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Preface

The present volume is based on lectures, laboratory exercises, and

field problems on geoelectric sounding which were organised for

senior students in exploration geophysics at the Indian Institute of

Technology, Kharagpur, West Bengal (India). It may therefore be

used as a textbook on geoelectric sounding (as part of a course on

electrical methods of prospecting) on the undergraduate or post-

graduate level.

The need for a comprehensive book on this subject has long been

felt by geologists and geophysicists engaged in resistivity sounding

for mining and engineering geological problems. The publication

of three- and four-layer theoretical master curves for Wenner ar-

rangement (MOONEY and WETZEL) in 1956 by the University of

Minnesota, of an album of three-layer theoretical master curves for

Schlumberger arrangement (COMPAGNIE GENERALE DE GEOPHYSI-

QUE) in 1955 (reissued in a more organised and modified form in

1963) by the European Association of Exploration Geophysicists

and recently (1966) of an album of charts by ORELLANA and MOONgY,

has considerably increased the necessity for such a book on the

subject. The aim of this work is to give students in exploration

geophysics a comprehensive idea and elaborate techniques of in-

terpretation of Schlumberger, Wenner and dipole sounding curves,

with a reasonable accuracy, together with an adequate number of

plates and charts for the purpose. Attempts have been made to

explain, in brief, the various field layouts together with plans for

the same. A sufficient number of examples with carefully drawn

self-explanatory diagrams have been presented which are followed

by problems at the end of the chapters to serve as exercises for

the students. However, no attempt has been made to include instru-
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mentation or any detailed description of measurement techniques.

Although the book is primarily meant for students, it can be

profitably used by professional exploration geologists and geo-

physicists engaged in resistivity sounding for exploration of miner-

als, ground water, bed rock depth, and structural features for oil.

Civil engineers, particularly those interested in the determination

of quality and depth of bed rock, will find this book a self-

sufficient and useful aid in their profession. Agricultural scientists

and engineers interested in the exploration of ground water for

irrigation and other projects may also find this book of value.

It is a pleasure to thank Dr. T. C. Bagchi, Head of the De-

partment of Geology and Geophysics and other colleagues for

facilities and encouragement offered in preparing this book. The

assistance offered by Sri N. G. Sarkar in preparing the charts and

drawings is appreciated. Discussions with some of our advanced

students have been useful, and we are thankful to them. The Di-

rector, Indian Institute of Technology, Kharagpur, has kindly per-

mitted publication of this book outside the institute.

We shall appreciate receiving comments and suggestions for im-

proving the value and utility of this work.

Kharagpur (India) P. K. BHATTACHARYA and H. P. PATRA
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CHAPTER 1

Introduction

Geoelectricity is a member of a group of sciences known as the

geophysical sciences. It deals with the electrical state of the earth

and includes discussions on the electrical properties of rocks and

minerals under different geological environments, as well as their

influences upon various geophysical phenomena. Geoelectric explo-

ration (or, more simply, electrical exploration) is a major branch

of exploration geophysics. It uses the principles of geoelectricity

for geological mapping of concealed structures, for the exploration

and prospecting of ores, minerals, and oil, and in the solution of

many hydrogeological and engineering geological problems.

It was formerly believed that geoelectric methods were suitable

only for shallow exploration, and such methods were therefore

primarily used for mining and engineering geophysical problems.

Today, however, modern developments and refined techniques of

interpretation have considerably increased the depth of investi-

gation. It is now claimed (particularly by Soviet geophysicists)

that exploration by geoelectric methods may be carried out with

reasonable accuracy down to depths of 8-10 km.

Geoelectric exploration consists of exceedingly diverse princi-

ples and techniques, and utilizes both stationary and variable

currents produced either artificially or by natural processes. One

of the most widely used methods of geoelectric exploration is

known as the resistivity method. In this, a current (a direct or very

low frequency alternating current) is introduced into the ground

by two or more electrodes, and the potential difference is measured

between two points (probes) suitably chosen with respect to the

current electrodes. The potential difference for unit current sent

through the ground is a measure of the electrical resistance of the
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ground between the probes. The resistance is a function of the

geometrical configuration of the electrodes and the electrical para-

meters of the ground. Broadly speaking, we can distinguish two

types of resistivity measurements. In the first, known as geoe-

lectric profiling or mapping, the electrodes and probes are shifted

without changing their relative configurations. This gives us an

idea of the surface variation of resistance values within a certain

depth. In the second method, known as geoelectric sounding, the

positions of the electrodes are changed with respect to a fixed

point (known as the sounding point). In this way, the measured

resistance values at the surface reflect the vertical distribution of

resistivity values in a geological section. In this book we are prima-

rily concerned with resistivity sounding only.

The two types of electrode configurations which are most fre-

quently used in resistivity sounding are called the Wenner and

Schlumberger arrays. While the Wenner configuration is used in

the United States and Canada, and in other English-speaking

countries, the Schlumberger configuration is almost exclusively

used in European countries and in the U.S.S.R.

Descriptions of the Wenner method of sounding, and the tech-

niques for its interpretation, are available in a number of textbooks

written in the English language. On the other hand, descriptions of

the Schlumberger method of sounding, and of the powerful tech-

niques of interpretation which have developed chiefly outside the

English-speaking world (notably by French and Soviet geophysi-

cists), are mentioned in only a few English textbooks. The main

purpose of this book, therefore, is to bring to English-speaking

students, research workers, and practicing geophysicists a detailed

description of the Schlumberger method of geoelectric sounding

as well as of techniques of interpretation which are available at

present.

The main text is divided into five chapters, which are briefly

described below:

Chapter 2 deals with the theoretical foundations of geoelectric

sounding, since a sound understanding of basic principles is es-

sential for students specializing in the field. This chapter helps to
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create a solid background for what will be discussed in subsequent

chapters. A reader lacking the mathematical background neces-

sary for a grasp of these concepts may skip over this chapter and

still follow without difficulty the interpretation techniques ex-

plained in subsequent chapters.

Chapter 3, giving a detailed description of the Schlumberger

method of sounding, forms the major portion of this book. The

interpretation of field curves has been facilitated by the recent

publication of three- and four-layer theoretical master curves.

Since these curves do not represent all the field conditions that

are met in practice, a rapid and reasonably accurate method of

constructing master curves by graphical and semi-analytical means

is included. The chapter also includes a somewhat detailed de-

scription of the interpretation of Schlumberger curves with figures

presented in this book. These may be used in conjunction with the

theoretical master curves available in published form. However,

the procedure for interpreting Schlumberger curves with the help

of charts given in this volume comes only at the expense of some

loss in accuracy. It should be mentioned here that the master

curves mentioned above are plotted on double-logarithm graph

paper with a modulus of 62.5 mm. This paper is sometimes diffi-

cult to obtain in English-speaking countries, although it is easily

available in countries where the metric system is used. If this paper

is not readily available, students may use transparent double-loga-

rithm graph sheets with a modulus of 2} inches, without risking

any serious error in interpretation.

Chapter 4 explains, in brief, the relative merits and drawbacks

of the two symmetrical arrangements for vertical electrical sounding,

followed by methods of interpretation available for Wenner sound-

ing curves.

Chapter 5 gives a short description of dipole sounding, a modern

development in deep electrical sounding. This method is widely used

in the Soviet Union for mapping basement structures.

Chapter 6 discusses the various fields of application of geo-

electric sounding.

The principles dealt with in each chapter have been illustrated
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by means of a sufficient number of typical, worked-out examples

given at the end of each chapter. Some problems have also been

included.

This volume, together with the albums of curves by the Com-

PAGNIE GENERALE DE GEOPHYSIQUE (1955, 1963), ANONYMOUS

(1957, 1963a, b, c) and Mooney and WETZEL (1956) makes a

complete unit for class, laboratory and field use in resistivity

sounding with Schlumberger, Wenner and dipole arrays.



CHAPTER 2

Theoretical Foundations

This chapter deals with the theory of current flow in a horizontally

stratified earth. A proper understanding of the theory is necessary

for the appreciation of various interpretation techniques dealt with

in later chapters. Some basic concepts regarding anisotropy and

apparent resistivity are introduced, and principles of vertical and

dipole electrical resistivity sounding are explained.

CURRENT FLOW IN A HOMOGENEOUS EARTH

The flow of current in a medium is based on the principle of conser-

vation of charge and is expressed by the relation:

— oq
divJ = — Or (2.1)

where J is the current density (A/m2) and q is the charge density

(C/m3). This relation (2.1) is also known as the “equation of contin-

uity”. For stationary current (2.1) reduces to:

div J = 0 (2.2)

If p is the resistivity (Qm) of the medium, then the current density

J is related to the electric field intensity E (V/m) by means of Ohm’s

law, which is given as:

jetpe—+ aay (2.3)
p p

where V is the electric potential (volts). For an isotropic medium,

p is a scalar function of the point of observation, and J is in the
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same direction as E. In an anisotropic medium, however, J has a

directive property and, in general, is not in the direction of E.

This requires some modification in Ohm’s law.

For a rectangular coordinate system we can write the modified

Ohm’s law as:

Jaq = OnzEz + OnyEy + O2zkz

Jy = Cyzks + Oyyky + Oyzkz (2.4)

Je = OrgEx + OryEy + Czzkz

where ox, may be defined as the electric field in the direction of k

when a unit current density is in the direction of i. It can be shown

from conservation principle that 04, = ox. Thus, in an anisotropic

medium conductivity is a symmetric tensor having six components.

The current flow in an anisotropic medium will be treated later.

For an isotropic medium we get from relations (2.2) and (2.3):

div (5 grad v) = 0 (2.5)

or.

grad (=) grad V + > div grad V = 0 (2.6)

This is the fundamental equation of electrical prospecting with

direct current. If the medium is homogeneous, p is independent of

the coordinate axes and eq.(2.6) reduces to: div grad V = 0, or:

V2V =0 (2.7)

Thus, the electric potential distribution for direct current flow in a

homogeneous isotropic medium satisfies Laplace’s equation.

Let us now suppose that a current J be introduced into an infi-

nite homogeneous medium at a point P. Then the potential at a

distance r from P will be only a function of r. Hence Laplace’s

equation can be written as:

av 2 a 9
dr? r dr
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a solution of which is:

yar (2.8)

As the potential is taken to be zero at a large distance from the

source, the integration constant C; = 0. It is clear that the equi-

potential surfaces are spherical, and the electric field lines as well

as the current lines are radial. The current density at a distance r

may be written as:

pe i HM LIG
p or p

Thus, the total current flowing out of a spherical surface of radius

ris:

4nr’J = An Co
p

Since this is equal to J, the total current introduced at P, the

constant C2 is given by: C2 = Ip/4z.

For a semi-infinite medium, t.e., when the current is introduced

into a homogeneous ground, the total current flowing out of a

hemispherical surface of radius r is given by the relation, 2ar?J =

= (2n/p)C2, and the constant Ce is equal to [p/2z.

Thus, the potential at any point due to a current source at the

surface of a homogeneous earth is:

yo (2.9)

In practice, the current is introduced into the ground by means of

two electrodes, i.e., a source and a sink; and the potential at any

point due to this ‘‘bipolar’” arrangement is:

y=e(4--) (2.10)
2m ri ro

where r1 and re are the distances of the point P from the source

and the sink, respectively.
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RESISTIVITY MEASUREMENT

Consider that a direct current of strength J is introduced into a

homogeneous and isotropic earth by means of two point electrodes

A and B (Fig.1). The potential difference between the two pbints

M and N on the surface is given by—using eq.(2.10):

Ip l 1 1 l

= On ( AM — EM) - (aN 7 av) (2.11)
where p is the resistivity of the ground. Thus, the resistivity of the

homogeneous earth can be determined from the measurements on

the surface.

Various electrode arrangements for A, B, M, and N have been

suggested for the purpose. The ones more commonly used for re-

N

oN

/ oo \
/ Uc \ \

od NN \

oe \\
a

Fig.1. Point electrodes over a homogeneous and isotropic earth. 4, B = point

source and sink; M, N = observation points on the surface of the earth.

A ‘ B

+ a j Schlumberger
it .4 ~ ‘arrangement

WE
|

M N

} i, 4 | Wenner
-—o —. "| arrangement
——L3e oo

Fig.2. Symmetrical electrode arrangements. Top: Schlumberger arrangement

(AB = L, MN = 1; 1 < L/S). Bottom: Wenner arrangement (/ = a, L = 3a:

I = L/3).
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sistivity sounding are: (/) symmetrical arrangement, and (2) dipole

arrangement.

In the symmetrical arrangement, the points A, M, N, Bare taken

on a straight line such that the points M and N are symmetrically

placed about the centre O of the ‘‘spread” AB (Fig.2).

Here:

_/p( 4A 4AV = il rey) (2.12)
which gives:

_ (L?2 — 1%) AV
= > (2.13)

In the Wenner arrangement, L is taken equal to 3/ (/ is convention-

ally denoted by “‘a’’ in the Wenner configuration and is known as

spacing or separation of the electrodes), and the resistivity is

given by:

p = 2na ay (2.14)

If L > 5/, we can put (L2 — /?) in eq.(2.13) equal to L? with an

error less than 4%. This is known as the Schlumberger arrangement

(Fig.2). In this case, the resistivity is given by:

mL? AV | aL? E

pe aT 215)

where E = AV// is (approximately) the electric intensity at the

central point O. Hence, this arrangement is sometimes known as

the ‘‘gradient arrangement”, and Wenner’s arrangement as a “‘po-

tential arrangement’’.

The general dipole arrangement is shown in Fig.3, where r is

usually taken to be much larger than AB. The potential at O due

to AB 1s given by:

= 35 (40-30)
= 3h [{1 + (L/2r)2 — (Lr) cos 6}-#

— {1 + (L/2r)? + (L/r) cos 6}-*]
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wp
/
>

q

8

A(+I)

em ee L —_—— oO

L
y

B(-I)

Fig.3. A general arrangement for dipole electrical sounding. AB = current

dipole; MN = measuring dipole; Q, O = midpoints of current and measuring

dipoles.

