Bn} be any extension to a basis for V.

Then the 6, must satisfy the special property stated in the theorem,

because if

n—lt

> 0,6,T?! = 8,
=i

then

n—t

2 OB. € UTs-1;

since the a’s and §’s are linearly independent, each b, = 0. In particular,

any 6, used in the extension must be such that 8,T?-) ~ 6, and such

vectors exist in U since T is nilpotent of index p on VU.

Let £1, &,...,¢ be a maximal set of vectors of U satisfying the

special property

r

2 ¢é,T?-1=@ only ifeveryc, = 0.
tm]

It is easily verified that [ai,..., a1, &,..., &} is linearly independent.

Furthermore, U = [a,..., a1, &,..., &], for otherwise we could extend

that sect to a basis {a,,...,a,8,...,&, &41,---, &} for U. But then

{t,..., &} would satisfy the special property, contradicting the max-

imality of {%,..., &}.

Now let 7, = ¢,T. Then , € Np- and
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r

>. cn:T?-? = @ only if every c, = 0.

By the induction hypothesis, Nrs- has a T-cyclic basis, and moreover the

set {m,..., mt can be extended to a set {m,...,m,o1,.--, ss such

that {(m)v,..., (adr, ()t,..-, 4} 18 a T-cyclic basis for

Ny. Using the vectors of this basis in place of the a’s above,

we obtain a basis for 0. Also since {(»,)r} U {,} = {(é,) a}, then

{(fj)a,..., (Er, (i)4,-..-, (Cs)r} is a T-cyclic basis for 0, as the

theorem asserts.

Thus any nilpotent transformation T on U, can be used to decompose Va

into a direct sum of a certain number of T-invariant T-cyclic subspaces,

say [(é,)r], 7 = 1,2,...,k. If &T> = 6 but ¢,T?—! ~ 0, then [(é,)r] is of

dimension p,, since [{é,, &,T,..., &:T"7}j 1s linearly independent. By suitably

rearranging the indices, we can arrange these T-cyclic subspaces according

to their dimensions, in nonincreasing order. Then since at least one such

subspace is of order p, we have

P=M2>MZ*:' > Pe,

N= Pit pot: + Mm.

Our next objective is to show that the positive integers k, pi,..., pe are

uniquely determined by T, even though the vectors &, are not. To do so,

write the basis vectors in an array of the form

fT? —!, £7? -2, cee we eee te ; Ey

foTP:-1, fo P?—2, a , 2

The rows of the array are of nonincreasing length: p, > po > +--> > pi.

Likewise the columns are of nonincreasing length. The first column is of

length k, and the second column is of smaller length only if p, = 1. Indeed,

the length of the second column is simply the number of vectors £, for which

p, = 2 (that is, the number of rows of length 2 or more). Similarly the length

of column 7 is the number of &, for which p, > j.

Since §,T? = 6 for each 7, the first column of the array is a basis for Ir.

Hence k = »(T), a number which is uniquely determined by T. In general,

the vectors of the first 7 columns form a basis for Ity. Hence the length of

column j is simply »(T’) — »(T?—!), which is uniquely determined by T. Thus

T uniquely determines the number & of rows in the array, the length p = p,

of the first row, and the length of each column. Hence the complete arrange-
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ment, including the lengths i, p:, . . . , p, of the rows, is uniquely determined

by T.

Theorem 7.10. If T is nilpotent of index p on VU,, then there exist

uniquely determined positive integers k, pi,..., px such that

P=M2pM2**: > De

n= Pit pete: + Pe.

Also there exist vectors &,...,& such that [(,)7] is a T-cyclic,

T-invariant subspace of dimension p; and

Un = [(fs)r] © +--+ ® [(&) a].

Relative to the corresponding cyclic basis for Un, T 1s represented by a

diagonal block matrix

"By

B,

\ By
where B; is a p, X p, square matrix with 1 in each superdiagonal posi-

tion. All other entries of each 2B, and of B are zero.

B

Theorem 7.11. Any nilpotent matrix is similar to a matrix with a

certain arrangement of 1 and 0 on the superdiagonal and 0 elsewhcre.

More precisely, the superdiagonal clements consist of several sequences

of consecutive 1’s separated by a single 0, the sequences of 1’s being

of nonincreasing, nonnegative length.

PROOF: If A is nilpotent on U,, choose any basis for U, and let T be

the linear transformation represented by A. Then change bases to a

T-cyclic basis of the form described in Theorem 7.10, obtaining the

numbers k, pi,..., pe determined by T. The matrix B which repre-

sents T relative to the new basis is similar to A. Also B is of diagonal

block form with k square blocks, B,,..., B,. The dimension of B, is p,,

and B, has p, — 1 superdiagonal elements, each of them 1. Hence the

superdiagonal of B is an arrangement of 1 and 0 as follows:

(11---1)O(11---1)0---(11---1)0(11- +1)

as Nn pa rere

ai—-l p-l P-sri-1p—l

The sequences of 1 are of nonincreasing length, since p; > po > -+- > px}

in particular, if any p; = 1, the superdiagonal of B will end with a string

of consecutive 0’s:
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© e
oOo = i)

oa
Oo = °

Theorem 7.12. Let T and S be nilpotent linear transformations on Un,.

In the notation of Theorem 7.10 let T determine the integers k,

Pi > Po 2 +++ > pr; let S determine the integers j, gq: > q2 > -+- > qj.

Then k = j and p, = q, fori = 1,...,k if and only if there exists a

nonsingular transformation R on 0, such that

S = RTR-|.

PROOF: Supposek = jandp; = q,fort = 1,. .;,k. Asin Theorem 7.6

choose as a basis for U, the vectors

&, &T, ces »&ra-!

£2, fT, vey fT!

fr, é.T, one » ET),

Relative to this basis, T is represented by a matrix N whose superdiagonal

has 1 in the first p, — 1 positions, followed by 0, then 1 in the next p, — 1

positions, followed by 0, and so on. All other entries of N are zero. In

the same way, choose a basis according to the properties of S. The

matrix representing S in this basis will also be N, so by Theorem 6.20,

S = RTRTM“ for some nonsingular linear transformation R.

Conversely, suppose S = RTR-'. Choose as a basis for U, the vectors,
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M, mS, way mora}

m2, 729,..., mse!

3; 15, oe ey njsu-},

as guaranteed by Theorem 7.10. Since R is nonsingular, we obtain a

new basis by mapping each of these basis vectors by R. But if ¢ > 0,

7.5'R = 7,S'(SR) = 7,8 (RT) = (7,8 'R)T.

Hence if we let &; = 7,R, the new basis can be written

fi, £,T, a £,Ta-!
Eo, &T, eee y fo!

£5, t,T, ey £, Ta-1,

mn RTTe-! = y,SRTe~! = »,S?*RTe-?

= +) = 7 5°R = OR = 8.

Hence the &basis is of the form of Theorem 7.10, and therefore T deter-

mines the same integers as does S.

But

€,To-1T

As a consequence of Theorem 7.12 we can show that for nilpotent n K n

matrices the standard superdiagonal form described in Theorem 7.11 is

canonical with respect to similarity. If A is nilpotent, relative to a chosen

basis A represents a nilpotent linear transformation T. Relative to a different

basis A represents a linear transformation S, where S = RTR-!. Relative

to a T-cyclic basis, T is represented by a nilpotent matrix NM, in standard

superdiagonal form. Relative to an S-cyclic basis, S is represented by Naz,

also in standard form. By Theorem 7.12 S and T determine the same set

of integers (k, m:,..., pe), 80. N, = Ne. Hence any nilpotent matrix is similar

to one and only one matrix in standard superdiagonal form.

Exercises

1. Prove that any matrix which is similar to a nilpotent matrix of index p

is itself nilpotent of index p.

2. Let

0 2 1

A 0 oO 3

o oOo 20

ombe the matrix of a transformation T on &3.
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(i) Find the rank of A, the null space of A, and the index of nil-

potency of A.

(ii) Following the method of Theorem 7.10 and starting with

ft, = (1, —1, 0), find a basis for & such that with respect to this basis T is

represented by a matrix in the canonical form of Theorem 7.11.

(iii) Calculate this new matrix from the new basis, and find the integers

ky Diy. +) Dee

3. Let N be the n X n matrix which has 1 in each superdiagonal position

and zeros elsewhere.

(i) Prove that A and N commute if and only if A is of the form

Q; Qy a3 eee an

QO a GQ ... Gy}

0 0 a cee A,—9

0 O O wae ay

(ii) If A is of the form above and if a, # 0, show that the space

spanned by the characteristic vectors of A is one-dimensional.

(iii) Let k > 2. If a2 =a; = --- =a, = 0 and az,, + 0, show that

the space spanned by the characteristic vectors of A is k-dimensional.

4. Find necessary and sufficient conditions that the matrix C of Exer-

cise 7, § 7.3, be mlpotent.

5. Prove that if T is nilpotent of index p on VUn,, then Qp-— C Wr for

k=1,2,...,p— 1, with equality holding either for all values of k or for

none.

6. Let f(n) denote the number of distinct n XK n nilpotent matrices in

canonical superdiagonal form.

(i) Show that f(z) = 2 for? = 1, 2,3; f(4) = 5; f(5) = 7.

(ii) Try to develop a general formula for f(n).

§7.7. Jordan Canonical Form

We have referred at various times to the difference between the properties

of field elements and the properties of matrices of field elements. One more

contrast is worth examining, namely, the existence of inverses. The inverse

of a field element b exists if and only if b ¥ 0, so “inverse” and “nonzero”

are closely related notions. For a matrix B, the existence of B-' certainly

implies B # Z, but the reverse implication is not valid since nonzero matrices

may be singular. Again, the concept of nilpotency with positive index never

arises in a field, but it has come into our study of matrices in an essential way.
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A nonzero nilpotent matrix, we feel, is an example of something which harely

escapes being. zero, while a nonsingular matrix is quite the opposite. It is of

interest therefore to show that every matrix is a combination of a nonsingular

matrix and a nilpotent matrix.

Theorem 7.13. Let T be any linear transformation on VU. There exist

subspaces ® and § such that

(a) ® and § are T-invariant,

(b) V=ROS,

(c) T, restricted to ®, is nonsingular, and T, restricted to §S, is nilpotent.

PROOF: We consider successive powers of T. From Theorem 3.5 we

recall that the range and null spaces of powers of T form chains such that

VD Rr> Rp DO vse > Rn = Rye = «ss

(el co Mr cMUpc eee Cc Jp = Tyas mam te

for some integer k > 0. Let @® = Gn and § = Nm, and suppose

EéEaRnNS. Then ¢ = nT for some 7 € VU, and §T* = 6. Hence

6 = ET* = (nT*)T*. Hence 7 © Wm = Nn, so 6 = nT = §& Now &R

and § have only 6 in common, and the sum of their dimensions is n.

Hence

V=RO05.

Also, @:'T = Qpn = Gr, and similarly for 8, so ® and § are T-invariant.

Now T maps & onto &, so Tg is nonsingular. The vectors of § are mapped

into @ by T*, so Ts is nilpotent.

The next theorem, which is stated in terms of linear transformations, gives

us the Jordan canonical form for a matrix, as stated at the beginning of § 7.6.

Theorem 7.14. Let T be a linear transformation with the distinct

characteristic values \i,...,A,, and let s,; be the multiplicity of , for

«= 1,...,r. Then U is the direct sum of r subspaces,

v =§,08& @ oe. ® &,,

such that forz = 1,...,7r

(a) 8, 1s T-invariant,

(b) 8, is of dimension s;,

(c) when restricted to the space S,, T has the form Ts, = \,I + N,,

where N;, is nilpotent.

PROOF: Given T, we consider the linear transformation T, defined by

T; = T — Ail
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and apply Theorem 7.13 to obtain T)-invariant subspaces 8, and @®, such

that

VD =5, © &,

where T;, is nilpotent on 8; and nonsingular on @. Clearly, $; and ®,

are T-invariant, since T = T, + Ail; also Ts, = (T; + ADs, is of the

form (ec), since T, is mlpotent on 8. We next prove s; = dim §;. Since

S, and @, form a direct sum, we may choose any basis for 8; and any

basis for &,, combining them to give a basis for U. With respect to any

such basis, T is represented by a matrix of the block form

As Z
A= , ’(, Ae.)

where As, and Aq, represent T restricted to the T-invariant spaces 8;

and (R), respectively. Hence Ag, — A/a, represents T,; on ®,. Now for

any X,

det(A — AL) = det (As, _— Al s,) . det(Aq, —_— Al @,)-

Since T, is nonsingular on @, det(A@, — Ai/u,) ¥ 0, and the dimension

of 8; is at least as great as the multiplicity of the characteristic value A,;

dim $; > s).

On the other hand, T, is nilpotent on $; and we apply Theorem 7.10 to

choose a basis for 8; such that TJ, restricted to 8, is represented by a

matrix with zeros and ones on the superdiagonal and zeros elsewhere.

Since Ts, = (T; + AiD)s,, the matrix As, has \; in every diagonal position,

zeros and ones on the superdiagonal, and zeros elsewhere. Thus As, has

A, as its only characteristic value, so

dim 8; < s).

Part (b) of the theorem follows from the two inequalities which we have

obtained.

Now all parts of the theorem are established for the case « = 1. We

next consider the transformation Tg, and repeat the argument, using

T. = Ta, — rola.

By finite dimensionality the theorem follows after r steps.

~

The matrix interpretation of this theorem gives the Jordan canonical form

for a matrix. Let A be a matrix with distinct characteristic values \,, each

of multiplicity s, for i = 1,...,7r. Then A is similar to a matrix in the

hlock form

Ay

A;
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where A, is 8, X s, with A, in every diagonal position, zeros and ones on the

superdiagonal in a certain arrangement, and zeros elsewhere.

Theorem 7.15. A matrix with characteristic values \,, 7 = 1,...,7 18

similar to a matrix with these characteristic values in the diagonal posi-

tions, zeros and ones along the superdiagonal, and zeros elsewhere.

The following observations add real information to the rather loose state-

ment of Theorem 7.15. Any Jordan matrix that is similar to A has r major

blocks A, on the diagonal whenever A has r distinct. characteristic values.

A, is a square block of dimension s,, the multiplicity of \, as a characteristic

value. Fach diagonal element of A, is A,, and any other nonzero entry of 1,

must be 1 and must occur on the superdiagonal of A,. Furthermore, A, can

appear as a diagonal element of no block other than A,. Hence if A and B

are similar, and therefore have the same characteristic polynomial, the Jordan

form of each must contain the same number of blocks, each of the same

dimension. Except for possible permutations of the blocks along the diagonal,

the two Jordan matrices can possibly differ only on the superdiagonal.

Now consider the distribution of 0’s and 1’s on the superdiagonal of the

block A;:

» * O ... 0 O

A * ... O O

r

0

0 0 O.4.. Ar, »*

0 0 O... O 4X,

Since (A, — A,J)** = Z; we can apply Theorem 7.10 to decompose A, — A,/

into sub-blocks B,, along the diagonal, 7 = 1, 2,..., k(t):

By

By

A,-AJ =

Bucy

The dimensions of the sub-blocks are given by the uniquely determined

numbers of Theorem 7.10,

Piz P.2 2:2 Pik(2):

This implies that the distribution of 0’s and 1’s on the superdiagonal of each

A, is uniquely determined; therefore, except for permutations of the major
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blocks A, of A, the distribution of 0’s and 1’s on the superdiagonal of A is

uniquely determined. Hence for a given matrix A and a given ordering of its

distinct characteristic values, A is similar to one and only one matrix in

Jordan form. This is the assertion that for the n X » matrices the Jordan

form is canonical with respect to similarity.

This means that a linear transformation T determines r numbers, 8), . . . , §;,

where each s, is the multiplicity of \, as a root of the characteristic equation.

Each s, determines other numbers p,,, in decreasing order,
'

i
‘

Piz P22 ett 2 Daw, |

8, = Pat Patees + Daw, a=1,...,7.

The number p,; is the dimension of the block B,; within the block A,. The

superdiagonal elements of A are a string of p:, — 1 ones followed by a zero,

then pio — 1 ones, and another zero, and so on. Finally, the Jordan form

is completely determined by the numbers,

Meee yd

§1, s 28 0 » Sr

Puy + + + 5 Prey

Pri, + + +» Drk(r)-

The numbers p,; are often written in the form

{(pu, Piz, « - » » Prkcry) (Par, Dav, + « » Pak) + + * (Dery Ded)» - « » Deki») }

and this form is called the Segre characteristic of A.

As an example, suppose that T has three distinct characteristic values,

Ai = 2,2 = —2,A3 = O with Segre characteristic {(3, 2, 1)(3, 1)(1, 1)}. Then

the Jordan matrix that represents T is

2 1

2 pod

bo ©

0: 0
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Given an n X 7 matrix A, we frequently wish to find a Jordan matrix J

which 1s similar to A. It is possible to give a systematic procedure for deter-

mining P such that PAP" is in Jordan form. (See Exercise 9). But in many

examples we can find J without computing P. l’irst we determine the distinct

characteristic values \1,...,A, and their multiplicities s,,..., 8, Only for

those 7, for which s, > 1, is there any ambiguity about the size of the sub-

blocks within the major block A,. Then we calculate the number c, of linearly

independent characteristic vectors that correspond to dA,. If ¢, = s, then A, is

diagonal: A, = A.J. Even if c, < s,, if s, is small, there are a limited number

of possible forms for A,, and by studying the indices of nilpotency of A, — AJ,

the exact form of A, can be determined. Indeed if s, = 3, then the form of A,

is immediately determined by c,, since s, — c, is the number of 1’s on the

superdiagonal of A,. If s, = 4, no ambiguity exists for c, = 3 or c, = 1; for

c, = 2, however, either of the superdiagonal patterns 1,0,1 or 1, 1,0 is

possible, depending on whether A, — \,/ is nilpotent of index 2 or of index 3.

We state a few more facts, which are of importance but are not pursued

in this book. Let the characteristic polynomial of A be

PO) = (A — AeA — Av) A AY).

The polynomials D,.(A) = (A — X,)"" are called elementary divisors of A, since

each is a divisor of P(A). It can be shown that the minimal polynomial of A is

AL(X) = (A — Aa)PB(A — Ag)PAe (A AD)P,

the product of the distinct elementary divisors of highest power. From this

it is clear that P(A) is a multiple of 44(A) and that P(A) = Z since M(A) = Z.

We shall give an independent proof of this, the Hamilton-Cayley theorem,

in the next section.

Finally, we remind ourselves that the theory of the Jordan form depended

upon a factorization of P(A) into linear factors. This is always possible if

the base field is the field of complex numbers, but other canonical forms

might be needed if we are restricted to work, for example, entirely within

the field of real numbers.

Exercises

1. Use the Jordan canonical form to solve the following problems.

(i) Exercise 8, § 7.1.

(ii) Exercise 3, § 7.2.

(ili) Exercise 4, § 7.2.

(iv) Prove Theorem 7.8.

2. Determine whether or not the following matrices are similar:
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4=(5 3) 8=(o -i}
3. Determine necessary and sufficient conditions on a, b, c, d so that the

matrix
(° i)

Cc d

will not be similar to a diagonal matrix.

4. Determine the Jordan form of the following matrices.

(1) Exercise 1 (it), § 7.2.

(ii) Exercise 1 (ii), § 7.5.

0 1 O

jii){ O O 1}

-1 1 1

5. State and prove a theorem which gives a matrix interpretation of

Theorem 7.13.

6G. Prove that the inverse of a nonsingular Jordan matrix has nonzero

entries only on and above the diagonal but in general is not in Jordan form.

7. Given the 12 &* 12 Jordan matrix J whose diagonal elements in order

are 2,2,2,2, 2, 2,0, 0, 0, 0, 1, 1 and whose superdiagonal elements in order are

1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0. In the terminology of the discussion following

Theorem 7.15, supply the following information.

(i) Write J in block form, showing the sub-blocks of each major

block.

(ii) Write the characteristic values and the multiplicity of each.

(ii) Write the numbers p,,.

(iv) Write the Segre characteristic of J.

(v) Write the characteristic polynomial of J.

(vi) Write the minimal polynomial of J.

(vii) Write the elementary divisors of J.

(vill) By examining the block form of J, show that M(J) = Z for the

polynomial M of (vi).

8. Write a matrix whose characteristic values are 2, 3, 4, 5 and whose

Segre characteristic is {(2, 1, 1)(1, 1, 1)(8, 2)(1)}.

9. Read ‘The companion matrix and its properties’ by Louis Brand,

American Mathematical Monthly, vol. 71 (1964), pp. 629-634. This article

describes a method of finding P such that P-'!AP is in Jordan form.

10. Given the matrix

- OO Poo = ocd = © em © ©
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determine a Jordan matrix which is similar to A by finding the characteristic

values of A and, if necessary, some of the characteristic vectors. Then check

your conclusion by showing that P-'!AP is a Jordan matrix, where

fi 1 1.

papr7l 1 2 1

“| 1 1 4 4
-1 1 8 WW,

§7.8. An Application of the Hamilton-Cayley

Theorem

We are now able to give an easy proof of the Hamilton-Cayley theorem.

Let A be a matrix with characteristic polynomial

P() = (—1)"( ~ hia ~~ ho) * . “(X ~ An);

and let J be a Jordan matrix which is similar to A.

A *

ho *

J = Ma )

*

An

where * = Oor 1. Let J, = J —A,J,7 = 1,2,..., 7, so that

PU) = (-1) Vide +++ Dn,

since the factoring for P(A) holds for the matrix polynomial P(X). Now the

ith row of J, has * in the 7 + 1 column and zeros elsewhere. Therefore the

nth row of J, is a zero row; the last two rows of J ,_/, are zero; the last three

rows Of Jn» ,-1J, are zero rows, and so on. Therefore successive multiplica-

tion of the J, gives

PU) = Z.

By Exercises 4 and 5, § 7.3, P(A) is similar to P(J) = Z, and hence P(A) = Z,

which is the desired conclusion.

We now apply the Hamilton-Cayley theorem to obtain another method of

calculating the inverse of a nonsingular matrix A. Let the characteristio

polynomial of A be

(—1)"(A" + cn" + e+ + ey),

Since A is nonsingular, \ = 0 is not a characteristic value, so c, * 0. We have

A*+ oA! +--+ +e] = Z,

(A® + GA! + + + OA) = —eal,
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and therefore

Am! = —c, (An! + Ar? + 7. + Cn).

Thus A~! may be caleulated as a combination of powers of A and the coeffi-

cients of the characteristic polynomial of A. lor large values of n the c, may

be very hard to compute directly, but an alternate method is described below.

Definition 7.7. The trace of A, denoted tr_A, is the sum of the n charac-

teristic values of A;

trA = 5 ,.
171

In addition to the present application, the concept of trace is quite useful.

We recall that similar matrices have equal characteristic values and therefore

have cqual traces. Thus the trace of a linear transformation T ean be defined

to be the trace of any matrix that represents T. We now prove that tr A is

the sum of the diagonal elements of 4.

Theorem %.16. tr A = 3 Qar,
is]

and hence if .4 and B are similar,

" n

> a, = Xu bi.
=t= |

rPRooF: Consider the characteristic polynomial of A,

det(A — Al) = (—1)7(A" + Gr"! + Oe + €,)

(—1)"(A = Aa)s + (A = Ay).

From the determinant form, the coefficient of \*~1 is seen to be

(—1)" X a, = (—1)"a,

while from the factored form we get

(—1)7) 2» = (—1)"¢.

Hence

trad= >A, = > a.
i=] t=l1

As a corollary we have the equation

Cc) = —tr A.

The other c, can be determined similarly to give the following set of equations:
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q = —trA

@ = —2 {ctr A + tr A?]

C3 = —3 [ee trA + c, tr A? + tr A?)

Co = —n [easy trA te,.tr A? 4+ --- fete An? + tr A"),

These equations permit us to caleulate A~!' by ealeulating A, A?,..., A”!

and the diagonal clements of A" From these matrices we can ecaleulate the

traces as sums of the diagonal elements, determine the ¢,, and finally use the

equation

A-3 = —Cr An! + cA"? -+- mes + Croil).

This method for finding A~! requires fewer than rn? mullipheations and is

easily deseribed in the language of high speed computers. Also we obtain

the characteristic polynomial of .1 as a by-product of the computation of Ac}.

Exercises

1. Use the preceding method to calculate the inverse and the character-

istic polynomial of the matrix of Iéxercise 1 (11), § 6.3.

2. Prove that the trace of A‘ is the sum of the Ath powers of the character-

istic values of A.

3. Verify that

Co = —4(e, tr A + tr A’).

4. Prove the following properties of the trace.

(i) Tf A is milpotent, tr A = 0.

(n) If A is idempotent, tr A = p(A).

Gi) tr.4 + B) = trAt+trB.

(iv) tr(kKA) = &k'tr A.

(v) tr A’ =trA.

(vi) tr(AB) = tr(BA).

5. Let A and B be 2 X 2 matrices for which det A = det B and

trA =trB.

(3) Do A and B have the same characteristic values? Prove your

answer.

(ii) Are A and B similar? Prove your answer.

(iii) Would your answers to (1) or (ii) be different if A and B were

3 X 3 matrices?

6. (i) Prove that if T is a projection, then for any matrix which repre-

sents T, the sum of the diagonal elements is a nonnegative integer.
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(i) Prove that any projection can be represented by a diagonal matrix

whose nonzero entries must be 1.

7. Show that the number of 12 X 12 matrices, all of which have

M(A — 1)4A + 1)? as characteristic polynomial but no two of which are

similar, exceeds 100.

8. Let H, be the n X n matnx obtained by reflecting 7, across a hort-

zontal line through its center.

(1) Show that /f,4 1s the matrix obtained by reflecting A across a

horizontal line through its center, while AI/, is the matrix obtained by

reflecting A across a vertical line through its center.

(i) Deseribe ,AH,!.

9, Prove that any matrix and its transpose are similar.

10. Let A be an n X n matrix such that aya, = axa, forall 7,7, and k.

Determine the characteristic values of A.



CHAPTER 8

Metric Concepts

§8.1. Conjugate Bilinear Functions

Up to this point our study of vector spaces has been accomplished without

any reference to the customary concepts of geometric measurement sueh as

length, distance, angle, and perpendicularity. This is in sharp contrast: to

the usual development of the geometry of the plane or three-dimensional

space, which from the start assumes a rectangular coordinate system and

defines distance in terms of that system; for an abstract n-dimensional space

in which we wish to consider a variety of coordinate systems, such an approach

would be too confining. We shall now see how metric notions can be derived

generally. In so doing we shall discover an interpretation of matrices which

is distinct from the matrix representations of linear transformations and linear

equations studied previously.

A moment’s reflection makes it clear that length, distance, and angle are

scalar quantities which are attached to cach vector or each pair of vectors of

a space. Thus, it is natural that we consider various functions from vector

spaces to the scalar field.

We have already seen that linear functions from VU to * form a vector

space U’, the dual space of U. We now select two vector spaces ‘U,, and W’,,

over the same field § and consider functions which map the cartesian product

Um X W, into F. Since the properties of F come into greater: prominence

here than in our earlier work, we shall develop two parallel theories according

to whether 5 is the real or the complex field. (itcaders who are not fully

familiar with the arithmetic of complex numbers should study Exercise |

before proceeding. )

The conjugate A of a complex matrix A = (a,,) is defined by

A = (,,);
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then a real matrix is characterized by A = A. Other conjugate properties

of complex matrices, which may be proved as an exercise, are

A= A,

AB = AB,

A' = A’

A+B=A+B.

Definition 8.1. Let U,, and W,, be vector spaces over ¥ (real or complex).

A conjugate bilinear function f is a function that assigns to each pair of

vectors (&, 7) © Un * W, a scalar value f(£, 7) in such a way that the

following properties hold:

(a) Saki + bb, 9) = af(&, n) + bf(£, 0),

(b) S(E,am + bm) = Gf(&, m) + Of(E, ne).

Condition (a) states that f is a linear function of its first variable (which

is a vector); condition (b) is a modified form of linearity in the second variable:

S(&,m + me) = S(E, m) + SCE, 0),

F(E, bn) = Of (E, »).

If the scalar field is real, then 5 = b, in which case f is called simply a bilinear

function.