Me Neq q My =

|

. My

/

/
/ Mx Nx

/ ”

/ 7 “
/ a My

fo. 7

/ “
/ “

Xe
B Q A Max Nax

Fig.4. Various arrangements for dipole sounding. MaxNax = axial; MzNz =

= parallel; M,Ny = perpendicular; M,N; = radial; MoNe = azimuthal;

MeqNeq = equatorial.
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which can be expressed in a series, and the potential may be

written as:

_ IpL cos 6
= FT {1 + (L/2r)? (5 cos? 6 — 3) + higher-order terms}

(2.16)

If r > L, the expression (2.16) may approximately be written as:

IpL cos 0

yee 2r? (2.17)

If r is greater than 3L, the error of neglecting the higher-order

terms is less than 3%. Thus, the potential is equal to that of a

dipole of moment JpL/2z. Hence, the electric field can be written as:

OV —— IpL cos 8

br = ap = (radial)

1 eV IpLsin6

fa= — yr 06 In (azimuthal)

pn Ue Ioh 3008-1 Goat
o Ox 7 20 re p

ov 3 IpL sin6cos6

oy = dy 2a" P| (perpendicular)

The electric field can be measured by means of two electrodes, M

and N, as shown in Fig.4 for different orientations. If the distance /

is small, then we can write: E ~ AV/I. Thus, from the relations

(2.18), the resistivity of the ground can be determined.

When @ = 90°, we get the electric field for the ‘equatorial ar-

rangement’’, given by:

IpL

Feq = 2ar8 (2.19)

and when 6 = 0°, we get the electric field for the “axial arrange-

ment’’, given by:

Fax = (2.20)
mrs
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Of the various dipole arrangements, the last two, i.e., the equatorial

and the axial arrangements, are commonly used for dipole sounding.

Dipole sounding was suggested by Al’pin as early as 1940, al-

though the usefulness of this method was not established until

about 1956. The dipole method is now used extensively in the

U.S.S.R. for deep electrical soundings (i.e., for depths more than

1 km).

Apparent resistivity

Using the formulas given so far, we can find out the resistivity

of a semi-infinite homogeneous earth by means of any of the

electrode arrangements discussed earlier. For an inhomogeneous

medium we define a quantity p, known as the apparent resistivity.

The apparent resistivity of a geologic formation is equal to the

true resistivity of a fictitious homogeneous and isotropic medium

in which, for a given electrode arrangement and current strength /,

the measured potential difference V is equal to that for the given

inhomogeneous medium. The apparent resistivity depends upon

the geometry and resistivities of the elements constituting the given

geologic medium. Thus: 6 = K(AV/J) where K is the geometrical

coefficient having the dimension of length (m). For the different

arrangements discussed in the section on current flow in a homo-

geneous earth, the values of K will be as given below:

(/) Symmetrical:

Ky = 6.284 (Wenner)

Ks = 0.785 e+ oe ~4 (Schlumberger)
(2) Dipole:

Radial: Ky = Hy

Azimuthal: Ke = >

Parallel: Kz; = 2a
Li 3cos?6 — 1
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. 2ar8 I

Perpendicular: Ky = 377 g sin 6 cos 6

. 2n 3Equatorial: Keq = a

3

Axial: Kax = >

CURRENT FLOW IN A HOMOGENEOUS ANISOTROPIC EARTH

It has been shown that in a homogeneous anisotropic medium the

conductivity forms a symmetrical tensor characterised by six com-

ponents. In such a case, it is always possible to orient the coordi-

nate axes in such a way that ozy = Oyz = Ozzy = 0. These axes are

then called the “principal axes of anisotropy”, and the principal

values of J and E are then given by:

]Jn = Ep: Jyot Ey; Jz=—E,
Pz Py PpzZ

where x, y, z are now the principal axes. Thus, the equation of

continuity (2.2) may be written in terms of the principal axes as:

ie (pe) + ay (pr) * Ge (Ge) = 9
For a homogeneous medium this reduces to:

2 2 2

~ ar + = Sr + - oe = 0 (2.21)

Choose a new system of coordinates, such that:

& = x,/pz; 1 = yx/py; 6 = 2/pz

then eq.(2.21) reduces to Laplace’s equation:

av av a _,

age" an? * ate
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the solution of which is:

C
V =

(é2 + n? + C2)

where C is the constant of integration. Thus, the solution to

eq.(2.21) is:

V= C “
(pax? + pyy? + p2z*)t

(2.22)

It is seen from eq.(2.22) that the equipotential surfaces given by:

pax? + pyy® + poz = K?

are ellipsoids, the axes of which coincide with the principal axes

of anisotropy. The current densities are given by:

Jez et SLO
po OX = (pax* + pyy® + pzz*)!

Jy= i oe L cy ~- | (2.23)
Py oy (p2x® + pyy® + pzz)t

Jz = Jt a = Cz ——
pe 02 — (pax? + pyy® + pzz?)!

These equations satisfy the relation:

Je Jy Iz

x yp

showing that the current lines are straight lines, spreading out radi-

ally from the source, as in the case of an isotropic medium.

The electric lines of force in an anisotropic medium form a family

of curvilinear trajectories orthogonal to the equipotential surfaces.

They do not coincide with the directions of the current lines ex-

cept along the principal axes.

The anisotropy in a geological body may be due to several

reasons. Thus, it is a well-known fact that in stratified rocks the

strike offers a particularly favourable path for the flow of electric

currents. The reason may be that a large number of mineral crystals

possess a flat or elongated shape (mica, kaolin, etc.). At the time of
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their precipitation, they naturally take an orientation parallel to

the sedimentation. The weathered surface soil, owing to vegetable

matter, growth and decay of minerals in the soil, etc., also mani-

fests an anisotropic character. In electrical exploration, the usual

practice is to characterise the electrical property of a stratified rock

by two parameters, namely, the longitudinal resistivity ps (parallel

to the plane of stratification) and the transverse resistivity pz

(normal to the plane of stratification). Thus any anisotropy in the

plane of stratification is usually neglected, being very small in most

practical cases.

if the plane of stratification 1s chosen as the xy plane, then

eq.(2.21) reduces to:

re

l (— | 1 &yV

Ps

yi ©" 20 (2.24)
ox? + ay?

The equipotential surfaces are then given by:

x? + y? + (p:/ps)z” = constant

1.e., they are ellipsoids of revolution around the z-axis.

We define two more parameters of an anisotropic medium:

A =~pilps and pm = V pips (2.25)

where A is called the “coefficient of anisotropy” and pm the “root

mean square resistivity’, or simply the ‘‘mean resistivity” of the

medium. It is obvious from eq.(2.25) that:

]
Pm = Aps = Q Pt (2.26)

The solution of eq.(2.24) may now be written as:

C
(2.27)

and the current densities are:

Cx

pi(x? + y? + A2z2)h
J-e=
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Jy = cy
Me phx? + y? + 2222)

l= Cz

pl? + y? + Az?)
such that:

C(x? + y2 + 2%)
=(f24 4pxJ (Js + Jy + J) pi(x? + y? + A222)

(2.28)

In order to find the constant of integration C, we construct around

P a sphere of radius R and calculate the total current flowing out

through this spherical surface.

This obviously is equal to the total current at the electrode P.

Thus:
Qn 2

[=fJds =f J JR? sin 6 dé dy (2.29)
8 0 0

Now: x? + y2 = R* sin? 6 and z* = R2 cos? 6, then eq.(2.28) be-

comes:

C C

~ piRX(sin? 6 + A2cos2 6)! p§R2{1 + (a2 — 1) cos? 6}!

and:
Qn n

r= fe { sin6d6

~ at J? J + 2 = 1) cos? 6}!
0 0

_ 2nC 2 _ anc
ph A Apt

Therefore:

I
— qC= 4 ph (2.30)

and, consequently, eq.(2.27) and (2.28) become:

~ An(x® + y2 + A2z2)t “4a R{1 + (a2 — 1) cos? 6}!

and:

Tips pm (2.31)

— WAG + yt + 2 lh

~ “An(x? + y? + A223)! — 4eRA{1 + (22 — 1) cos? 6}
(2.32)
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For an isotropic infinite homogeneous medium: / = I, pm = p,

and: V = pl/4xR and J = 1/4nR?, as given in the section on a

homogeneous earth.

Let us now put the point source of current / on the surface of

the ground, which is assumed to be homogeneous but is aniso-

tropic. Assuming that air has infinite resistivity, the current densi-

ty in air is zero. The value of V and J are still given by eq.(2.27)

and (2.28), but the value of C is now determined by finding the

total current flow through a hemisphere of radius R, i.e., instead

of eq.(2.29) we shall have:

Qn n/2

l=JJds= Jf J JR*sin 6 dé dw
8 0 0

giving:

St
27

Thus relations (2.31) and (2.32) are replaced by:

C = 5 Api

J Pm lpm ]
V=~ - _/Pm ot |

2nR {1 + (A2 — 1) cos? 6}# an (x? 4+ y2 + A222) (2 33)

and:

I A TA R

* daitt (FF = eos?) ~ a GE ye deg OOM
As in case of an infinite medium, here, also, the equipotential

surfaces are ellipsoids of revolution about the axis of z, i.e., perpen-

dicular to the plane of stratification.

In eq.(2.33) and (2.34) we have assumed that the air-earth bounda-

ry is parallel to the plane of stratification. In order to generalize the

formulas, we take two systems of coordinate, x’y’z’ and xyz (Fig.5),

in which x’y’ represent the air-earth boundary and xy the plane of

Stratification, such that the strike of the bed x is taken as x’ of the

new system. Let the angle of dip be «.

Now:

x =x’

y=ycosa+ 2’ sing

z= —y'sine + 2’ cosa
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J Ys
/ yo

4

ff
/ 7

4
7

Vf
/

/ 4 {

ff 40

Fig.5. Anisotropic half-space. xy = plane of stratification; x’y’ = air-earth

boundary surface; « = dip of the bed; » = angle made by the point of obser-

vation with the strike direction.

Introducing the new coordinate system, and putting z’ = 0, we get

from eq.(2.33):

V= !pm
2a (x'2 + y2 cos? a + A2y"2 sin? a)!

_ /pm l
On fx’? + {1 + (2? — 1) sin? a} y’2}

Writing r? = x’? + y’? and tan » = y’/x’, we get:

lpm ]

~ Oar {1 + (42 — 1) sin? sin? a}! (2.39)

Eq.(2.35) gives the potential at any point (M) on the surface, at a

distance r from the source, and in the direction which makes an

angle @ with the strike direction.

It is seen from eq.(2.35) that the equipotential lines on the

surface are ellipses, with major axes oriented along the strike di-

rection. The ratio of the semi-major to semi-minor axes are given by:

alb = {1 + (42 — 1) sin? a} (2.36)
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which depends on the coefficient of anisotropy and the angle of dip.

In the case of an isotropic medium (i.e., A = 1), as also for hori-

zontal beds (i.e., « = 0), a/b = 1. Thus, in these cases the equi-

potential lines are circles about the source. For « = 2/2, a = BA.

The formula (2.36) can be used to determine the coefficient of

anisotropy (A), when the dip of the beds is known, or conversely

to determine the dip angle « when the anisotropy is known. The

experimental procedure would be to draw the equipotential line

and then determine the ratio of the axes a/b.

Differentiating eq.(2.35) with respect to r, we get the radial com-

ponent of the electric field:

oV Ipm |

Ba = Fart WE singsina 37)

Defining apparent resistivity (¢), as in the case of an isotropic medi-

um for a symmetrical Schlumberger spread, 1.e., p = (E//)22r?, we

get:

- _ Pm

= {1 + (A? — 1) sin? sin? a}! (2.38)

It follows that, along the strike direction:

y = 0; ps = pm (2.39)

and normal to the strike direction, y = 2/2:

- Pm

pe 1 + (2 = 1) sin? a}! 2.40)

Thus, the apparent resistivity, measured on the surface of a homo-

geneous anisotropic formation along the strike direction, is inde-

pendent of the dip —eq.(2.39}— and is numerically equal to the mean

resistivity of the formation. However, the apparent resistivity

normal to the strike direction —eq.(2.40)— is dependent on the dip.

Also, since the denominator of eq.(2.40) is greater than unity (ex-

cept when « = 0), it follows that except for a = 0:

pt < Ps (2.41)
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For the special case « = 2/2:

From relation (2.41) it follows that the apparent resistivity pz,

measured normal to the strike direction, is less than ps, measured

along the strike direction—although it is known that the true re-

sistivity of an anisotropic formation, normal to its stratification, is

greater than that parallel to the plane of stratification. This phe-

nomenon is called the “paradox of anisotropy”.

The paradox is explained by the fact that since ps < pz, the

current density along the plane of stratification is greater than that

along the normal to this plane.

The anisotropy studied so far in this section characterizes finely

stratified rocks which appear homogeneous to the eye and, in fact,

in numerous cases this corresponds to a real homogeneity in compo-

sition. This type of anisotropy is microscopic and may be called

‘“micro-anisotropy’’. In electrical prospecting it is necessary to con-

sider a second kind of anisotropy, which may be called “‘macro-

anisotropy’’. In practice it is sometimes difficult to draw the bounda-

ry between the micro- and the macro-anisotropy.

We may call a medium macro-anisotropic so long as the layers

can be distinguished—for example, by electrical logging in a bore-

hole. The concept of macro-anisotropy will be explained in brief in

the next few paragraphs.

Macro-anisotropy results from the repetitive alternation of two

different isotropic lithologic facies. When the individual layers be-

come infinitely thin and infinitely repetitive, we obviously reach

the domain of micro-anisotropy. The study of this parameter is of

primary importance to the geophysicist, because the distribution of

the electric field, due to two current electrodes at the surface of

the ground, will be governed by the resistivity and thickness of the

underlying layers in addition to the distance between the current

electrodes. This effective resistivity and effective thickness are con-

trolled by anisotropy.

In electrical prospecting, the two parameters of importance are:

resistivity parallel to stratification (ps), and resistivity normal to
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stratification (pz); the physical significance of these has already

been explained. Consequently, it is found that by adopting the

concept of ps and p¢ for a group of layers, we are concerned with

an anisotropy phenomenon; and the layers may be considered to

behave as a single anisotropic layer of pseudo- or equivalent ani-

sotropy 4. This anisotropic fictitious layer may be taken to be

equivalent to another, single isotropic layer, of pseudo-resistivity

pe and pseudo-thickness h,. This forms the basis of the analytic-

graphical auxiliary-point method of interpretation, which will be

dealt with in detail in Chapter 3.

CURRENT FLOW IN A HORIZONTALLY STRATIFIED EARTH

In electrical prospecting it is often necessary to determine the

depth and the electrical resistivity of horizontal or nearly hori-

zontal layers. In order to solve this problem, we should calculate

the potential and the electric field, due to a point source of current,

at any point on the surface of a stratified earth.

Let us choose a cylindrical system of coordinates, with the origin

at the point source A, and the z-axis vertically downward normal

Y

t >Xx
h, p

Hy J

he p
Ho ' 2

Vz

H(n-1)

hp p,

Hye oo |

Fig.6. A multi-layer earth.
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to the surface (Fig.6). Let pi, p2... pn be the resistivities, and

hy, ho... hn be the thicknesses of the n layers from the top. Also,

let Hi, Hz... Hn denote the depths of the bottoms of each layer.

We shall assume that the lowermost layer extends to infinity, i.e.,

hn = cco, Hn = 00

The Laplace equation to be satisfied at any point is:

eV 1 eV 02V

or r or oz
= 0 (2.43)

the general solution of which may be written as:

V = f {A(n)e-TM + B(m)eTM)\ J o(mr)dm (2.44)
0

We know that the potential due to a point source of current placed

on the surface of a homogeneous earth is:

Ip 1 Ip 1

Yo = Qn RO a (4+ 22)

The potential due to the point source at any point in the layered

earth may be thought of as the sum of the potentials in a homo-

geneous medium and a perturbation potential, due to the bounda-

ries, given by eq.(2.44).

Then: Vy = Vo + Vi; Ve = Vo + Vo; Vi= Vot+ Viz and

Vn = Vo+ Vn where Vi, V2... Vn are the total potentials in

the different strata, and Vj, V2... Vn are the perturbation po-

tentials. Perturbation potential may be physically explained as the

contribution due to two series of an infinite number of images on

both sides of the boundaries.

Thus, in general:

Ip.

M= a0 (ed ai ‘f {Ame + Bi(m)eTM?\J,(mr)dm (2.45)

The constants A;, B; may be determined from the respective
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boundary conditions. At the air-earth boundary, we must have:

O
1 Lo atz=0.
Pl Oz

Now:

y,-/e 1 (A —mMmz B, emz)J dl= oy (PrP pe7mTM + By eTM)J,(mr)dm

0

Therefore:

iy _f Iprz sg ms

(@) | 2n(r? + z?)! *J (— Ar em + By em)Jo(mr)m dm z=0

— { (B, — Ai)Jo(mr)m dm = 0
0

Since the relation must be true for any value of r, B} — A = 0,i.e.,

B, = A, then:

Ip1 ]

= On (e+ aE + | Ay(m)(em + e-TM2)J,(mr)dm
0

Again, in the last layer, the potential must reduce to zero at z = 00;

i.e., By = 0, and:

Tp ]

n= 9 (Pt aD + { An{m)e~TM2 J,(mr)dm
0

The boundary conditions to be satisfied at any boundary are:

Ve = Vier

Lm Lt aa, (2.46)
pi OZ pitti OZ

We have 2n equations, and we have to determine 2n unknowns.

Thus the problem can be solved uniquely.

Now:

1 1

Ro” Gee
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may be expressed in terms of the well-known Weber’s integral

formula:
oo

= { e—mlz| J,(mr)dm (2.47)
0

(P+ 2

and putting /p;/2m = q, we get:

Vi=q fem Jo(mr)dm

+ i Ax(m)(em + e-TM2)Jy(mr)dm

Ve = qf emit! J(mr)dm
(2.48)

+ § (Adn)e-m + Bdm)em)J,(mr)dm

Vn = qJ e-TMl2l Jo(mr)dm
0

+ 5 An(m)e-TM Jy(mr)dm

From relations (2.46) and (2.48) we get the following systems of

equations:

{ Ay (eTM#1 4.e—TM21) J (mr) dm

oo

= J (Ag e~TM#1 4. Bo eTM) J (mr) dm

_ x e~TMH1 J (mr)dm + Lf aye *— e~TM1) 7] (mr)dm
0 (2.49a)

4
p

e~TM41 Jo(mr)dm
ne

f

J
0

ldrfc Age—TM# +. Bo eTMTM)J,(mr)dm
0
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f (Agen! + ByeTM!\Jo(mr)dm
0)

§ (Aeea eT! + Bea eTM29J,(mr)dm
0

~mHt Jo(mr)dm

—Aye7TMHt + By eTM 2) J (mr) dm+

4 fe
pt

0

1+f
pt

0

= a [ emis Jy(mr)dm
0

+ l | (— Ager 7 + Bear eTM (mr) dm
+1

0

pi

oO

i (An-1e7 Hn 4+ Bay eM 91) J (mr) dm

= f Ane~TM! Jo(mr)dm
0

]
of (Ann Bye MV (mr)

n—-

0

_—4 [ ecm Jo(mr)dm
Pn-1

0

= — 4 [ emma Jg(mr)dm
Pn

0

l mH.
—— | A,e~TM" J,(mr)dm

Pn

(2.49b)

(2.49c)

As the relations (2.49a, b, c) should be valid for all values of r:
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Ay(eTM#2 4 41) — Ape TMH1 _ Bo emis — ()

Arpo(eTM! — e~TMH1) +. Anpy emt (2.50a)

— Bop, eTM — g(p2 — piye"TM# = 0

Ape~TMA* 4 ByeTMHs — Ayiy e7TM!t — By emt = 0

pis(— Ace TM* + Be eTM!) + pga eH (2.50b)

mii _ a(pi.1 — pale

An-1e7 MH 4 By CMe — A, eT Mn = 0

—An-1pne He + Bay pn emir (2.50c)

+ Anpn-1e7TM2 — (pn — pn-i)e7TM* = 0

— piBisie wm =

Thus, from the system of eq.(2.50a, b, c), it is theoretically possible

to find the potential, and hence the field, in any medium. In geo-

electric sounding we are interested in finding only the potential on

the surface, and it 1s sufficient to find out only the coefficient A;

for some special cases of practical interest.

Homogeneous earth

A, =0

and:

_y . /p ] _ tp 4

ya N= oF (r2 +22)! ~ In R

Two-layer earth

Put he = ooin Fig.6, then the system of eq.(2.50a, b, c) reduce to:

Ay(e7TM + em) — As e7mh — 0

Aipo—e~TM + emn) 4 Acpi eT mh _ q(pe _ piye = 0

Solving the equations and putting (p2 — p1)/(p2 + pi) = Kie, the

reflection coefficient of the boundary, we get:

Kie e72mhi

Alm) = 9-7, aim

= q(Kie e72mhi + K?, e7 imhi of K*, e7 2mnhi +... )

oo

=g > K%, e7 2mnhi

n=]
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Hence:

Vi = qfe-TM Jo(mr)dm
0

+q X Kf, fen?mm(eme + o-m2)J,(mr)dm
n=l 0

Again using Weber’s formula (2.47):

Vy, = 4 +g SKY
t= Gey eye TT 2 + nh — 2}

co n 1

+ q 2 Bip {r2 + (2nh, + z)?}3 (2.51)

Eq.(2.51) gives the potential at any point (r, z) in the first medium.

To find the potential on the surface, we put z = 0, then:

— Ip pl ~ KYe
v= t2 2 cee Onmpyr] 252

and the intensity on the surface, E = —(0V/or), ts:

_ dap — _ __TKYs
E= 27 lA t a {r2 4 Oana | (2.93)

The formulas (2.52) and (2.53) can be used to determine the ap-

parent resistivity for any of the electrode arrangements given in

the section on resistivity measurements.

Thus, for example, for the Wenner arrangement:

-fmapi igs Ai
AV = 2n ls + 42 {a2 + (2nhy)?}3

12

42 (oars Omni J
_ /pi = OK, gg S_OK
~ Ina [1 + 42 (62 + 4n2)8 4 (402 + iy |

where: 6 = aj/hy. Therefore:

_ AV _ 2 OKT. OK i'sp = 2na 7 =P E + 4 (62 + 4n2)t a (462 + amr |
(2.54)
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For the Schlumberger arrangement (for very small MN, i.e.,

MN-—0):

. E O°K fs

para pmnll+2d Grygay] 255
where: 0 = r/hy = AB/2h).

Three-layer earth

Put hg = oo in Fig.6, then the set of equations (2.50a, b, c) re-

duce to:

Ay(e~TM + emi) — Age~TMHi _ Bo emi — 0

Aypo(—e7~TM21 4 eH) 4 Aon, e~ Ms

— g(p2 — pie TM = 0

Age~TMHs 4 By emlls — fy e-mis — 0

— Aops e7TM#* + Bopg ems

+ Asp2e~TM!1 — g(ps — poem = 0

(2.56)

Solving these equations we get:

Ky.e7 21 + Ko3e7 2H

Aum) = q 1 — Kyge" 241 — Koge~?TMHs + KioKoge@~ 2TM(Ha—H1)
(2.57)

where Kas = (ps — p2)/(ps + pe).

Therefore:

=

ae + z?)

1 — Kis e~2mAh __ Kos e7 2mHs + Ky9Ko3 e7~ 2m(Hs— H1)

(2.58)

To express the potential in a convenient form for computation, we

proceed in the following way:

Put, Hi = piHo and He = poHo where pi and pe are whole

numbers, and Ho has some fixed value.

+
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~#mHe — g. eq.(2.57) may be written as:Then, writing e

KiogTM + Kos”
A\(m) = 4q 1 —- Ki2g”' _ Ko3g”* + Ki2Ko3g—TM) (2.59)

As p; and pz are whole numbers, A1(m) is a rational function of g,

that is:

Ay(m) = q(big + bog® + bsg? + ...)

=q > bagh=q DY bn en ?2mnbe (2.60)
n=1 n=1

Comparing eq.(2.59) and (2.60):

Kiog?! + Ko3g”? = [1 _ K12g” _ Kesg? + Ky2Ko39"*—?))] Xi bag"
R=

(2.61)

This identity requires that the coefficients of any order of g must

be identically equal on both sides. As the highest order on the left-

hand side is g”*, the coefficient of g of an order greater than pz on

the right-hand side must be zero. Let us write down the coefficients

of g?**TM, where m is a positive number, then:

bp,tm — Ki2abp,-p,+m — Keabm + KizK23bp,+m = 0

gives the recurrence formula:

bp ,+m = K12bp,-p,+m + Ko3bm —_ KieKe3bp,+m (2.62)

Thus, bp,+m may be calculated, knowing the values of bp,—p,+my

bm and bp.+m. The coefficients up to the maximum value bp, may

be determined from eq.(2.61). The rest of the coefficients can be

determined through the use of the recurrence formula (2.62).

Thus the potential at any point in the first layer can be written as:

Ip 1 o° bn

"= Qn [ (r? + 22)é + >) {r2 + (2nHy + z)®}
oo bn

+ 2 {r2 + (2nHy — oar]
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At the surface z = 0:

Ip: 7}

= On lp +2 x (r+ fron C6)
and:

Ipi 7 i an a
b= On L + ad {p24 Galina (2.64)

Thus, for the Schlumberger symmetrical arrangement:

- bar?

pool? 3 ces Goma
In practice, the thickness of the second layer is usually expressed

in terms of the thickness of the first layer, 1.e., 41. Then:

bar?

=pi[i+2 z (2 + Sm
or if r/hy = 0:

7 bpd?

p=o[l+2 > Geta 2.65)
For the Wenner arrangement:

bnd c° bnd

p= | r +e Ws amy 7% West any | (2.66)
if 6 = a/hi.

Four-layer earth

In the case of a four-layer earth, it can be shown that:

~ Aku” i + Kase” + Kos” + Ki2K 23K sag?" *~ ?")
A

+ KesKsag”*—TM + KisKaqg?*"TM

Here, also, the potential can be expressed in the same form as

eq.(2.63) and the apparent resistivity expressed in the form eq.(2.65).

The complications in computation increase with the increase in the
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number of layers. With the use of computers it has been possible

to plot sets of theoretical master curves to be used for interpre-

tation. The method of computation of theoretical curves is beyond

the scope of this book, as such sets of two-, three- and four-layer

master curves are already available in published form (MOONEY

and WETZEL, 1956; COMPAGNIE GENERALE DE GEOPHYSIQUE, 1963;

ANONYMOUS, 1963a, b, c; and ORELLANA and Mooney, 1966).

The interested reader may refer to pp.9-12 of the COMPAGNIE

GENERALE DE GEOPHYSIQUE (1963) for a generalized approach to

the computation of sets of three-layer master curves. However, the

specific case of a simplified three-layer problem is added as an ex-

ample at the end of this chapter.

It may be mentioned here that various simplified approaches to

the computation of theoretical curves have been suggested from

time to time. FLATHE (1955) introduced his method of calculating

sounding curves with an ordinary desk calculator; but this is

suitable only for cases approximated by a perfectly conducting and

perfectly insulating substratum. VAN Dam (1965) has introduced

a simple method for the calculation of sufficiently exact sounding

curves with hand calculators.

A procedure to compute apparent resistivity curves for layered

earth structure for the Schlumberger, Wenner and dipole configu-

rations, has been given by Mooney et al. (1966), where use is made

of large digital computers. In this method, the formulation is rela-

tively simple, and a single program can handle any number of

layers; in addition, a single set of stored coefficients can be used

repeatedly by different electrode spacing and for different electrode

arrangements. The technique is claimed to be relatively simpler

and more accurate compared to those described by the COMPAGNIE

GENERALE DE GEOPHYSIQUE (1955, 1963) and FLATHE (1955). How-

ever, the method suggested by VAN Dam (1967) is somewhat simi-

lar to the one described by Mooney et al. (1966), and this

method is meant for use with digital calculators.
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PRINCIPLE OF EQUIVALENCE

In this section we shall give the theoretical basis of a result which,

as we shall see later, serves a very important purpose in the in-

terpretation of geoelectric sounding curves. This is known as the

“principle of equivalence’.

We know that the potential at the surface of a three-layer earth

depends on the coefficient A, given by:

Kie e7 2mhi + Koy en 2m(hit ha)

— Ky, e724 — Kog @~ 2m ths) 4 Kio Kog @7 2h

(2.68)

Am) = q+

where q = /p;/27; Ki and Ke3 have usual meaning.

Case |

Let us suppose he < /; po < pi and p3 > ps, then:

ea 2m(hiths) — e-2mhi g—2mha ~ e—2mAi (1 — 2mhe)

Kp = _*P2 pw PPh
pe + pi pl

Kop =| ~~ P20 wy — 22
ps + pe p3

Eq.(2.68) can be written as:

A\(m) = g e~ 2mhi

a ps — pi — mpips(he/p2) _
1 ] l |

~ ee meee Pe h e@7 2mhi + — — — ae m h(1 2) ~ main FL hl

—pi- S= ge 72zmh. P3— P1—TMp1p3 2 69

, — (p3—p1—mpip3S)e~?"TM" + p3 — p1 + mpip3S (2.69)
It is seen from the relation (2.69) that Ai(m) does not depend on

the absolute values of pz and he, but only on the ratio he/pe = S.