First we see how conjugate bilinear functions may be represented by

matrices; the work we do here will bear a striking similarity to the corre-

sponding matrix representation of linear transformations. Let fa,,..., a@»,'

be a basis for U,, and {8,,...,8,} a basis for W,. Let & = 30,%) re, € Un.

and 7 = 30;21, y,8, € Wa. Then

Sé, 1) = Nz Ta, n) = x Xf (a, 0)

F af(a, dus) = E2[ ¥ gfe.) |
12]

y > TY, f(a, B;).
pealjp=

The mn scalars f(a,, 8,) therefore completely determine the value of the

function f. Now consider the m X n matrix

A = (a,,), where a,, = f(a, 8;),

which is uniquely determined by f relative to the a- and $-bases. Then an

easy calculation shows that

f(§, 9) = XAY".
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Definition 8.2. An expression of the type

£ (Ears)i=l

is called a conjugate bilinear form in the m+ n variables x1,..., 2m,

Yi, es ey Un.

Thus each conjugate bilinear function f on U,, X W, determines, relative

to chosen bases, a conjugate bilmear form whose cocficient matrmx repre-

sents f relative to those bases. For a different choice of bases we can expect

to obtain a form with different coefhicients and therefore a different matrix

representation of f. As in $6.5, suppose that [yi,..., Yn) is a basis for U,

and that {6,,...,6,; Is @ basis for W,. Let R, S be the linear transforma-

{ions y,R = a, and 6,8 = £6,; suppose that Rois represented relative to the

y-basis by P and that S is represented relative to the é-basis by Q. The

matrix ( which represents f relative to the y- and 6-bases is defined by

Cr = S(y,, 6s). Then

Slo, B,) =fC,R, 8,8) =f ( ¥ pur, ¥ ibs)IQi,

|

ES pe F (4 E wd.) |= EZ pol & dose 5) |
a= re |

n m

> Daolrs | Qjs-
sz=jJLr=]

A direct computation shows that the last expression is the (2,7) clement of

the matrix PCQ’. Thus A = P?CQ’.

Theorem 8.1. A conjugate bilinear function f from Un X War to F 1s

represented uniquely relative to a pair a, B of bases by the m & n matrix

A = (a,,), where a,, = f(a, B,);

if &, 7 are represented by X, }’, then

fli, n) = XAY’.

Furthermore, m X n matrices A and C represent the same conjugate

bilinear function relative to different pairs of bases if and only if A and (’

are equivalent.

PROOF: The representation of f by A was established by the previous

discussion. Uniqueness follows easily since two functions are different

if their functional values differ at any point. The discussion also shows

that the same f is represented relative to two pairs of bases by equivalent

matrices. Conversely, if A and C’ are equivalent matrices, let A = PCR
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for nonsingular 2, 2. Let Q = F’', and retrace the calculations already

made to show that if C represents f relative to the y-, 6-bases, then A

represents f relative to the bases yR, 6S obtained from the nonsingular

linear (ransformations represented by P? and Q.

Since a conjugate bilinear function is represented in different coordinate

systems by equivalent matrices, and since equivalent matrices have the same

rank, we define the rank of a conjugate bilinear function (or a conjugate

bilincar formn) to be the rank of any representative matrix.

Theorem 8.2. Let f be a conjugate bilinear function of rank r from

Un X W, into ¥, where r < m,n. There exist bases for U, and W,

such that if & © U,, and y € ‘W,, then

SE, 2) = mh + reo + +++ + 2.

PROOF: Let f be represented by an am & 2 matrix A of rank r relative

to some pair of bases for U,, and W,. Any matrix equivalent to A has

the same rank and represents the same conjugate bilinear function /f.

By Theorem 6.14, A is equivalent to the canonical matrix C which has

the block J, in the upper left. corner and zeros elsewhere. Then from the

proof of Theorem 8.1,

S(&,n) = XCY' = WY + ree + e+ + 7,7.

In many important applications we are interested in conjugate bilinear

functions from © X VU to %. In this case a sharpened form of Theorem 8.1

can be obtained by using two bases rather than two pairs of bases. Thus in

the proof of Theorem 8.1 if we specify that y and @ be the same basis, and

that 6 and 8 be the same basis, then T = S and P = Q. We obtain the

following result.

Theorem 8.3. A conjugate bilinear function f from Un, X U, to § is

represented relative to two bases for U0, by two n X n matrices A, C if

and only if there exists a nonsingular matrix ? such that

A = PCP’

The relation A = PCP’ obtained in Theorem 8.3 defines two special types

of matrix equivalence, according to whether 5 is complex or not.

Definition 8.3. Two complex 2 X n matrices A, C' are said to be con-

qunctive over © if and only if

A = PCP’

for some nonsingular complex matrix P. For any field F two n Xn

matrices 4, C with elements in ¥ are said to be congrucnt over § if and

only if
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A = PCr’

for some nonsingular matrix ? with elements in F.

It. is easy to verify that conjunctivity and congruence are further examples

of equivalence relations on matrices, distinet from the equivalence relations

we have considered previously: row equivalence, equivalenee, and similarity.

In terms of row and column operations, the deseription of congruence of

matrices 1s easily stated. Since ?? desembes a sequenee of clementary row

operations, 7?’ describes the same sequence of cClementary column operations.

Hence A and B are congruent if and only if A ean be obtained by transform-

ing 13 by a sequence of changes, each change being an clementary operation

on rows followed by the same operation on the corresponding columns.

For econjunetivity a shght modification of this result is needed. 2 still

represents a sequenee of elementary row operations. lor the three types of

row operations, specified in § 6.2, we have P/, = P72 = P,, and 1), = Ay, = A,,,

but Wi(ce) = Mj(@) = A,(@). Hence Av and B are conjunctive if and only

if A can be obtained by transforming B by a sequenee of changes, each change

being an elementary operation on rows followed by the corresponding con-

gugate operation on columns

It is convenient to use the symbol A* to denote the conjugate transpose 1’

of A. In § 8.6 we shall see that if .1 represents a lincar transformation T

on VU, then A* also represents a transformation T* on U. The transforma-

tion T* is called the adjutnt of T, but since the term ‘‘adjoint’”’ has already

been introduced for matrices in Definition 5.3 to mean a matrix of cofactors,

we avoid calling the matrix A* the adjoint of A.

Definition 8.4. An n X » complex matrix is said to be //ermitian if

and only if A* = A, where A* = 4’. A is said to be skew-Hermitian

if and only if A* = —A.

In the literature the term Hermitian congruence is sometimes used in place

of conjunctivily, and a Hermitian matrix is sometimes called self-adjoint.

Just as an arbitrary square matrix was shown in § 4.2 to have a unique

representation as the sum of a symmetric matrix and a skew-symmetric

matrix, any complex matrix has a unique representation as the sum of a

Hermitian matrix and a skew-Hermitian matrix:

A = }3{(A + A*) 4+ (A — A®*)].

Separate canonical forms relative to conjunctivity can be obtained for

Hermitian and for skew-Hermitian matrices, and for reasons which will be-

come apparent in § 8.5, we are more interested in the Hermitian case. (See

also Exercises 8 and 9.)
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Theorem 8.4. [very complex Hermitian matrix of rank r is conjunc-

tive over @ to a diagonal matrix with nonzero real numbers in the

first r diagonal position and zero elsewhere.

PROOF: Let A be Hermitian and P? nonsingular. Then (PAP*)* =

P**A*P* = PAP*, so that a Hermitian matrix of the same rank is

obtained from A by applying an elementary row operation followed by

the corresponding conjugate column operation. Every diagonal clement

of a Hermitian matrix is real. We show that 1f A # Z, A is conjunctive to

a matrix in which some diagonal clement is nonzero. Suppose that all

diagonal elements of A are zero, and let a,, #* 0. We may assuine that the

real part of a,,1s nonzero, for otherwise A is conjunctive to VW ,(7)AM,(—7),

in which the (2, 7) entry is real and nonzero. Then B = A, .AA* = A,AAL

is Hermitian, obtained from A by adding row 7 to row » and then

adding column 7 to column 7. HWenee b,, = a, + a,, = a, + @, ¥ 0. By

permuting row 7 and row 1, then column 7 and column I, we obtain a

matrix C conjunctive to A and having cy = b,,. If c1 # 0, the sequence

A.M .(—eneg') of row operations and the corresponding conjugate col-

umn operations will then produce zeros in the (2, 1) and (1, 2) positions

for? = 2,...,n. The resulting matrix is

Cy 0...0

0

P,AP* — ° .

0

If A, = Z, we are through; otherwise the process may be repeated on

A. Since conjunctive matrices have the same rank, after r steps we are

through.

Theorem 8.5. Every symmetric matrix of rank r over F is congruent

over § to a diagonal matrix with nonzero elements in the first r diagonal

positions and zeros elsewhere, provided 1 + 1 ¥ 0 in &.

PROOF: The proof of Theorem 8.4, modified by using transposes in-

stead of conjugate transposes, is effective.

Theorem 8.6. Every complex Hermitian matrix of rank r is conjunc-

tive over @ to a diagonal matrix with 1 in the first p diagonal positions,

—1 in the next r — p diagonal positions, and zeros elsewhere.

PROOF: Let a Hermitian matrix A be conjunctive to a matrix D in

the diagonal form of Theorem 8.4:
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dy

0

Let p denote the number of positive elements of D. Then P,,DP% coin-

cides with D except that d, and d, have been interchanged. Hence A is

conjunctive to a diagonal matrix # in which the positive diagonal

elements come first, say @,...,¢p; the negative diagonal elements can

be expressed as —¢@pa1,..., —¢Cr, and the remaining elements are zero.

Thus | is a real number for 2 = 1,...,7, and

PEP*

is in the form stated in the theorem, where

P= M,(e, '*)---My(er””).

Theorem 8.7. I'very real symmetric matrix of rank r is congruent

over ® to a diagonal matmx with 1 in the first. p diagonal positions,

—1 in the next r — p diagonal positions, and zeros elsewhere.

PROOF: The proof of Theorem 8.6, modified for congruence instead of

conjunctivity, is effective. Notice that the argument will not be valid

in any field that fails to contain a positive square root of each of its

positive elements.

It is an important fact that the form stated in Theorem 8.6 1s canonical

for Hermitian matrices under conjunctivity. Similarly, the form stated in

Theorem 8.7 is canonical for real symmetric matrices under congruence. This

means, of course, that each Hermitian matrix determines a unique value

of r and of p, and similarly for each real symmetric matrix.

To prove uniqueness, let 4 be an n X n Hermitian matrix. Relative to

an arbitrary basis {a;,...,an} for U,, A determines a conjugate bilinear

function f from U, X U, to @: f(a, a,) = a,,. Since A is Hermitian, The-

orem 8.6 guarantees that there exists a basis {81,..., Bay, relative to which

f is represcuted by the matrix B = PAI* of the block form

B= —-Iy»

for some r and p. Suppose there exists another basis {y,,..., Yat. relative

to which f is represented by C = QAQ*, where
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Iq
C= —TI_4

ad

Since conjunctive matrices have the same rank,

r = p(B) = p(A) = p(C) = s.

Let § = Di7.17.8, = Liter wy, and 9 = Vite y.B. = Lie v.y.. Then

S(&n) = XBY* = ry tee + Tp p — TriJoy — 177 — TY:

= UCV* = uth + oe) Hy — UgsiPag1 — tO Urb.

Furthermore let OW = [Bpii,...,8,] and WN = [y1,..., Yay Veetee =) Yn:

Then dim ow + dim 9 = (r — p) + (n —r+q) =n (¢ — p). Suppose

that y > p; then 970 N N ¥ [6]. For any nonzero — € WN N we have

S(§, &) = —2psitpy1 — +++ — 2,2, < 0,

mu +e) +uu, > O,

a contradiction. Hence q < p. By reversing the roles of p and g, the reverse

i

mequalhity follows, so p = g.

Hence any xn Xn Hermitian matrix 4A umquely determines two non-

negative numbers p and r such that A is econjyunetive to one and only one

matrix 3 in the form given above. Instead of specifving r and p to identify

the conjunctivity class to which A belongs, it is customary to specify r

and s, where s = 2p — r; clearly s is uniquely determined by A.

Definition 8.5. The signature s of a Hermitian matrix A is defined by

s=p—(r—p)=2p—r,

which is the number of diagonal 1’s diminished by the number of diagonal

—1’s in the canonical form of A relative to conjunctivity over ©. Simi-

larly, the szgnaturc of a real symmetric matrix A is 2p — r, where p

and r are determined from the canonical form of A relative to congruence

over Gt.

The second part of this definition anticipates that p and r are uniquely

determined for each real symmetric matrix, which may be proved by a

straightforward modification of the argument given for the Hermitian case,

preceding Definition 8.5.

Theorem 8.8. Two n X n Hermitian matrices are conjunctive over @

if and only if they have the same rank and the same signature.

PROOF: If A and J} have the same rank and signature each is con-

junctive over @ to the same matrix in canonical form, and hence are

conjunctive to cach other. Conversely, if A and B are conjunctive, so
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are their respective canonical forms, which by the uniqueness argument

must be equal. Hence they have the same rank and the same signature.

Theorem 8.9. Two n & n real symmetric matrices are congruent over

@ if and only if they have the same rank and the same signature.

PROOF: Exereise. First you must, establish the uniqueness of the

canonical form for congruence over W of a real symmetric matrix.

Finally we observe that for complex symmetric matrices the diagonaliza-

tion process deseribed for the real case hy Theorem 8.7 can be extended to

obtain a particularly simple standard form for econgrucnee over ¢.

Theorem 8.10. I:very complex symmetric matrix of rank r is con-

eruent over @ to the matrix

I, Z

Z LZ}

PROOF: Iéxercise.

Exercises

1. Operations for complex numbers are defined as follows, where a, b, ¢,

and d are real:

Sum: (a + 7b) + (e + id) = (ate) +7(6 4+ a).

Product: (a + rb)(¢ + zd) = (ae — bd) + r(ad + be).

Conjugate: a + 2b = a — 1b.

I

Magnitude: ja + ib| = Va’ + Bb.

Show that if x, y are complex numbers, then

(i) cty=2F+4Y,

(ii) ry = FY,
(iu) % = gz,

(iv) rz = |z\’,
(v) «+ ¥ Is real,

(vi) lr] is real and nonnegative,

(vii) ry] = Iz|-iy!,

(viii) Jr + yl < iz + iy).

2. (i) Write a matrix representation of each of the bilinear forms on VU:

LY, — Lyi + 2x22,

and

4ujyv, + Av, + Zur, + Suet».
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(ii) Are these matrices congruent?

(iii) What does your answer to (11) imply about the two forms?

3. Prove that congruence over F 1s an equivalence relation on n Xn

matrices.

4. Prove that B is congruent to A if and only if B can be obtained from A

by identical sequences of elementary row and column operations.

5. Let A be a skew matrix.

(i) Show that a,, = 0 if 1 + 1 ¥ OinS.

(ii) Prove that if B is congruent to A, then B is skew.

6. Prove the following properties of the conjugate transpose opcration on

complex matrices.

(i) (A*)* = A.

(11) p(A*) = p(A).
Gii) (A + B)* = A* 4+ B*.

(iv) (AB)* = BFA*.

(v) If A is nonsingular, (A7')* = (A*)7}.

(vi) If A is complex, AA* and A*A are Hermitian.

(vii) If A is Hermitian, then a,, is real for each 7; if A is real and

symmetric, A is Hermitian.

(viii) If A is skew-Hermitian, then a,, is pure imaginary for cach 7; if

A is real and skew, then A is skew-Hermitian.

(ix) Let B be conjunctive to A. If A is Hermitian, so is B; if A 1s

skew-Hermitian, so is B.

7. Prove that any » X n complex matrix A has a unique representation

A = H + K, where // is Hermitian and K is skew-Hermitian.

8. (i) Prove that H is Hermitian if and only if 7H is skew-Hermittian,

where 2? = —1.

(ii) Combine (i) and Theorem 8.6 to deduce a canonical form for

conjunctivity of skew-Hermitian matrices.

9. Let A be an n X n skew-symmetric matrix over a field F in which

1+ 1+ 0. Recalling the results of Exercise 5, use appropriate row and

column operations to show that A is congruent to a matrix of the diagonal

block form

A;

0 -1; where A; = (; 0)

A,
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fori = 1,...,¢#. Deduce that A has an even rank, and that this form is

canonical relative to congruence over 5 for skew-symmetric matrices; that is,

two n X n skew-symmetric matrices are congruent if and only if they have

the same rank.

10. Perform row and column operations to reduce the following skew

matrix to a congruent matrix in the canonical form stated in lxereise 9:

0 3-2 1 0)

—3 0 1 —4 l

2 —!] 0 0 -2

—| 4 0 () ]

0 —-1 2 —!] 0

-10 5 2

ll. GivenA=[ 5 0 3]

2 3 6

(i) Find a matrix congruent to A over the rational field and in the

form of Theorem 8.5.

Gi) Find a matrix congruent to A over ® and in the form of Theorem

8.7. Determine the rank and signature of A.

Gi) Find a matrix congruent to A over @ and in the form of The-

orem 8.10.

(iv) Illustrate that Theorem 8.5 does not describe a canonical form

for congruence over §.

12. Determme the canonical form relative to conjunctivity of the following

Hermitian matrix and determine its rank and signature:

Lo o¢ iti

-~i 0 1 = 1,

I-i 1 2

13. Prove Theorem 8.10 and deduce that two symn.ctric complex matrices

are congruent over @ if and only if they have the same rank.

$8.2. Inner Product

Before continuing with a general investigation of the background of metric

notions, let us return to a familiar example to see where we have been and

where we are going. In the real plane &, the dot product of vectors is a bi-

linear function. If & = (a, 22) and 7 = (41, ye), then

E-n = f(& 9) = ry + xrayr.
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The length of the vector € is

lel = Vai + 23 = (f, 8)]!”,
which has one important property that length should possess; namely, that

the length of a vector is a positive

S 4 real number, except for the zero

é = ( XX) vector which has zero length. |

If we attempt to parallel this con-

| struction for the two-dimensional

| complex space, then the same dot

product (with 2, 72, y1, y2 complex) is

a bilinear form; since root extraction

x is defined for all complex numbers,

it would be possible to define IlEll as

we have for the real case. But thon

lléll would be a complex number, hardly suitable for expressing length. It

is for this reason that we use conjugates of complex numbers to define the

conjugate bilinear function

g(&, n) = nif + XJ,

where — = (x1, 72) and 7 = (4, y2), each component complex. It 1s important

to observe that if the components are real, g reduces to the bilinear form

defined above. Now if length is defined by

Hell = [9 HP? = Viale + lel’,

the length of every nonzero vector is a positive real number, as desired.

From this we see that not all bilincar functions lead to a reasonable concept

of length. The important distinction is the type of symmetry in the two

vector variables possessed by the functions, for we observe by direct calcula-

tion that

F(é 0) = f(r, &),
while

g(E, 1) = g(a, €).

Now we are ready to define the concept of an inner product, which is based

upon these considerations.

Definition 8.6. Let © be a vector space over ® (or @). A real (or com-

plex) inner product is a function p with domain U X VU and range R

(or ©) which satisfies

(a) p(ciéi + Coke, n) = crp(fi, 0) + cop(z, 0),

(b) p(&, 1) = p(n, &),
(c) p(é, &) > Oif & + 8, and p(6, 6) = 0.
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This definition asserts that an inner product is a scalar-valued function

which is conjugate bilinear, (a) and (b), and positive definite, (c). lor a real

inner product, (b) reduces to the assertion of symmetry in & and ». Thus

a real inner product is a real valued function of two vector variables which

is bilinear, symmetric, and positive definite. In the complex case property

(b) is called conjugate symmetry or Hermitian symmetry. In either case,

(b) imphes that p(é, &) 1s real.

Definition 8.7.

(a) A real vector space © for which a real inner product is defined is

called a Huclidean space.

(b) A complex vector space 0 for which a complex inner product is

defined is called a unttary space.

(c) Euclidean spaces and unitary spaces collectively are called znner

product spaces.

Examples of Inner Product. Spaces

(a) Euclidean n-space @, with the dot product

pié, n) = UI + Tolfo + 7 + UnY ne

(b) The infinite-dimensional space of all real valued functions continuous

on the interval 0 < ¢ < 1 with the miner product

1

y(fy) = f, Mgat.

(c) Unitary n-space €, with the inner product

pit, n) = Oi + L2Gfo + ves + Indjn-

(d) The infinite-dimensional space of all complex valued functions contin-

uous on the real interval 0 < ¢ < 1 with the inner product

pS, 9) = f, SOgDdt.

We conclude this section by deriving a general inequality which has many

important applications in Euclidean and unitary spaces.

Theorem 8.11. (The Schwarz inequality.) In any inner product space U

Ip(é, ml? < pee, &)p(a, »)
for all §&, n € v.

PROOF: For any a, p(a, a) is real and nonnegative. Let a = at + bn,

where a = —p(n, &) and b = p(é, §); then b = b > 0, and 4d = —p(E, n).

Therefore, we have

0 < pag + bn, a& + bn) = ap(t, a— + bn) + bp(n, ag— + by)

= adp(é, §) + abp(t, 1) + bap(n, &) + bbp(n, 2)
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= adb — abd — bda + bbp(n, ») = b[—ad + bp(n, »)]

bp(é, p(n, n) — plé a), 2).

If b = 0, we have & = 6, and the Schwarz inequality is trivially valid with

both sides equal to zero. Otherwise, the last bracket above must be non-

negative, which is the assertion of the Schwarz inequality.

Exercises

1. Verify that examples (b) and (c) actually satisfy the definition of an

inner product. |

2. If p is any inner product verify that

(i) p(ck, dn) = cdp(é, n),

(11) p(@, n) = pg, 6) = 0.

3. If p is any inner product and if m and m are vectors such that

p(é, m) = p(é, m2) for all & then m = m.

4. Carry out in detail the following outline of an alternative proof of the

Schwarz inequality.

(i) For all complex numbers z, y and all vectors é, 7

0 < p(xé + yn, rE + yn) = zEplé, &) + 2 Re[rgpcé, n)] + yyp(n, »).

(ii) Specify zx to be real and choose y = p(t, 7) to obtain the real

quadratic inequality, valid for all real zx,

0 < péé, &)z? + 2|p(E, 0) 2 + |peg, 2) Ppa, 2).

(iui) Apply a criterion for a real quadratic function to be nonnegative,

obtaining the Schwarz inequality.

5. Prove that equality holds in the Schwarz inequality if and only if the

set {§, 7} is linearly dependent.

6. Show that the following general theorems are direct consequences of the

Schwarz inequality :

(i) Ifa,..., Un and y;,..., Ya are any real numbers, then

n 2 n n

(Z,2u) < (E,+) (2.x)
(ii) (Cauchy inequality.) If m,...,2, and y,..., Yn are any com-

plex numbers, then

f20's (E20) (Et)
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(iii) If f and g are real functions continuous on the interval a < x < b,

then

(f’ tawar) < f’ parde- [? gar.

§8.3. Length, Distance, and Orthogonality

Let U be an inner product space that is either Muclidean or unitary. The

inner product function p is used to define length, distance, and perpendicu-

larity; we begin with length.

Definition 8.8. The length llEll of a vector — is defined by

Hell = [pe EYP?

Theorem 8.12. Length has the following properties:

(a) Ilcéll = [e|- Ell.

(b) Ell > O if & 4 6, and Hall = 0.

(c) E+ nll < WEN + Ill.

PROOF: Property (a) follows from Exercise 2 of the preceding section,

and property (b) from part (c) of Definition 8.6. To prove property (c)

we first note that the Schwarz inequality can be written

Ip(é, 0) = Ip, &)| < Mell Ml.

Since p(é, 7) = p(n, €), p(ésn) + p(n, §) is real, and

lp(é, 2) + p(n, §)| < lp(é, n)| + lpQ, | < NEM ln.
Thus

lé + oll? = pl +n, & +)

= p(t, t) + pt, n) + pln, & + pa, 9)

< p(t, & + |p(é, 2) + pla, &)| + pa, 9)
< HEM? + QUEM - ill + Ill?

from which (c) follows immediately.

For the case of Euclidean n-space where p is the dot product, the length of

& = (x,...,2n) is simply the familiar form

HE = Vo? + 22 + ++. + 22.

Property (c) is interpreted geometrically as the observation that the length

of any side of a triangle does not exceed the sum of the lengths of the other

two sides. Hence (c) is called the triangle inequality.

Since the points of n-space may be interpreted as n-tuples, or vectors, the



192 Metric Concepts [cn. 8]

distance between vectors can be regarded as the distance between those points,

or, equivalently, the length of the arrow from one point to the other.

Definition 8.9. The distance d(t, 7) between two vectors & and 7 is

defined by

d(é,n) = WE — nll.

Theorem 8.13. Distance has the following properties:

(a) d(é,n) = d(x, &),
(b) d(é, n) > O if & ¥ n, and d(é, —) = 0,

(c) d(é&n) < dé, ¢) + dy, 9).

PROOF: Exercise.
.

Thus the distance which results from any inner product has the familiar

properties of distance as defined by coordinates in analytic geometry: it is

symmetric, is positive for distinct points, and satisfies the triangle inequality.

Any space, for which a distance function is defined, satisfying these three

properties is called a metric space.

When we come to angle, we must distinguish between EKuclidean space and

unitary space. The Schwarz inequality can be written

p(s mI \
EMM Wall

If p(é, n) is real, as in the Euclidean case, this means that

pg, 2)
ETI + thay!

is a real number between —1 and +1. Hence it is the cosine of a uniquely

determined angle VW in the range 0 < YW < w. In the unitary case p(é, 1) is

complex, and the corresponding interpretation 1s not valid. For our work,

however, it is not important to have a measure of the angle between two

vectors, but it is most convenient to have a definition or orthogonality (per-

pendicularity). In the real case the necessary definition for orthogonality is

clear because the cosine of the angle between perpendicular nonzero vectors

must be zero, and hence p(é, 7) = 0. This is the definition we adopt for the

complex case as well.

Definition 8.10. Two vectors & and 7 are orthogonal if and only if

p(é,n) = 0.

Theorem 8.14. In any inner product space V,

(a) ¢ is orthogonal to every 7 € VU if and only if & = 6,
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(b) if is orthogonal to every vector of a set S, then & is orthogonal to

the subspace spanned by S,

(c) any set of mutually orthogonal nonzero vectors is linearly independ-

ent.

PROOF: Exercise.

This theorem hints that several geometric properties which are familiar in

& and &3 also hold in any inner

product space. For example, (ce) $= “Wys——-—-——Ss

suggests that a basis of mutually

orthogonal vectors (a rectangular SE
coordinate system) always can be l

found for U; in the next theorem \-e

construct such a basis by use of

projections to split a vector & into

orthogonal components, § = o + 7.

This construction in its general form

is known as the Gram-Schmidt or-

thogonalization process.

S =[a,,x,]

Theorem 8.15. In any finite-dimensional inner product space U, there

exists a basis consisting of mutually orthogonal vectors.

PROOF: If VU is one-dimensional, any nonzero vector forms such a

basis. We proceed by induction, assuming the theorem for any space

of dimension k. Let U be of dimension k + 1, and Ict & be any subspace

of dimension k. By the induction hypothesis there cxists an orthogonal

basis {a,..., ax} for & For é € 8, let

k . k
c= yh Pw) > Cay,

+=] D(a, a.) a=)

and let

n=&— ao.

Clearly, ¢ € 8, and we now show that 7 is orthogonal to each a,:

p(n, at) = p(é — G; a)
k

= p(é, a,) — 7p (x, CQ), a.)

pté, a,) — x cC,p(a,, a.)

pté, a,) — c.p(a,, a,)

a.) — Phe)
p(é, a,) pla, a.) - D(a,, a,) = 0.
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Hence the vectors {ai,..., ax, n} are mutually orthogonal and by The-

orem 8.14 (c) form a basis for Us4.

The vector o in the preceding proof is called the orthogonal projection of

on §: the coefficients c, of o relative to the a-basis for $§ can be written

_ pa) _ lel pit, a)
pa, a,) le, ll ” Nee, WHE

Cy

In the uchdecan case if the basis vectors are so chosen that lla,ll = 1, this

reduces to

c, = lléll cos ¥,,

where W, is the angle between £ and a,. The numbers c, are called diréction

numbers of €.

Theorem 8.16. If § is any subspace of an inner product space VU,, there

exists a unique subspace S+ such that

(a) Un = § © St,

(b) pic, o’) = 0 for every o € S and o’ € St.

PROOF: Itxercise. (S* 1s called the orthogonal complement of 8.)

Now we combine the notions of length and orthogonality to define a normal

orthogonal basis, which is simply a basis of the form {e, ..., en} for &., and

show that these metric concepts assume a very familiar form relative to such

a basis.