Case IT

Similarly, when he < hi; p2 > ps and pz > pi:
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Ki=1 ———2PL-- w | — 2PL
p2 + Pl p2

Kop = —2P2?_ 1 x 2ps

and:

Ay(m) = qe 2m. ___ p3 — pi + mT 02.70)
(p1 — p3 — mT)e7 2 + pi + p3 + mT

Here Ai(m) depends only on T = hepe and not individually on pe

and hp.

Case I refers to an H-type section and case IT refers to a K-type

section, as will be explained in Chapter 3.

According to the above discussion, it can be said that H-type

curves are “equivalent” with respect to S, provided the intermedi-

ate layer has a thickness and resistivity which is very small com-

pared to those of the other two; and K-type curves are “‘equiva-

lent” with respect to T if the thickness of the intermediate layer is

small, but resistivity is large, compared to the other two layers.

The practical usefulness of the “principle of equivalence” in the

interpretation of sounding data will be discussed in Chapter 3.

VERTICAL ELECTRICAL SOUNDING (V.E.S.)

We have seen that the apparent resistivity as measured on the

surface of an inhomogeneous earth is given by:

p=K——-

where K, a geometrical factor, depends on the configuration of

the current as well as measuring electrodes. Broadly speaking, we

can distinguish two types of resistivity measurements. In the first,

known as geoelectric profiling or mapping, the value of K remains

constant for a particular set of readings, and measurements are

done at various points on the surface. In this way, we get the

surface variation of apparent resistivity values within a certain

depth. In the second method, known as geoelectric sounding, for
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a particular set of readings the measurements are done at a speci-

fied point such that the value of K progressively changes. In this

way, the apparent resistivity values at the surface reflect the verti-

cal distribution of resistivity values in a geological section. This is

why geoelectric sounding is sometimes known as “‘vertical electric

drilling’. The present book deals with the latter aspect of re-

sistivity prospecting.

An arrangement of electrodes which is widely used is the sym-

metrical one, where current electrodes A, B are symmetrically

placed with respect to the potential electrodes M, N (Fig.2), and

where the centre of the spread, O, is the sounding point. In the

Wenner method the sounding is done by progressively increasing

the value of “‘a’’, the spread length, by moving all four electrodes

outwards after each sounding. In the Schlumberger method the

sounding may be done (theoretically speaking) by moving only the

current electrodes, progressively increasing the distance 4B. How-

ever when AB is very large compared to MN, the potential drop

between M and N may be too small to be measured. Hence, in

practice it is necessary also to increase the distance between M

TABLE I

A TYPICAL FIELD LAYOUT FOR SCHLUMBERGER ARRANGEMENT

Obser- MN/2. AB/2 Obser- MN/2. AB/2 — obser- MN/2 AB/2

vation vation vation

number (m) (m) number (m) (m) number (m) (m)

I 0.5 1.5 15 2 20 29 20 160

2 0.5 2 16 5 15 30 20 200

3 0.5 3 17 5 20 31 40 200

4 0.5 4 18 5 30 32 40 250

5 0.5 5 19 5 40 33 40 300

6 | 3 20 5 50 34 40 350

7 ] 4 21 10 30 35 40 400

8 1 6 22 10 40 36 80 400

9 1 8 23 10 50 37 80 600

10 1 10 24 10 60 38 80 800

11 2 6 25 10 80 39 100 800

12 2 8 26 10 100 40 100 1000

13 2 10 27 20 100

14 2 15 28 20 140
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and N, whenever required, depending on the sensitivity of the

measuring instrument. The value of MN and the corresponding

values of AB are chosen in order to get overlapping readings when-

ever a change-over of MN from one value to the other takes place.

The usual distribution in the values of MN and AB for an average

instrument sensitivity, and for a maximum spread AB = 2,000 m,

is tabulated in Table I; this is subject to modification, depending

on the field conditions, instrument sensitivity, and other practical

difficulties. In the beginning, a few readings may be taken with the

Wenner arrangement, so as to get the resistivity of the surface

layers.

Sometimes, for shallow sounding, it is convenient to use the

three-electrode system (A MN), where one of the current electrodes

(B) is placed at infinity (AB at least ten times maximum AO), and

the sounding is done by moving only the current electrode A. The

theory of apparent resistivity for V.E.S. over a horizontally strati-

fied earth, for Wenner as well as for Schlumberger arrangement,

has already been dealt with.

DIPOLE ELECTRICAL SOUNDING (D.ES.)

We have already discussed the various dipole arrangements for

resistivity prospecting. We shall now derive expressions for the ap-

parent resistivity in the case of a horizontally stratified earth for

dipole electrical sounding (D.E.S.).

It has been shown that the potential V, on the surface of a

horizontally stratified earth is given by —from eq.(2.63):

Ipi ua bnV= On [— + 22 P+ (nh)? | (2.71)

For a dipole:

OVo or
Vaipole = — 3. op

IL ] < r

= py Ose +22 be ae amar] 27
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and the field components are:

— (2nh,)? 1

Ta + (2nh;)?\8
]

Prone) 2

E; = = pl cos [5 += bn (2.73)

fan psi +2 z bn
Comparing eq.(2.73) and (2.74) with eq.(2.18) we get the values of

apparent resistivities, 1.e., py and pg given by:

_ r3{r2 — 2(nhy)?}
pr = pill +2 x bn ee aar) 79)

5 ipo = pif 1+ 25 bn Tay onhnr | (2.76)

Writing r/hy = 0:

- ° 63(62 — 2n?)
Prip1 =1+2 me bn (8 + 4 (2.77)

63

polpi=1+2 x bn (2.78)
(62 + 4n2)i

In the case of conventional sounding by the symmetrical Schlum-

berger arrangement, we have—from eq.(2.65):

6°

pip = 1+ 2d bn -

A comparison of eq.(2.78) with (2.79) indicates that the expression

for po/pi for the dipole arrangement is the same as that for the sym-

metrical Schlumberger arrangement (for a horizontally stratified

earth).

Thus, all the master curves available for conventional Schlum-

berger sounding may also be used for dipole azimuthal sounding,

and the method of interpretation remains the same.

Now, differentiating eq.(2.79) with respect to 6, and multiplying

by 0/2, we get:

6

2

ee 6n258

2p. di bn (62 + 4n)tS/SS/S:
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Therefore:

«6 _ 00 63 6n?68P- 5% - ?2 E + a2 ba 8 +4n%)t (62 + | |
0°(0% — 2n?)9 _
(62 + 4n2)i | ~ Pr= pi 1 +25 ba (2.80)

Eq.(2.80) can be utilized graphically to construct the master curves

for a radial dipole sounding arrangement from the curves availa-

ble for the conventional symmetrical Schlumberger arrangement.

Three-layer master curves for radial dipole arrangement are availa-

ble in published form (ANONYMOUS, 1957).

Since both py and fg are independent of angle @ for a hori-

zontally stratified earth, it is obvious that formulas for p, and pg»

are valid for pax (Gr, 9 = 0) and feq (po, 6 = 90°), respectively.

Similarly, we can also find the apparent resistivity for the paral-

lel and perpendicular arrangements of the dipole.

Hence, for a horizontally stratified earth, the apparent resistivity

for any of the dipole arrangements may be obtained from the

apparent resistivity of the conventional Schlumberger arrangement

by means of the following formulas:

- _ oO Op
Pr = pax = p- > 36 (2.81)

Po = pea =p (2.82)

- dcos?0 ap

pr = PF cos2O— 1 od 289)

. _ OO

EXAMPLE (COMPUTATION PROCEDURE)

It has been shown in eq.(2.65) that for the Schlumberger ar-

rangement:

. o bpd

p= pill + 2 ed omar |
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where the coefficient 5, is given by eq.(2.61); for po > pi this is

given by the recurrence formula represented by eq.(2.62). Once b,

is known, the value of p/pi can easily be calculated for various

values of 6 (i.e., r/h1) with the help of a computer, when expressed

in the following way:

. 2568 25263

Ple=1+ Gear * G+ io) +... Ht...

In the case of a three-layer problem, the computations are simpli-

fied when p3 = 0 or oo, because in that case the coefficient A1(m)

given in eq.(2.59) is further simplified.

Let us consider a specific case with the following values:

pi = 100Qm; pe = 5Om; pz = 00;

h, = 10m; he = 10m; hg = 0.

Then A, = hy and He = 2h, 1.€., Py = 1; pe = 2,

From eq.(2.59), comparing with eq.(2.60), we can write the value

of the coefficient A;(m) given by:

A, = ——,.— = 3 dng (2.85)
-

or:

such that: (@ — c) = Ki2; (a + c) = 1, or:

qe itKe. 1a Ki

~ 2 e739

On expansion into a series:

Ay = a(g+g7+23+...) + e(-—g—g?@-—g3—...) = & bag” (2.86)

This gives b} = beg = bg = 1 for the first part, and b) = bg = bg =

= (—1) for the second part, and the apparent resistivity p is

given by:
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7 _,,i¢kKe , >. a

pip STD (8+ One
1 - 2 68(—1)n

- ithe 3 0) (2.87)
2 n= 1 {0" + (2n)?}}

The value of p/p: can be computed from the above expression for

a certain value of K19, i.e., (p2/p1) for different values of 6 = r/hy =

= AB/2h,.

In the present case, Ki2 = 0.905, and the variables are 6 and n.

The value of n should be chosen properly, so as to increase the

possibility of neglecting the effect of higher-order terms without

appreciable error in the calculation. If the series is highly con-

vergent, sufficient accuracy may be obtained within five to ten

terms. However, for some unfavourable conditions it may be neces-

sary to consider a much larger number of terms (50 or more).

The above relation (2.87), giving the value of p/p1, presents a

very interesting point; and it can be still further simplified, giving

rise to the possibility of using two-layer curves for plotting the

three-layer curve.

In the case of two-layer earth, we know that for pz = oo, the

value of p is given by:

00 oe

i y aPoe ps [! + 2s {0" + (2n)?}4 |
and, similarly, for pe = 0, we can write:

| 6-1)"

Thus eq.(2.87) may be written as:

. 1 — Kie . 1+ Kio _
p= 3 Bu + 5 Pe (2.88)

Therefore, eq.(2.88) indicates that we can plot the three-layer

theoretical master curve for the given case with the help of the

two-layer master curves available for p2 = 0 and pz = oo. The

actual procedure for graphical construction of three- and four-
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layer curves is given in detail in Chapter 3. In practice, however,

the formula (2.87) is directly used for programming and subse-

quent calculation by means of computers.



CHAPTER 3

Schlumberger Sounding

The interpretation of geophysical field data requires a large number

of theoretical master curves for different geological sections. The

total number available for the purpose is, however, grossly inade-

quate. It is therefore necessary to find a rapid and reasonably

accurate method of construction of suitable empirical master

curves which may be used in cases where theoretical curves are

not available.

This chapter first deals with the basic principles and procedures

for the construction of such curves by the analytic-graphical

method, which is found to be quite useful in practice. It then ex-

plains detailed techniques of interpretation, using the available

theoretical master curves along with the ‘“‘auxiliary point charts”

and the “equivalent curves’. The method of interpretation pre-

sented here deals only with the Schlumberger sounding. The in-

terpretation of Wenner sounding curves will be explained in

Chapter 4.

TYPE CURVES AND AVAILABLE THEORETICAL CURVES

Two-layer curves

Two sets of theoretical two-layer master curves are available for

(p2/p1) greater than unity, i.e., ascending type (Set I) and for (p2/p1)

less than unity, i.e., descending type (Set II). The values of pe/p1

for which curves have been plotted are:

Set I: pe/p1 = 11/9, 3/2, 13/7, 2, 7/3, 3, 4, 5, 17/3, 7, 9, 19, 39,

99, 00,
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Set II: po/p: = 9/11, 2/3, 7/13, 1/2, 3/7, 1/3, 1/4, 1/5, 3/17, 1/7,

1/9, 1/19, 1/39, 1/99, 0.

These sets of theoretical master curves have been reproduced in

Plates I and I]—plotted on a double-logarithm graph sheet with a

modulus of 62.5 mm—and can be used for construction and in-

terpretation of multi-layer curves. These sets are presented as

master curves, chart Is in the COMPAGNIE GENERALE DE GEOPHYSI-

Que (1963) and as Paletka chart Is in ANONYMOUS (1963a).

ORELLANA and Mooney (1966) have recently published a set of

two-layer curves representing 25 such cases.

Three-layer curves

The whole set of three-layer sounding curves can be divided into

four groups, depending on the relative values of p1, p2 and ps:

(1) Minimum type: when pi > p2 < ps. This is also referred to

as H-type (associated with the name of Hummel).

(2) Double ascending type: when pi < pe < p3. This is also

known as A-type (corresponding to the term anisotropy).

(3) Maximum type: when pi < pe > ps. This is known as K-

type or is sometimes referred to as DA-type (meaning displaced

or modified anisotropy).

(4) Double descending type: when p1 > pe > ps3. This is known

as Q-type and is sometimes referred to as DH-type (meaning dis-

placed Hummel or modified Hummel).

A diagrammatical representation of all these type curves is given

in Fig.7 for the three-layer cases. The following theoretical three-

layer master curves for Schlumberger configuration are available

in published form: (/) The COMPAGNIE GENERALE DE GEOPHYSIQUE

(1955, 1963) contains 48 sets of curves, each set containing 10

curves, giving a total of 480 separate curves available for interpre-

tation. (2) ANONYMOUS (1963a) contains 72 sets, each set con-

taining 10 curves, making a total of 720 curves available for in-

terpretation. (3) ORELLANA and Mooney (1966) present master

tables and curves representing 76 three-layer sets (25 each of H-

and K-type and 13 each of Q- and A-type), with a total of 912
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p(m) P,,h, =o

H-type

Py,No

et ee ee ee ee ee ae ome wee oe oe

A Pe | Pa AB/2(m)

p(AQm)

—= AB/2(m)

Fig.7. Three-layer type curves. A. H-type (p1 > p2 < ps) and Q-type (p1 >

> pa > ps). B. A-type (p1 < p2 < ps) and K-type (p1 < pz > pa).

three-layer cases. The parameters of the curves in (/) and (2) are

given below:

For H-type:

p2/pi = 2/3, 3/7, 1/4, 1/9, 1/19 and 1/39

and:

ps/p1 = 00, | and (p2/p1)!

For A-type:

p2/p1 = 3/2, 7/3, 4, 9, 19 and 39

and:

p3/p1 = 00, (p2/p1)* and (p2/p1)
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pisim)

Pa,Ng a ©

HA ~type i> R< P< hy

AB/2 (m)
PB] Po] fy | Pa

Pang ' . gae type.f >P,>Fa> fy
8 eee we cen oe

se en te Sm a ee cee ete me Oe Oe

hl Pol fs | P4
B

Fig.8. Nature of four-layer type curves. A. HA- and HK-type. B. QH- and

QQ-type. C. KH- and KQ-type. D. AA- and AK-type.

For K-type:

p2/pi = 3/2, 7/3, 4, 9, 19 and 39

and:

p3/p1 = (p2/pi)t, 1 and 0

For Q-type:

p2/p1 = 2/3, 3/7, 1/4, 1/9, 1/19 andl /39

and:

ps/p1 = (pe/p1)', (p2/p1) and 0
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p (am)

Pg hy =
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KH-type: P<P>P<p,

<

Phy | ~~~ KQ= type: R<P, oP, > fe
p,,h Pyhgee

AB/2(m)
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Cc
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Py hy =o

AA-type’ Pi <Po< Pach,

~
ao Se Se ces ante ete

“\_ AK-type” PRcPacPa>Py

~~ AB/2(m)
Prt fe | Ps | i

Fig.8 C, D (Legend see p.44).

Each set contains curves for ten different values of he/hi = 1/9,

1/5, 1/3, 1/2, 1, 2, 3, 5, 9, 24 and oo. In the case of the curves by

Orellana and Mooney, the model parameters are slightly different

and are whole numbers or simple decimels.

Four-layer curves

From a combination of the curves of the types H, A, K and Q

discussed above (Fig.7), it is easily seen that there can be only

eight types of four-layer curves, shown in Fig.8. These may be

designated as HA, HK; AA, AK; KH, KQ and QH, QQ. Theo-

retically plotted master curves for four-layer cases are available as

‘‘Paletka” in ANONYMOUS (1963b). This album of four-layer theo-
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retical master curves contains 122 sets, covering all the eight types.

The values of the parameters are given below:

p2/p1 = 1/39, 1/19, 1/9, 3/17, 1/4, 3/7, 2/3, 3/2, 7/3, 17/3,

3, 4,9 and 39

p3/p1 = 1/39, 1/19, 1/9, 3/17, 1/4, 3/7, 2/3, 3/2, 7/3, 17/3,

3, 4, 9 and 39

hofhy = 1/2, 1,2, 3,5, 24; h3/hy = 1/2, 1, 2, 3, 10, 12 and 72

The four-layer curves published by ORELLANA and Mooney (1966)

consist of a total of 480 cases distributed in 30 sets.

ASYMPTOTIC VALUES OF SCHLUMBERGER CURVES

The apparent resistivity (6) for a two-layer earth may be written,

for Schlumberger arrangement—see eq.(2.55)—as:

Bp gg & KABA)
pl n—1 {(AB/2h1)? + (2n)?}!

(3.1)

Several limiting cases which can be derived from eq.(3.1) are:

(a) When p2 = pi, p = pi, 1.€., the apparent resistivity is equal

to the true resistivity of the semi-infinite medium .

(b) When AB/2 - 0, p = pi, ie., for a two-layer earth the ap-

parent resistivity is equal to the true resistivity of the first layer

for small values of electrode separation.

(c) When AB/2 > 00, p = pz, i.e., the apparent resistivity is

equal to the true resistivity of the second layer for large values of

electrode separation.

We can write eq.(3.1) in the form:

p = pif (AB/2h1) (3.2)

assuming that Kg, i.e., pe/p1 remains constant.

If we plot p against AB/2h; from eq.(3.2) on an arithmetic scale,

we get different curves for different values of pi—even for a fixed

value of 4;—and similarly for each value of Ai with p: fixed.
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Using logarithm scale for eq.(3.2), the influence of p; and Ai on

the form of the curve may be removed as we get:

log p — log pi = F (log AB/2 — log hy) (3.3)

or:

log(p/p1) = log F(log AB/2h1) (3.4)

Eq.(3.4) shows that a plotting of p (ordinate) and AB/2 (abscissa)

on a double-logarithm scale will give curves of exactly the same

form for any value of p; and A as long as po/p1 remains constant.

The effect, then, of pi is to shift the curve upward or downward

parallel to the ordinate, and that of Ay is to shift it to the left or

right, parallel to the abscissa.

Thus, the form of the V.E.S. curves, plotted on a double-loga-

rithm scale, is independent of the resistivity and thickness of the

first layer in a two-layer section if p2/p1 is constant. This is found

to be valid for a multi-layer geoelectric section also.

From field measurements we get apparent resistivity as a function

of the electrode separation, i.e.; p = {(AB/2).

Using logarithm scale for this relation we get:

log p = F (log AB/2) (3.5)

Eq.(3.3) and (3.5) are of the form: y — 6 = f(x — a), and: y = f(x).

These equations are similar to each other, except that the first

curve is shifted parallel to the coordinates with respect to the

second curve plotted onlog arithm scale. This shows that theinterpre-

tation of the field curves by matching is made possible through the

use of the logarithmic scale. Thus, for each value of p1 and hi we

need not have different curves; a single master curve may be used

for any value of p: and /1, provided pe/p1 remains the same.

In Fig.9 the two-layer field curve (p vs. AB/2) is shown for

hy = §m and p; = 4Qm and pe/p: = 7. The two-layer theoreti-

cal master curve (p/pi vs. AB/2h1) for po/p: = 7 (the same as the

field curve) is shown in the same diagram. These two curves can

be matched easily by shifting the field curve over the theoretical

curve, keeping the axes parallel. Actually, the theoretical curve can
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Fig.9. Relation between theoretical and field curves. Field curve of the same

form as the theoretical one but shifted with respect to it and parallel to the
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Fig.10. A two-layer field curve superimposed over a two-layer master curve.

Origin of the master curve as read over the field curve gives the thickness and

resistivity of the upper layer.
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be matched with any field curve for any value of p; and /y, pro-

vided p2/pi is the same as that of the theoretical curve.

The method adopted for finding p; and A; has been indicated in

Fig.10. The procedure is to plot the field curve on a transparent

double-logarithm graph sheet which has a modulus the same as

that for the theoretical master curves (a modulus of 62.5 mm), and

then to superpose the transparent graph sheet on the master curve:

the transparent graph sheet is moved parallel to the coordinates

until a match is obtained. Fig.10 represents the matched con-

dition, and the point on the transparent double-logarithm sheet

coinciding with the origin of the master curve (p/p; = 1, AB/2h = 1)

gives, along the abscissa, log(AB/2) = log My, i.e., hy = AB/2 m;

and along the ordinate it gives log p = log pi, i.e., p = pi Qm.

Thus, the use of the logarithm scale opens up the possibility of

determining p; and h, from theoretical and field curves.

It is easily seen that on a double-logarithm scale, the conditions

of limiting values are still satisfied and the asymptotic nature is

retained.

Let us now find the asymptotic value of the apparent resistivity,

when the second layer is of infinite resistivity (basement). It is

obvious that at sufficiently large distances from the source, the

current lines will be all parallel to the surface; and the equi-

potential surfaces will be cylindrical, having the vertical through

the source as the axis. Let us consider an equipotential surface at

a large distance r; then the current, J, is given by: J = 2zrh,-J,

where J = E/p,. Therefore: E = py//2zrhy.

Hence, the apparent resistivity for Schlumberger configuration

is given by:

p = dar?-(E/1) = (pifhy)r

Now taking the logarithm, we get:

log p = logr + log(p1/h1)

= log r — log(hi/p1) (3.6)

This is the equation of a straight line inclined at an angle of 45°

to the abscissa, cutting it at a distance (h1/p1) from the origin. It
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will be shown later that for an n-layer earth (n-th layer of infinite

resistivity) the same asymptotic relation holds good, provided p; is

changed to ps—longitudinal resistivity of (n — 1) layers—and hy is

changed to H—the total thickness of (n — 1) layers.

PRINCIPLE OF REDUCTION OF TWO LAYERS

Consider a prism of unit cross-section, with thickness A and re-

sistivity p. Then the resistance (J) normal to the face of the prism,

and the conductance (S) parallel to the face of the prism, are

given by:

T = hp (3.7a)

and:

S = h/p (3.7b)

wherefrom we get:

h = VST and p = VT/S (3.8)

Thus, each value of S and T determines a section with definite

values of h and p given by eq.(3.8). Now, from eq.(3.7a) we can

write:

log p = —logh + log 7 (3.9)

This equation defines a straight line inclined at an angle of 135° to

the A-axis and cutting it at a distance 7 from the origin, if p is

plotted against A on a double-logarithm scale.

Similarly, from relation (3.7b) we get:

log p = logh — log S (3.10)

which defines a straight line —also see eq.(3.6)— inclined at an angle

of 45° with the abscissa (h-axis) and meeting it at a distance S

from the origin.

The point of intersection of the two straight lines defined by

eq.(3.9) and (3.10) then uniquely defines the resistivity and thickness

for a particular combination of T and S.
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Fig.11. An a-layer prism of unit cross-section.

Consider now that the prism consists of 1 parallel homogeneous

and isotropic layers of resistivities pi, p2,...pn and thicknesses

hy, ho... An, respectively (Fig.11).

When the current is flowing normal to the base, the total re-

sistance of the prism is:

T=%%14+72+...¢ Ta = » 1
od

n

= pihy + pohe +... + Prin = 2 pit (3.11)

When the current is flowing parallel to the base, the total con-

ductance is:

S=S, + So+...+ Sa = yy St
i=1

1

= hy/p: + he/p2 +... + An/pn = x ha| ps (3.12)

The parameters T and S defined as transverse resistance and longi-

tudinal conductance, respectively, play a very important role in the

interpretation of sounding data. It may be mentioned that MAILLET

(1947) used the notations R and C for these parameters, and called

them “Dar Zarrouk variable” and ‘“‘Dar Zarrouk function”, re-

spectively.
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For the particular case of a two-layer prism, we get:

T= 7, + T2 = pili + pohe (3.13)

and:

S = Sy, + Se = Ay/p1 + he/pe (3.14)

If ps and pz are, respectively, the longitudinal and transverse re-

sistivities of the block, then:

pt(hy + he) = pili + pohe (3.15)

and:

(Ai + he)/ps = Ai/pi + he/pe (3.16)

Thus, the coefficient of anisotropy A and the mean resistivity are,

respectively, given by:

—— 1
A =~ pilps = ht he {(pihi + poha)(hi/pi + he/p2)}* (3.17)

and:

hip; + hope |
= 4 18Pm {ae + he/pe (3.18)

We shall now assume that the anisotropic prism may be replaced by

a homogeneous and isotropic prism of thickness A, and resistivity

pe, Which may be called, respectively, the effective thickness and

the effective resistivity of the block.

Then:

pele = T = pihy + pehe (3.19)

and:

helpe = S = hy/pi + halpe (3.20)

from which we get:

he = {(hip1 + hepe)(hi/p1 + Ae/p2)}

= Aih, + ho) = AH (3.21)

_ hip: + hope }

Pe [hilpr + Ae/pe

= pm = Aps (3.22)

and:
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Thus, it is possible to transform an isolated two-layer block (each

homogeneous and isotropic) into a single homogeneous and iso-

tropic medium. A complete isolation of this kind is possible in the

case of A-type curves, where the third layer is highly resistive and

the second layer is more resistive than the first. Here the effective

thickness of the reduced layer is equal to A times the total thickness,

and the effective resistivity is equal to the mean resistivity of the

mediums. Since A is always greater than unity, the effective thickness

of the composite layer is greater than the total thickness of the

two layers. As explained in the next section, the effective thicknesses

and resistivities of the reduced layers will be controlled by the sub-

surface resistivity distribution characteristic of the type curve.

PRINCIPLE OF REDUCTION OF A THREF-LAYER EARTH

We shall now consider the case of a three-layer earth. The left-

hand part of the sounding curve in this case coincides with a two-

layer curve having a parameter u = po/pi1; the closer the coinci-

dence, the smaller the value of the spread AB. For larger values

of AB, the right-hand part of the curve may be taken to coincide

with a two-layer curve having a parameter We = p3/pe, where pg is

the resistivity of the third layer and pe some effective resistivity of

a homogeneous layer replacing the first two layers. Our problem

now is to find the parameters (the effective resistivity and effective

thickness) of this reduced layer. From a careful study of a large

number of theoretical, experimental and field curves, it has been

possible to obtain some empirical laws for determining these para-

meters. These laws are different for the four different types of the

three-layer curves and have been found to be very useful in the

construction and interpretation of field curves.

These cases will now be considered separately.

Case I: H-type

In this case, the resistivity of the intermediate layer is lower

than that of the top and the bottom layers. When the resistivity of
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the bottom layer is large, the sounding curve is appreciably af-

fected by the resistive substratum for large values of AB, and the

flow of current in the upper layers will be approximately parallel

to the horizontal strata. Thus, in this case, the transverse re-

sistance (7) is negligible; and the longitudinal conductance (S) is

the sum of the longitudinal conductances of the top two layers.

Hence, if we replace the two upper layers by a single homo-

geneous layer with effective thickness hy and effective resistivity pz,

it is easily seen that they are given by:

hy = hy + he (3.23)

and:

hy + he
pE= SS = (hy + he)/(hi/p1 + he/p2) = ps (3.24)

These are sometimes known as Hummel’s parameters.

On double-logarithm paper, the first eq.(3.23) represents a straight

line parallel to the ordinate; the second eq.(3.24) represents a straight

line inclined at an angle of 45° to the x-axis, cutting it at 51 + So.

The point of intersection of these two straight lines is known as

Hummel point H, the coordinates (xy, yx) of which determine py

and hy.

Eq.(3.23) and (3.24) are utilized to plot auxiliary H-point charts

for a large number of values of #2 = pe/pi and different values of

vo = he/hy with:

abscissa = xy/h) = 1 + v0

and:

1 + 9
inate = =ordinate = yy/p1 i+ alms

These auxiliary point charts (H) have been presented in Plate III,

which can be directly used to find the H-point (i.e., py and Ay).