Definition 8.11. In any inner product space a vector of unit length is

called normal. A set of mutually orthogonal vectors, each of which is

normal, 1s called a normal orthogonal (or orthonormal) set.

If a is any nonzero vector in an inner product space, then llall-!@ is normal.

Hence a normal orthogonal basis is obtained by normalizing in this manner

each vector of an orthogonal basis. The importance of a normal orthogonal

basis is revealed by the next theorem which implies that in Euclidean space

any inner product p assumes the form of the dot product relative to a normal

orthogonal basis.

Theorem 8.17. Let p be any inner product for the space Vn, let

{@,..., n+ be a normal orthogonal basis for U,, let & = >07.; ra,

and let 7 = 30"., y,a;. Then

pié, n) = Mihi + XoFfo + an + THYn-
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PROOF: p(t,1) =p (=, Ta, 2X v,2;)
t= =

= zp («x a v2,)

x (= Ispla, a;))
i=]

u vy pla, a)

n

u, TiYiy
1=

where the last equality holds since the a, are normal, and the preceding

equality holds since the a, are orthogonal.

From this it 1s clear that in any n-dimensional Euclidean space, with the

metric concepts defined by any inner product, if we choose a normal orthog-

onal basis, the following familiar formulas for length, distance, and angle

are valid:

le —gl=V(n—-wetee ttn Wn),

Nii tir TF ULaYn

Vari+--- + aivyit-- + y?

This last formula is simply the law of cosines,

NE — yll? = Wel? + Ini? — QUEM -Iyll cos ©.

cos V(E, 7) =

It is also worth noticing the relationship between matrix multiplication and

a real inner product. If A = (a,,), B = (6,,), and AB = (c,,), then

n

Cy = > Gils;
k= 1

p(a,, B;) ’il
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where p= is the real dot product of the ith row vector a, of A with the jth

column vector 8, of B. This observation is valid for matrices over any field,

but the dot product referred to has the form of the real dot product.

Exercises

1. Prove that the following theorems of geometry hold in any Euclidean

space. Illustrate cach in &s.

(i) The Pythagorean theorem and its converse:

£ is orthogonal to 7 if and only if

WEN* + Iyll? = WE + all’.

(ii) The law of cosines:

lE — ll? = WEN? + ill? — QUE -Inll-cos W.

(iii) The diagonals of a rhombus are perpendicular:

if Wléll = [lnll, then p(é + yn, & — n) = 0.

2. (i) Prove that in any inner product space

plé +9, & +n) + pl — 0, & — 0) = 2plk, &) + 2p(n, n).

Gi) What famihar geometric theorem does (1) assert?

3. State and prove in the language of arbitrary Euclidean space the

theorem that the midpoints of the sides of any quadrilateral are the vertices

of a parallelogram.

4. Let VU be an inner product space with {a,..., an} as anormal orthog-

onal basis.

(i) Prove Bessel’s inequality:

if p(t, a.) =¢,fori=1,2,...,m<n,then >: |el? < Hell.
1=1

(ii) Prove Parseval’s identity:

p(t 1) = 2 ple, a,)p(a, 2).

(1) Interpret each in & by a diagram.

5. Prove that in any Euclidean space p(a, 8) = 0 if and only if

lla + cBll > llall

for every real number c.

6. Prove Theorem 8.14.

7. Prove that if S$ is any subspace of an inner product space U, then every

£ © U has a unique decomposition

=o+,
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where o € § and 7 is orthogonal to S.

8. Prove Theorem 8.16.

9. Let S and 3 be subspaces of an inner product space VU. Prove that

(i) (S*)" = &.
fi) StI*=HSnyn.

(i) (SN3D*=S+4u.

10. Beginning with the orthogonal vectors

a, = (2, 1, —od, ())

ao = (3, -—1, 1, 0)

in &, use the Gram-Schmidt orthogonalization process on the normalized

form of a; and a to obtain a normal orthogonal basis for &4.

11. Prove that the mapping & —>» o as defined in the proof of Theorem 8.15

by the Gram-Schmidt orthogonalization process is a projection, as defined

in § 7.4.

§8.4. Isometries

In many important physical problems the transformations which arise are

ones which lIcave all distances fixed. Such a transformation 1s called a rigid

motion, and any motion of a rigid body can be described by a transformation

of this type. It is intuitively clear that the product of rigid motions is a

rigid motion, that the identity transformation is a ngid motion, and that each

rigid motion has an inverse that 1s a ngid motion. In other words, the set

of all rigid motions of a space forms a group; for Euclidean space the group

is called the Huclidean group, and for unitary space the group is called the

unitary group.

A simple example of a rigid motion is a translation, wherein each point in

space is moved the same fixed distance in the same direction:

ET = §+ a for fixed a and all E.

But for a ¥ 6, 0T = 6+ a = a, so a nonzero translation is not linear. How-

ever, any rigid motion can be decomposed into the product of a linear trans-

formation and a translation. It is the linear component of rigid motion which

we now propose to study.

Definition 8.12. A linear transformation T on an inner product space

is said to be an isometry jf and only if

NETH = Well for each & € V.
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An isometry on a Euclidean space is called an orthogonal transformation;

an isometry on a unitary space is called a unitary transformation.

Clearly, an isometry preserves distance; the following theorem shows that

it also preserves the inner product and hence preserves orthogonality and all

other metric notions that are defined in terms of the inner product.

Theorem 8.18. A linear transformation T on an inner product space U

is an isometry if and only if p(é, ») = p(éT, 7T) for all &, 7 € UV.

PROOF: We begin the proof in complex form:

elé +7, & +n) = plé, §) + ple 2) + pa, &) + pl, n),

le + nll? = Mell? + p(é, 0) + pn) + Inll?.

But p(t, n) + p(é, n) is twice the real part of p(é, n), and it is expressed

as an algebraic sum of squares of lengths which are preserved by T. If

p(é, 7) is real, this means p(é, 7) is preserved by T. If p(&, 7) is complex,

a similar calculation for p(t + in, & + im) shows that the complex part

of p(t, 7) is also preserved by T. Conversely, if p is preserved by T,

length is also preserved, since |léll = p(é, &)1”.

Next we consider the effect of an isometry on a normal orthogonal basis

{ay}, ..., Qn}. Since T preserves inner product,

lla, Til = 1, a7=1,...,”

and

p(a.T,a,T) = 6,,.

Thus an isometry maps a normal orthogonal basis into a normal orthogonal

basis. The row vectors of the matrix A, which represents T relative to this

basis, must therefore be of unit length and mutually orthogonal.

Definition 8.13. A real n X n matrix A = (a,,) is said to be orthogonal

if and only if

n

2 A.kQ;k = 615, 1,7 = 1, a | n.

A complex n X n matrix A = (a,,) is said to be unitary if and only if

nm

2 Qudk = 6, t%j=1,...,”

Theorem 8.19. A real n X n matrix A represents an orthogonal trans-

formation T relative to a normal orthogonal basis if and only if A is

orthogonal. A complex n X n matrix A represents a unitary transforma-

tion T relative to a normal orthogonal basis if and only if A is unitary.
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PROOF: Our previous remarks show that an orthogonal transformation

is represented by an orthogonal matrix relative to a normal orthogonal

basis. Conversely, the rows of a matrix represent the image of the basis

vectors under the corresponding transformation. The proof is the same

for the complex case.

Theorem 8.20. Any orthogonal or unitary matrix is nonsingular.

PROOF: The row vectors are mutually orthogonal and hence linearly

independent.

Theorem 8.21. A is an orthogonal matrix if and only if A-? = A’. A is

a unitary matrix if and only if A~! = A”*.

PROOF: Let A be orthogonal, and let AA’ = C = (¢,,). Then c,, =

> rat Aue, = Doha 1 AyA,, = 5,,. Hence C = I. Conversely, if A’ = A},

AA’ = 1, 80 )-f.1 440, = 5,,. The unitary case may be proved as an

exercise.

Of all the methods described for calculating the inverse of a matrix, this

is by far the simplest. Unfortunately, not every matrix is orthogonal or

unitary.

Theorem 8.22. If A is orthogonal or unitary, {det A| = 1.

PROOF: Exercise.

Recall that two n X n matrices A and B are similar if and only if they

represent the same linear transformation relative to two bases; if one basis

can be carried into the other by an isometry, then

B= PAP

= PAP’ if P is orthogonal,

= PAfP* if P is unitary.

In particular, if one works only with normal orthogonal bases, similarity

coincides with congruence in Euclidean spaces and with conjunctivity in

unitary spaces. In numerous problems having physical significance, isomctries

are sufficient to carry out the desired changes of coordinates, as we shall see

in the next section.

Exercises

1. (i) Find a matrix representation for the linear transformation which

rotates each vector of the real plane through a fixed angle W.

(ii) Prove that this matrix A is orthogonal by verifying AA’ = I.
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2. Prove Theorem 8.22.

3. (i) Find a matrix representation B for the rigid motion of &3 which

reflects each vector across the line

[ots = ()

Lary = Lo,

(41) Prove that Bis orthogonal since it satisfies Definition 8.13.

(ii) Find Bt and deseribe the linear transformation it represents.

4. Reason as follows to show that any linear rigid motion of the real plane

is either a rotation, or a rotation followed by a reflection across an axis.

G1) Write four quadratic conditions on the elements a, b, c, d of a

real 2 & 2 matrix .1 that are necessary and sufficient that A be orthogonal.

(ii) Show that the only such matrices are

a b and a b

—b a b -a

where a’? + 0° = 1,

Gil) Show that the former is a rotation through the angle cos! a,

while the latter is a rotation followed by a reflection across an axis.

5. Complete the proof of the unitary case of Theorem 8.18.

6G. Prove the unitary ease of Theorem 8.21.

7. Prove that cach characteristic value of an isometry satisfies Al = |,

and that anv two characteristic vectors which are associated with distinct

characteristic values are orthogonal. What can vou deduce about. the Jordan

form of any matrix that represents an isometry?

8. Does the following matrix represent a rigid motion im &3?

1 —3) V10

A = 5 —§ 1 V10

V¥10 V10 j

9. Prove that if A is a real skew matrix and if J + K is nonsingular, then

(I — K)\Z + 4)"
is orthogonal.

10. Let a, denote the ith row of areal n X n matrix A; let AA’ = C = (¢,,).

Prove the following:

(i) c,, = p(a,, a,), p an inner product;

(ii) if the a, are mutually orthogonal, det C = [llayll-llazll- - - lla, M)*;

(iii) if ja] < k for 7,7 = 1,2,...,m and some fixed number &, then

lla,ll <k Vn;

(iv) if !a,,| < /, and if the a, are mutually orthogonal, then

ldet A| = llayll-Hagll- ++ lanl < kenn’?,
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§8.5. Hermitian and Quadratic Functions

Now we return to the study of conjugate bilinear functions, begun in

§ 8.1. We consider a vector space U over the complex numbers and a conjugate

bilinear function f from U X V to @,

S(én) € @;

f is linear in the first component and conjugate linear in the second. We also

consider the case in which V is a vector space over the real numbers and f

is a bilimear function from UX VU to &. Since conjugate bilinearity then

reduces to bilinearity, we shall first investigate the complex case, noting any

differences which pertain to the real case.

By considering only the numbers f(é, £) we obtain a function h, defined

on VU by

h(g) = f(s, &).

Since f is conjugate symmetric, h(£) is real for every vector — of the complex

space U. Indeed it is precisely this property that makes conjugate bilinearity,

rather than lineanty, a natural condition to impose for complex spaces.

Relative to a basis {q,..., an} for U this function takes the form

h®) = % LX fla, ara, = XAX",
=] z=]

where § = )(7_, 7.0, and a,, = f(a,, a,), as in §8.1. Thus A is represented

by the Hermitian matrix A, which is uniquely determined by the choice of

basis. From Theorem 8.8 we conclude that A and B both represent h relative

to two bases if and only if A and B are conjunctive.

A real valued function h, obtained in this manner from a conjugate bilinear

function on a complex vector space, is called a Hermitian function. Any

expression of the form

n nr

XAX* = DY Dd aye,
t=1j=1

where A is Hermitian, is called a Hermitian form.

If we begin with a real vector space U and a bilinear function f from

U X V to @, then we define a function q from VU to @:

q(é) = f(é, &).

Relative to a choice of basis {a1,..., an} this function takes the form

q(é) = 2 2X Sas Q@,)z,2, = XAX’,
to] j=

where A = (f(a,, a,)) is real and symmetric. Thus q is represented by a real
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symmetric matrix, which is uniquely determined by the choice of basis.

From Theorem 8.9, two such matrices represent g if and only if they are

congruent.

A function g, obtained in this manner from a bilinear function on a real

vector space, is called a quadratic function. Any expression of the form

XAX' = ¥ DY a,2.2;,
tn] j=)

where A is real and symmetric, is called a quadratic form.

This discussion can be summarized by the following theorems.

Theorem 8.23. Let 0, be a complex vector space, and let h be a

Hermitian function on Un. Relative to a basis {a,..., an} for Un h is

represented by a uniquely determined Hermitian matrix A, where if

f= )-7.17.a,, then h(t) = XAX*. Relative to a basis {6,,..., Ba}, his

represented by the Hermitian matrix B if and only if A and B are

conjunctive over C.

Theorem 8.24. Let U, be a real vector space, and let g be a quadratic

function on Un. Relative to a basis {a ..., an} for Un, gis represented by

a uniquely determined real symmetric matrix A, where if § = )-7., z,.a,,

then q(é) = XAX’. Relative to a basis {@,,..., Bn}, q is represented by

the real symmetric matrix B if and only if A and B are congruent over @.

Each quadratic (or Hermitian) function on a real (or complex) vector space

~ determines a real symmetric (or Hermitian) matrix relative to a given

basis, which in turn determines a quadratic (or Hermitian) form. We now

consider the problem in reverse: starting with a quadratic (or Hermitian)

form, can we find a quadratic (or Hermitian) function whose values are given

by that form? To begin with, a quadratic form can be represented by various

matrices. lor example,

32? + 4x0. — x3

m= )()
wan(S _f)(2)

jan (3 _7)(2)
and so on. The variations occur from different decompositions of the co-

efficient of x,2; into the two numbers a,; and a;,. An easy resolution of the

can be written as
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ambiguity appears if we decompose A as the sum of its symmetric and skew-

symmetric parts:

A=S+4+K.

Then

XAX’ = X(S + K)X’ = ASX’ +- XKX’';

but a simple calculation verifies that

XKX' = Q.

Hence only the symmetric component of A contributes to the value of q(é),

and we lose nothing by insisting that the real form

n re

~ » QyjF 7;
t=] ,=1

be represented by the real symmetric matrix B = (b,,), where b,, = a,, for

7=1,...,nandb,, = b,, = }(a,, + a,,).

Correspondingly, if for given complex numbers a,, the form

Tt wT

~ ay Oj X EL;
wal j=

is real for all complex vectors (x, ..., 22), then the form can be represented

by the Hermitian matrix B = (6,;), where 6,, = a,, fori =1,...,” and

b,; = b,, = 4(a,, + d,,). (See Exercise 3.)

Henceforth we shall assume that the forms we consider have been appro-

priately symmetrized:

XAX*, where a,, = dG).

This condition reduces in the real case to

7

XAX', where a, = @).

Then for a given basis {a,..., an} for a complex vector space, the function

h(t) = XAX*, where & = )-?.,2.c,, is a Hermitian function whose values

are specified by the given form. Similarly, in the real case, g(—) = XAX’ is

a quadratic function.

Theorems 8.8 and 8.23 show that two Hermitian matrices represent the

same Hermitian function if and only if they have the same rank and signature.

Similarly, two real symmetric matrices represent the same quadratic form

if and only if they have the same rank and signature.

Definition 8.14.

(a) The rank of a Hermitian function or of a Hermitian form is the rank

of any Hermitian matrix which represents that function or form.

(b) The rank of a quadratic function or of a quadratic form is the rank

of any real symmetric matrix which represents that function or form.
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(c) The signature of a Hermitian function or form is the signature of

any Hermitian matrix which represents that function or form.

(d) The signature of a quadratic function or form is the signature of

any real symmetric matrix which represents that function or form.

(e) A Hermitian (quadratic) function 1s said to be positive definite if and

only if

h(é) > 0 for all & ¥ 0,

(g(é) > O for all § # 0).

Theorem 8.25. A Hermitian function hk on a comp’ex vector space Va

is positive definite if and only if it has rank nm and signature n., !

PROOF: According to Theorems 8.6 and 8.8, A is represented relative

to a suitable basis (a,..., an: by the canonical form under conjunc-

tivity, |

ACE) = wii + ve tphp — TppiEpy1 — +++ — 2,

wheres = 2p —r=p-—(r—p).Ifr=n = s,thenp = nandh(é) > 0

for all £ ¥ 6. If r <n, then h(a,) = 0, and h is not positive definite. If

s<n=r, then h(a,) = —1, and again A is not positive definite.

Theorem 8.26. A quadratic function g on a real vector space is positive

definite if and only if it has rank 7 and signature n.

PROOF: I¢xercise.

Theorem 8.27. A Hermitian matrix A represents a positive definite

Hermitian function if and only if

A = Pp*

for some nonsingular complex matrix P.

PROOF: A positive definite quadratic function is represented in canon-

ical form relative to conjunctivity by the identity matrix. Hence A

represents that form if and only if

A = PIpP*

for some nonsingular complex matrix L.

Theorem 8.28. A real symmetric matrix A represents a positive definite

quadratic function if and only if

A = PP’

for some nonsingular real matrix P.

PROOF: Exercise.
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Examples of Real Symmetric Quadratic Forms

(a) The expression for the fundamental metric (clement of are length) in

three-dimensional space is

dx* + dy? + dz in rectangular coordinates,

ds? = 4dr? + r°de? + dz? in cylindrical coordinates,

dp? + p* sin” ¥d@? + p’dy? in spherical coordinates.

In the study of differential geometry the expression for the fundamental

metric of a surface ts of basic importance.

(b) In classical mechanics the kinetic energy of a particle of mass m and

having n degrces of freedom is given by

- mM & filer \?
KE = — =2 X dt ,

where the z, are the position coordinates of the partiele. In more general

systems the kinetic energy is represented by more compbeated quadratic

forms.

(c) The equation of a central quadrie surface is

ax’? + bry + cy? + dxrz + eyz + fz’ = k,

the left hand member being a quadratic form. The numbers 6, d, and ¢ are

zero only if the axes of the quadric surface comeide with the coordinate axes;

in case these are not zcro we are interested in finding an orthogonal change of

coordinates which will simplhfy the form to a sum of squares.

Given a Hermitian or quadratic function, it is natural to search for a

coordinate system relative to which the form that represents that funetion

is as simple as possible. The usual situation is that we are given a Hermitian

or quadratic form, as in Example (¢), and we wish to change coordinates in

such a way that the form is reduced to a sum of squares. With physical and

geometric applications in mind, we are particularly interested in using only

rigid motions (isometries) to change coordinates. Our investigation of Her-

mitian and quadratic forms reduces to a study of Hermitian and real sym-

metric matrices; we shall see that the characteristic values and vectors of

such matrices possess remarkable properties.

Theorem 8.29. Let A be a matrix which is either Hermitian or real and

symmetric. Every characteristic value of .A is real.

PROOF: By cither hypothesis, A = A*. If X 1s a characteristic vector

associated with the characteristic value 4, then

XA =X

XAX* = AX X*.
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Clearly XX* is real and positive; also c = XAX* 1s real, since A is

either Hermitian or real and symmetric. Hence ) is the quotient of two

real numbers.

Theorem 8.29 implies that the characteristic polynomial, and therefore the

minimal polynomial of A can be factored as a product of real linear factors.

Theorem 8.30. Let A be a matrix which is cither Hermitian or real and

symmetric. If X, and X, are characteristic vectors associated with dis-

tinct characteristic values \, and Ae, then X,X$ = 0.

PROOF: Let X,A = X.X,, 1= 1,2.

Then !

(X;A)X2 = AVX1X5,

X(AX$) = X\(X2A*)* = Xy(doX2)* = AX XS.

Hence (A; — Az) X1X} = 0. Since Ay ¥ do, we conclude that X1.X3 = 0.

I

Geometrically, this proves that in a Euclidean space the characteristic

vectors of a real symmetric matrix are orthogonal whenever they are asso-

ciated with distinct characteristic values, since X,X, = p(é, &) relative to a

normal orthogonal basis. Similarly, in a unitary space two characteristic vec-

tors of a Hermitian matrix are orthogonal whenever they are associated with

distinct characteristic values.

The next result is the matrix form of the Principal Axes theorem which

asserts that any quadratic form may be reduced to the sum of squares by an

appropriate orthogonal transformation. In particular, the axes of any quadric

surface are orthogonal, and a rigid motion of the axes of any rectangular

coordinate system aligns the new coordinate axes with those of the quadric.

The corresponding result for Hermitian forms is valid also.

Theorem 8.31]. (Principal Axes theorem.) Any real symmetric matrix A

is simultaneously similar to and congruent to a diagonal matrix D; that

is, there exists an orthogonal matrix J’, such that

D = PAP"

is diagonal, with the characteristic values of A along the diagonal.

PROOF: Let {a1,..., an} bea normal orthogonal basis for the Euclidean

space VU, and let T be the linear transformation represented by A in that

basis. If ¢ is any characteristic vector of T, then |léll-£ is of unit length,

characteristic, and associated with the same characteristic value as is &.

Let 6, = lléll-', where & is characteristic, associated with \,. Extend to
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a normal orthogonal basis {6:,..., 8.} for U. Relative to the new basis,

T is represented by the matrix

B = RAR" = RAR’,

where FR represents an orthogonal change of basis and is therefore

orthogonal. Thus B is real and symmetric, of the form

1 Z
B= (2 2)

where B, is a real symmetric square matrix of dimension n — 1. We

repeat the argument, selecting y. as a normal characteristic vector in

the space [f2,...,8,], letting y: = 8. Since 8, is orthogonal to

[Bo,.-., Bnl, y: and y2 form a normal orthogonal set that can be extended

to a normal orthogonal basis {y1, y2,..., Ya} for U. Then T is rep-

resented by C’, where

C = SBS“ = SBS’, S orthogonal,

du O

C= () de

Z C;

Since # and S are orthogonal, so is SK, and

C = S(RAR’)S’ = (SR)A(SR)’.

Hence A is simultaneously similar and congruent to C’; the theorem

follows after n steps.

Theorem 8.32. (Principal Axes theorem). Any Hermitian matrix A is

simultaneously similar to and conjunctive to a real diagonal matrix D

having the characteristic values of A as the diagonal elements:

D = PAP* = PAP

for some unitary matrix P.

PROOF: Exercise.

Observe that Theorems 8.31 and 8.32 are strengthened versions of The-

orems 8.5 and 8.4, respectively. The redvetion of a Hermitian (or real sym-

metric) matrix to diagonal form can be accomplished by means of unitary

(or orthogonal) transformations. Indeed, it is clear that in selecting a basis

in the proof of Theorem 8.32 (or 8.31) we could begin with a characteristic

vector corresponding to a positive characteristic value (if such exists), and

continue as long as such values remain; then we could select characteristic
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vectors associated with negative characteristic values, as long as they remain,

obtaining

-»”
bs

ame we alee om wee >3+ . =
oud

r(I{||I!|| om Gpreer”
©

0

where \y,..., Ap are positive and Ajiui,..., A, are negative. Clearly r is the

rank and 2p — r is the signature of A and of the Hermitian (or quadratic)

form that A represents. D is similar and conjunctive (or congruent) to A.

But this is as far as unitary (or orthogonal) transformations can be used in

reducing A to canonical form relative to conjunctivity (or congruence) as

described by Theorem 8.6 (or Theorem 8.7). Indeed, D is the Jordan form

of A, the canonical form of A relative to similarity. The further changes

needed to produce 1 and —1 in the nonzero diagonal positions correspond

to a change of scale along each of the principal axes already obtained.

Furthermore, we have obtained an alternative description of the rank and

signature of a Hermitian (or real symmetric) matrix. As we already know,

the rank of any matrix is the number of nonzero charactcristic values, each

counted according to its multiplicity as a zero of the characteristic polynomial.

The signature of a Hermitian (or real symmetric) matrix is the number of

positive characteristic values minus the number of negative characteristic

values, again each counted according to its algebraic multiplicity.

The actual process of reducing a quadratic form to a sum and difference of

Squares can be accomplished by the classical process of successively com-

pleting squares. However, the Principal Axes theorem provides an alternative

method, which we describe for quadratic forms although it is valid for Her-

mitian forms as well. Given a quadratic form we write the real symmetric

matrix A which that form defines. The characteristic values of A are real

and allow us to write immediately a diagonal matrix that represents the

form after an orthogonal change of coordinates. If we wish also to describe

this change of coordinates explicitly, we obtain a complete set of mutually
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orthogonal characteristic vectors &, f&,...,,, normalized so that each is of

unit length, expressed in terms of the original coordinates. The matrix 7,

whose row vectors are &,...,&,, is then orthogonal, and PAP’ = D. The

change of coordinates can be obtained explicitly from P?. Of course the eal-

culation of characteristic values involves finding the solutions of a polynomial

of degree n; this is often difficult. An alternate method of reducing .4 to

diagonal form is to use row and column opcrations as in Theorem 8.4; how-

ever, the change of coordinates represented by such operations is not orthog-

onal in general.

As a final result, which is of importance in applications such as the solution

of vibration problems in dynamics, we show that, given any two Hermitian

(or quadratic) forms, one of which is positive definite, there exists a single

change of coordinates that diagonalizes both forms. This result is casily

explained in terms of two central quadnc surfaces m= threc-dimensional

Euclidean space. Each such surface determines a quadratic form, and positive

definite forms correspond to ellipsoids. Given a central ellipsoid and a second

quadric surface, we can rotate axes to align the new coordinate axes with the

axes of the ellipse. This transformation is distance-preserving. Then we change

scale along the axes of the ellipsoid, deforming it into a sphere for which any

direction is a principal axis. Then we again rotate axes to align the coordinate

axes with the principal axes of the second quadric surface. Since the two

surfaces have a common center, the new equation for each will be of the form

2 2 pt
Qty + Ae%2 + Asr3 = Ag,

where 4), a; and a3 are +1.

Theorem 8.33. Let) A. and B be n X n Hermitian matrices. If A is

positive definite, there exists a nonsingular complex matrix P? such that

PAP* = 7,

PBP* = D, where D is diagonal.

PROOF: Since A is positive definite, there exists a nonsingular matrix Q

such that

QAQ* = I.

Then for any unitary matrix R,

RQAQ*R* = RIR* = RR = I.

Since B is Hermitian, QBQ* is also Hermitian; so by Theorem 8.32 there

exists a unitary matrix F& such that

RQBQ*R* = D,

where D is diagonal. Let P = RQ. Then PAP* = I, and PBP* = D.



210 Metric Concepts [cu. 8]

Exercises

1. Given the real quadratic form az? + 2b2,22 + cz3.

(i) Prove that the form is positive definite if and only if a > 0 and

b? — ac < 0.

(11) Show that the central conic az? + 2bry + cy? = 1 is an ellipse or

hyperbola, depending upon whether the quadratic form on the left has r = 2

and s = 2,orr = 2ands = 0.

2. Represent each of the following quadratic forms by a real symmetric

matrix, and determine the rank and signature of each. \

(i) 2? — Qayxs + 2x3 -+ 42073 + 673. {

(ii) 1622. — 23. |

(iii) 32? + 4ayzq + 82123 + 42073 + 3273.

3. Let A be a complex n X n matrix with the property that for every

complex row vector X, XAX* is real. Let A = H + K be the decomposition

of A as the sum of a Hermitian matrix H and a skew-Hermitian matrix K.

Prove that XAX* = XHX*.

4. Prove Theorems 8.26 and 8.28.

5. Prove Theorem 8.32.

6. The Taylor expansion of a function f of two variables at (a, b) is ex-

pressed in terms of the partial derivatives of f by

fat h,b+k) = f(a, b) + hf.(a, b) + kf,(a, b)

+ $(h*f22(a, b) + 2hkf2,(a, b) + k*f,,(a, b)] +: =)

_ 9 (oF of\ _ -Q=provided that f,, ay -( ar) = ay = ( ) = fy. If f.(a, b) = 0 = f,(a, b), then

(a, b) is a critical point for maximum or minimum. The term in brackets is

a quadratic form in A and k; if the form has rank 2, it determines whether f

has @ maximum or minimum or neither at (a, b). Assuming r = 2, show that

(i) f(a, 6) is a relative maximum if s = —2,

(ii) f(a, b) is a relative minimum if s = 2,

(iii) f(a, b) is neither maximum nor minimum otherwise.