The conditions for which the H-point charts have been plotted are

strictly valid only for p3 = oo. It is, however, found that the charts

can be used even for any arbitrary value of ps sufficiently greater

than pz. This forms the basis of a simple method of construction

of empirical curves of the H-type.
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Case IT: A-type

In this case, the intermediate layer is more resistive than the

first (1.€., p2 > p1). Hence, the effect of the transverse resistance T

cannot be neglected. Also, since p3 > p2, we have additionally to

take into account the longitudinal conductance S. Therefore, the

T and S values of the reduced homogeneous layer will be the sum

of those of the top two layers, i.e.:

T= 11 + Tz = Mp. + hope
and:

S = $; + So = hy/p1 + he| pe

This case has already been dealt with, and the effective thickness

and resistivity are given by—see eq.(3.21) and (3.22):

ha = VTS = Ay + hy) = AH (3.25)
and:

pa = VT/S = pm = Aps (3.26)

These points are obviously the coordinates of the point of inter-

section of the T and S lines (Fig.12). This point A may be called

the “anisotropy point’’. Thus, the thickness of the reduced layer

equivalent to the first two layers is not equal to the sum of the

thicknesses (as in case I, i.e., H-type), but is A times that. The

resistivity of the reduced layer is also A times the longitudinal re-

sistivity of the first two layers.

As in case I, here also eq.(3.25) and (3.26) can be utilized to

plot the auxiliary point charts (A) for various values of 2 and v2.

These relations (3.25) and (3.26) may be rewritten as:

Ee = (1 + ve/ue)(1 + vope)}#

JA {ete | (3.27)
pis 1 + (2/2)

The values obtained from (3.27) are plotted in a similar manner

as in case I, and have been presented in Plate III along with H-point

charts. The coordinates of the point A (ha and pa) can either be
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Fig.12. Triangle of anisotropy. Positions of A-, K- and Q-points with respect

to H-point shown for a particular case: p1 = 5Qm, pe = 400m, A: = 10m,

he = 20 m, 7 - arbitrary.

calculated, using the above relations (3.27), or can be read from

the curves available (Plate IIT).

Case III: K-type (modified A-type)

In this case, the resistivity of the intermediate layer is higher

than that of the top and the bottom layers. The current flow in the

upper two layers will be somewhat similar to case II, i.e., A-type,

especially at smaller AB. Therefore both T and S should be con-

sidered. In this case, however, the intermediate layer being under-

lain by a less resistive layer, the lines of current flow within the

second layer should have a larger vertical component than that of

A-type. Hence, the conditions should be somewhat different than

those of A-type section.

From an examination of the theoretical curves it is found that,

in this case, the resistivity of the reduced layer remains the same
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as in the A-type section whereas its thickness is greater than in the

case of the A-type section. Here hx is equal to eA(hi + he), where

e is a function of A always greater than unity. The empirical re-

lationship between A and « is shown in Fig.13. The value of « can

be read from this graph for different values of A.

The values of A and the corresponding values of ¢ may be tabu-

lated as given in Table IT (KALENov, 1957).

TABLE II

VARIATION OF € WITH COEFFICIENT OF ANISOTROPY

A 140 1.20 130 140 1.50 1.70 200 2.50 3.00
e 117 447 1.29 132 133 136 138 1.40 1.42

Thus, the parameter of the reduced layer is determined by the

coordinates of the point K, given by:

xx = eNTS

ye = VT/S

Point K may be called the “displaced anisotropy” point. On

double-logarithm paper, the abscissa of A is log[A(ii + he)], and

the abscissa of H (i.e., “‘O”’) is log(Ay + he), as shown in the dia-

gram (Fig.12). Then:

OA = log{A(hi + he)} — log(ti + he) = log ad

(3.28)

The triangle HAC is called the triangle of anisotropy, and the

height (OA) of it is equal to the coefficient of anisotropy A. The

location of point K is then obviously on the line OA, produced

such that AK = loge.

The equations for plotting the auxiliary point chart (K) may be

written as:

= ef(1 + ve/yo)(1 + voqe)}!
3.29

JR re Yojie } em
pl 1 + va/ye
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The curves for various values of v2 and 2 have been presented in

Plate IV and the K-point can be located either with the help of

these charts or from the above relations (3.29).

Case IV: Q-type (modified H-type)

In this case, the resistivity of the intermediate layer is less than

that of the top layer. Hence, the initial part of the sounding curves

resembles that of H-type sections; but auxiliary H-point charts

cannot be used, as the Q-type is underlain by a less resistive layer.

In this case, it is found empirically that the total thickness of

the reduced layer is less than (hy + Ae) by a factor 7, depending

on the values of «zg and ve of the electrical section. The value of 7

can be read from the curves given in Fig.14, plotted for various

values of we and v2.

The effective resistivity of the reduced layer is also taken as

less than the mean longitudinal resistivity by the same factor 7.

Then the coordinates of Q are given by:

xXQg= 7

4 (3.30)
I

yQ= nD 5

It is easily seen that point Q (Fig.12) is graphically found by de-

creasing 7 times the coordinates of H. The location of the Q-point

with reference to the H-point has been shown in the “‘triangle of

anisotropy” diagram (Fig.12) for a specific value of 7.

The set of equations (3.30) may be rewritten to plot the auxiliary

point charts (Q) for various values of jg and ve as:

i* = (1 + 42)
7 (3.31)

yo 1 1 + v2

pin I + (values)

The Q-point may be taken from the charts (Plate IV) or calculated
from these relations (3.31) with the help of Fig.14.
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USE OF THE PRINCIPLE OF EQUIVALENCE

It has been mentioned earlier (Chapter 2) that for certain relations

of the parameters of a three-layer section, changes in resistivity

and thickness of the intermediate layer do not produce any notice-

able changes in the form of the sounding curve. In such cases it

is not possible to distinguish between two different intermediate

layers, and error may be involved in the interpretation of such

sections.

Thus, for sections of the H- or A-type, it is found that the form

of the curve remains practically the same if within certain limits

the values of he and pz are multiplied by the same factor. In other

words, H- or A-type sections are practically equivalent within

certain limits if he/p2 = Se remains the same. These sections may

be called equivalent with respect to S.

Also, for sections of K- or Q-type, the form of the curves does

not change appreciably if he is increased or decreased by a certain

factor and pe is correspondingly decreased or increased by the

same factor. Thus, if hgp2 = T, remains constant, any change of he

and pe separately does not produce any noticeable change in the

form of the curve. Such sections may be called equivalent with

respect to T.

The mathematical proof of this principle has been given in

Chapter 2 under certain conditions of thickness and resistivity of

the intermediate layer. Let us examine a few examples of equiva-

lent curves of the four types.

(a) H-type; p3 = oo. In this case, the curve he/hy = 1; p/p =

= 1/19, 1.e., Se/S; = 19, is almost equivalent to the curve given by:

hefhy = 2; pe/p1 = 1/9, ie., So/S1 = 18 (refer to sets of charts

84s and 85s in COMPAGNIE GENERALE DE GEOPHYSIQUE, 1955, 1963).

(5) A-type; ps = oo. Here the equivalent curves are given by:

vo = 2; we = 39, 1e., Se/S: = 1/19.5 (refer to set 96s)

and:

vo = 1; we = 19, 1e., Se/Si = 1/19 — (refer to set 97s)

(c) K-type; ps = 0. The equivalent sets are given by:

vo = 2; wo = 19; Te/T; = 38 (refer to set 91s)
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and:

vo = 1; fe = 39; 72/7, = 39 (refer to set 92s)

(d) Q-type; ps = 0.
vo = 2; 2 = 1/39; T2/T;

and:

y= l; fo = 1/19; T2/T

are the equivalent curves.

The principle of equivalence, as shown above, applies only for

small values of v2 = he/h,. The ratio may be different for different

values of “2 = pe/p1 and 43 = p3/p1. For interpretation of sounding

data it is thus important to know the maximum values of he/h;

beyond which the principle of equivalence does not hold good

1/19.5 (refer to set 80s)

1/19 (refer to set 79s)

TABLE II]

TABLE OF LIMITING VALUES FOR ¥2 AND 2 WITH RESPECT TO S AND T

Equivalent with respect to S Equivalent with respect to T

Maximum value Maximum Maximum value Maximum

of 2 for which pe possible of ve for which possible

and ve can be de- value f4o can be factor of

creased without of factor increased and v2 decrease

limit of increase of decreased of 2 and

ve and pe without limit increase of v2

H-type (p3 = pi) K-type (ps = p1)

pa v2 pe VQ

1/39 2 1.6 39 9 1.7

1/19 1 1.6 19 5 1.6

1/9 1 1.6 9 2 1.6

1/4 1/2 1.4 4 1/2 1.5

3/7 1/3 1.4 7/3 1/2 1.5

2/3 1/5 1.4 3/2 1/3 1.5

A-type (p3 — 00) Q-type (p3 = 0)

39 3 without limit 1/39 _ _

19 2 -do- 1/19 1/3 2.6-2.3

9 1 3.8 1/9 1/3 2.2-2.1

4 1 2.5 1/4 1/3 1.9-1.9

7/3 1 1.7 3/7 1/3 1.8-1.8

3/2 1 1.5 2/3 1/3 1.5-1.5
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(Table LI). Besides, for interpretation of field curves, it is of great

practical importance to know the limits within which Ae and pe

may be varied, satisfying the equivalence of the curves.

Assuming that the error in field measurements is 5%, we may

say that the curves having deviation less than 5% cannot be differ-

entiated from each other. Let us consider, for example, the theo-

retical curves of the K-type having constant 72/71, p3 = 0 and

variables he/hy and p2/p.. It is seen that for pe/p1 > 9, the curves

are equivalent within 5%. In other words, curves for po/p1 = 9, 19

and 39 practically coincide and may be taken as the same as for

p2/p1 = oo and To/T) = hope/hipi = 12. Thus, if p2/p1 = 9, then

starting with ho/h; = 1.3, we can increase p2/p1 and correspond-

ingly decrease /e/h, without limit and shall not notice much differ-

ence in the nature of the curves. If p2/p1 = 19, the maximum limit

of he/hy will be 0.6, and so on.

The problem of equivalence has been discussed in detail by

PyLagv (1948). He has given nomograms for all four types of

three-layer sections, which give the limiting values of p2 and ho

for the principle to be valid. The nomograms have been presented

in Plate V-VII. From these nomograms we can find the numeri-

cal values of the limits of applicability of the principle of equivalence

for different types of sections. Some numerical values of the maxi-

mum limits of equivalence are given in Table ITI.

It is found that the region of equivalence in the case of Q-type

section is considerably less than that in the cases of A-, K- and H-

type sections.

Pylaev’s nomograms

Pylaev’s nomograms for determining the limits of v2 and jg are

plotted with 2 = p2/pi on the abscissa and v2 = he/hi on the ordi-

nate, and these are of four types (H, A, K and Q), as presented in

Plate V-VIII. Solid lines indicate the limiting values of we and ve

for equivalence, and the dashed lines are lines of equal So/S; (for

H and A) and equal 72/7; (for K and Q).

The use of the curves for H-type (Plate V) has been shown in

the nomogram itself. The procedure is given below:
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(/) Plot the point uz and v2 of the given case in the nomogram

(Plate V).

(2) Draw through this point a line parallel to the dashed lines

(lines of equal S2/5Si) until it touches the solid lines on either side

but with different slopes.

(3) Draw a rectangle with this line in (2) as the diagonal. This

rectangle gives the limiting values of v2 and jue for equivalence in

the required case.

An example for the limiting values for wz = 1/39 and ve = 3

has been shown in Plate V where the shaded rectangle gives the

limits of equivalence. The limits of equivalence for this case lies

between ve = 1.6 and 4.4, and m2 = 0.018 and 0.036. The pro-

cedure is similar in the cases of A-, K- and Q-types of equivalent

curves.

The principle of equivalence plays an important role in the

graphical construction of field curves as well as in their interpre-

tation. Suppose, for example, it is necessary to find an H-type

curve with parameters we = 1/30, ve = 4, and p3 = oo. A theo-

retical curve with such parameters does not exist in the sets of

master curves published. The closest theoretical curve has the

value ue = 1/39. Pylaev’s nomogram shows that for the given

parameters, uz may be changed within the limits of equivalence.

Thus, the corresponding value of 2 is given by v2/u2 = 120 = v2/ua,

i.e., ¥2 = 120/39 = 3.1. Thus, we can use the curve “2 = 1/39,

v2 = 3, ps = 00, which is equivalent to the given section within an

error of about 5%. To get a K-type curve, equivalent with respect

to T, for the values “2 = 30, v2 = 4 and ps3 = 0 we can use the

relation v2 = ere/ue and “2 = jgv2/vg. Then the parameters of

the new curve equivalent to the given K-type section are: 2 = 39,

ve = 3 and ps = 0.

It should be remembered that for Q-type and A-type sections

the procedure is exactly the same as for those of K- and H-types,

respectively.
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GRAPHICAL CONSTRUCTION OF EMPIRICAL CURVES

Construction of two-layer curves

If a two-layer curve for po/pi, other than the values for which

the curves are available in published form, is required, it can be

plotted with sufficient accuracy by graphical interpolation. The

following procedure may be adopted:

(1) Draw vertical lines perpendicular to the abscissa (in Plate |

and II), the intersection of which with the master curves gives the

various values of p2/p1 and corresponding p/p1 for a certain fixed

value of AB/2h}.

(2) Plot along the ordinate the values of p/p: and the corre-

sponding values of p2/p1 along the abscissa for a fixed value of

AB/2h;. There will be as many curves as the number of AB/2hy

values taken.

(3) Read out the values of p/p1 corresponding to the required

value of pa/pi for various values of AB/2h1, and tabulate.

(4) Plot the values AB/2h; along the abscissa and the corre-

sponding values of p/p: along the ordinate, and then draw a smooth

curve passing through these points.

This gives the two-layer master curve for the required inter-

mediate values of po/p1, i.e., other than those available in charts Is

(COMPAGNIE GENERALE DE G&OPHYSIQUE, 1963; ANONYMOUS,

1963a).

Construction of three-layer curves

The two-layer theoretical master curves (Plate I, ll), the aux-

iliary point charts (Plate III, IV) along with the albums of three-

layer and four-layer curves (COMPAGNIE GENERALE DE GEOPHYSI-

QUE, 1955, 1963; ANONYMOUS, 1963a, b) may help in the empirical

construction of multi-layer curves for values of the parameters for

which theoretical curves are not available.

The following steps are recommended for the construction of

three-layer field curves of the H-type:

(1) Plot on a double-logarithm, transparent graph sheet with a

modulus of 62.5 mm the point with coordinates hy and py.
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(2) Superpose this point on the origin of a two-layer theoretical

master curve such that the axes are parallel.

(3) Draw the curve with j12 = pe/p1, and the left-hand part of

the three-layer curve is obtained. Use interpolation, if necessary,

as explained above in the case of two-layer curves.

(4) Locate point H, given by the point hy and px, from the sets

of eq.(3.23) and(3.24) or from the auxiliary point charts (Plate ITI).

(5) Now put point H on the origin of the set of two-layer

master curves and draw the curve corresponding to ~ = ps/pu.

This forms the right-hand part of the curve.

(6) Connect the left-hand curve with the right-hand one with a

smooth curve to get the intermediate portion. In order to find

more accurately the transitional portion of the curve, use is often

made of the theoretical three-layer curves having « = po/pi and a

value of ps nearer to the given value. Put the point (1, p1) on the

origin of such a set of three-layer curves and draw the transitional

part by interpolation (for details refer to the examples at the end

of this chapter).

Sometimes, for plotting the intermediate part, use is made of

the “principle of equivalence” to choose the proper set of curve.

The application of this principle has been discussed in the previous

section and the theory dealt with in Chapter 2. In order to plot three-

layer master curves instead of the field curves discussed just now,

the first step is slightly modified, as explained in example 2, at the

end of this chapter.

The procedure for graphical construction of three-layer A-, K-

and Q-type curves is exactly the same as that already explained

for the H-type. The respective A-, K- and Q-points, instead of the

H-point, are to be determined, depending on the type of curve to

be constructed.

Construction of four-layer curves

It is found that, under suitable conditions, the principle of re-

duction and the method of graphical construction as explained

above can be extended to multi-layer cases also.

The procedure for graphical construction of four-layer field



QUALITATIVE INTERPRETATION 67

curves is similar to that for the three-layer ones explained above.

Here, use is made of the two- and three-layer master curves, and

the following steps may be adopted:

(1) Plot the point (41, pi) on a transparent double-logarithm

graph sheet with a modulus of 62.5 mm.

(2) Superpose this point on the origin of a set of three-layer

master curves decided by the values (/1, pi, he, pz and ps) and draw

the curve for v2 = he/hy. If the curve for the required value

ug = p2/p1 1s not available, use the principle of equivalence and

choose the nearest value. If the principle of equivalence does not

help, then construct the required three-layer curve with the help of

two-layer master curves as explained above.

(3) Find the values of pe and hei, 1.e., the effective resistivity

and the thickness of the first two top layers, either from the aux-

ihary point charts or calculate them from the given relations (as

explained earlier in a discussion of reduction) for the type section

(H, A, K or Q) formed by the first, second and the third layers.

(4) Now, with the (4e1, pe1) point as the origin, plot a three-

layer master curve for the values pei, /e1, p3, M3, pa. Use of the

principle of equivalence may be made if necessary, as in step (2).

(5) Again, the effective resistivity and thickness of the reduced

layer are obtained by combining pei, fei and ps, hg, using the corre-

sponding relations or charts. This gives peo and hep.

6) The point (hea, pez) is then plotted on the transparent double-

logarithm graph sheet and placed on the origin of the two-layer

master curves.

(7) Draw the two-layer curve for the value of “ = pa/pee.

(8) Join the intermediate parts by suitable smoothing technique

with the help of the four-layer curves available in ANONYMOUS,

1963b (refer to examples at the end of this chapter).

QUALITATIVE INTERPRETATION

The aim of geophysical interpretation of resistivity sounding data

is to determine the thickness and resistivity of different horizons
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from a study of the V.E.S. field curves and to use these results to

obtain a complete geological picture of the area under investi-

gation.

It is sometimes useful to make a rapid qualitative study of the

field curves before a detailed quantitative interpretation of the

same is undertaken. Several quantitative methods of interpretation

have been used by different workers (KALENOV, 1957) under differ-

ent geological conditions. In this section, we shall describe a

method particularly useful for mapping the basement of high re-

sistivity. The method depends on the determination of the total

longitudinal conductance (S) of the geoelectric section from the

right-hand asymptotic part of the sounding curve.

It was shown earlier that the asymptotic part of the sounding

curve is a straight line, inclined at an angle of 45°, when the

basement is of infinite resistivity. It was also proved —see eq.(3.10)—

that the intersection of this straight line with the abscissa (i.e.,

AB/2) at p = 1, gives the value of the total longitudinal con-

ductance of the section:

_ hy + ho +... _ A

Ps Ps

S = $; + Sot...

where ps is the longitudinal resistivity of the whole section.

Two-layer earth

In the case of a two-layer earth with a basement complex of a

high resistivity (p2 = oo), the problem is simplified. Here the value

of p for small AB (i.e., AB — 0) gives pi; and the value of S is

read from the asymptotic part, giving the value of the depth of

the basement, i.e., #1, = piS.

In case of a finely layered thick sedimentary section underlain

by a basement, the depth obtained from the S value and the re-

sistivity of the surface layers may not give the true depth of the

basement because of the anisotropy. In this case, the depth is

given by h = p,S.
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Here it is necessary to find ps from some independent measure-

ments of the true depth (e.g., by actual drilling or from geophysical

well-logging) at a few places where sounding curves are available.

It is found that ps does not change appreciably in an area for

small lateral variations of the resistivity and thickness of the sedi-

mentary section.

Thus, knowing the value of ps at a few control points, it is

possible to map the basement from the S-part of the sounding

curves only. Obviously, this procedure may be adopted for base-

ment mapping in a multi-layer section, provided the assumption of

a small variation in ps in the area under consideration is approxi-

mately valid. Thus, under favourable conditions it is possible to ob-

tain a rapid qualitative idea of the depth of basement in an area

through the study of the S-part of the curve.

Three-layer earth

In the interpretation of three-layer H- and A-type field curves

only (p3 = oo), the following steps may be followed. Only two-

layer master curves need be used:

(1) On matching the left-hand part of the curve with the two-

layer master curves, the values of p: and A; are obtained.

(2) The value of S is read from the intersection of the tangent

to the asymptotic part of the field curve with the abscissa at p = 1.

In a three-layer case, S = S, + Se, where S; = (A1/p1) and Se is

given by S — (A1/p1) = ha/pe.

(3) If pe is known from some independent measurements (e.g.,

electrical logs) at certain locations in the area, the thickness he of

the second layer is calculated by the relation Ae = Szp2. Thus, we

can get the depth of the basement H = hy + ho.

The same procedure is followed for other points, and the base-

ment can be mapped from a knowledge of pz and the use of two-

layer master curves only. Detailed procedure for qualitative in-

terpretation of three-layer sounding curves has been given in ex-

ample 6 at the end of this chapter (cf. Fig. 21). This semi-quantita-

tive method can be extended to a multi-layer sedimentary section

underlain by a basement.
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QUANTITATIVE INTERPRETATION

The problem of the quantitative interpretation of vertical electri-

cal sounding is to determine the thickness of the different for-

mations having different resistivities from the field sounding curves.

The interpretation is based on comparing the field curves with the

curves obtained theoretically, or constructed graphically, having

suitably chosen parameters. In the case of perfect coincidence of

the theoretical with the field curve (complete matching), the values

of the field parameters are the same as those of the geoelectrical

section for which the theoretical or graphical curves have been

constructed. It is, however, practically impossible to have an album

of theoretical master curves representing all geological situations

met in the field. It is thus necessary to devise ways and means of

interpreting the observed field curves with the help of a limited

number of theoretical curves available in published form. The

methods of computation of apparent resistivity curves (used for

the comparison of field curves) from the resistivity stratification in

the subsurface (FLATHE, 1955; VAN Dam, 1965) becomes impracti-

cable in the field. Some efforts have been made to find a method

for direct interpretation of sounding data, i.e., for determining the

parameters of a geoelectric section from the surface measurement

of apparent resistivity data (SLICHTER, 1933; BELLUIGI, 1956; KOE-

FOED, 1965). These methods have not been very successful from

practical points of view, and hence will not be discussed.

In this section we shall describe the procedure for the interpre-

tation of two-, three-, four- and multi-layer curves by using the

theoretical master curves available and the “‘auxiliary point charts’’

and Pylaev’s nomograms, as explained earlier. This analytic-graphi-

cal auxiliary point method of interpretation (EBERT, 1943; KALENOV,

1957) has been founa quite useful from a practical point of view,

and is being widely used by geophysicists engaged in geoelectric

sounding.

Interpretation of two-layer curves

Two-layer V.E.S. field curves may be of two types: (/) p2 > p1
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and (2) pz < pi. The following procedure may be adopted for in-

terpretation:

(a) Plot the field curve on a double-logarithm transparent graph

sheet with a modulus of 62.5 mm, with p on the ordinate and AB/2

along the abscissa.

(b) Superpose the field curve on the sets of two-layer master

curves, Plate I for case (/) and Plate II for case (2), and shift the

curve, keeping the axes parallel to the coordinate system until a

good match is obtained.

The coordinates of the origin of the master curves as read on

the field curve (Fig.10) gives the values of p1 and fy. The value of

jt = p2/p1 is read from the theoretical curve, and pe calculated. It

should be remembered that for a finely layered sedimentary section,

pi and pe represent the mean resistivities of the top and the bottom

layers. If no match is obtained, interpolation on logarithm scale is

necessary. In the case of a highly resistive bottom layer, the simplified

procedure explained in the section on qualitative interpretation

may be adopted.

Interpretation of three-layer curves

Interpretation of three-layer vertical electrical sounding (V.E.S.)

field curves can be achieved with the help of available two- and

three-layer master curves (COMPAGNIE GENERALE DE GEOPHYSIQUE,

1963, and ANONymouS, 1963a) and the auxiliary point charts

(Plate III and IV).

For interpretation of three-layer field curves, the following pro-

cedure may be adopted:

(1) Plot the field curve on a transparent double-logarithm graph

sheet with a modulus of 62.5 mm, and match the left-hand part of

the curve by superposing the field curve on the set of two-layer

master curves, keeping the axes parallel to the coordinates. The

coordinates of the origin of the master curve, as read on the field

curve, give pi and fy. From the curve on which the match is ob-

tained, and by interpolation if necessary, uz = p2/pi can be read.

Since p1 is known, p2 can be calculated.
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(2) Matching of the curves with three-layer master curves will

consist of the following steps:

(a) Choose the right set of three-layer master curves from the

knowledge of pi, “2 = (p2/p1), already noted in step (/) and the

most probable value of ps (guessed at).

(b) Superpose the three-layer field curve with the point (A1, p1)

on the origin of the three-layer master curve set chosen in step (2a),

and read the value of ve(he/h1) from the curve with which the field

curve matches. To obtain v2, interpolation on a logarithm scale

may be done, if necessary. For actual interpolation and detailed

procedure, refer to example 7 at the end of this chapter.

(c) If there is an exact match with a three-layer curve, the value

of ps may also be read from the asymptotic value. Thus, so far

we have obtained: p1, /1, 2 (hence pe), v2 and ps, and the problem

is then solved, since hg = veg x Ay.

(3) If the value of ps cannot be obtained accurately, the follow-

ing procedure—using the auxiliary point charts and two-layer

master curves—is recommended.

(a) The field curve is superposed on the proper set of auxiliary

point charts, with the point (A, pi) on the origin of the chart.

(b) Read the corresponding values of j2(p2/p1) and yve(he/h),

with the axes parallel. This gives he and pe.

(c) Now put this point (he, pe) on the origin of the two-layer master

curves, and match the right-hand part with the suitable, two-layer

curve, which gives ps/pe.

Since pe is known in step (35), p3 is calculated. This gives a

check on the value of ps.

(4) The following procedure is recommended if the three-layer

curve for requisite parameters is not available and the principle of

equivalence is applicable.

(a) If the three-layer curve for the proper value of j2 is not ob-

tained, the value nearest to it, i.e., 42, is taken.

(6b) The value of vg is then obtained, after matching with the

three-layer curves.

(c) The actual value v2 is obtained by the principles of equiva-
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lence, i.e., by keeping S2/S1 (for H- and A-types) and 72/7; (for

K- and Q-types) constant.

For H- and A-type: v2/u2 = v/a, i.€., ve = v2U2/"9.

For K- and Q-type: reue = gua, Le., ve = v2U3/U2.

These are valid, provided the corresponding values are within

the limits of equivalence as defined by Pylaev’s nomograms (Plates

V-VIII).

(5) When the three-layer master curves are not available and

the principles of equivalence are not applicable, the following pro-

cedure—using two-layer master curves and “‘auxiliary point charts”

—is recommended:

(a) Find the values of p1, 41 and p2 from the two-layer master

curves, as explained in step (J).

(b) Match the last part of the curve with a two-layer master

curve. Put a cross-mark on the field curve, corresponding to the

origin of the set of master curves. This gives pe and he.

(c) Put the point (41, p1) on the origin of the auxiliary point

charts and read the value of vz corresponding to the cross-mark.

(d) From the knowledge of /1, Ae is obtained from 72.

If the bottom layer is a highly resistive basement, we can adopt

the simplified procedure for interpretation as explained in the

section on qualitative interpretation.

Interpretation of four-layer curves

Interpretation of four-layer field curves consists of the following

steps:

(1) With the help of two-layer master curves, as in the case of three-

layer interpretation, the values of p1, 4, and ue are obtained.

(2) Then, with the values of p1, 4; and wz noted in step (/) and

a suitable choice of ps, the value of v2 ts obtained, as in the case of the

three-layer curves.

(3) From the knowledge of pi, 41, pz and Ae, the resistivity and

thickness of the reduced layer, i.e., pe: and he1, are obtained with

the analytical formulas for the type curves or from the auxiliary

point charts for corresponding type curves.
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(4) The whole curve now reduces to a three-layer curve, with

parameters pei, /te1, p3, 4g and pa. The interpretation now is limited

to a three-layer case, with the pe1, he: point superposed on the

origin of the three-layer theoretical master curves. The procedure

for the rest of the curve is similar to that of a three-layer case.

Effect of dip on interpretation

We have so far discussed the apparent resistivity curves only for

a horizontally layered earth, and the interpretation techniques ex-

plained in previous sections apply strictly when the boundaries be-

tween different layers are horizontal. Often, electrical sounding is

carried out in regions where the boundaries of separation between

different layers are inclined. It is necessary, therefore, to examine

the effect of the inclination of beds on vertical electrical sounding

curves.

The theoretical problem of potential distribution over a two-

layer earth having an inclined boundary of separation has been

discussed by AL’PIN (1940), TIKHONOV (1946), and later by UNz

(1953), MAEDA (1955) and De Gery and Kunerz (1956).