7. As we know, any quadratic form in three variables can be reduced by

an orthogonal change of coordinates to the form

Mzi + Aer} + Aszi,

where the ,; are real. Hence any centrally symmetric quadric surface has an

equation of the form

Mazi + exe + sez = 1

in @ suitable rectangular coordinate system. Use the rank and signature of
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the quadratic form to classify all possible types of centrally symmctric

quadric surfaces, and identify each type by means of a sketch.

8. Use the following chain of reasoning to prove Hadamard’s inequality:

If A isa real n X n matrix such that |a,,| < / for all 7, 7, then

ldet A| < k=n"’2,

(A special case of this result was derived in Exercise 10, § 8.4.)

(:) Let By = AA’; then Bo is real and symmetric.

(ii) If A is nonsingular, By is positive definite.

Giii) If Bis any n Xn real, symmetric, positive definite matrix, if

21,...,2n are any nonzero numbers, and if c,, = b,,x7,7,, then C is symmetric

and positive definite.

(iv) If Cis any n X n real, symmetrie, positive definite matrix, then

det C < eek
nm

(v) Let C be defined as in (iii), using B = By and z, = by'"*. Show

that tr C = n, and det B = det C-II7., b,,.

(vi) Complete the proof of Hadamard’s inequality.

9. Use Hadamard’s inequality to show that if A is a real n X n matrix

such that |a,,| < k for all 7, 7, and if the charactcristic polynomial of A is

(—1)"[A* + ca + ++ + ea],

then

e| < () ie forj = 1,2,...,7.

§8.6. Normal Matrices and Transformations

In the last section we saw that each Hermitian matrix and each real sym-

metric matrix is diagonable, and furthermore that the diagonalization can

be performed by an isometry, a change of coordinates that corresponds to a

rigid motion of the coordinate axes. When we first discussed diagonalization

generally, no inner product had been defined on the underlying vector space,

so we were not concerned with the type of transformation used to diagonalize

a matrix, except that it had to be nonsingular. In this section we shall re-

consider the diagonalization problem, regarding a given matrix as representing

a linear transformation on an inner product space and restricting our atten-

tion to isometric transformations.

We recall that an isometry T is called unitary or orthogonal, according to

whether the underlying vector space is complex or real; relative to a normal
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orthogonal basis, T is represented by a matrix P, which is unitary or orthog-

onal, respectively. A unitary matrix is characterized by the equation ?* = P-',

an orthogonal matrix by 7?” = [?-!. Since the former condition reduces to the

latter when A is real, we shall use the term tsometric to describe a matrix

that is either unitary or orthogonal; that is, any matrix 7? for which ?* = P-),

We shall say that A is tsometrically diagonable if and only if PAP! is diagonal

for some isometric matrix P.

If A is isometrically diagonable, then for some isometric matrix P and

some diagonal matrix D, we have

D = PAP = PAP*

D* = D = PA*P* = PA*P-!

DD* = (PAPTM)(PA*P*) = PAA*P*

D*D = (PA*PTM)(PAP*) = PA*AP*

Since diagonal matrices commute and /? is nonsingular, we conclude that

AA* = A*A.,

I’ence, a necessary condition that A be isometrically diagonable is that A

and .A* commute. Our next objective is to prove that this condition is also

sufficient.

Definition 8.15. A matrix A of complex numbers is said to be normal

if and only if

AA* = A*A.

Since any real number is also a complex number, this definition also applies

to a real matrix, in which case AA’ = A’A.

Theorem 8.34. Let A be any n K n matrix and P any n X n isometric

matrix. Then A is normal if and only if ’AP* is normal.

PROOF: Exercise.

The fact that normality is preserved undcr isometric changes of bases

suggests a way to proceed. We first show that any matrix may be reduced to

lower triangular form by means of an isometry. Then we show that any

lower triangular matrix which is normal must be diagonal.

Theorem 8.35. If A is any n X n matrix, there exists a unitary matrix

U such that UA U* is lower triangular.

PROOF: Choose any normal orthogonal basis for complex U,, and let

T be the linear transformation represented by A relative to that basis.

Let A; be a characteristic value of T, and y; a corresponding characteristic
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vector of unit length. Extend to a normal orthogonal basis {71, 62, ..., Bn}

for Un. Then T is represented relative to the new basis by a matrix

B = P,AP}, where P; is unitary and where B has the block form

_(m ZB= (3 7)

If n = 1 or 2, B is lower triangular, and the theorem is proved. For

n > 2, we proceed by induction, assuming that the theorem is valid for

all (n — 1) X (n — 1) matrices. Thus there exists a unitary matrix Q

such that QB,Q* 1s lower triangular. Let /’. be defined by the block form

, fl a

r= (, 0)
Since Q is unitary, the row vectors of 7’, are orthogonal and of unit

length. Hence /’, is unitary, and by direet calculation

2 ak M1 Z )
PBPt = (on, QB)

which is lower triangular. Let U = P.2l?,;. Then U is unitary, and UA U*

is lower triangular.

The reason for using unitary transformations and complex VU, in Theorem

8.35 was necessity rather than convenience: a real matrix need not have any

real characteristic values. If a real matrix A is orthogonally similar over the

real numbers to a lower triangular matrix B, the diagonal elements of B are

real, and these are the characteristic values of B and of A. Conversely, if all

the characteristic values of A are real, then the proof of Theorem 8.35 can

be adapted to show that ’?A/’’ is lower triangular for some real orthogonal

matrix J’.

Theorem 8.36. An 2 X n matrix A is normal if and only if there exists

a unitary matrix U such that (7A U* ts diagonal.

PROOF: The argument that precedes Definition 8.15 proves the “if”

part. Suppose A is normal. Then by Theorems 8.34 and 8.35, for some

unitary matrix U, UA U* is lower triangular and normal:

b, OO -::: O

by be --- O
B= UAU* = . .

bat bre se. Dun

Equating the expressions for the (2, 7) elements of BB* and B*B, we have

rl Tt

>, Dik yk = > by De.
kal kal
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But b,, = 0 whenever r < s. For z = j = 1, we have

bub = bubu + berber 2 ie bniDar.

Hence b,, = 0 whenever r > 1. Then for 2 = 7 = 2, we have

beabes = bobo» + bsebse tree + ba2dne.

Hence 6,2. = 0 whenever r > 2. Continuing in this way, we have b,, = 0

whenever r > s. Hence B is diagonal.

As a final consideration let us investigate what A* means when interpreted

as a linear transformation on an inner product space. That is, given a linear

transformation T on a finite-dimensional inner product space VU, T is rep-

resented relative to a normal orthogonal basis by a matrix A, for which .4*
is easily calculated. Relative to the same basis, A* represents a linear trans-
formation on VU, say T*. How are T and T* related?

Let & = 3-7; 2.0, and 7 = 7.1 yra,x. We also have

n n

a,T = > 1470), a, L* — > OikQs.
jul 1]

Then

p(éT, n) = ?p ( ¥ ( ~ 2.01, Oj; » na),
gel \im

= ~ (= t.a.3) Pp (<, ~ nas,
gull \iewl k=l

- ¥ (5 x0.) 9,
j=l \i 1

=) 2, (= a.)
am] j=l

n n

SY ap ( S ran, as),
w=wiljel k=l

~ Pp (= UKAk, » Wd.,0.),
al k=l jul

Pp ( DL Leek, > Ys (x d.,a.)),
k=1 3=l t=]

= ?p (« X yasT*),
=

= p(é, nT").

Hence for all ¢, » € 0, T* satisfies the property

ptt, nT*) = p(éT, y).

But from Exercise 3, § 8.2 we recall that if 8; and 3. are vectors such that

P(E, Bi) = p(é, Bs) for all € € U, then 8, = By. This means that a vector is
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uniquely determined by specifying the value of its inner product with each

vector of the space. Thus T* is uniquely defined on U by T and the given

inner product.

Definition 8.16. The adjoint of a linear transformation T on an inner

product space VU is the mapping T* of U into U which is defined by the

equation

p(é, nT*) = p(éT, n) for all &, 9 € UV.

As an exercise you may verify that T* is linear; that is, for all £, m, m2 € U

and all scalars a, )b,

plé, (am + bn2)T*) = plé, a(mT*) + b(m2T*)).

Theorem 8.37. Relative to a given normal orthogonal basis, if T is

represented by a matrix A and T* by a matrix B, then B = A*.

PROOF: Exercise.

Yollowing the terminology introduced for matrices, a normal transformation

is one that commutes with its adjoint, TT* = T*T. This class of transforma-

tions is of particular interest because Theorem 8.36 guarantees that a normal

transformation decomposes the underlying space into a direct sum of the

characteristic subspaces of T that furthermore are mutually orthogonal. This

implies that if T is normal and if £, and & are characteristic vectors associated

with distinct characteristic values, then p(&, &) = 0. An important subclass

of normal transformations are self-adjoint transformations, T = T*. Since the

characteristic values of T* are the complex conjugates of the characteristic

values of T, the characteristic values of a self-adjoint transformation are

real. Self-adjoint transformations are called Hermitian in the complex case,

symmetric in the real case.

If we consider the real case, another question comes to mind. If T is rep-

resented by A, then T*, a transformation on V, is represented by A’. But in

Theorem 4.1 we saw that A’ represents a mapping T’ of the dual space VU’,

relative to the dual basis. How are T* and T’ related? Even for complex

Inner product spaces it makes sense to ask whether there is a natural relation

between the adjoint T* and the transpose T’ of T, so we shall investigate

the question in that form.

Let © be a finite-dimensional inner product space over the complex num-

bers, U’ the dual space of all linear mappings from U to @. With each f € VU’

we associate the vector or © U, defined by

p(é, oe) = EF for every § EV.

As we observed previously, ¢¢ is uniquely determined because the value of
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its inner product with each vector has been specified. This mapping ¢ from

v’ to VU is one-to-one, for if dr = ¢, then Ef = tg for all € € VU, and f = g.

Conversely, to each 7 € VU we can associate the function ¥, from VU into €,

defined by

ty, = pie, n);

which is linear because p is linear in its first component. Then y¥, € VU’, so

y is a mapping from ‘VU to VU’; furthermore

pk, dur) = by, = pt, n). |

Hence ¢y, = n, and ¢ is onto VU. Clearly y = 671. |

It is a matter of direct computation to verify that \

Pr+s = of + Pe:

dof = ads,

since p is conjugate linear in the second component. Hence if VU is a real

vector space, ¢ is a vector space isomorphism from VU’ onto U, but if U is

complex, ¢ is one-to-one onto VU but not an isomorphism.

Now we are ready to compare T’ as a transformation of U’ with T* as a

transformation of U. These mappings were defined by the respective equations

E(fT’) = GT)fforalléev, fev’,

p(t, 7T*) = p(éT, n) for all &, 7 € VD.

What we will show is that these two mappings preserve the one-to-one cor-

respondence ¢, which exists between the spaces U and VU’: @rT* = oer for

all f € U’. To see this we let § € U and f € U0’; from the defining equations

for ¢, T’, and T* we have

EST’) = plé, oer),

(eT )f,

p(ET, or),

= pil, orl”).

Again using the fact that a vector is uniquely determined by values of its

inner product with every vector of the space, we conclude that ¢rT* = ¢rr.

Hence for a finite-dimensional real inner product space the isomorphism ¢

between U and its dual space U’ permits us to regard T’ either as a linear

transformation on U’ or as a linear transformation on 0, with the assurance

that each pair of corresponding vectors in the two spaces is mapped by T’

into a pair of corresponding vectors.

As a further result in this connection, Exercise 8 demonstrates that the
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mapping ¢ can be used to obtain an inner product p* for U’ in terms of a

given inner product p for U by defining

p*(f, &) = plop, on).

The reversal of the two components introduces the conjugate that is needed

in the complex case to compensate for the fact that ¢ fails to be an isomor-

phism only because

Par = Ads.

Exercises

1. Prove Theorem 8.34.

2. Let A be a real matrix for which every characteristic value is real.

Deduce that A is orthogonally diagonable if and only if A is normal.

3. Prove that an n X n matrix 4 is normal if and only if there exists a

set of n mutually orthogonal characteristic vectors.

4. To illustrate Exercises 2 and 3, refer to the matrix A given in Exercise

1(i), § 7.5. Show that the characteristic values of A are real, that A is diag-

onable, but that A is not orthogonally diagonable. '

5. Prove that T* is linear.

6. Prove Theorem 8.37.

7. Prove the following assertions about a normal transformation T and

its adjoint.

(i) NETH = WeT*Il for every & € V.

(ii) \ is a characteristic value of T if and only if d is a characteristic

value of T*.

(ii) & is a characteristic vector of T if and only if & is a characteristic

vector of T*.

(iv) If & and & are charactcristic vectors of T associated with distinct

characteristic values, then £ and & are orthogonal.

8. Let U be a finite-dimensional complex inner product space, U’ its dual

space, and @ the one-to-one mapping of U’ onto U defined in the text. Let

p* be the mapping of U’ X VU into @ defined by

p*(f, g) = P(oe; or).

Prove that p* is an inner product on VU’.

9. Carry out the details of the following derivation of the polar decomposi-

tion of a nonsingular matrix A as the product of a positive definite Hermitian

matrix H and an isometric matrix Q.

‘

a
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(i) AA* is Hermitian.

(ii) For some isometry P, PAA*P* = D is diagonal with a positive

real number in each diagonal position.

(il) There exists a diagonal matrix EF for which E? = D and e,, > 0

for every 1.

(iv) Let H = P*EP; then H is Hermitian and positive definite.

(v) Let Q = H(A*)—'; then Q is an isometry.

(vi) A = HQ.



CHAPTER 9

Combinatorial

Equivalence

§9.1. Preliminary Remarks

Up to this point most of the material we have considered is central to

a general study of matrices. This is not to claim that we have investigated

every central idea, nor that every previous result is basic for any given appli-

cation of matrix theory. Certainly only the surface has been scratched on

some important topics, and a considerable body of material remains to be

investigated. But almost any introductory course in linear algebra will be

concerned with the material of Chapters 2 to 8, perhaps with a different order-

ing of these topics and with variations of the degree of generality with which

each is considered.

The question of what topics should be studied next would receive different

answers according to the interests of the individual. For prospective mathe-

maticians there are many important applications to geometry, analysis, prob-

ability theory, and algebra. The generalization to infinite-dimensional vector

spaces is of special interest and importance. The physicist may be more

interested in applications to Newtonian mechanics, quantum mechanics, and

relativity, the chemist to crystal structure or spectroscopy. The engineer

will find applications to elasticity, electrical networks, wave propagation, and

aircraft flutter. The economist might prefer to learn how to apply matrices

to linear programming and game theory in order to solve problems in trans-

portation, logistics, communications, and assignments. The biologist would

wish to relate matrix theory to genetics, the psychologist to theory of learning

or to dominance relations, and the sociologist to group relations and social

customs.
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Such applications of matrix theory are of genuine interest, not only for their

effectiveness in solving significant problems of social and scientific import, but

also because applications stimulate the development of new knowledge about

matrices. Thus there is a strong temptation to discuss a number of these

applications in the remainder of this book. Several considerations militate

against this. I irst, the fields of application are sufficiently technical that a

brief account of the background material would be necessarily fragmentary

and perhaps superficial. Second, the range of applications is so broad that

the selection of only a few topics would be cither biased or capricious.

Therefore you are strongly encouraged to consult other sources for infor-

mation on applications of matrix theory. In particular, Chapters 6 and 7 of

Reference 29 contain an introductory exposition of several of these topies,

and References 6 and 26 contain extensive references to applications, listed '

according to subject matter.

In the present chapter we shall develop some of the mathematics that is

used to formulate and to solve a linear program. In the final chapter we shall

draw upon the content of normal undergraduate work in funetion theory,

extending to matrices the concepts of sequences, series, and functions.

§9.2. Linear Inequalities

As a generalization of the systems of linear equations studied in Chapter 5,

we now consider a system of lincar inequalities of the form

Andy + Apt. ++: + AnTr = b,

Qy%, + AxyX, + +++ + dnt, = be

(9.1)

Amit} + Amore + an + Amnt n > bm;

where each a,, and each ( is real and where X = (m,...,2n) is a vector

in Euclidean n-space &,. Each expression

Q 171 + QT + se + QinIn

defines a linear functional on &,, and we previously observed that the set

of all X e€ &,, for which

Qt + Q,2X2 + ve. + Ant, = b,

is a hyj;wrplane in &,, a translation of an (n — 1)-dimensional subspace. The

set of all X for which

GX. AyeT. + ++) H+ AinTa > b,
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is called a closed half-space because it is the sct of all points in &, that lie

cither on a hyperplane or on one side of that. hyperplane. Hence the solution

of (9.1) consists of all points of &, which are in the intersection of the m half-

spaces determined by the given inequalities. Clearly the solution can be the

void set, a single point, or an infinite set. It seems geometrically obvious,

and is not difficult to prove, that the solution set must be conver, meaning

that whenever two points lie in the set, the line segment joining them also

lies in the set.

As a two-dimensional example consider the system

4r + 3y < 12

xr—2y< 0

2r—- y2 —4.

The solution set consists of all points in the triangular region sketched. In

the example the third inequality relation 1s opposite in sense to the first two,

Figure 9.1

but this can be remedied by multiplying the first two inequalities hy —1 to

obtain a system in the form (9.1). Indeed any system of lincar inequalities

can be converted to the form (9./).

Now let (ui, ue,..-., Un) be any solution of (9.1); define the m-component

vector (v1, V2,...,Um) by

V, = (ayy + +++ + inte) — D,, fori =1,...,m,

and observe that

v,> 0 foreach2 = 1,2,...,m.

Hence each solution of the system (9.1) of m linear inequalities in n variables

determines a solution of the system of m linear equations in m + n variables,

given by
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—v + ant +--+ + Ginkdn = Dy

(9.2)

—Um + Omit + +++ + OmaTn = Om,

and furthermore the values of v, for that solution are nonnegative. Conversely,

any solution of (9.2) for which the v, are nonnegative determines a solution

of (9.1). This observation allows us to treat the problem of solving a system

of linear inequalities by the techniques used for solving systems of linear

equations, with the added restriction that certain of the variables must be

nonnegative.

As in § 5.5, (9.2) can be expressed in matrix notation,

(—I|A) (x) = B.

Here J ism Xm, A ism Xn, Vism X 1, X isn X 1, and Bis m X 1. The

condition that no component of V be negative can be expressed

V > Z.

An inequality relation for vectors has not been defined previously; in general,

for two real n-component vectors we write

X>Y

if and only if each component of X is as large as the corresponding component

of Y:

r,> Y, fort = 1,2,...,7.

This relation is reflexive and transitive, but unlike the ordering relation for

real numbers, it does not follow that for any two n-component vectors either

X > YorY > X, since some but not all components of X might exceed the

corresponding component of Y. Such a relation is called a partial ordering.

Our discussion can be summarized as follows.

Theorem 9.1. A system AX > B of real linear inequalities has a solu-

tion Xo if and only if there exists a vector Vo > Z such that

(—IA) (.") = B.

There is another interpretation of (9.1) which is sometimes helpful. The

left-hand side of each inequality is simply the inner product of X and a row

vector of A, relative to a normal orthogonal basis for &. A solution Xp is

simply a vector whose inner product with each of n given row vectors A;

exceeds a given value ),.
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Exercises

1. Sketch the graphs of each of the following systems of linear inequalities,

indicating the solution set.

(1) % — 2x7. > 4

m+ m2 <7

Xe > 0

(i1) Y, — 27, > 4

Mt m>7

m2 0

Xo > 0

(111) rT, — 27. < 4

mt 257

27, - 22< -8

m 20

2 0

2. Determine the maximum and minimum of the function 32, + 22, on

each of the solution sets of Exercise 1.

3. In &, the line segment joining two points & and 7 is defined to be the

set of all vectors ¢ of the form

f=ki+(1—k)n, OSkS1.

A subset C of &, 1s said tc be convex if and only if each point of the line segment

jOining any two points of C also belongs to C.

(1) Prove that any half-space, defined in &, by a linear inequality,

is CONVEX.

(ii) Prove that the intersection of two convex sets 1s convex.

(iii) Deduce that the solution set of a system of linear inequalities is

convex.

4. Given a closed convex subset C’' of &,, and a linear form f defined for

each — = (m,...,2n) by

S(O) = ert + cote + ++ + entn.

(i) Show that f is a monotone function along any line segment in &,.

(ii) Show that if f assumes a maximal or minimal value on C, then

that extremal value must occur on the boundary of C.

(ii) Deduce that if C is defined by a system of linear inequalities, then
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any extremal value of f must occur at a “corner” point, the intersection of

two or morc half-spaces that bound C.

§9.3. Linear Programming

In this section we shall see how systems of linear inequalities arise in a

natural way in problems of economic interest. As usual, however, the mathe-

matical formulation of such problems and the methods of solution also apply

{o problems which are far removed from economic motivation. We begin

with a simple example.

A metal processor wishes to produce an alloy of tin and lead, containing

al, least 60 percent lead and at least 35 percent tin. He can purchase four

different alloys having the percentage compositions and hundredweight prices

shown in the table below.

ALLOYS

A A» Ay A, Desired

Lead 40 60 80 70 > 60

Tin 60 40 20 30 > 30

Costs 240 180 160 210 Minimal

How should the processor blend the alloys in order to minimize his costs?

Suppose that n,..., 74 represent the proportions of the corresponding alloys

in any hundredweight mixture. The explicit conditions of the problem may

be expressed as a system of linear inequalities of the form (9.1):

Lead: 402, + 607r.+ 8073+ 70r, > 60

‘Tin: 607, + 407. + 2073+ 3024 > 35

Cost: 2407, + 180r. + 16073; + 2107, = C.

But there are also some intrinsic conditions, namely that each z,; be non-

negative and

M+ 7% + 73 + ry = 1,

The problem is to determine the r, such that all conditions are satisfied and

the value of C is minimized.

The definition of a prima) linear programming problem is a direct generaliza-

tion of this example. Given a system of m linear incqualities in n variables
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Qyyt1 tt AyT. + +> + intr > Oy

QX) + date + ee + HF Gantn > be

Amit) + Amoto + .s + AmnTt n > bm,

the condition that each variable be nonnegative,

Ty} > 0

X2 > 0

xr, > 0,

and a linear form

V = CX + Coke For HH Ontn;

determine, from among all n-tuples (x1, .. . , Zn) that satisfy all of the speciiied

restrictions, one which makes the value of v as small as possible.

Stated in matrix form, a primal] linear programming problem becomes this:

given a real m X n matrix A, a real m X 1 vector B, and a real n X 1 vec-

tor C’; determine a real n 1 vector X for which

AX >B

X > Z,

and such that the linear form

C-X

is minimized.

It is also of interest to state the problem in vector space terminology. Of

course A determines a linear transformation and X a vector. In order to

convert to right-hand notation, as in § 5.1, it is necessary to take transposes:

X'A’ > B’. The transformation T corresponding to A’ maps &, into &,,;

X’ corresponds to a vector in &, and B’ to a vector in &,. The vector (€’

determines a linear form on &,; hence we let C’ correspond to a vector in the

dual space &. Thus the primal linear programming problem may be stated

as follows: given a linear transformation T from &, to &,,, a vector 8 & &4,

and a linear functional ec € &j, determine a vector & & &, such that

tT > B

£ > 8,

and such that the value of the linear functional

Ec

is minimized.

The introduction of the dual space suggests a symmetry in the linear
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programming problem which is of great importance. We recall that the

transpose T’ of T is a mapping from &,, to & defined by the equation

a(fT’) = (aT)f for all a € &, and all f € &,,.

Hence the situation is as indicated in Figure 9.2.

T

Ey _—_ Em

B

, T ;
E, <— Sn

c

Figure 9.2

The symmetry makes clear that a linear programming problem defined by

T, 8, and ¢ determines a similar problem defined by T’, c, and 8. The sym-

metry becomes even more apparent if we alter notation so that the elements

of the dual space are written as vectors with Greek letters; for example,

write y for c. Since any vector is also a linear functional on its dual space

we shall write a Greek letter in bold face if we wish to emphasize its role as

a linear functional.

Now choose any ¢ € &, and any 7 € &, such that § > @ and 7 > 6. If

tT > 8B, then

———

By < (&T)n = ENT’).

If we further require that 7T’ < y, then we have

E(nT’) < Ey.

Since the values of By and £y are obtained as the scalar product of two

m-tuples and two n-tuples respectively, we therefore conclude that

B-nsS y-&

Hence any » > @ which satisfies 7T’ < y determines with 8 a lower bound

of the function which the primal problem seeks to minimize. If we maximize

8-y for all such n we still have a lower bound,

max(8-n) < y°é,

valid for all & which satisfy § > 6 and &T > 8. Hence we conclude that

max(8-9) < min(y-&)

as £ is varied over all such vectors.

We recall from § 8.5 that in the real case T’ = T* and therefore T’ can

be regarded as a mapping from &,, to &, without referring to the dual space;

with 8 and 7 regarded as vectors in the same space the calculation of 8-7 is

fully justified. Now it is easy to state what is called the dual linear program-

ming problem; for comparison we repeat the statement of the primal problem.
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Given fixed vectors 8 € & and y € & and given a fixed linear trans-

formation T from &, to &,:

Primal problem. Determine & € &, such that £T > 6, § > 9, and y-é is

minimal.

Dual problem. Determine 7 & & such that 7T’ < 7, 7 > 9 and B-» is

mazimal,

Stated in matrix notation, the primal and dual problems of linear program-

ming assume this form: Given a real m X n matrix A, and column vectors B

and C of dimension m and n, respectively;

Primal problem. Determine a nonnegative column vector X of dimension n

such that

AX > B,

CX is minimal.

Dual problem. Determine a nonnegative column vector Y of dimension m

such that

A'Y <C,

BY is maximal.

The information of both problems can be displayed in a tabular form

introduced by A. W. Tucker.

Primal

0< v1 T2 ts IM, 2

|

Yi Qi —Qy2 yee Gin by

Yo Qo, Qo ‘** Gon be
I

"Ss
3

CQ

Um Am) Ame vee Qmn bn

Ss ” “N
~~ max

Cy C2 °° Cm . SAY
min ws A

For the primal problem the inequalities are read by taking the inner product

of the top row with each interior row of the table; the linear form to be

minimized is the inner product of the top and bottom rows. For the dual

problem columns are used instead of rows.

In order to state the major theorems of linear programming, some additional

terminology is convenient. A vector & & &, is called feasible for the primal

problem if and only if £T > 8 and — > 6. A vector n € &,, is called feasible
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for the dual problem if and only if 7T’ < y and y > @. An optimal vector

for the primal problem is a primal-feasible vector £ for which y-& is minimal.

An optimal vector for the dual problem is a dual-feasible vector ny for which

B-no iS Maximal.

The fundamental inequality which we derived previously can be stated

thus: if & is primal-feasible and if 7 is dual-feasible, then

max(B-n) < min(y-&).

It follows immediately that if & and are feasible vectors for which

B-no = ¥° bo,

then both & and are optimal. Furthermore, it can be proved that a fea-

sible & is optimal only if that equality holds for some feasible no. This result

is known as the duality theorem of linear programming. Of course the existence

of optimal, or even feasible, vectors is not guaranteed. The fundamental

existence theorem of linear programming asserts that a necessary and sufficient

condition for ezther the primal or dual problem to have a solution (that 1s,

an optimal vector) is that both problems have a feasible vector.

ISven when the existence of a solution is guaranteed, an effective method

of finding an optimal vector is needed to make linear programming a practical

tool for decision making. In the next section we briefly discuss the s¢mplex

method and examine some of the matrix theory that underlies the method.

For a full account of the theory and techniques of linear programming you

are urged to consult Reference 22 and the excellent bibliography contained

therein.

Exercises

1. Given a general primal linear programming problem as first stated in

the text, write a corresponding statement of the dual problem. Do not use

matrix or vector notation to abbreviate this statement.

2. A metal craftsman has on hand a supply of 30 ounces of gold and

60 ounces of silver from which to make gold rings, silver and gold pins, and

silver earrings. Each ring uses 3} ounce of gold, each pin uses } ounce of gold

and 4 ounce of silver, and each pair of earrings uses one ounce of silver. He

can make a profit of $5 for each ring, $4 for each pin, and $3 for each pair

of earrings, and he seeks to maximize his profit.

(i) Write this information in the form of a (dual) linear programming

problem.

(ii) Write the inequalities of the corresponding primal problem.

(ui) Sketch a graph of the inequalities of the primal problem, deter-
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mine an optimal solution, and use it to evaluate the minimum of the objective

function of the primal problem.

(iv) Use the duality theorem to find (by inspection) a solution of the

craftsman’s problem.

3. Refer to the text example of the metal alloys, ignoring for the moment

the condition that 2, + 22 + 23 + 1 = 1.

(i) State and sketch the graphs of four linear inequalities in y, and y2

which, together with the linear form 60y, + 35y2, describe the dual of the

modified primal problem.

(ii) Find an optimal solution of (i) and observe that 168 is the max-

imum value of the given linear form. At the same point, the maximum value

of 65y, + 35y2 1s 175.

(iii) Find a feasible solution of the original alloy problem, for which

the cost function is 175, and explain why this solution is optimal.

§9.4. Combinatorial Equivalence

A very effective algorithm for solving any linear programming problem

has been developed by G. B. Dantzig; it is called the simplex method. We

shall describe the method generally but not go into details, which are fully

covered in Reference 22. The first step is to convert the system of linear

inequalities into the standard form

(I|A1) ( x.) = By

in which all components of V;, X, and B, are nonnegative. The simplex

algorithm then proceeds in two stages. In the first stage pivot methods are

used to exchange the v, for some of the z,, leading either to the determination

of a feasible vector or to a proof that no feasible vector exists. If a feasible

vector exists, the second stage operates with pivots on a modified version

of the system of equations, finally producing either an optimal vector or a

proof that no optimal vector exists.

Our objective here is to study the pivot operation on matrices and to

develop an associated concept of combinatorial equivalence, first introduced

by A. W. Tucker. (See Reference 38.) In contrast’ to other equivalence rela-

tions we have studied, each m X n matrix is combinatorially equivalent to

only a finite number of matrices. Starting with a linear program defined by

a given matrix, the simplex method examines the finite set of matrices which

are combinatorially equivalent to it, providing after each pivot a means of
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deciding whether a solution has heen achieved, and if not, indicating which

matrix should be examined next.

From § 5.5 we recall that if A is a given matrix for which a,; ¥ 0, then a

pivot operation on a,, results in a matrix which we shall denote by Aj, where

di dig =~, ore din

Ay = Qt; ‘| Qi Q12 1 sf. Qin ’

\dint dine —QAmnj es. dn

and where forr #71 ands ¥ j, \
\

d,s = ArsQi, — ArjQy.
}

From our earlier analysis of systems of lincar equations we know that a

pivot operation always replaces a given system by a system having the same

solution. Since the rows of A correspond to the equations of the system, a

permutation of rows corresponds merely to a change in the order in which

the equations are written. Each column specifies the coefficients of some z,;

hence a column permutation on A simply permutes the variables 7, ..., Zn.

Hence any finite sequence of pivots, row permutations, and column permuta-

tions leads to a system of linear equations which has the same solution as the

original system. This fact is the motivation of the definition of combinatorial

equivalence.

Definition 9.1. Let A and B be two m X n matrices. B is said to be

combinatorially equivalent to A if and only if B can be obtained from A

by a finite sequence of row permutations, column permutations, and

pivot operations on nonzero elements.

As in § 6.2, P,, will denote the elementary matrix obtained by permuting

rows i and j of J. Premultiplication of A by P,, interchanges rows 7 and j,

and postmultiplication by ?,, interchanges columns 7 and 7.

Theorem 9.2. Combinatorial equivalence is an equivalence relation on

the set of all m XK n matrices.

PROOF: Clearly the relation is reflexive and transitive. By Exercise 2 (1),

if a,; * O then (A*)t = A. Also P,,P,,A = A = AP,,P,,;. Since each of

the basic operations of combinatorial equivalence is self-inverse, the

relation is symmetric.
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In the next theorem we establish a matrix characterization of combina-

torial equivalence which is more convenient to apply than the formal defini-

tion and which leads directly to other characterizations.

Theorem 9.3. B is combinatorially equivalent to A if and only if there

exists an (m+n) X (m+n) permutation matrix P and an m X m

nonsingular matrix Q, such that

Q(|A)P = (|B).

PROOF: By a permutation matrix P we mean a product of elementary

permutation matrices P,,. Suppose that B can be derived from A by

a finite sequence of row permutations, column permutations, and pivots.

For an elementary permutation matrix P,,, where 71,7 < m, we have

(I|P.,A) = PU|A)P 1;

hence any row permutation of A can be effected by multiplying (J|A)

on the left by a nonsingular matrix and on the right by a permutation

matrix. Similarly, for z,7 <n

(T|AP,,) = (L|A) Pt 2.m+a)

so a column permutation on A can be performed by multiplying (/|A)

on the left by the nonsingular matrix J and on the night by a permutation

matrix. We now show that the same is true for a pivot on any nonzero

element. Beginning with the matrix (/|A), let ¢ and 7 be fixed such that

a,, ~ 0. Perform the following operations in succession: for each k # 1

multiply row k by a,,; for each k ¥ 1 add —a,, times row 2 to row k;

permute column 7 and column m + 7; multiply each row by aj’. It can

be verified that the result is (J|A{). Since all of the row operations are

elementary and since the only column operation is a permutation P, m4,,

we have

Qo(T|A)Pim4, = (I|A%).

Hence if a finite succession of row permutations, column permutations,

and pivots transforms A into B, then

QU|A)P = (1|B)

for some nonsingular matrix Q and some permutation matrix P.

Conversely, suppose that the last equation holds. Write P in any way

as a product of elementary permutation matrices,

P = T1T2: “es Ty.

We proceed by induction on k. If k = 0, we have

QUA) = (QIQA) = |B).
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Hence Q =I and A = B, so B is combinatorially equivalent to A.

Assume that if

QU|A)P = (IC)

whenever P is a product of fewer than k elementary permutation matrices,

then C is combinatorially equivalent to A. Then we have

(1|B) = QU|A)P = QU\A)PT,,

where P = 7,T,---T,-;. Hence

(1|B)T, = QU|A)P.

Now 7, transposes two of the m + n columns of the matrix on which

it operates, and we necd to distinguish three separate cases, according to

whether 7, transposes ’
\

(1) two of the first m columns, or 1

(2) two of the last n columns, or

(3) one of the first m columns and one of the last n columns.

(1) If 7, transposes two of the first m columns of (J|B), then T;, is of

the form P,,, where 7, 7 < m. We have

P,U|B)P,, = UPB) = PuQUIA)P = QUIA)P,

so by the induction hypothesis P,,B is combinatorially equivalent to A;

since B is combinatorially equivalent to P,,B, B is combinatorially

equivalent to A.

(2) If 7, transposes two of the last n columns of (J|B), then 7, is of

the form Pasinm4,, Where 1,7 <n. We then have

(|B) Primes = (|BP.,) = QU\A)P.

As in (1) BP,, 1s combinatorially equivalent to A and to B.

(3) If 7, transposes one of the first m columns and one of the last

n columns, then T;, is of the form P,m4,;, where 1 < m andj <n. We

have

(1|B)P ms = QU|A)P.

From the first part of the proof we know that if b,, ¥ 0 then row opera-

tions together with P,..4, perform a pivot on b,;. Hence

(| Bi, = Qi |B)P, m+, = QiQUI\A)P.

As before, Bi, is combinatorially equivalent to A and to B.

In fact, however, it can happen that »,, = 0, in which case the pivot

described above cannot be performed. T> complete the proof we use an

argument suggested by P. J. L. Grant which makes a more careful

analysis of the permutation P. P is a permutation on M U N, where

M = {1,...,m}andN = {m+1,...,m-+ 7}, which maps as many
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elements of Af into N as it maps elements of N into JAZ. Let

{iy,...,%} ©M and {m+ j,...,m+j3 CN be the two sets of

elements which are interchanged between M and N by P. Then P can

be represented as

P = P iP oP 3)

where P, is a product of transpositions of type (7), 7 = 1, 2, 3, and where

Ps = Pam+jPimti’** Pismtie

The subscripts of this representation of Ps; are all distinct, so these

transpositions commute. For simplicity we denote the last of these by

P; m+j. The equation

(|B) = QU|A)P = QUP;|AP2)Ps = (QP:|QAP2)Ps

shows that ¢ columns of Q are simply a rearrangement of the ji,... , 7:

columns of B; the other columns of Q are certain columns of /. This

implies that if b;,, = 0 for s=1,2,...,t, then the corresponding

column of Q is a linear combination of the columns of Q which are

columns of J, contradicting the nonsingularity of Q. Hence for some

1,, b;,; + 0. Now we commute P;,m+,, to the next to the last position

in P; and write 1, = h andj, = k to obtain

P = PPy math imi;

where P is the product of P:, P2, and ¢ — 2 transpositions of P;. We have

(I|P.:B) = Pri(I|B)Par = PriQ(UI|A)PPameiP imasPric

Now C = P,,B is combinatorially equivalent to B and c,; = b,; ¥ 0.

Hence if we multiply on the left by a suitable Q, and on the right by

P.m+j, We pivot on c,; to obtain

(I\C$) = Q:P..QU|A)PPhimieP sms’ mei

= QI |A)P Ping j.m+kPhm+ky

where Ci, is combinatorially equivalent to C, hence to B. Now Pmi;m+k

is a type (2) transposition which commutes with each type (3) trans-

position appearing in P, since neither subscript occurs on a type (3)

permutation of P. In effect, these operations have replaced

(I|B) = QU|A)P

by (|B) = QUItA)P,

where B is combinatorially equivalent to B. P and P can be represented

by the same number of transpositions, but P can be represented by one

fewer transpositions of type (3) than can P. Repeating this argument,

and using the earlier results concerning transpositions of type (1) and (2),

we obtain
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(11D) = RU|A)Pp.m+a

where D is combinatorially equivalent to B. Then d,, = 7,» for all 2,

SO dpg = Tpp- Except in column p, RF coincides with J, so r,, ¥ 0. Hence

we pivot on d,, to finish the proof.

It is helpful to compare Theorem 9.3 with Theorem 6.12.

Theorem 9.4. B is combinatorially equivalent to A if and only if some

permutation of the columns of (/|A) produces the matrix (G:H), where

G is m X m and nonsingular and GB = H.

PROOF: Suppose Q(/|A)P = (UB), and let (J|A)P = (G|/H). Then

(QG|QH) = (|B), so I = QG and B = QH = G"H. Conversely, jf
G, H exist as stated, then (J|A)P = (G|H) = (G|GB) for some permuta-

tion matrix P. Then G~(I|A)P = (/|B).

There are (m+ n)! possible permutations of the columns of (/|A), not:

all of which necessarily produce a nonsingular G in the first m columns. But

for each P, (J|A)P is row equivalent to a uniquely determined matrix in

reduced echelon form. Thus Q is uniquely determined by A and P such that

Q(I|A)P is in reduced echelon form. This may or may not have the form

(I|B) for some B.

Theorem 9.5. There are at most (m+n)! matrices which are com-

binatorially equivalent to A; this maximal number is achieved if and

only if every set of m columns of (J|A) is linearly independent.

PROOF: Our previous remarks show that each of the (m + n)! permu-

tations of the columns of (/|.4) determines at most one matrix which is

combinatorially equivalent to A. If every set of m columns of (J|A) is

linearly independent, then each permutation determines a nonsingular

matrix G as in Theorem 9.4. Then A is combinatorially equivalent to

GH. If there exists a set of m linearly dependent columns of (J|A),

let P be the permutation which places these columns in the first m col-

umns of (J|A)P. Since linear dependence of columns is preserved by

row operations, the reduced echelon form of (J|A)P has linearly de-

pendent columns in the first m positions and hence is not of the form

(IB).

Theorem 9.6. B is combinatorially equivalent to A if and only if the

systems of linear equations

Y+AX=Z

V+tBU=Z
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are equivalent, where the set of variables {u,..., tm, t1,..., Unt is

some permutation of the variables {y,,..., Ym, 71... +, Zn}.

PROOF: If B is combinatorially equivalent to A, then (J|A)P is row

equivalent to (7|B). Hence the systems

A)P (;) =7%

(IB) (;:) ,

are equivalent. Conversely, if these systems are equivalent for some

permutation P of the variables,

y V
P(.)=(_,)(x) =o)

their matrices are row equivalent, so QU{A)P = (|B).

(I

and

Theorem 9.7. If A is nonsingular, A and A~! are combinatorially

equivalent.

PROOF: Y¥+AX =Z and X¥ + AY =@Z are equivalent systems.

This implies, of course, that, A~! can be computed by a sequence of pivot

operations. Since the number of such operations need not exceed the dimen-

sion n of A, and since each pivot can be performed by n? — n multiplications

and n divisions, A~! can be computed by n? or fewer multiplications and

divisions.

Theorem 9.8. B is combinatorially equivalent to A if and only if

— B’ is combinatorially equivalent to —A’.

PROOF: As an exercise you may verify that

— (At)! = (- A)

Thus any pivot operation on A produces a matrix whose negative trans-

pose is combinatorially equivalent to —A’. The remainder of the proof

follows easily from this fact.

Finally we remark that the statement of Theorem 9.8 would not be valid if

either the negative signs or the transpose signs were omitted. This essential

combination of negative and transpose expresses the form of duality which

we observed for linear programs.



236 Combinatorial Equivalence [cu. 9]

Exercises

1. Assume that combinatorial equivalence had been defined by means

of the equation Q(/|A)P = (/|B) as described in Theorem 9.3. Prove that

the resulting relation is an equivalence relation.

2. Given a matrix A for which a,;, a4, and a,; are nonzero, prove the

following statements.

(i) (At) = A.

(ii) (Ati = Pad, if k ¥ 2.

(ili) (Ai) = Ab? ny, if k 7.

(iv) (At)ent = Pud, fk ¥ 1.

(v) ((At)idi = AP. Ik 7.

(i) Write out all matrices which are combinatorially equivalent \to

()
By Theorem 9.5 there are at most. 24 (actually 20) such matrices, which can

be computed by four pivot operations together with row and column per-

mutations.

(ii) Verify that A7! is in the list.

4. Calculate the inverse of cach matrix of Exercise 1, § 6.3, by means of

pivot operations.

5. Verify in detail the statements in the proof of Theorem 9.8.

6. Deseribe explicitly the uniquely determined matrix R such that if

a,j # 0 then (J|Af,) = RU|A)P ims).



CHAPTER 10

Functions of Matrices

§10.1. Sequences and Series of Matrices

It is assumed that you are already familiar with the basic facts about

infinite sequences and series of complex numbers, or at least about real

power series. In particular we shall refer to the following:

The definitions of convergence of infinite sequences and series of numbers.

The circle of convergence of a complex power series (interval of convergence

in the real case).

Taylor series expansions for such functions as

eve = a — valid for all complex z,

sin z = x, (—1)* oe + oer valid for all complex z,

cos x = x (—1)"5 oe onl valid for all complex z,

log (1 + 2) x, (- I) = 2", valid for all complex z such that |z| < 1,

i + in x, z", valid for all complex x such that |x| < 1.

Definition 10.1. A sequence {A} = AM, A®,)..., AM... of mXn

matrices is a function whose domain is the natural numbers and whose

range is a set of m X n matrices. Let A“ = (ai). The sequence {A}

is said to converge to the matrix A = (a,,) if and only if for every

t= 1,2,..., mand every j = 1,2,...,m, the number sequence {a{*’}

converges tu a,,;.
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Example

w (th F
Ck)Let k—-2 i 1

k? + 2 k3

Then {A“} converges to J, since {af} converges to 6,, for 7,7 = 1, 2.

Theorem 10.1. If {A} converges to A, if P is a fixed h X m matrix,

and if @ is a fixed n X ¢ matrix, then {?A“Q}! converges to PAQ.

PROOF: Let Bw = PA“Q. For fixed 1, J,
m n '

bo h
by = LD para’ gay. .

r=1 s=]1 \
(

e 
\

By hypothesis, {as} converges to a,., for every r = 1,2,...,m and

every s=1,2,...,n”. Hence {p,,a/?q.} converges to Pirdreqs;, and

nmm n TM

LL PrGn'qn} converges to Do Lo pirdrsquy,
=1r=! g=l rulI 3s

since a linear combination of convergent number sequences converges to

the same linear combination of their limits. Hence {PA“Q} converges

to PAQ.

The significance of this theorem is that convergence is preserved under the

various equivalence relations that we have considered for matrices, and

particularly by similarity. Thus it is possible to define convergence of a

sequence of linear transformations by means of convergence of the matrices

that represent those linear transformations in any coordinate system.

Definition 10.2. An infinite series

x A®= AM 4AM +... + At 4...
k=(Q

of m X n matrices is said to converge to the matrix A if and only if for

every 2 = 1,2,...,m and every j = 1,2,...,n, the series )-f.o af”

converges to a,).

Thus convergence of a series of matrices is defined by the convergence of

the mn number series of the elements in the same position. We shall consider

only power series of matrices, that is, series for which

A® = a,X*,

where a, is a scalar and X is a square matrix. (Previously we used X only

to denote row vectors.)
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Definition 10.3. Given a scalar power series, ) y-0 az", let f be the

function defined by

f(x) = 3 ayx*
k=Q

for all x for which the scries converges. The matriz-valued function f of

the square matrix X is defined by

f(X) = Vo aX*, X=]
k=0

for all matrices X for which the series converges.

We recognize, of course, that the Hamilton-Cayley theorem makes it pos-

sible to avoid calculating powers of X higher than n — 1, since X" is a linear

combination of lower powers of X. If all such higher powers are thus con-

verted, the infinite series

f(X) = XO a,Xt
k=O

is changed into the form

n—-1

S(X) = DD seX*,
k=0

where each s; is an infinite series of scalars. The convergence of f(X) is then

a question of the convergence of each of the s,. (In this connection see Exer-

cise 4.)

It is clear that Definition 10.3 is an extension of the correspondence between

scalar polynomials and matrix polynomials with scalar coefficients. When

we speak of the matrix functions e*, (J — X)7}, cos XY, we mean

oo X*

oO Bok’

(I ~ Xx)! = » X*,
k=0

e X 2k

= —1)k ;cos X 2, (—1) 2k!

Two questions arise immediately:

For what matrices X does a power series converge?

If a series converges for some X, to what matrix does it converge?

Our method of answering these questions will be to reduce X to Jordan

form J with diagonal blocks of a simple form, to answer the questions for J,

and then to extract corresponding answers for X. The following three the-

orems, which may be proved as exercises, pertain to this method. In these

theorems f refers to a function defined by a power series, )-7~o a:X"*.
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Theorem 10.2. If f(X) converges and if Y = PXP-', then f(Y) con-

verges to Pf(X)P.

PROOF: Exercise. Apply Theorem 10.1 and the definition of con-

vergence of a series of matrices.

Theorem 10.3. If X is a diagonal block matrix,

_ (Xs Z ;X = ( Z x) X, and X_2 square matrices,
then

(a) f(X) converges if and only if f(X,) and f(X2) converge, and

(b) if f(X) converges, then

Z I (Xo) \

PROOF: Exercise. Observe that this theorem can be generalized by

induction to the case in which there are any finite number of diagonal

blocks.

Theorem 10.4. If X is nilpotent, f(X) converges.

PROOF: Exercise.

Theorems 10.2 and 10.3 reduce the questions of convergence of a matrix

series to questions about the convergence of the series for a matrix in the form

"ry 1

At
Ji =

1

Ai,

since any X is similar to a diagonal block matrix where each block is of this

form. Thus our attention is focused on the convergence of the series

2 an(AF + N)*,
ku

where ) is a characteristic value of X and N is nilpotent.

Theorem 10.5. If > o¢.oa.2* converges for all x such that |z| <1,

and if [Aj <r for every characteristic value \ of X, then > foo a.X*

converges.

PROOF: Consider the diagonal block J; of the Jordan matrix similar

to X such that \ appears in every diagonal position and 1 in every super-

diagonal position. Let

Sa(Js) = x a.(AI + N)*.
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Since N is nilpotent of some index p, there are no more than p terms in

the expansion of (AJ + N)* even for large k. Let m > p. Then

Sn(J 1) = dol
+ a,Al + a,N

+ ae\7I + 2avN + a,N 2

+ Am" + CT amid" 2N Hee fb CRT am 1A" PNP

+ = ar"l + POA" N + +s + CPL and Pt NP,

m!

si(m — s)!

Summing on like powers of N, we have

Sah) = = (x a,c no Nr

where C” = is the binomial coefficient.

r=Q \keor

But

byenr Gk A! k—r a Mk dr »|
aC'rd ri(k— nt rhdar @) |

80

m ]E aon = FF a | = 7820),

where S(A) is the rth derivative of S,,(z), evaluated at x = X. There-

fore, S,,(J,) has the upper triangular form,

Sm(A) Si () 4S (A) ‘* “(p “7 Ne 09)

SQ) SPQ) oH “mis Sz-TM(n)

Sa(Ji) = Sm(d) -°° @ — pi 88 S2-2(y)

Sad)
By hypothesis, >-7.9 a.A* converges, since |A! <r. Thus the sequence

{yP.oaM*} = {S,,.(A)} converges. But from the theory of infinite series

it is known that the series obtained by differentiating }°?.o a.z* term

by term will converge for |z| <r. Hence the sequence {S,(Ji)} con-

verges, which means that the series }'¢.» a.J{ converges, so the proof

is complete.

This theorem shows that such functions as e*, sin X, and cos X exist for

all X, since the corresponding scalar series converge for all z. However, we
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cannot assume that the matrix function possesses all the properties of the

corresponding scalar function; for example,

eXeh gf ext,

although equality does hold if X and Y commute.

Another important consequence of Theorem 10.5 is the special role played

by the characteristic value of largest absolute value. If f is defined by an

infinite series whose radius of convergence is 7, and if Xo is the characteristic

value of largest magnitude of a matrix X, then f(.Y) converges if |Ao| < rand

diverges if |Ao| > r. If |Ao] = 7, f(X) may or may not converge. A simple

relation between the characteristic values of X and those of f(X) is given in

the next theorem. !

Theorem 10.6. If f(Y) converges and if \ is a characteristic value of

X, then f(A) is a characteristic value of f(X).

PROOF: If J = PXP~ is the Jordan form of X, then X and J have

the same characteristic values, and f(J) = Pf(X)P-. But the proof

of Theorem 10.5 shows that f(J) is an upper triangular matrix with

Sr), (2), .. » fn) as the diagonal elements. Hence these are the

characteristic values of f(/) and of the similar matrix f(X).

Theorem 10.7. For every matrix X, det eX = e* and therefore e* is

nonsingular. Furthermore, (e*)-! = e-*.

PROOF: Exercise.

Exercises

1. Prove each of the following theorems:

(i) Theorem 10.2,

(ii) Theorem 10.3,

(ii) Theorem 10.4,

Gv) Theorem 10.7.

2. Evaluate e4, given

@a=("5 4),

(1)(ii) A

iil) A lt oS | —_— OO
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0 1 7

(iv) A= 0 0 1

0 0 0

3. Prove that a series }-f.9 4‘ of matrices converges if and only if the

sequence {STM}! of matrices converges, where S% = AO + AG $- 6) AM,

4. Let f(r) = doP-o azz’, let A be a matrix with distinct characteristic

values Ay, Ae, .. - , An for which f(A) converges. It can be proved that

f(A) = D“ [Dol + DyA + +) + Dil],

where D is the Vandermonde determinant

l l 1

v1 de »An

Aj dz Ni
D=

APOE TE Me

and D, is the determinant that coincides with D exeept that the (k + 1)

row vector is (f(A1), f(z), .. . 5 f(An)). (Vhis formula is reminiscent of Cramer's

rule.)

(i) Apply the method described above to calculate fi), where

3 2 2

A={ 1 4 1

—2 -4 -1

(ii) Cheek your result in (i) by using it to compute A?

(ii) For A as given in (i) find necessary and sufficient conditions on f

that f(A) be a scalar matrix.

(iv) Calculate e4.

§10.2. Matrices of Functions

We now consider an m X » matrix whose entries are not scalars, but scalar-

valued functions. To be specific, let

A(t) = (x,,(t)), 7 = 1,2,...,mjj7 = 1,2,...,7,

where 2,,(¢) 1s a real-valued function defined for all ¢ in an interval a < t < b.

Now X is a function whose domain includes a < ¢t < b, and whose value at ¢

is an m Xn matrix of real numbers. In this section we shall indicate how a

calculus of matrices of functions can be defined.

The idea is extremely simple, since continuity, derivative, and integral are

defined component by component.
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Definition 10.4. Let X be.an m X n matrix of real-valued functions 2;

which are defined for all ¢ in some set of real numbers.

(a) X is continuous at tf if and only if z,, is continuous at t& for

@21,2,...,mjj7=1,2,...,0.

(b) The derivative DX of X is defined by

DX(t) = (4,20(4)),

if and only if © 24 (t) exists forz = 1,2,...,mj3j =1,2,...

(c) The definite integral [ X is defined by

[ X= ([ z.,(t)dt), \
\

\

if and only if i x,,(t)dt exists fori = 1,2,...,m;j =1,2,...,m.

We shall develop only enough calculus of matrices to enable us to apply

our results to the solution of a differential equation.

Theorem 10.8. If X is n X n, if Y is n X p, and if DX and OY exist,

then

(a) D(XY) = (OX)Y + X(MY),

(b) D(X") = DP, X"-'"(DX)X“|, p a positive integer,

(c) D(X-!) = —X-'(DX)X-!, if X is nonsingular.

PROOF: Exercise.

Observe that these rules are generalizations of the corresponding results

for scalar functions, which reduce to the usual differentiation formulas if all

of the matrices involyed commute with each other. In general, however,

even X and DX do not commute, so we must be careful to preserve the order

of the matrices in these formulas.

Theorem 10.9. lf A is ann X n matrix of scalars, then

Det") = AeA! = e4'A,

PROOF: By definition, we have

242

At y SW =[+— at oe +
ZX

Thus

_ @ kA*e-) © A(At)F-! _ ry A(At)?

De) = at ne — DI tel
= Aes! = etd,
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This result is reminiscent of the corresponding property of the exponential

function

— f t
ev’ = ae",

dt

which plays such an important role in the solution of certain differential equa-

tions. In the next theorem we consider the analogous problem for matrices.

Theorem 10.10. Consider the matrix differential equation

DX (t) = V()A,

where X(t) is an m X n matrix of differentiable functions and A is an

n X n matrix of scalars. Then

(a) for any fixed valuc t of t, the matrix

X (t) — X (bye -A

is a solution of the differential equation,

(b) any solution is of the form specified in (a) for some value of bo,

(c) the rank of a given solution V(4) is the same for all values of ¢.

PROOF: Conclusion (a) follows directly from Theorem 10.9. To

prove (b) let X(¢) be any solution, and [et

Y(t) = N(t)ew**

Then

DF (t) [DX (t)Jon4 + N(t)De-4¢

[OX (t) Jem" — N() Act

[OX (t) — X(QA]e!

= Z.

since ON(f) = X(t)4 by hypothesis. Then VY is a constant m xX n

matrix C. For any value t) of t,

(ty) =(C= N(tye7 Ae,

SO

A (£) Celta N (ty) (c~ AlejeAt

— NV (ty)eter A,

where the last equality is valid since At) and Af commute. Furthermore,

by Theorem 10.7, ¢'~"'4 is nonsingular, so the rank of Y(t) is the same

as the rank of X(t), which proves (¢).

In the next section we shall apply Theorem 10.10 in the special case in

which X is a row vector.
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Exercises

1. Prove that DX as given in Definition 10.4 satisfies

. 1
DX (bo) = lim 5 [X (bo +h) — X(4)]

if limit is understood to operate on each component.

2. Prove Theorem 10.8.

3. Does an analogue of the fundamental theorem of calculus hold for

matrix calculus? Explain.

4. Does an analogue of the mean value theorem of the derivative hold for

matrix calculus? Explain.

5. Derive an expression for the derivative of det X(t).

6. Derive an expression for the derivative of tr X(t), and prove tha

< tr X(é)] = tr[DX (2).

§10.3. An Application to Differential Equations

We now consider the problem of determining all solutions of a linear,

homogeneous, nth order differential equation with constant coefficients,

n—lda" d d
(10.1) ane + a, ea © + ste + An} a + a,x = 0.

Most of the essential facts concerning the solutions of this equation can be

verified casily by direct calculations. Our first observations are that any

scalar multiple of a solution is also a solution, and that the sum of any two

solutions is a solution. Therefore, the set of all solutions of (70.1) forms a

vector space, called the solution space. Furthermore, the dimension of the

solution space is n, a fact which follows from a theorem concerning the

uniqueness of solutions of (10.1). Therefore, the problem of finding all solu-

tions of (10.1) reduces to the problem of finding a basis for the solution space,

a set of n linearly independent solutions.

If we let z = ce”, then z is a solution if and only if r satisfies the poly-

nomial equation

(10.2) r+ ayrTM + +--+ + a,iur tan = 0.

At this point we separate the discussion into two cases. First, if the roots

T1,12,...,T, Of (10.2) are distinct, then the solution set {e7', e,..., e}

is linearly independent, so any solution has the form

n

r= a cer",

=
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where the c, are suitable scalars. As the alternative to the case in which

(10.2) has n distinct roots, suppose that the distinct roots are r,, 72,... , Tr;

and that r; is a root of multiplicity m,, for 7 = 1,2,...,%. Then for each 7

each of the functions
{ert tert, beey im —lerth

is a solution, and this set of solutions is linearly independent. The collection

of all solutions obtained in this way by letting 7 vary from 1 to & forms a basis

for the solution space. Thus we have full information concerning the solu-

tions of (10.1).

Although verification of the preceding statements is not difficult, this

approach is not completely satisfying because the success of the method

seems to depend upon a mystic process of guessing that functions such as

t?e"t are solutions. In this section we shall restate and resolve the problem

in matrix notation, observing that the solutions arise in a natural way from

the Jordan form of a matrix determined by (/0.1).

First we make a change of variables in order to replace the single ¢qua-

tion (10.1) of order 7 by a set of n equations of order 1. Let y, = 2,

d ; ;
Yo = Yar Yn = Yn: Then we obtain the n equations

at i = #

dt 2? = ¥3

(10.3)

d
di 2" = Un

d

Ca Un = Ants — Anta — 7 Yn

Let

Y= (Yi, Yr, so » Yn),
and let

0 O O...0 -—a,

1 0 0...0 —An-]

A= 0 1 0...0 — An-2

0 0 O...1 -—qQ

Then (10.3) or, equivalently, (10.1) is written simply DY = YA, and by

Theorem 10.10 any solution is of the form

Y(t) = Y(t)et-4,
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Now for some nonsingular matrix P, J = P-"AP, where J is a Jordan matrix.

Let W = YP; then

Wb) Y(i)P = [VY (4)P]Pte¢—4P

W (tet-J u

= W(t)et—widingTM,..., An)+N].

The characteristic values }, of A are the solutions of (10.2) because the

characteristic equation of A is

NTM + aA"! + es fF and + a, = 0.

(See Exercise 7, § 7.3, and apply the result to A’.) We now consider the

form of W(t) for two special cases.

Case I. x, \2,... , An all distinct. Then N = Z, and we have \
W(t) — W (ty) e@~ tediag beens An) |

— W (to) diag (0 ¢—6) Ley OAn(E— la)

= (Wy (to)eM lO) 2, Wallner),

where the kth component of the vector W(t.) is denoted w,(t). Thus any

solution vector is a linear combination of the vectors determined by the

distinet. characteristic values,

(0,...,0,e'- 0... , 0).

Case IT. \y = Xx = +++ = An. Then NW has zeros and ones on the super-

diagonal, and

W(t) = W(t)et- mart

W (to) [e¢-©]fet-N]

= Warm T+ = w)N $+ + Fo Wo]

Thus an arbitrary solution vector has for its kth component an expression of

the form

pi(tere—t)

where p,(t) is a polynomial in ¢ of degree less than k. Those polynomials are

generated by the various powers of the nonvanishing nilpotent part of the

Jordan form of the matrix A. Thus a basis for the solution space can be

chosen to be the vectors

{ert ted! pnmtean,

The general case in which there are r distinct characteristic values \;, each

of multiplicity m;, is a combination of the two cases described, any solution

vector being a linear combination of the vectors

pie,
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where p,(t) is a polynomial of degree less than m,,j = 1,2,...,7. Hence a

basis for the solution space is

{emt ter" wey {m— Todt ent ted, wey pms— I edt wey cht tert Ley {mr — 1 edot\ .

Exercises

1, Work through the method of the text to solve the differential equation

da da?

da” dp"

showing that any solution vector can be written in the form

(ae’, (at + be, ce~4),

Observe the manner in which the second component anses from the mlpotent

part of the Jordan form of the matrix determined by the equation.

d
— qe tt = 9%



APPENDIX A

Algebraic Concepts

The objective of this appendix is to formulate fundamental algebraic con-

cepts in terms of the notion of sets, thus supplementing the discussion of

abstract systems in Chapter 1. The treatment is brief and somewhat formal,

but exercises are provided to augment the reader’s understanding of this

material.

§A.1. Cartesian Product of Sets

In § 1.3 we defined the cartesian product S X S of a set S with itself. It is

quite clear that this definition can be generalized in two ways: first by con-

sidering the cartesian product S X T of any two sets, and then by extending

the number of sets involved from two to n.

Definition A.1. Let S,, S:,...,S, be any sets. The cartesian product

S: X Se X «++ X S, is the set of all ordered n-tuples,

S: X 82 & «++ K Sa = {(81, 8, ..., Sn) [8 €S, fori = 1,..., nh.

Two n-tuples are equal

(81, 82,.- +) 8n) = (Ly te, ..., bn)

if and only if s; = ¢, for every 1 = 1,2,...,7.

Thus for each i, the ith component of any element of 8; X S: X -:: X S,

is an element of S,, and S, X S, X --- XS, consists of all n-tuples which

can be formed in this manner.
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Exercises

1. If S, is a set of m, elements, for 7 = 1, 2,...,2, how many elements

are in the set S; & So X --- X& Sr?

2. Let J denote the set of all integers, and let 22 denote the set of all real

numbers. Describe by means of a graph each of the following sets:

(i) IX R,

Gi) kX I.

3. Let S and T be arbitrary sets.

(i) Prove that S X T and T X S have an element in common if and

only if S and 7 have an element in common.

(ii) If S and 7 have m elements in common, how many elements dp
SX T and 7 X S have in common?

(ii) If T CS, show that 7X T = (T XS) nN (S X T).

4. For each 7 = 1,2,...,n let §, = {F,;0,) be an abstract system

having one binary operation o,, whieh is closed on /),. An operation ¥* 1s

defined on £ X ky & +--+ & EH, by the rule

(i, Go,. 60, An) *(b1, be, De ny bn) = (C1, Co, - + ey Cn),

where c, = a, 0,0, for each 7. Prove the following.

(i) * is closed on FE, X Ey K «++ K Ey.

(ii) * is associative if and only if each o, is associative.

Gu) If each £, has an identity element ¢, relative to o,, then E; X

42 X ++: & FE, has an identity element relative to *.

§A.2. Binary Relations

Definition A.2. A binary relation R from a set A into a set B is a sub-

set of A X B. If (a,b) E R, we say that a zs related to b, and write

aR b.

The domain of R is the set of all elements of A which are related by R

to at least one element of B;

dom R = {fae A|aRy for some y € B}.

The range of R is the set of all elements of B to which at least one element

of A is related by R;

range R = {b € B|xR 0b for some x € A}.

A binary relation from A into 4 is called a relation in A.
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It is sometimes convenient to think of a relation in geometric terms as an

association, or many-valued correspondence, from A into B. Each clement

in dom R is associated by R with one or more elements in range R. For

example, let A = {a), a2, a3}, B = {by, be, bs, ba} ; let R be the subset of A X B,

which consists of the pairs (a, b;), (ai, bz), (@2, b:), (G2, bs), and (ay, b4). Then

dom R = A and range R = {b,, be, bs} < B. R can be represented geomet-

rically by the following diagram.

a; a By
b,

To * bs

ds - ne by,

A B

Figure A.1

Exercises

1. How many different binary relations can be defined from a set of m

elements to a set of n elements?

2. Describe the number pairs that comprise each of the following relations.

(i) The order relation < for real numbers.

(1) The relation ‘‘a divides 6 evenly” for positive integers.

3. A binary relation R on a set A is called a partial ordering of A whenever

R is

reflexive: a Ra for everyae A,

anti-symmetric: ifaRv and bRa, then a = 8,

transitive: ifaRbandbRe, thenaRc.

(i) Show that the subset relation is a partial ordering of the collection

K of all subsets of a set S.

(u) Show that ‘a divides b’’ defines a partial ordering of the positive

integers.

(iii) Show that ‘“S(x) < g(x) for all x € [0,1]” defines a_ partial

ordering of the set of all real valued functions whose domain of definition

includes the interval (0, 1].

§A.3. Functions

Definition A.3. A function F from a set A to a set B is a binary relation

from A into B that satisfies the additional properties
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(a) dom F ~ 6,

(b) if a F b; and a F bo, then 6; = be.

The domain and range of F are its domain and range as defined for

relations.

The essential condition that distinguishes a function from an arbitrary

relation is the requirement that each a € dom F be associated with one and

only one b € range F. Because b is uniquely determined by a and F, the

relation notation a F 6 can be replaced for functions by the notation described

in § 1.4,

b = aF.

Thus

dom F = {a € A |y = aF for some y € B},

range F = {b €¢ B|b = xF for some z € A}.
\

If range F = B, we say that F is a function from A onto B.

Described geomctrically, each a € dom F is associated with one and only

one image aF ¢€ range F. To distinguish the unique association of a function

from the multiple association of an arbitrary relation, we say that a function

is a mapping. Each twmage aF of the mapping F is uniquely determined by

its antecedent a. However, it is possible that different antecedents, a + z,

determine the samc image, aF = zF. In general, mappings are many-to-one,

which means that many distinct points of the domain are mapped into the

same image point of the range.

Definition A.4. A mapping F from A to B is said to be one-to-one (or

reversible) if and only if for all a, x € dom F whenever aF = zF, then

a = x. The inverse F* of a one-to-one mapping is the mapping from B

to A defined by

dom F* = range F,

range F* = dom F,

y¥* = gz,

where z is the uniquely determined element of dom F such that «F = y.

F* is frequently denoted by F-!

Exercises

1. By recalling the definition of a function in terms of sets, state what it

means for two functions to be equal.

2. How many different functions can be defined from a set A having m

elements to a set B having n elements? (Recall that the domain of such a

function can be any nonvoid subset of A.)
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3. Consider the function F of two real variables defined by

F(z, y) = V1 — ysin(z + y).

Show how this function is described by Definition A.3. Specify the domain

and range of F.

4. Let & be the set of all real numbers. Give a specific example of a func-

tion F from & to F& for each of the following conditions.

(i) dom F c R, range F c R.

(ii) dom F = R, range F c R, F one-to-one.

(1) dom F c R, range F = R, F not one-to-one.

(iv) dom F = R, range F = R, F not one-to-one.

(v) dom F = R, range F = R, F one-to-one.

5. Let F be a one-to-one mapping with domain A and range B. Describe

each of the mappings FF* and F*F.

6. Prove that the inverse of a one-to-one mapping F is uniquely deter-

mined.

§A.4. Binary Operations

Definition A.5. A binary operation on a set A is a function from A X A

into A. An operation on A is said to be closed if and only if the domain

of the operation is the full set A X A. More generally, an n-ary operation

on A is a function whose domain is the set A X A X --: X A (n times)

of ordered n-tuples of elements of A and whose range is a subset of A.

It is customary to use special symbols, rather than function notation, for

binary operations. Thus a; * a, denotes the image in A of the ordered pair

(@;, @2) € A X A under the mapping that defines the operation «.

Exercises

1. Explain how a closed binary operation on a set S can be considered as

a subset of S X S X S, having special properties. List all properties needed

to make your description precise.

2. How many closed binary operations can be defined on a set having n

elements?

3. Let RF be the set of real numbers, described geometrically by a coordi-

nate axis. State what is meant by a graph of each of the following, listing any

special restrictions you need to make your description accurate.
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(i) A binary relation on R.

(ii) A function from FR to R.

(iii) A closed binary operation on R.

§A.5. Summary of Abstract Systems

In § 1.5 an abstract system

§ = {E;R; 0}

was described as a set E of elements, a set FR of binary relations in EF, and a

set. O of closed operations on #, together with a set of postulates which endow

the elements, relations, and operations with their distinctive propertids.

Kach binary relation is a subset of # X EH; each n-ary operation is a function

from kX HX +--+ & E (n times) into EF. Since a function is a type of rela-

tion, each n-ary operation can be described as a subset of E X EX +--+ XE

(n + 1 times). In this way the components of an abstract system are rep-

resented as subsets of sets formed from the set of elements of the system.

§A.6. Boolean Algebras

As an illustration of an abstract system, we return to the specific example |
of the collection A of all subsets of a given set S, considered in § 1.2. This

system can be denoted

§= {K;=,S; U, n, 4}.

The two binary relations, two binary operations, and one unary operation

were described in our introductory discussion of sets in terms of the un-

defined concepts of ‘set’? and “membership”; in effect, therefore, our only

postulate for the system $ was that we understood these two notions. There-

fore our approach was intuitive and concrete rather than formal and abstract.

We now undertake to develop an abstract system which will serve as a

model for the algebra of sets. We consider a system @& composed of any set

E of elements, two binary operations on £, and one unary operation on E:

@= {E;V,A, *}.

To make sure that the abstract system ® contains the concrete system § as

a specific example, we shall assume as postulates for ® statements which are

valid in § when we interpret the three operations of @ to mean union, inter-

section, and complementation of sets. In selecting such postulates, various

choices are possible; what we seek is a simple set of statements about the
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operations that will produce an accurate model of the algebra of sets. The

following axioms were first given by E. V. Huntingdon in 1904.

Bi. The operations V and A are commutative: for all x, y € E,

rVy=yVuz,

CAY=YNG.

B2. Each of the operations V and A is distributive over the other: for

allw,z,yeEk

wV(zrAy=WwV2aAWwV y),

wArA(eVy)=(wAr) V (wa y).

B3. There exist in # distinct elements z and u which are identity elements

for V and A respectively; for all z & E,

xrVz=42,

rAuU=$dz.

B4. For all x € E the operation * satisfies

rVz*=4,

xNnx*=2z.

Definition A.6. Any system @ = {E; V, A, *} satisfying axioms B1-B4

is called a Boolean algebra.

In terms of our intuitive concept of membership and our understanding of

the meaning of the words used to define set union, intersection, and com-

plementation, we observe that the system S§ of all subsets of a given nonvoid

set S is indeed a Boolean algebra whosc identity elements are ? and S. It

is remarkable, however, that the postulates for @ do not mention any rela-

tions on E, whereas our description of 8 made frequent use of the subset

relation. In effect, equality in @ is defined implicitly by the four postulates.

Furthermore, a relation < can be defined on E in terms of the operation V :

forallz,yeEk

x < yif and only if c V y = y.

Observe that this definition is consistent with the result of Exercise 3(j),

§ 1.2.

Having recognized that the algebraic system § of all subsets of a given

set S is a Boolean algebra, we may ask whether the converse is true. Given

any Boolean algebra @, does a set S exist such that @ represents the system $

of all subsets of S? An affirmative answer to this question was given by

M. H. Stone in 1936, showing that the abstract system which we call Boolean
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algebra is in all respects an accurate model of the concrete example of the

algebra of subsets.

Exercises

Following is a list of theorems, statements which are valid for all elements

w, zx, y of any Boolean algebra. Theorems in the second column are dual to

those in the first, obtained by interchanging V and A, u and z, and reversing

the relation <. Duality occurs because of the symmetric nature of the

postulates for a Boolean algebra. Prove as many of these statements as you

can, using only the postulates or preceding statements in this sequence.

lLxV2r=2. Vir Azr=z.

2.x2Vu=uU. 2’.aNz=2. |

8.2V(rAy) =z. 3B. zc A(t Vy) =2. }

4.wV(eVvVy=wvarvy. A wAn(eAy=WwAnaAy.

5. 2* is unique.

6. (x*)* = x.

7. u* = 2. 7’. 2* = u.

8. (x V y)* = a A y*. 8’. (tx A y)* = 2*V y*.

9. x < yif andonly ifx# Ay =z.

10. lf w < xandz < y, then w < y.

ll. If < wand y < uw, thenz V y < w.

12. If w < x then w < xr V y for any y.

13. x < y if and only if y* < 2*.

§A.7. Groups

Another important example of a general algebraic system is a group, which

was mentioned briefly in the discussion of fields in § 1.6.

Definition A.7. A group is any system G = {G; *} having one closed

binary operation and satisfying the following postulates.

Gl. * is associative.

G2. An identity element 7 exists in G.

G3. Each g € G has an inverse g’ € G.

A group is said to be commutative if and only if

G4. * is commutative.
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Examples of Groups

(a) The integers (or the rational, real, or complex numbers) with addition

as operation.

(b) The positive rational (or real) numbers with multiplication as operation.

(c) The nonzero rational (or real or complex) numbers with multiplication

as operation.

(d) The mappings of Exercise 4, § 1.5.

Exercises

1. The n complex nth roots of unity are the numbers

ex = cos = + isin, k = 0, l,...,”m-— 1),

where 72 = —1].

(i) Prove that for n = 3 the three cube roots of unity, together with

multiplication of complex numbers, form a group.

(ii) Prove the corresponding result for any n.

2. For any group G prove that

(i) there is only one identity element,

(11) each element has only one inverse,

(ili) (2’)’ = a,

(iv) ‘(a * y)’ = y' * x’, where * denotes the group operation.

3. Let G = {G; *} be any group, and let g be a fixed element of G.

(i) Show that the mapping

R,:z—>2z*g

is a one-to-one mapping of G onto G.

(ii) Show that the successive mapping R,R, is the same mapping

as Rosa.

4. Let {S; *} be a system for which

* is associative,

there exists e € S such that x *e = 2 forallz eS,

for each x € S there exists 7 € S such that x * 7% = e.

Prove that {S; *} is a group. (e is called a right identity and Z is called a

right inverse.)

5. Let {S; *} be a nonvoid system in which * is associative and yz? = y

for every xz, y € S. Prove that {S; *} is a commutative group.

6. Consider the real coordinate plane, and let R, denote the rotation of

the points of the plane through the angle A around the origin, counterclock-
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wise if A > O and clockwise if A < 0. The “product” Ry, * Rg is defined to

be the transformation which results when Ry, 1s followed by Raz.

(i) Find a simple expression for Ra * Re.

(ii) Prove that the system G = [{#; *} is a commutative group, where

R is the set of all rotations of the plane around the origin.

7. In three-dimensional space let X4, Yu, and Z, denote rotations of the

points of space about the x, y, and z axes, respectively, through the angle A,

where the positive direction of rotation is chosen to be counterclockwise as

viewed toward the origin from the positive side of the axis of rotation. As

in Exercise 6, the product of two rotations is defined to he the transformation

which results when the first rotation is followed by the second. Show that

this product is not commutative.

&. Consider the system {#; ©}, where F is the sect of three symbdls

f—,§ /\}, and where © is defined in the table below by the rule that z Q) y

is the symbol in the row which is labeled x at the left and in the column

which is labeled 7 at the top.

© /

_ § /

§ foo =

foo = §

Show that this system is a commutative group.

9. Discuss whatever similaritics and distinctions you can detect between

the systems of I:xercise 8 and the group of Exercise 1 (i).

§A.8. Homomorphisms and lsomorphisms

We begin by defining homomorphism in the simple case of two systems,

S$ = (FE; *} and 8’ = {k’; *!, each having one operation.

Definition A.8. A mapping H of F into E’ is called a homomorphism

of § into 8’ if and only if for alla, 6 <¢ EF

(a+ l)H = all « dH.

The domain of H is £; whenever the range of H is the full set EZ’, H is

called a homomorphism of $ onto 8’. A homomorphism H of § onto 8’

is called an isomorphism if and only if H is a one-to-one mapping of E

onto EH’.

Thus a homomorphism is a many-to-one mapping of the elements of one

system into those of another, having the special property that the operation
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is preserved by the mapping. By this we mean that the image in E’ of the

*-product of any two elements of # equals the *-product in E’ of the images

in E’ of those two elements of E. Similarly, an isomorphism of § onto S$’ is a

one-to-one mapping of FE onto E’ that preserves the operation.

H
J >

» aH *bH| Equal for
axb (9x b) H J homomorphisms

gE’

Figure A.2

Now consider the more general case of homomorphism of two systems §

and 8’, each of which has m relations and n operations. As before, a homo-

morphism is a mapping of # into KE’ that preserves the corresponding rela-

tions and operations. However, it is not immediately clear what is meant by

“corresponding.”’ Suppose we make a one-to-one pairing of the relations of $

with the relations of 8’, and a one-to-one pairing of the operations of § with

the operations of 8’; say,r, <-> ri,i=1,...,m,ando0, <> 0,7 = 1,...,7”

Definition A.9. A homomorphism of § into 8’ is a mapping H of E into

E’ such that

(a) ifar,bin E, then aH rj bH in E’,1 = 1,...,m,

(b) (a0, 6)H = aH oj bH for alla,b ee E,j =1,...,n.

If EH’ = range H, then H is called a homomorphism of §$ onto 8’. A

homomorphism H of § onto S’ is called an isomorphism if and only if H

1s @ One-to-one mapping of E onto E’.

Although the notation of (b), above, implicitly assumes that all operations

are binary, it is not difficult to formulate a corresponding statement for a

homomorphism of systems which have n-ary operations.

Exercises

1. Determine whether each of the following mappings is a homomorphism,

an isomorphism, or neither.

(i) The mapping m —> 2m of the additive group of integers into

the additive group of even integers.

(i1) The mapping a —> 1/a of the multiplicative group of nonzero

real numbers into the additive group of real numbers.
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(iii) The mapping a —» 1/a? of the multiplicative group of nonzero

real numbers into the multiplicative group of positive real numbers.

2. Referring to Exercise 9, § 1.5 show by the mapping

(a,b) —> a+

that {C; +, e} is isomorphic to the field of complex numbers.

3. Show that the additive group of real numbers is mapped homomor-

phically onto the multiplicative group of all complex numbers which lie on

the unit circle by the mapping

x—cosz +i2sin2z.

4. Let § = {G; *} be any group, and let 9 be the additive group of the

integers. For any fixed g € G show that the mapping \
\

N—>g*egege--+> *g (n times)

is a homomorphism of g into G. Is this mapping a homomorphism of g onto S?

5. Let H be a homomorphism of § = {E; *} onto 8’ = {H’; «}.

(i) Prove that if S has an identity element 7, then 8’ must have an

identity element 7’, and that 7’ = 7H.

(ii) Prove that if a € # has an inverse b, then aH has an inverse which

must be dH.

6. Is the additive group of all real numbers isomorphic to the multiplica-

tive group of all positive real numbers? Explain.

7. Refer to Exercise 3, § A.7, where the mappings R, are defined for

any group S$ = {G; *}. The product R,, © R,, of two such mappings is

defined as the mapping which results when R,, is followed by R,,. Let

= {R,|g € G}.

(i) Show that {Rg; ©} is a group.

(ii) Show that the mapping g —> R, is an isomorphism of {G; *} onto

{Re; ©}, thus proving Cayley’s Theorem: Every group is isomorphic to a

transformation group.

§A.9. Equivalence Relations and Partitions

Definition A.10. An equivalence relation on a set A is a binary relation

R in A which is reflexive, symmetric, and transitive.

(a) Reflexive: aR a for every a € A.

(b) Symmetric: If a R 6b, then b R a.

(c) Transitive: If aR b and bRe, thenaRc.

It follows from (a) that dom R = A = range R.
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We now consider the effect imposed by an equivalence relation R on a non-

void set A. For each a € A let [a]y denote the set of all elements which are

related to a by R:

alk = {ft €AlzRea}.

The set [aJr is called the equivalence class determined by a. Since R is reflexive,

aRa, so a é& [ajJg. This implies that the set union of all the equivalence

classes equals A. If b € [ajr, then b Ra, and aRb since R is symmetric.

Hence if b € [a]r, then a € [b]x. Suppose also that y € [b]x. Then y Rb

and 6 Ra, so transitivity implies y Ra; hence y € [ajpr, and [b]r C [a]r.

By reversing the roles of a and b we obtain [a]r C [b]r, so [b]Rk = [a]x when-

ever b € [a]n. This implies that two equivalence classes are either equal or

have no elements in common.

Therefore, an equivalence relation R on a set A decomposes A into disjoint

subsets, called equivalence classes. Such a decomposition of a set is called a

partition.

Definition A.11. A partition of a set A is a collection @ of subsets of A,

called classes of the partition, such that

(a) if z € A, then z € C for some C € @, and

(b) if C, D € @, then either C = DorC N D = ©.

Now suppose we reverse the situation and start with any partition @ of A.

A relation R can be defined on A by writing a R 6 if and only if a and b are

in the same class of @. It can be proved as an exercise that R is an equiv-

alence relation on A for which the equivalence classes are the classes of @.

Therefore, each equivalence relation on A determines a partition of A, and,

conversely, each partition determines an equivalence relation.

Exercises

1. Given a symmetric and transitive relation R in a set A. Is R reflexive?

Distinguish between the cases dom R = A and domR c A.

2. Consider the points of a plane P as described in a rectangular coordinate

system by pairs of real numbers, and let m be a fixed real number. Define

on P the relation M as follows:

(21, 41) M (2, ye) if and only if y; — ye = m(z, — 22).

(i) Prove that M is an equivalence relation.

(ii) Describe geometrically the equivalence classes of M.

3. Given a partition @ of a set A. Show, as indicated in the text, that a

corresponding equivalence relation R can be defined on A such that the

equivalence classes of R are the classes of the partition 0.
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4. Let E(n) denote the number of different partitions which can be defined

on a set of n identical objects.

(i) Evaluate E(n) for n = 1, 2, 3, 4.

(ii) Relate E(n) to the number of different ways the integer n may be

written as the sum of positive integers in nonincreasing order, for example,

§=3+2=3+1+1=4-+1 and so on.

§A.10. Cosets

We conclude this discussion of general algebraic concepts with one further

notion of widespread applicability in the study of algebraic systems. In
doing so we shall discover an intimate connection between mappings, equiv-
alence relatious, homomorphisms, and isomorphisms.

Let R be a relation from A into B, and suppose A = dom R. We first

show how R can be uscd to define a relation R in A. Each a € A is related

to one or more 6 € B. Another element xz € A might also be related to one

or more of those same elements of B. With this fact in mind we make the

following definition.

Definition A.12. The R-cosei of a € A is the set

(a)y = {x € A|z2RbandaRb for some b € B}.

We immediately deduce from the definition that

a € (a)r

and

xz & (a)r if and only if a © (z)r.

A relation R, which we call the relation induced in A by the R-cosets, is

defined by writing

zRa__ if and only if z € (a)r.

It follows that dom R = A = range R, and that R is both reflexive and

symmetric. In the example illustrated in Figure A.1, we observe that (a:)R =

{ai, do}, (Q2)R = {G1, de, G3}, and (a3)R = {a, a3}. This shows that R is not

always transitive.

However, suppose that the original relation R is actually a mapping F, so

that each a € A has a unique image aF e€ B. Then the F-coset of a is

(a)r = {x € A|2F = aF}.

Therefore, the relation F induced in A by the F-cosets is characterized by

the statement
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t+Fa if and only if rF = aF.

We now prove that this reflexive and symmetric relation is also transitive.

Let y Fz and x Fa; then yF = rF = aF, so y Fa. Hence F is an equivalence

relation. I'urthermore, the F-equivalence class which contains a is simply

the F-cosct of a, for

fle = @EAl|re Fa = fr € A] eF = aF! = (a)p.

These results are summarized and an additional fact asserted in the following

theorem.

Theorem A.}. Let R be a relation from A into B for which A = dom R,

and let R be the relation induced on A by the R-eosets of A. Then R

is reflexive and symmetric. If R is a mapping F, then F is an equiv-

alence relation whose equivalence classes are the F-cosets. Let 1 be the

collection of these equivalence classes; there exist a mapping K from .A

onto A and a one-to-one mapping J of A onto range F C B such that

Fr = KJ.

PROOF: To verify the last sentence of the theorem we define the

mapping K from A onto A as follows:

K: a —> [alé.

K maps each a €domF into the equivalence class (F-coset) of all

elements 2 for which xF = aF. The mapping J of A onto range F is

defined by

J: [a] — aF.

It is necessary now to consider an important technical point: the descrip-

tion just given as a definition of the mapping J is open to criticism, since

the J-image of the equivalence class [a] was specified as aF, the F-image

of one of the members of [a]p. At first glance it appears that this defini-

tion might be ambiguous, because different members of [a]¢ might have

different F-images in B. But x & f[aJe if and only if +F = aF, which

shows that all members of [a]¢ do have the same F-image. Hence, J is

properly defined, after all.

To prove that J is one-to-one, suppose [a]¢J = [ble J. Then aF = dF,

so D & [a]p. But two equivalence classes which are not disjoint must

be equal, so [a]p = [b]p. Finally, aK = [a]p, and aKJ = [a]zJ = aF,

so KJ = F.

The following diagram might help to fix in mind the essential points of this

theorem.
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aK =(s). =[a)¢

K J

(coset mapping) ( one-to-one)

a ¢ > aF= aKd

dom F =A range FSB

Figure A.3

This analysis of the role of cosets in the theory of mappings takes on special

significance when it is applied to homomorphisms of abstract systems. Let

HW be a homomorphism of § = {E;*) onto 8’ = (£’;*}. From the theorem

just. proved, we know that the H-coscts are equivalence classes which form a

partition of /. Let EF be the collection of the H-cosets of #. The mapping H

can be represented as the successive mappings KJ, where K maps each

z € E into its H-coset, [7], and where J is the one-to-one mapping of E

onto ’ which assigns to [v]u the image cH:

t > fc} > oH.

But much more can be said; because of the operation which is defined on

I, it is possible to define an operation e on E by the rule

[tlu @ (yln = [c * y]u.

It is necessary again to prove that the definition is not ambiguous; that is, to

prove that the “product” of two cosets is independent of the choice of rep-

resentative elements. Suppose a € {z]n and b € [y]lu. Then aH = xH and

bH = yH. Since H is a homomorphism,

(a * b)H = aH» dH = cH « yH = (x * y)H.

Hence, a +b © [x * y]n, and finally [a * b]u = [2 * y]u because the H-cosets

form @ partition of E. Therefore, the operation @ is properly defined on E,

and § = {E; e} is an abstract system.

Now consider the mapping K of Z onto FE. We have

Qe y)K = [rv «yl = )n @ [yl = 7K © yK.
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Hence K is a homomorphism of § onto 5. Likewise, the one-to-one mapping

J of E onto E’ preserves the corresponding operation:

(izjn @ (ywJ = [r*ylnJ = @*y)H = cH + yH = [rad & [ylaJ.

Therefore J is an isomorphism of the systems § and $8’.

Fundamental Isomorphism Theorem. Let H be a homomorphism

of the system § = {£; *) onto the system 8’ = {£’;%). Then a product

e can be defined on the set # of H-cosets such that

(a) there exists a mapping K which is a homomorphism of the system §

onto the system § = {E; e},

(b) there exists a mapping J which is an isomorphism of the system §

onto the system 8’,

(c) H= KJ.

Finally, we remark that no specific properties of any of the systems were

assumed, and therefore the preceding theorem is extremely general. In various

applications the system § of cosets is called the factor-system, quotient-system,

or difference-system of 8.

Exercises

1. Describe the R-cosets of each of the following relations.

(i) The order relation < for real numbers.

Gi) The relation ‘‘a divides b” for positive integers.

(ili) The relation “Z, is perpendicular to L,” for lines of the plane.

2. Let S he the set of all humans living at a given instant, and Ict F be

the age function, sF being the age in years of s on his most recent birthday.

Describe the F-cosets.

3. Refer to the relation R of congruence modulo n, as defined for integers

in Exercise 4, § 1.3.

(i) Describe the R-cosets.

(ii) Let J, denote the collection of these cosets, which we denote by

(O)n, (1)n,-.-, (nr — 1)n. We define on J, two operations:

(a), ® (b)n = (a + b)n,

(a), © (b)n = (ab),.

Verify that these operations are unambiguously defined.

(iii) Show that the system J, = {I,; ®} is a commutative group.

(iv) Show that the system J, = {I,; ©, ©} is a field if and only if n

is prime.
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(v) Show that the mapping H of the integers onto J, is a homomor-

phism, where H is defined by

tH = [a], ‘if and only if z = a(modn),a=0,...,n—1.

4. Let § = {E£; *} be a group whose identity is denoted 7, and let H be a

homomorphism of § onto 8’ = {E’;*!. From Ixercise 5, § A.8 we know that

1H is the identity of 8’. The H-coset (2): is called the kernel of H. Prove that

H is an isomorphism if and only if the kernel of H has 7 as its only clement.

5. Let H be a homomorphism of a field $ into a field 5’, and suppose that

aH + 0’ for some a € §. Prove that H is an isomorphism.
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Matrix Notation

A student beginning his study of lincar algebra might find it disconcerting

to discover that no two books on the subject secm to use the same notation.

Some use Greek Ictters for scalars and Latin letters for vectors; others reverse

the choice. Some use bold face type for vectors; others use it for mappings.

But more basic than these simple typographical differences, some authors

write the symbol for a mapping to the left of the symbol for the element

that is mapped, others write it to the right. This lack of agreement among

mathematicians about where to write symbols for mappings is a potential

source of confusion for the inexperienced reader, and the purpose of this

brief appendix is to reduce the confusion by examining the two most common

conventions and their consequences in matrix algebra.

We begin by recognizing that a matrix can represent various mathematical

objects, cach in accordance with some notational convention. Different con-

ventions for representing a given mathematical object by a matrix: usually

lead to different forms of the same matrix theorem. But it is the mathematical

object itself, rather than its matrix representation, that attracts our interest.

For this reason, algebraic operations for matrices are defined in such a way

that the algebra of matrices reflects the algebra of the objects thus represented.

§B.1. Mappings

The most useful mathematical concept frequently represented by a matrix

is a linear mapping, or a vector space homomorphism. If a is a vector and

T a mapping, the image of a under T is usually denoted either by Ta or

by aT. The latter notation, in which T is written to the right of @ is called

right-hand notation; the former, with T to the left of a is called left-hand
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notation. The image of a under the composite mapping, T followed by §S,

is denoted by aTS in right-hand notation and by STa in left-hand notation.

Of course, both symbols have exactly the same mcaning: the vector a is

mapped by T, and then the resulting vector is mapped by S. Thus in right-

hand notation aTS is read from left to right; in left-hand notation STa is read

from right to left. Both describe the same sequence of events.

§B.2. Linear Transformations

Suppose that T is a vector space homomorphism from VU, to W,. AS

described in § 4.1, in order to represent T by a matrix we choose a basis

{a1, a,...,@m} for Un and a basis {8;, B:,.. , Bn} for W,, and we express

the image of cach vector of the a-basis as a lincar combination of the vectors

of the @-basis:

oT Qyn6; + QeB2 +--+ a8, = Ta

a.T 0418; + 2,282 + an + OinPn = Ta,

Ont = Ani B1 + Om2B0 + oe + AmnBn = Tam

In right-hand notation T is represented by the m X n matrix A of coefficients

of the 6; in the array of these equations.

fax @j2°** Ain

(B.1-R) T—A= fan ae--- an

bon. Qm2 °° * Amn
Each row of the representative matrix A specifies the coefficients of the

image of the corresponding basis vector:

(B.2-R) a,T = 3 a,,8;.
j=l

A vector & = }°7., 7.0, € Um is represented by the row vector X =

(41,...,2%n). Then éT is represented by the row vector XA. If a linear map-

ping S from W,, to Y, is represented by a matrix,C relative to the §-basis for

Ww, and a +-basis for ¥,, then TS is represented by the matrix product AC.

Similarly, ETS is represented by XAC.

In left-hand notation T is represented by the n X m matrix B of coefficients

of the 8; in the transposed array of the equations.
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‘an: Qmi

(B.1-L) T—>+B=—

, Bin?’ *Bin?* * Amn

Thus b,, = a,;, and B = A’. Each column of the representative matrix B

specifies the coefficients of the image of the corresponding basis vector:

(B.2-L) Ta, = > b;,8,.
j=l

The vector = 5°:7, z,a, is represented by the column vector U, where

ty)

U=]{ - = X’,

Xm

Then Ti is represented by the matrix product BU. We note that

BU = A'X' = (XA);

thus the column vector BU which represents T¢ in left-hand notation is the

transpose of the row vector which represents £T in right-hand notation. The

transformation S from W, to Y, will be represented by a p Xn matrix

D = C’. Thus ST is represented by DB = C’A’ = (AC)’, and ST¢ is rep-

resented by DBU = C’A'X' = (XAC)’.

In short, the matrix representation for vectors and linear transformations

using left-hand notation is the transpose of the matrix representation ob-

tained using right-hand notation. Furthermore, in both systems of repre-

sentation the algebra of matrices reflects that of linear transformations.

These observations provide a direct method by which a statement about

matrices which expresses a fact about linear transformations in cither system

of notation can be translated into a matrix statement which expresses the

same result in the other system. For example, consider matrix equivalence,

which in right-hand notation is expressed in § 6.5 by

(B.3-R) A = PCQ".

Then
A'= (Q’)-C'P" —_ (Q’)-'C'P’.

But each linear transformation is represented by a certain matrix in one

system of notation and by the transpose of that matrix in the other system.

Hence A and A’ represent T, C and C’ represent T relative to another pair

of bases, P and P’ represent the change of basis in Um, and Q and Q’ rep-

resent the change of basis in W,. If we let B = A’, D=C’, R = P’, and
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S = Q’, then we obtain a characterization of matrix equivalence, expressed

in left-hand notation: matrices B and D are equivalent if and only if there

exist nonsingular matrices & and S such that

(B.3-L) B= SDR.

Similarity takes the form

(B.4-R) A = PCP"! in right-hand notation,

(B.4-L) B= RTMDR in left-hand notation.

§B.3. Systems of Linear Equations

Now consider a system of linear equations of the form (8.1): \
\

QX1 + Apt. +++ + Aint, = Y1 ‘

QoyX, + AneX%e + :°°* + AanIn = Yo

Amit} + Amol + “ee + Anntn = Ym

In order to represent this system by the matrix A of coefficients arranged

precisely in the array given by the equations themselves, we use left-hand

notation:

(6.5-L) AX = Y,

where X and Y are column vectors representing § € W, and 7 © Um, and

where A represents a linear transformation T from W, to Un:

TM/

TB; = u Q;;a,,
J TM

TE = 7.

(The definitions of T, —, 7, X, and Y are different from those in § B.2.) But the

system can also be expressed by

(6.5-R) X'A’=Y’,

where X’ and Y’ are row vectors. Now in right-hand notation A’ represents

T, X’ and Y’ represent & and y, and éT = 7».

§B.4. Conjugate Bilinear Functions

Finally, consider the matrix representation of a conjugate bilinear function

f, as discussed in § 8.1. In either left-hand or right-hand notation, f is rep-

resented relative to bases {a,! for U,, and {8,} for W, by the matrix A where
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ai; = f(a, B,). In right-hand notation, vectors § and 7 are represented by

row vectors X and Y, and

(B.6-R) fg) = XAY’.

Conjunctivity of A and C is expressed by

(B.7-R) A = PCP’,

and congruence is expressed by

(B.8-R) A = PCP".

In left-hand notation, & and » are represented by column vectors U and

V, and.

(B.6-L) f(& 0) = U'AY.

Conjunctivity of A and C' is expressed by

(B.7-L) A = PCP,

and congruence is expressed by

(B.8-L) A = PCP.

Sometimes a further modification is employed for left-hand notation by

defining a conjugate bilinear function to be conjugate lincar in the first

component and linear in the second. With that convention we have

I, n) = U'AY,
and conjunctivity becomes

A = PCP.

Congruence remains in the form

A = PCP.

You are strongly encouraged to verify the statements of this Appendix by

direct computation, observing carefully how and where the distinetions arise,

yet discerning that corresponding matrix statements have precisely the same

meaning when interpreted as statements about mappings.
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Suggestions and Answers

for Selected Exercises

CHAPTER 1

§1.1. 1. (i) Let & represent the club, and let x and y represent any two

distinct members of . By (b) there is a committee C to which z and y

belong. By (c) there is a member z of K who does not serve on C. Now

finish the proof by using (b) again.

(11) Let C be any committee and let x be any member of C. Use

(c) and (d) to obtain a student y not on C’, and a committee C, which

has no members in common with C. By (b) z and y serve on a uniquely

determined committee C2, and by (c) some student z does not serve on

C;. Then y and z determine a committee C;. Now consider the pos-

sibilities of C and C; having a member in common; to complete the

proof you will have to construct a C;, also.

§1.2. 1. (i) There are 16 distinct subsets.

(ii) 2”,

4. (iii) No.

5. (ii) Yes.

(v) Yes.

7.n(A UBUC) = n(A) + n(B) + nC) — n(A nN B)-n(A NC)

—n(BNC)+n(An BNC).

§ 1.3. 1. (ii) There are seven pairs in the subset.

(iii) There are six pairs in the subset.

2. S X S has at least sixteen elements; hence at least 2'® subsets.

§1.4. 1. (i) dom FG = dom F = S; range FG C range G C U.

$1.5. Ll. (i) Show that if both e and 7 are identities relative to *, then

e = 12,

(ii) Let = and x’ be inverses of x, and consider 7 # (r #2’).

279
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3. (i) Yes.

(ii) Yes.

(iii) No.

§ 1.6. 1. (i) Consider a © (0 @ 2).

(ii) Consider (a_ © b) ® (a © BD), and use (i).

(iii) Consider b’ © [b_ © (b_)’], and use (il).

3. Show that the operations are closed and that the field postulates

are satisfied.

CHAPTER 2

§ 2.1. 2. Only (v) and (x) form groups.

§ 2.2. 2. The space of all real 7-tuples is isomorphic to the space of all val
polynomials of degree not exceeding n — 1.

. No. Why not?

Yes; yes; no; yes; no.on
§ 2.3. 1. Yes; no; yes; no; yes; yes; yes; no; yes; yes.

(iii) Not a group.

4.80 3 = [(-3, 1, 5)].

6. Let €€ (R+S) N35 and write &=p+o0, where pe, and

o © §. Prove that & € (R N 3) + (8 /N J), and finally use the result of

Exercise 5.

NS

§ 2.4. 2. The number of vectors in a maximal linearly independent subset

for each part is

(i) three;

(ii) four;

(iii) two.

§ 2.5. 5. 4 = a1 — aa, €2 = G2 — a, €3 = Oy — Oe, & = %

§ 2.6. 2. (a) n.

(b) 0.

(c) 1.

(d) n+ 1.

(e) Infinite.

4. (i) Choose a basis {a1,..., ax} for 8; extend to a basis {a),..., an}

for VU, and let J = [ ons, we ay an |.

5. Use Theorem 2.14 and Exercise 5, § 2.3.

§ 2.7. 1. Map az" + az"! + --- + a, onto the (n + 1)-tuple

(Qo, @1,..-, An).

7. (i) Yes; no.

(iii) Yes; yes; no.
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CHAPTER 3

§3.1. 4. Writeé = a+ (-a).

8. Only (11) and (iv) are linear.

10. (ii) No.

Gi) Show that MD — DM maps any polynomial into itself.

(iv) Consider D(MD — DM)M.

§3.2. 1. If & & ys, then ¢ = yTS for some yn € U. Hence £ = aS, where

= nl € W. Hence £ € Ms.

3. (1) Show that Qr4s GC Rr + Rs and then use Theorem 2.13.

(i) Choose a basis [ai,...,a4) for Wy; extend to a basis

{@,...,Qm* for Nrs, and show that faiyiT,.... anT} is a basis for

the space MWrsT. linally, observe that NrsT C Is, and complete the

proof.

7. If p(T) = 1, each & € VU is mapped into a scalar multiple of some

fixed vector a: ET = k:a, where k; depends upon & Choose c = ka.

§ 3.3. 3. ad # he.

(i) All exeept DJ.

Gi) All exeept D and DJ.

Gi

§ 3.4. 1. Let & = c(af)—'a, where @ is any vector for which of ¥ 0.

3. (21, te, taf, = 3(ry + re + 43 — 2r,), 1 = 1, 2, 3.

§ 3.5. 3. To show that S’ is nonsingular, suppose that fS’ = @€ 0’, for

some f € WW’; then aSf = 0 for all ae 0. Since S is nonsingular,

Bf = OforallBEt,sof=dEW".

§3.6. 1. G) Let é&= 5 a,a, and y = x b,a,; calculate &.
i=! j=l

2, (i) Calculate (ail + agt + asj + ask) (dil + bet + b37 + dak).

(ii) Try (a,)1 — agt — a3) — ask) as an inverse of (a1 + aot +

a39 + ayk).

§ 3.7. 1. (ii) (a, b)T = (—a — b, —a+ 8).

(iv) 6£.T = —26, + 2p2

62T = —18, + 262.

2. (1) aS = am + 2a

as = —art a.

(iii) @S! = (e — 2e)/3

eS! = (e + €) /3.

3. (iii) (a, b)TS = (—2b, —3a — b)

(a, b)ST = (—3a, a + 2b).

5. (ii) Show that a basis for Rr together with a basis for Nr form

the desired basis for VU.
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CHAPTER 4

. 1 0 0 0 0 1§4.1. 3. (@) A= (5 0) B = ( ) C= ({ o):

‘4, (i) E,, has 1 in the (7, 7) position and 0 elsewhere.

§ 4.2. 3. (ii) The (2,7) elements of AD and DA are a,,d,, and d,,a,,, respec-

tively. These will be equal for all choices of the d’s if and only if a,, = 0

when 7 # j.

4. The major problem is to show that the inverse of a nonsingular

triangular matrix is triangular. Assume that AT = J, and show that

if a,, ~ 0 for r > s, then one of the diagonal elements of T must be

zero. You may use Exercise 3, § 4.4, to conclude that 7 must then be

singular. \

8-12. Use Exercise 7.

1-2 0

13. (ji). A = ( 1 )
0 1-1

2 2 2

(ii) B= (= 1 ;
-1 1-3

§ 4.3. 2. (1) A reflection across the z axis.

(iii) A refiection across the line y = z, followed by a projection

onto the y axis.

3. (i) Let A = (¢ 2) be idempotent. Show that

(a—d)(a+d-— 1) =0,

and consider separately the two cases which arise from this equation.

(ii) As in (1), show that if A is nilpotent, then (a — d)(a + d) = 0,

and consider separately the two cases which arise from this equation.

§ 4.4. 3. Determine necessary and sufficient conditions that the row vectors

form a linearly independent set.

4. To prove the assertion concerning dimension, choose a basis for

Un, having & as its first vector. Then consider the effect on & of the linear

transformations T,, as defined in the proof of Theorem 3.16.

5. Use Exercise 3, § 3.2.

8. A Markov matrix can be singular.

9. Yes.

11. (Gini) J, X, Y,7Z, -—I, —X, —Y, —7Z.

12. (i) Show that Li{v;)L(v.) = Liv’), where

2
y! = (v1 + vec

Ue + cc?”
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§ 4.5. 3. (i) The space spanned by {a:,..., a} is T-invariant, as defined

in Exercise 7, § 3.3.

CHAPTER 5

§ 5.1. 1. Interpret the system (5.3) as defining a linear transformation T

from ‘W,, tO Um. Then p(A’) = p(T).

3.%= -l— 324+ 75

Y= —l — 37%

= lt mw — 22;

z, and z; arbitrary.

4. 4, = —1, 2%, = —2, 2; = 4. Solution is unique.

5. No solution exists.

b. a§5.2. 3. (i) If det(® , = 0, then det(* “) = 0 and
j

det (; i) = 0.

§5.3. 2. If ¢ 4k, ¥ a,,|Ax,| is the expression for expanding a determinant
j=l

for which row 7 and row k are identical.

4. Consider the various ways in which a nonzero product of n terms

can be formed, one from each row and each column.

6. (ii) det V is a polynomial of degree m — 1 in each z,, which has

the value zero if z, = x, for 1 # j. Hence (z; — r,) 1s a factor for each

j>t,anddetV=k MI (a; —7,), where k is a constant, perhaps
l<i<j<cn

depending upon n. Prove that k = 1.

$5.4. 1. 2 = 2, 2%. = —2, 23 = —1.

4. Use Theorem 5.12.

o. x = 1,2, 3.

6. Use Exercise 6, § 5.3.

85.5. 2. Multiply row z of B by a,; and expand by Theorem 5.5(b) to obtain

2°-! determinants, all but one of which are zero.

3. (i) det A = —29

(ii) det B = —11

(il) det C = —#.

4. Expand det B as the sum of 2"-! determinants, all but » of which

are zero; then apply Theorem 5.9.

5. (i) Use Exercise 4, pivoting on d.
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CHAPTER 6

§ 6.1. 3. (iii) A canonical form for m X » matrices of rank k is

(F 2)

Z Zy

§ 6.2. 3. Consider the number of linearly independent rows of each type

of matrix.

6. M,(c7)A,;M.(c).

7. det A,, = 1 = —det P.;; det M,(c) =.

—2 6 4

§6.3. 1. (i) i( 1 —3 2)
l 5 2 i

1 212 1 #0
, 0 1 0 1

Oa), 4 -1 of
0 1 O-1

2. Convert each to reduced echelon form and compare.

7. (i) The reduced echelon matrix EL’ which is row equivalent to A

has rank m. Hence there are m columns which have zero in all posi-

tions except one; these nonzero elements all equal 1 and appear in

m distinct rows.

§ 6.4. 1. See the answer for Exercise 1, § 6.3.
4. All three matrices are of rank 2.

5. First observe that PAI’ is symmetric if A is symmetric. If a.; ~ 0,

then A,,A(A,,)’ has the element 2a,, in the (7, 7) position. A permutation

of rows 1 and 7 and a like permutation of columns places 2a,, in the

(1,1) position. Multiplication of row 1 and column 1 by (2a,,)—!/” pro-

duces 1 in the (1, 1) position. Row operations and corresponding column

operations then produce zeros in the remaining positions of the first

column and the first row.

6. (i) Yes.

(ii) Not necessarily.

(iii) Not necessarily, if both A and B are singular. Yes, if either

A or B is nonsingular.

€21 + eZ. + €23 0 0

§ 6.5. 4. D = 3(e — 1) 0 €2, + ze + e723 0

0 0 €2; + €7z2 + 2;

—2 0 —-16 (~F 3 n3):

7. Use the results of Exercise 5, § 3.7.
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CHAPTER 7

§ 7.1. 1. (i) AL = —3, X, = (2a, — 3a)

Ae = 2, X_ = (a, a).

(11) A1 = —1 = dg; two linearly independent characteristic vec-

tors can be chosen.

A3 = 8, X3 = (2a, a, 2a).

Gi) A. = 1 = w= A”;, X, = (a, 0, —2a, 0)

Na 3, X4 = (a, 0, 0, Q).

10. M and M’ have the same charactcristic values. If XM’ = AX,

let m = max |z,|, and show that |Az,| < m for all 7.

§7.2. 1. (i) Ay = —2, Ae = 1, As = 3. A suitable diagonalizing matrix is

0 1 —-1

P={3 —5 @ |.

d 1 4

(ii) Ar = 3 = Ag, As = 12. A suitable diagonalizing matrix is

1 —1] 0

P=j1 0 l

4 4 -]

(iii) Ay = 1 = Ao, As = 2. Since the characteristic vectors associated

with the repeated characteristic value span only the one-dimensional

space [(5, 2, —5)], no diagonalizing matrix exists.

. (i) and (ii) are similar to diagona! matrices; (iii) 1s not.

3. Use Exercise 8, § 7.1.

4. Use Exercise 7, § 7.1.

5. (i) Consider det(A — AJ), substituting each suggested value.

Gi) Use column operations on det(A — AJ).

6. (ii) Using D as defined in (i), let C = Q'BPTM and apply the

results of (i).

8. An example which proves the assertion is given by

0 1 O 0 1 0

A= 0 0 1) B={0 0 0

0 0 0 0 0 0

KO

§ 7.3. 6. (i) LetA = (° 1) and consider separately the cases a + d = 0

anda +d + 0.

(ii) If A is real and 3 X 3, the characteristic polynomial of A is

of third degree with real coefficients; hence it has at least one real zero.

Thus A? has at least one nonnegative characteristic value. This implies

that A? + —I.
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§ 7.4. 1. (i) wt = [(1, 1)], = ((-1, 1)], &2 = OWI

(ji) A (| 0)

Gi) B= (4 3)

(iv) P = G _i)

5. (iv) E; 1s represented by a matrix which consists of zeros except

for a square block J of size equal to the dimension of ®r,, beginning in

the (k + 1, k + 1) position, where k = dim Rg, + --- + dim Re...

§ 7.5. 1. (i) The minimal polynomial has distinct zeros.

(ii) The characteristic vectors do not span V3. \

(111) The characteristic vectors do not span Us.

(iv) The characteristic polynomial has distinet zeros.

2. A is similar to a diagonal matrix, which can be shown to be B.

5. Compute E£,A, and deduce*that A — a,/ is singular. Any nonzero

vector of the form YE, is characteristic.

§ 7.6. 2. (i) p(A) = 2;d4 = [(0, 0, 1)]; A is nilpotent of index 3.

(ii) {&, &T, &:T?) is a basis.

(iii) Relative to the basis of (ii), T is represented by the matrix

0 1 0

0 0 1 }.

0 0 0

Hence k = 1 and p; = 2

3. (i) By direct calculation, AN = NA if and only if @, 5-1 = ai41,;

forz <nandj> 1, a,, = Oif7 <n, andayn = Oif7 > 1.

(ii) The only characteristic value of A is a;, and the characteristic

vectors can be shown to be those of the form (0, 0,..., 0, tn).

(iii) Under the hypotheses, direct computation shows that the

characteristic vectors are those of the form (0,..., 0, 2n—k41,. . . » Xn).

4. The characteristic polynomial of a nilpotent matrix must be

(—1)"\*; hence the conditions are ca; = Caz = --* = Can = O.

5. If & € Rp, then ET* = 6. Hence Rro+ C Nm. As in Theorem 3.3,

[J] Serr Ss Carlv

[6] © Np S++» S$ Mpa C WV.

Prove by induction that if Qp-1 = Nr, then Qr-~ = Ny. Then use

Theorem 3.4 to show that if Q@p- + Nr, then Qr ¥ Wr-.

§ 7.7. 2. Find the Jordan form of A by determining whether A is similar

to a diagonal matrix.

3. If A is not similar to a diagonal matrix, the two characteristic
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values of A must coincide, and the characteristic vectors must span

a one-dimensional space. Necessary and sufficient conditions are

(a — d)? + 4bc = 0 and b? + c? > 0.

1 1 0

4. (i) ¢ ] o}
0 0 2

—l 1 0

(ii) 0 —-1l }

0 0 -

j ] 0

(i) | 0 ] 0 }.

0 0 -1l

6. Let AJ = J; for fixed 7, let A be the smallest integer such that

ayn ~ 0. Then 64 = aur #0, so k = 72. A 3X3 example shows that

A need not be in Jordan form.

7. (iv) Segre characteristic: ((4, 2)(4)(1, 1)}.

(v) Characteristic polynomial: (A — 2)8(A)4(A — 1)”.

(vi) Minimal polynomial: (A — 2)4(A)4(A — 1).

(vii) Elementary divisors: (A — 2)4, (A — 2)?, At, (A — 1).

2-6 2 -4 1 1 1 0

0 2 0 2 oO 1 0 1
| 3 1

7.8. 1A 2-2 -2 of 4 1 1-1 0
0 2 0 -2 0 1 O =-1

2. Consider the Jordan form of A.

5. (1) Yes.

(ii) No.

6. (i) Recall that a projection is idempotent, and hence its charac-

teristic values are zero or one.

7. Use Exercise 6, § 7.6.

8. H,AH;! can be obtained from A by rotating each entry 180° about

the center of A.

9. A is similar to a matrix J in Jordan form; let J have ¢ diagonal

sub-blocks. Let P = diag(Bi,..., Bs) where cach B, 1s of the form Hy,

of Exercise 8, and where n, is the size of the ith sub-block of J. Then

PJP = J’.

10. First show that A? = (trA)A

CHAPTER 8

§8.1. 2. Gi) (i >) and G )

(ji) Yes.
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9. Begin by moving a nonzero element a,, into the (1, 2) position

by means of congruence operations. Then multiply row 1 and column 1

by —a,’. This produces a canonical block in the upper left. Reduce

to zero the remaining elements of the first two rows and columns.

10. The canonical form has two diagonal blocks of the form (V — 0)

and all other elements are zero.

5 0 0

11. (i) One correct answer is ${0 —20 0 }.

0 0 0

1 0 oO |

Gi){o -1 0).

0 0 0 \

1 0 0 }
jii){o 1 Of.

0 0 0

1 0 oO

2{0 1 of

0 Oo -

§$.2. 5. If & = kn, direct calculations show that the Schwarz inequality re-

duces to equality. Conversely, if |p(é, 7)|? = p(é, )p(m, 7), let k = Fen)
dnd show that p(é + kn, § + kn) = 0.

§8.3. 1. (i) Expand p(é + 7, £ + 7).
(ii) Expand p(t — 9, § — »).
(iii) Expand p(é + 7, & — n).

5. Observe that ||a + c@||/? = |la||/? + c?||B\/? + 2cp(a, B).

7. Choose a normal orthogonal basis for $; extend to a normal orthog-

onal basis for U.

9. (ii) (§ + 3)+ is orthogonal to S and hence is a subspace of S-.
Likewise, (S + 3)+ 1s a subspace of 3+, and hence a subspace of $+ N 3+.

The reverse relation can be established without difficulty.

11. Compute =T? and compare with ¢T.

, cos ¥ sin ¥

34. 1. (i) (oe Vv cos y):
1 0

3. OB-\ 0 0)
0 oO -1

4. (i) @ +b? =1,c?+ d? = 1, ac+ bd = 0 = ad + cd.

7. If an isometry T is represented by a Jordan matrix J relative to

the basis {a,}, then a,T = \,a, + ka.41, where k = Q or 1. Deduce that

k = 0, and therefore J is diagonal.
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9. Consider [J — K)(I + K)7][(UZ — K)Z + K)7]', and observe

that J + K and I — K commute.

§8.5. 1. (i) Complete the square.

2. (fi) r=3,8 = 3.

Gi) r= 3,8 = —-1.

Gi) r=3,s = 1.

3. Letz = X KX*. * Show that 2 = z and that z must be real.
7. There are three types of rank three, and two of rank two.

8. (ii) If A is nonsingular, p(Bo) = n. XB)X’ > 0, for all X. The

canonical matrix which is congruent to 8) must be J. Why?

(iii) Observe that C = DB,D’', where D = diag(m,.. ., Xn). Hence

By and C represent the same quadratic function.

(iv) det C = ITA,, where the 2d, are real and positive. But the

geometric mean of any n positive real numbers never exceeds their

arithmetic mean.

(v) Show that c,, = 1 for all z.

9. Since c, is the coefficient of \*~’ in the expansion of det(A — NJ),

consider any choice of n — j diagonal positions. Let D, denote the

determinant of the 7 X 7 matrix obtained by deleting from A the rows

and columns corresponding to the n — j diagonal positions. Then c, is

the signed sum of all the D; obtained from different choices of the

diagonal positions. There are (“) such choices and, by Hadamard’s

inequality, |D,| < 7?/2k?.

§ 8.6. 2. Adapt the arguments of Theorems 8.35 and 8.36.

3. Use Theorem 8.36.

6. Choose a normal orthogonal basis {a,} and calculate the two equal

expressions p(a,, a;T*) and p(a,T, a,).

7. (ii) First show that if T is normal, so is T — AI. Then compute

p(é(T — AD), €(T — AI)). This also solves (ii).

(iv) Show that Aip(é, &) = Agp(é, &), using (11) and (ili).

CHAPTER 9

§ 9.2. 2. (i) Min = 12, max = 21.

(ii) Min = 20, no max.

3. (i) The inequality >-?., a7, > b can be expressed in vector form

by a-& > b. Let — and y be solutions, and let ¢ = kt + (1 — k)n, where

0<k < 1. Compute.

4, (i) For any line segment L CC, let §,7 € L, and let ¢ lie be-

tween — and 7 on L; then ¢ = k§ + (1 — k)n for some k, OS k <1.

Then f(t) = y-¢ is a convex linear combination of the numbers /(£)

and f().
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$9.3. 2. (i) 0o< gold silver >
1 Io

ring 4 ; 0 5

pin - Ye \ 5 4

earring ¥3 0 } 3

Spree ences ra

30 60 a
mim “s.

~

(ii) Ty > 10, ry > 3, X1 +- 222 > 16.

(iii) Minv = 480.

(1v) 60 rings, no pins, 60 pairs of earrings.

3. (1) The linear form is maximal at y, = 1.4, ye = 2.4. \

(ii) The cost is 175 if 7) = 23 = 0, 22 = .75, xq = .25.
‘

§ 9.4. 2. (iv) Show that (/,.B8)% = P,.B%, and use (i) and (i), recognizing

that P,, = Pr.

(v) Show that (BP,.)* = BP,,, and use (iii) and (i).

3. (ii) At = 3 (9 “3

6. & coincides with J except for the entries in column 7, which are of

the form —a,,ay! in row r ~ 1, and a,j‘ in row 1.

CHAPTER 10

§10.1. 2. (i) 4 = (5 «)

(ii) Diagonalize A to obtain PAP-! = J = (| »).
0 -2

2 —2 2 —2A= Pprp-1 1 (@ + 8e xt ht )

¢ Perr 4 ( —e° 3e? + e-?
(iil) Use the result of (ii), together with Theorem 10.3.

2 2 3

(iv) e4 = 0 2 2 }. Observe that A is nilpotent.

\0 OO 2/

4. (i) Characteristic values: A, = 1, Ax = 2, A3 = 3.

{—a+ 2b —2a + 2b —2a + 2b

J(A) = — bt+e — b+ 2c — b+c},
a — Cc 2a — 2c 2a —-

where a = f(1), b = f(2), ¢ = f(3).
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(iii) Necessary and sufficient conditions are f(1) = f(2) = f(3).

—et2e?+0 —2¢e + 2e7 +0 —2e + 2e7 + 0

(iv) e4 = 0-— e+e 0 — ec? + 2e3 0 — e+e? ].

e+ 0O-e 2e+ 0 — 2e? 2e+ 0-e

§ 10.2. 5. 7 et X(t) = det(X, Xo,..., Xn) + det(X, Xe,...,X,) +

-.. + det(Xi, X2,..., Xn), Where X; denotes column t of X(¢).

0 0 -1

§ 10.3. 1. Y = YA, where A 1 0 1

0 1 1

The characteristic values of A are 1, 1, —1, and A is similar to

1 1 O et — te (t — to)e!-* 0

J={[0 1 0}; ef-ey =| 0 ett 0
lo0 0 -1 0 e—'+

APPENDIX A

§A.1l. 1. mm. ..m, elements.

3. (il) m? elements.

S$ A.2. 1. 2TM* relations.

2. (ii) {(a,b) € I X I |b = ka for some k € J}.

§A.3. 1. F =G means that domF = domG, and zF = xG for all

x € dom F.

2. (n + 1)" — 1 functions.

5. FF* = Ik; F*F = lp.

§A.4. 2. nTM” binary operations.

3. (i) The graph of a relation R on the real numbers is the set of

all points (a, b) in the real plane such that a R b.

§A.7. 2. (i) If both 7 and e are identity elements, then i =7¥*e = e.

4. First show that Z is also a left inverse of x; then show that e is

also a left identity.

5. Use Exericse 4.

7. Consider 90° rotations about two fixed perpendicular axes, per-

formed in each of the two possible orders.

9. The systems are isomorphic.

§A.8. 1. (i) An isomorphism.

(ii) Neither.

(i) A homomorphism onto.

6. Yes. The mapping x —>» 2?, for example, is an isomorphism.
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§A.9. 1. R is reflexive if dom R = A, but not otherwise.

2. Each equivalence class is a line of slope m, and each such line

is an equivalence class.

4. E(4) = 5.

§A.10. 1. (i) (a) is the set of all real numbers.

(11) (a) is the set of all positive integers.

(11) (L) is the set of all lines parallel to L.

3. (i) (a), = {x Ee] | 2 = kn +a for somek € J}.

(iv) To show that each (a),, a ~ 0, has an inverse if n is prime,

consider (1),(k)n, (2)n(k)a, .. . , (2 — L)a(k)n for any fixed k = 1,.

n — 1. These n — 1 cosets can be proved to be distinct from one anoth

and from (0),. Hence one of them must be (1),, which means that

(k), has a multiplicative inverse. ’



INDEX

Abstract systems, 1-20, 256-268; homo-
morphism of, 260-268; isomorphism of,

260-268

Adjoint: determinant of, 111; method for
A“, 109; of a linear transformation, 181,

214-217; of a matrix, 108-109

Alias interpretation, 71

Alibi interpretation, 71

Angle, 177, 192-199

Annihilator, 63

Associativity, 7, 12, 14-18, 23, 48, 51, 66,

258-259

Basis: change of, 133-136, 180, 202; cyclic,

151, 161; dual, 61, 82;for idempotent trans-

formations, 73; for nilpotent transfor-

mations, 161-162; normal orthogonal,

194-199, 212-215; of null space, 53; or-

thogonal, 193-200, 206-217

Bessel’s inequality, 196

Bidual space, 61

Bilinear form, conjugate, 179

Bilinear function, 178-189, 201, 272-273

Bilinearity, 66, 89

Binary: operation, 13, 255; relation, 8, 252

Binomial coefficient, 241

Block multiplication, 91-95

Boolean algebra, 256-258

Brand, Louis, 172

Canonical form, 119; for congruence, 182-
185; for conjunctivity, 183-184; for equiv-

alence, 130, 132; for Hermitian matrices,

183-185; for idempotent matrices, 138;

Jordan, 166-172; for nilpotent matrices,

164; rational, 152; for row equivalence,

128; for similarity, 139-176; for skew

symmetric matrices, 186-187; for sym-

metric matrices, 182-185

Cartesian product, 8, 178, 251
Cauchy inequality, 190
Cayley, A., vii

Cayley-Hamilton theorem. See Hamilton-
ayley theorem

Cayley’s theorem, 262
Characteristic: equation, 142, 248; numbers,

141; polynomial, 142-176, 206; roots,

141; subspace, 142-143; values, 139-176,
200, 205-208, 212-217, 240-243, 248;
vectors, 139-176, 200, 205, 212-217

Closed operations, 13, 255
Cofactor, 106

Column: index, 75; vector, 83, 88, 101, 196,
227

Combinatorial equivalence, 115, 229-236
Commutative group, 258

Commutativity, 15-20, 80, 212

Companion matrix, 152, 172

Complement of a set, 6

Gomplex n‘» roots of unity, 137, 159, 259
Complex numbers, 177-178, 185
Congruence of integers, 9, 267
Congruence of matrices, 180-187, 202, 206-
208

Conjugate: bilinearity, 66, 89, 177-189,
201; of a complex matrix, 177-178; of a
complex number, 185; operatiors, 181;

transpose of a matrix, 181, 186

Conjunctivity of matrices, 180-187, 202,
207-208

Consistency condition, 99
Continuity, 23, 191, 244
Convergence, 237- 243

Convex, 221, 223
Coordinate system, 38. See also Basis
Cosets, 32, 264-268
Cramer’s rule, 110

Cyclic subspace, 151, 161

Dantzig, G. B., 229

Derivative of a matrix, 244

Determinant, 100-108, 111, 141, 246
Diagonability, 143-147, 155-159, 182-185,
206-214

Diagonal matrix, 80-81, 84, 182-185
Difference of sets, 7

Differential equation, 27, 245-249

Dimension: of a linear algebra, 66; of a vec-
tor space, 37, 40-41

Direction numbers, 194
Direct sum, 31-32, 39-40, 151, 161-163,

167-168

Disjoint sets, 6
Distance, 192, 195-198
Distributivity, 15, 18, 257

Division algebra, 68
Division ring, 25
Domain, 10, 252, 254

Dot product, 62, 187-188, 194
basis, 61, 82; problem, 225-229;

space, 44-45, 57-65, 82, 215-217, 225-226
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Duality: in Boolean algebra, 258; in linear
programming, 225-229; theorem, 228

Echelon form, 123; reduced, 124-128

Kigenvalues, 14]

Kigenvectors, 141

Element, 4, 12-13; idempotent, 15; identity,

15, 258; inverse, 15, 258

Elementary divisors, 171

Elementary matrices, 120-122, 181, 230
I:lementary operations on matrices, 119-

124, 129, 181, 230

Elementary operations on systems of equa-
tions, 113

I-quivalence classes, 119, 263-266
Equivalence relations, 13, 119, 262-263;

combinatorial equivalence, 115, 229-236;
congruence, 9, 180-187, 202, 206--208,

267; conjunctivity, 180-187, 202, 207-
208; equivalence, 128-136, 179; row

equivalence, 122-128; similarity, 132-
176, 206

Equivalent matrices, 128-136, 179

Equivalent systems of equations, 112, 128,

230

Kuclidean group, 197

Euclidean space, 189-200, 214-218

Feasible vector, 227-228
lield, 17-20, 25-26, 139; finite, 19; of sca-

lar matrices, 79, 84; as a vector space, 25-
26

Tinite dimension, 37

Iinite field, 19

Finite geometry, 3

Fixed point, 140

Form: conjugate bilinear, 179; Hermitian,
201-210; quadratic, 202-210

Forsythe, G. E., 111

Frobenius, 68

Function, 9-12, 254-255, 264-268; coset of
a, 264-268; domain of a, 10, 254; of a
function, 11-12; inverse, 11, 254; of a
matrix, 239-243; range of a, 10, 254; re-
versible, 11, 254; value of a, 9

Functions: bilinear, 178-189, 201; conju-
gate bilinear, 177-189, 201; Hermitian,
201-211; matrix of, 248-246; product of,
12; quadratic, 201-211; space of contin-

uous, 23, 191

Gram-Schmidt orthogonalization, 193, 197
Graut, P. J. L., 232

Group, 258-260; commutative, 258; Fuclid-
ean, 197; full linear, 58; Lorentz, 91; of

matrices, 84; Pauli, 91; unitary, 197

Hiadamard's inequality, 211
Half-space, 221, 223
Hamilton, W. It., vii, 67

Hamilton-Cayley theorem, 148-149, 152-
153, 173, 239

Hermitian: congruence, see Conjunctivity;

form, 201, 209; function, 201-204; matrix,
181-187, 202-211, 217; skew, 181, 186-

187, 203, 210; symmetry, 189; transfur-

mation, 215

Homogeneous: differential equation, 246;
system, 97-99

Homomorphism: of abstract systems, 260-
262, 266-267; kernel of a, 52, 268; of vec-
tor spaces, 46, 51

Huntingdon, It. V., 257

Hyperplane, 63

Idempotent: element, 15-16; linear trans-

formation, 50, 73, 87, 153-159, 175; ma-

trix, $1, 84, 87, 138, 159, 175

Identity: clement, 15-18, 257-262, 268;
linear transformation, 48-51; matrix, 79-
80; right, 259

Independence, See Linear independence __,

Inequality: Bessel’s, 196; Cauchy, 190;
Hadamard’s, 211; Schwarz, 189-192; tri-
angle, 191-192 \

Infinite-dimensional, 37-38
Inner product, 187-191, 217; space, 189-218
Integral of a matrix, 244

Intersection of sets, 6, 256

Intersection of subspaces, 29

Invariant spaces, 54, 150-155, 160-163,
167-168

Inverse: clement, 15-18, 258-259; of a lin-
ear transformation, 55-58; of a mapping,
10-12, 254; of a matrix, 82; right, 259

Inverse of a matrix, calculation of: by ad-

joint method, 108-111; by Hamilton-Cay-
ley theorem, 173-175; for an orthogonal

or unitary matrix, 199; by pivot opera-

tions, 114-117, 235-236; by row and col-
umn operation, 130-132; by row opera-
tions, 125-126

Isometric diagonability, 212-214

Isometry, 197-200, 206-218

Isomorphism: of abstract systems, 260-268;

of matrices and linear transformations,

85-87; of vector spaces, 42-44, 62

4

Jordan canonical form, 159, 166-173, 239-
242, 248

Kernel of a homomorphism, 52, 268
Kronecker delta, 60

Latent roots, 141

Law of cosines, 195
Left hand notation, 10-12, 75, 97, 269-273
Length, 177, 188, 191-198

Linear algebras, 29, 65-68, 86-87
Linear combinations, 29

Linear dependence, 33-36
Linear equations, 96-100, 109-117, 120-131,

234-235; consistency condition for, 99;

equivalence of, 112, 128, 234-235; homo-
geneous, 97; nonhomogeneous, 98; opera-

tions on, 111-117, 229-230; solution by
Cramer's rule, 110; solution of, 96

Linear functional, 44-45, 58-65, 82-83, 215-
217, 225-226

Linear group, 58

Linear independence, 33-41, 54, 60, 146,
151, 155-157, 161, 193.



Linear inequalities, 220-223
Linear programming, 224-229
Linear space. See Vector space
Linear transformation, 42-74, 84-87, 132-

136, 153-175, 197-200, 206-207, 211-217,
240: adjoint of, 214-217; characteristic
values of, 139-143, 158, 167-171, 174, 200,
217; characteristic vectors of" 139-143,
200, 215, 217; Hermitian, 215; idempo-
tent, 50, 73, 87, 153-159, 175; identity,

48-49; inverse of, 57; isometric, 197-199,

206-207, 211-212; Lorentz, 91; matrix
representation of, 67-75, 85-88, 132-136;
negative, 48-49; nilpotent, 50, 54, &7,
159-168, 240; nonsingular, 55-- 58, 65, 167:
normal, 215-217: null space of, 51-58, 94,
167; nullity of, 51-58; orthogonal, 197-

199, 206; range space of, 51-58, 126, 167;
rank of, "l- 58, 65; restricted to a sub-
space, 150, 167- 168: Segre characteristic
of, 170; self adjoint, 215; specific form of,
68-73; spectral form of, 158; spectrum of,
141; symmetric, 215; trace of, 174-175;
transpose of, 63-65, 82-83, 215-216; uni-

tary, 197-199, 207; zero, 48-49

Linear transformations: equality of, 47;
product of, 48; scalar multiple of, 48; sum
of, 48

Lorentz matrices, 91

MacDuffee, C. C., 79
Main diagonal of a matrix, 81
Mappings. See Functions, Linear transfor-
mations

Markov matrix, 90, 143
Matrices: block multiplication of, 91-95;

combinatorial equivalence of, 229-236:
congruence of, 180-187, 206-208: con-
junctivity of, 180-187, 207-208; equalit ty
of, 76; equivalence of, 128-136, 179: pro
uct of, 77-78; row equivalence of, 122-
128; scalar multiple of, 76; sequences of,
237/238 ; similarity of, 182-176, 206; sum
of, 76

Matrix: adjoint of a, 108-109; augmented,

98-99; characteristic equation of a, 142,
248; characteristic polynomial of a, 142-
176, 206; characteristic values of a, 139-

176, 205-217, 240-248; characteristic vec-

tors of a, 1389-176, 205-217; conjugate of

a, 177-178, 181, 186; continuity of a, 244;

derivative of a, 244; determinant of a,

100-108; diagonability of a, 143-147, 155-
159, 182-185, 206-214; diagonal, 80-81,
182-185; elementary, 120-122, 181, 230;

elementary divisors of a, 171; elementary
operations on a, 119-124, 129, 181, 230;
of functions, 243, 249; functions of a, 239-

243; Hermitian, 181-187, 202-211, 217;

idempotent, 81, 84, 87, 138, 159, 175;
identity, 79-80; impedance, 137; integral
of a, 214; inverse of a, 82, 108-111, 114-
117, 125-126, 130-132, 173-175, 199, 235-
236; isometric diagonability of a, 212-214;
Jordan form of a, 159, 166-173, 239-248;
Lorentz, 91; main diagonal of a, 80; Mar-
kov, 90, 143; minimal polynomial of, 148-
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150, 171, 206; nilpotent, 81, 84, 87, 147,

159-171, 175, 240; nonsingular, 81-82,
89-90, 143, 217-218; normal, 212-213,
217; notation, 269-273; orthogonal, 198-

200, 206-218; Pauli, 90-91; permutation,
120-122, 129, 230-236; pivot operation on
a, 113-1 17, "229-236: polynomial, 148-
149; rank of a, 88-91, 130; row operations
on a, 119-124, 129, 181, 230: scalar, 80;
Segre characteristic of a, "170; signature of
a, 203-204; singular, 8], 84, 108, 111;
skew Hermitian, 181], 186, 210; skew-
symmetric, 83-85, 111, 186-187, 200, 203;
spectral form of a, 154-158; spectrum of
a, 141; strictly triangular, 81, 84; sym-
metric, 83-85, 132, 182-187, 201- 209;
trace of a, 174-175, 242, 246; transpose oO
a, 82-84, 96-97, 132, 176, 178-186, 199,
203-218, 235, 269-273; triangular, 81, &4,

90, 111, 116, 212-213; unitary, 198-200,

oO 218; Vandermonde, 108, 111; zero,

7

Member of a set, 4, 12-13
Metrie, 205

Metric space, 192

Minimal polynomial, 148-150, 171, 206

Monic polynomial, 148

Nilpotent linear transformations, 50, 54, 87,

159-168, 240

Nilpotent matrices, 81, 84, 87, 147, 159-171,

175, 240

Nonhomogeneous system, 98

Nonsingular linear transformation, 55-58,

65, 167

Nonsingular matrix, 89-90, 143

Normal matrix, 212

Normal orthogonal basis, 194-200, 206-217

Normal transformation, 215-217

Normal vector, 194

nth roots of unity, 137, 159, 259

m-tuples, ordered, 38, 251

n-tuples, space of, 26, 36, 38, 43
Null space of a linear transformation, 51-58,

126, 167

Nullity of a linear transformation, 51-58

Operation: binary, 13-14, 255-258; closed,
13, 16-17, 255, 258; elementary, 113, 120-

129, 230; n-ary, 255-256; pivot, 114-117;

unary, 13, 256

Optimal vector, 228

Ordered n-tuple, 38, 251-252

Ordered pair, &, 21
Orthogonal: basis, 193-200, 206-207; com-

lepment. of a subspace, 194, 197; matrix,
198-200, 206-218; projection, 154—155,
194, 197: transformation, 197-199, 206:
vectors, 192-1 1938, 200, 206, 217

Orthogonality, Gram-Schmidt process for,
193, 197

Orthonormal, 194

Parallelogram principle, 22
Parseval’s identity, 196

Partial ordering, 222, 253
Partition, 263-264
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Pauli matrices, 90-91

Permutation, 104

Permutation matrix, 120-122, 129, 230-236
Perpendicularity. See Orthogonality
Pivot operations, 113-117, 229-236

Polar decomposition, 217-218
Polynomials: characteristic, 142-176, 206;

minimal, 148-150, 171, 206; monic, 148;
space of, 26, 27, 32, 38, 44, 50-51, 58-59,

63

Positive definite, 189, 204, 209-211, 218
Postulates, 18-15, 256; for a Boolean alge-

bra, 257; for a field, 17-18; for a group,

258; for a linear algebra, 65-66; for a vec-
tor space, 25

Principal axes theorems, 206-207
Product: of cosets, 266-268; dot, 187-188,

194; inner, 187-191, 217; of linear trans-
formations, 48, 69-73; of mappings, 12;

of matrices, 77-78
Projections, 45, 50, 78, 153-155, 158-159,

175-176, 194, 197; orthogonal, 154-155,

194; supplementary, 154-155

Proper states, 141

Proper values, 141

Proper vectors, 141
Pythagorean theorem, 196

Quadratic form, 202-210; positive definite,

204, 209-210; rank of, 203; real symmet-
ric, 203-210; signature of, 204

Quadratic function, 203-210
Quadric surface, 209-211

Quaternions, 67-68, 79

Quotient space, 33, 55, 58

Quotient, system, 267

Range, 10, 252, 254

Range space of a linear transformation, 51-

58, 126, 167

Rank: of a conjugate bilinear form, 180; of

w conjugate bilinear function, 180; of a
linear transformation, 51-58, 65; of a ma-

trix, 88-91, 130; of a quadratic form, 203

Rational canonical form, 152

Reflexive relation, 119, 262-263
Relation, 8-9, 252-253, 262-263; binary, 8,

252; cosets of a, 264; domain of a, 252;

equivalence, 13, 119, 262-263; induced,

264; range of a, 252; reflexive, 119, 262-

263; symmetric, 119, 262-263; transitive,
119, 262-263

Right hand notation, 10-12, 75, 97, 269-273

Rigid motion. Sce Isometry
Rotations, 49, 70-71, 200, 259-260

Row: equivalence of matrices, 122-128;
index, 75; operations on matrices, 119-

124, 129, 181, 230; vector, 83, 88-89, 196,

198-200

Scalar: matrix, 80, 84, 243; multiple of a
linear transformation, 47-48; multiple of

@ matrix, 76; multiple of a vector, 22-23,
25; polynomial, 148; product. See Inner

product
Scalars, 25; representing a linear transfor-

mation, 67-75, 85-88, 132-136

Schwarz inequality, 189-192
Segre characteristic, 170
Self-adjoint: matrix, 181; transformation,

15

Sequence of matrices, 237-243
Sequence of numbers, 237

Series: of matrices, 238-243; of numbers,
237; power, 238-243; Taylor, 210, 237

Set, 3-7; subset of a, 5; void, 4

Sets, 3-7, 251-252, 256-257; cartesian prod-

uct of, 8, 251-252; complementation of,

6-7; difference of, 7; disjoint, 6; equality
of, 5; intersection of, 6-7; operations on,

6 13; symmetric difference of, 7; union of,

Signature of a quadratic or Hermitian func-
tion, 204 {

Similarity, canonical form for, 1389-176 |
Similarity of matrices, 132-138, 144~-147,

155-159, 163-165, 168-176, 199, 206-208,

211-213
Singular matrix, 81, 84, 108, 111

Skew-Hermitian matrix, 181, 186, 210
Skew-symmetric matrix, 83-85, 111, 186—

187, 200, 203

Space. See Vector space

Spectral form, 154-158

Spectrum, 141

Stochastic matrix. See Markov matrix

Stone, M. H., 257
Submatrix, 124

Subsets, 5-6, 13

Subspace, 27-33; annihilator, 63; charac-
teristic, 142-143; cosets of, 32; cyclic, 151,
161; invariant, 54, 150-155, 160-163,

167-168; mapping of, 51; null, 51-58, 126,

167; orthogonal complement, 194, 197;

projection on a, 45; range, 51-58, 126,

167; spanned by vectors, 29

Subspaces, 27-33; dimensions of, 41; direct
sum of, 31-32; intersection of, 29; sum of,

9

Sum: direct, 31-32; of linear transforma-
tions, 48; of matrices, 76; of subspaces, 29

Superdiagonal of a matrix, 159

Supplementary projection, 154-155
Svivester, J. J., vii

Symmetric: difference of sets, 7; inner pro-
duct, 189; matrix, 83-85, 132, 182-187,

201-209; relation, 119, 262-263

Symmetry, conjugate or Hermitian, 181
System of linear equations, 96-100; aug-
mented matrix of, 98-99; consistent, 99;

equivalence of, 112, 128, 230; homoge-

neous, 97-98; matrix of, 96; nonhomoge-

neous, 98-99; operations on, 111-117;
solution by Cramer’s rule, 110; solution

by pivot operations, 113-117; solution of,

Taylor expansion, 210, 237
Trace of a linear transformation, 174
Trace of a matrix, 174-175, 242, 246

Transitive relation, 119, 262-263
Transpose of a matrix, 82-84, 96-97, 132,

176, 178-186, 199, 203-218, 235, 269-273
Transposition, 103, 232-233



Triangle inequality, 191
Triangular matrix, 81, 84, 90, 111, 166, 212-

213: strictly, 81, 84
Trotter, H. F., 161

Tucker, A. W., 227, 229

Union of sets, 6, 256

Unitary: matrix, 198-200, 207-218; space,

189-199, 214-218; transformation, 197-
199, 207

Vandermonde matrix, 108, 111

Vector: addition, 22-25; characteristic, 139-
176, 200, 205, 212-217; column, 83, 89,
101, 196, 227; components, 21; length of,
188, 191-198; matrix representation of,

83-84; normai, 194; orthogonal, 192; row,
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83, 8, 196, 198-200; scalar multiple

of,
Vector space: of continuous functions, 23,

32, 189; dimension of, 37, 40-41; dual, 44-
45, 57-63; Euclidean, 189-200, 214-218;

inner product, 189-218; of n-tuples, 26,

36, 38, 43; of polynomials, 26, 27, 32, 38,
44, 50-51, 58-59, 63; of scalars, 26; of
solutions of a differential equation, 27;

subspace of, 27-33; unitary, 189-199,

214-218. See also Subspace

Vector spaces, direct sum of, 31-32, 39-40,

151, 161-163, 167-168

Venn diagrams, 5-6

Void set, 4

Zero: mapping, 12; matrix, 77; subspace, 28;
transformation, 48-49; vector 25