Ap

Fig.15. Effect of dip on Schlumberger curves. A. Expansion of electrodes

parallel to strike. Lower layer highly resistive. B. Expansion of electrodes

across the strike. d = distance of the sounding point from the contact.
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AL’PIN (1940) published a set of 16 two-layer master curves for

Schlumberger configuration parallel to the strike direction. These

curves are no longer easily available. One such set of curves is

reproduced in Fig.15A in which the apparent resistivity is plotted

against AB/2h,, where h, is the depth perpendicular (not the verti-

cal depth) to the boundary. The curves have been plotted for values
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of the angle of inclination (dip) a = 0°, 22°30’, 30°, 45°, 60° and

90°, with an infinite resistivity contrast (i.e., pe/p1 = 00). Similar

curves are also available for different values of the resistivity

contrast. Recently a number of master curves (presented as NK-

series) for inclined contacts with a spread of electrodes both paral-

lel and perpendicular to the strike direction have been published

(ANONYMOUS, 1963c). Two such sets of curves are given in Plate IX

and Fig.15B. Curves for inclined contacts have been reproduced

from the ANONYMOUS (1963c) album in English (AL’PIN et al., 1966).

From the curves in Plate IX it is seen that as the angle of incli-

nation increases, the curves differ widely from each other—such

that an increase in a raises the left-hand part of the curve and

lowers the right-hand part. If the two-layer master curves for hori-

zontal boundaries (Plate I, II) are used to interpret the sounding

curves, for an inclined two-layer contact, considerable error is in-

volved, particularly when a is large. For example, take the curve

for « = 2/4 in Plate IX. If this curve is interpreted by means of

Plate I, ignoring the dip, we get p2/p1 ~ 4 and hy = 0.4 times the

actual vertical depth below the sounding point. However, if the

angle of inclination («) is not more than 15-20°, the ordinary two-

layer master curves may be used without appreciable error (less

than 10%). If the basement must be surveyed when « is small, it

is obvious that the Schlumberger sounding is unsuitable. In such a

case, dipole sounding may be carried out. This is explained in

Chapter 5.

In practice, if it is known beforehand that the boundary is in-

clined, then quantitative interpretation is possible when one of the

parameters (« or p2/p1) is known. Then, using the master curves

for inclined contact, the other parameter and the depth of the

bottom layer can be determined. In an unknown area, the dip of

the bed can be detected by carrying out sounding at a point in

two mutually perpendicular directions. If the strike direction is ap-

proximately known, the sounding should be done at several points,

with a spread parallel to the strike direction and the depths com-

puted from the two-layer master curves for horizontal layers (Plate

I, If). Thus, the trace of the lower bed and the angle of inclination
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can be found. The interpretation is reasonably accurate for small

dips. For larger dips, however, the master curves available (Plate IX)

for dipping contacts should be used.

Besides the possibility of the effect of inclination of the beds on

the interpretation of sounding curves, the following points should

also be remembered at the interpretation stage:

(1) An attempt should be made to match with a three-layer

master curve in the beginning, instead of a two-layer one, if such

sets are available. This introduces a lesser amount of error.

(2) Geological knowledge of the area, especially with regard to

possible subsurface formations, should be used to determine the

curve type.

(3) Logging data at some selected points in the area should be

used, if possible, as a guide for the interpretation.

(4) The whole set of sounding field curves for a given area should

be studied simultaneously. This helps the interpreter to choose the

most probable geological solution, and the interpretation is greatly

Improved.

EXAMPLES

Graphical construction of three-layer field and master curves

Example 1. Construct graphically the following three-layer H-

type curve:

pi = 16Qm; po = 4Qm; ps = 41 Om

hy = 3m; he = 15m; hg = 00

Since the field curve is plotted with the apparent resistivity along

the ordinate and AB/2 on the abscissa, the starting point for the

construction of the field curve will be (pi, 41) and not the origin

(1, 1) of the master curves. The following steps may be adopted:

(a) Superpose the point (16, 3), plotted on a double-logarithm

transparent graph sheet of proper modulus, on the origin of the

two-layer master curve set.
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(b) Plot the two-layer curve for 2 = pe/pi = 4/16 = 1/4, as

shown in Fig.16A.

(c) Next, find the H-point by combining the top two layers. The

coordinates of the H-point are obtained from the analytical formu-

las:

hy + he

Pu = Chslps) + (alps) oe
and:

hy = hy + ho = 18m

To find the H-point graphically, make the point (16, 3) coincide

with the origin of the H-point charts (Plate II) and locate the H-

point at the intersection of ve = he/hy = 5 and we = p2/pi = 1/4.

(d) With the H-point on the origin of the two-layer master curves,

plot the curve for the resistivity ratio u = ps/py = 8.8 ~ 9.

(e) In order to interpolate the intermediate part of the curve,

use is made of the three-layer master curves. For the present case,

the three-layer curve is available for v2 = 5 and we = 1/4 (Com-

PAGNIE GENERALE DE GEOPHYSIQUE, 1955, 1963, chart 83s) and the

interpolation of the intermediate part is easily made.

Example 2. Construct graphically the following three-layer mas-

ter curve (K-type):

Me = pe/pi = 12; ws = ps/p. = 3

ve = hefhy = 4; 3 = hg/hy = 00

The procedure for construction of the field curve and the master

curve is exactly the same, except that the point (1, 1) on the trans-

parent graph sheet is put on the origin of the two-layer master

curve, instead of the point (A, pi), and the following steps arc

recommended:

(a) Consider this case initially as a two-layer problem with a

resistivity ratio of n, = 12*. Make the point (1, 1) on the graph

* Although the two-layer curve for 4s = 12 is available (COMPAGNIE GENE-

RALE DE GEOPHYSIQUE, 1963), it is not included in the master curves

presented in this book. This curve can, however, be easily constructed by

interpolation, as explained on p.65.
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sheet coincide with the origin of the master curves set, and draw

the curve corresponding to the given ratio “2 = 12, as shown in

Fig. 16B.

(b) Consider the top two layers as a single, reduced layer, and

find point K by means of K-point charts. For this, make the point

(1, 1) on the graph sheet coincide with the origin of K-point charts,

——» AB /2 (rn)
1 4 A heed big sl A. wed oh hk boo Lo wed eel ed Poo

A 10 100 500

30F

20

p=,

4 drrewerceer denectincerh 4 borne rceeboneirereare, 4 J walled

5 10 100 500

Fig.16A. Construction of a three-layer H-type field curve. p: = 16Qm, p2 =

= 40m, ps = 41 Om, fA: = 3m, hte = 15m, Ag = cc. B. Construction of

three-layer K-type master curve. ue = 12, us = 3, vg = 4, v3 = 00,
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and K is located at the intersection of uw2 = 12 and v2 = 4. This

gives px/p1 = 6 and Axg/hy = 11.2.

(c) With point K (6, 11.2) on the origin of the two-layer master

curves (Plate II), draw the two-layer master curve for the resistivity

ratio « = ps/px = (p3/p1)/(px/pi) = 1/2.
(d) For the intermediate part, a suitable three-layer master curve

is not available; hence, use the principle of equivalence and keep

T2/T; constant, i.€., vee = v9"9.

In this case, ug = 12, vg = 4, and the master curves available

are for ng = 9; therefore, vg = 5.3 ~ 5.

Now the master curve for vg = 5; we = 9; v3 = oo, and v3 = |

(COMPAGNIE GENERALE DE GEOPHYSIQUE, 1955, 1963, chart 60s) may

be used for interpolation. The master curve for v2 = 5; ue = 9;

vg = 00, and ws = 3—1.e., the curve EIR (ANONYMOUS, 1963a,

plate 408)—will, however, be the first choice if these sets are availa-

ble to the interpreter.

Graphical construction of four-layer curves

Example 3. Construct graphically the following four-layer field

curve with the help of two-layer master curves:

pr = 100 Qm; p2 = 400 Qm; ps3 = 20Qm; ps = c0

hy = 3m; ho = 12m; hs = 60m; hg = 00

This represents a curve of KH-type. It can be plotted with the help

of two-layer master curves, and auxiliary point charts (K and #)

only, as in the case of a three-layer construction. The procedure is

indicated in Fig.17, which is self-explanatory.

Example 4. Construct graphically the following four-layer field

curve with the help of two-layer master curves:

pr = 400m; pe = 5Qm; p3 = 402m; ps = 400 Qm

hy = 2m; ho = 3m; hg = 12m; ha = 08

The plotting of a field curve represented by the above values has

been shown in Fig.18, which is self-explanatory.
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Fig.17. Construction of a four-layer KH-type field curve. p; = 100 Qm.

p2 = 400 Om, ps = 20 Om, pa = 00, Ar = 3m, he = 12m, hs = 60 m, ha = ©¥.
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Fig.18. Construction of a four-layer HA-type field curve. p1 = 40 Qm,

ps = 5Dm, ps = 40 Om, pa = 400 Om, Ar = 2m, he = 3m, Ag = 12m, hg = 00.



82 SCHLUMBERGER SOUNDING

“oF

30

F(ATM)

_— \

—~“@H \

\ . 41
——-A 8/2 (m \ CH775(¥ =3.3)
4 1 L dccbnmad Lt _L i 1 n Lod j il 1 A

10 100 200

Fig.19. Construction of a four-layer QH-type field curve. 1 = 34 Qm,
pa = 12. Qm, ps = 1 Qm, pa = 16 Om, Ar = 3m, he = 7m, h3 = 9m, Ag = ©09.
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Fig.20. Construction of a four-layer HK-type field curve. p1 = 150Qm,
pa = 10 Om, ps = 300 Om, pa = 0, fh: = 3m, Ap = 10 m, fs = 20 m, Ag = 0.
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Example 5. Construct graphically the following four-layer field

curves with the help of three-layer and two-layer curves:

(a) pi = 34.Qm; pe = 12Qm; ps = 1Qm; ps = 160m

hy = 3m; he = 7m; Ag = 9m; hy = 00

(6) pi = 150 Qm; pe = 10Qm; p3 = 300 Qm; ps = 0

hy = 3m; he = 10m; Ag = 20m; hy = 00

The procedure ts indicated in Fig.19 and 20, which are self-explana-

tory.

Qualitative interpretation of field curves

Example 6. Interpret qualitatively the given field curves (Fig.21),

with the help of two-layer curves only (Plate II), to find p; and A}.

Take the value of p2 equal to 11 Qm, obtained from logging data.

200k

(100,5)
100 - + +(100,10)

E
a

Fr 61.

|_| I
fo—-————— 105 Fa 4

/ /
I l10S ar joe AB/2(m)

1 troop til ] isritirial | Lote
10 100 200

Fig.21. Qualitative interpretation of three-layer field curves. Interpretation by

S-method, when lowermost layer is highly resistive; resistivity of second layer

is known.

The following procedure may be adopted:

(a) The first part of the curve is matched with a two-layer curve

(Plate IT) to get p: and /1. This gives, for curve J: py = 100 Qm,

hy = 5mand S; = 0.05; and for curve J/: p: = 100 Qm, A, = 10m

and S, = 0.10.



&4 SCHLUMBERGER SOUNDING

(b) The values of total S for the two curves are found, from the

intersection of tangents to S-part at p = 1, to be 1.0 and 2.9, re-

spectively, for curves J and J/.

(c) The values of he given by ho = pe x Se, where So = S — Sj,

are 10.5 m and 30.8 m, respectively, for curve J and curve J.

Thus, the interpreted results for the curves are given as follows:

Curve 7: p, = 100Qm; hy = 5m; pe = 11. Qm; he = 10.5 m;

p3 = ©O.~

Curve /7: p1 = 100Qm; A; = 10m; pe = 11 Qm; he = 30.8 m;

p3 = ©O.~

It may be mentioned here that the matching of these curves with

the theoretical master curves gives he = 10 m and 30 m, respective-

ly, for curves / and //. Thus, the errors in the qualitative interpre-

tation are, respectively, 59% and 2.5%.

Interpretation of three-layer field curves

Example 7. Interpret the given K-type field curve (Fig.22) using

100;-~

Campos

Fig.22. Quantitative interpretation of a three-layer K-type field curve. Two-,

three-layer master curves; auxiliary point charts and Pylaev’s nomograms used.

Result: p1 = 7Qm, ps = 133 Qm, ps = 0, A: = 5m, he = 40m, hs = 00,

Unbroken curve = field curve; dash-dot curve = two-layer master curve;

dashed curve = three-layer master curve.
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two- and three-layer theoretical master curves, auxiliary point

charts and equivalent curves.

Interpretation of the three-layer field curve consists of the following

steps:

(a) Try to match the left-hand part of the curve with a two-layer

master curve, keeping in mind that the beginning of the given curve

must asymptotically approach the abscissa p/p, = 1.

A tolerably good match is obtained in the present case for

ua = p2/p1 = 19 (Fig.22), with the left-hand cross-mark over the

origin of the master curve.

The coordinates of the point are p) = 7Qm and fh; = Sm.

Also, pp = 19 x 7 = 133 Qm.

(b) Try to match the entire three-layer curve with the point (7,5)

on the origin of the standard three-layer master curves having

ug = 19, ps = 0 for various values of v2 (refer to curves in Com-

PAGNIE GENERALE DE GEOPHYSIQUE, 1955, 1963, chart 91s.). It is

found that the field curve does not lie on any curve, but falls be-

tween vy = 5 and 9. The value v2 = 8 is obtained by interpolation

(as shown in the diagram). This gives hg = 8 x hy = 40m. The

method of reading the value of v2 by interpolation and extra-

polation has been explained in the note below.

(c) Now find the K-point with the help of auxiliary point charts

(K-type), as indicated in the diagram, such that px = 70 Qm and

hx = 100m.

(d) With the K-point on the origin, try to find a match for the

end part of the given curve with the two-layer set, and it 1s found

that ps/px = 0 gives a good match.

This provides a check on p3 = 0, assumed while trying to match

with the standard three-layer curves. The interpreted results finally

obtained are noted on the diagram. In all these examples, the field

curve, two-layer and three-layer master curves have been repre-

sented by solid line, dash-dot line and dashed lines, respectively.

Note: The curves presented in Fig.23 give the method of inter-

polation on a logarithm scale for two cases: (1) when the field

curve lies between two master curves (Fig.23,a) and (2) when it
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lies outside the two master curves (Fig.23,b). The solid lines repre-

sent the field curves, and dashed lines the master curves.

The procedure is to cut out a piece of logarithm paper of the

same modulus (62.5 mm) and superpose this on the divergent or

parallel part of the curves. The same scale divisions as the differ-

ence in vg values between the two master curves within or without

which the field curve lies should be included if possible. A paper

with a logarithm scale and a modulus of 62.5 mm may be used con-

veniently. If no such scale is available, one can be prepared by

pasting cut-out portions of a graph sheet onto any paper scale.

The beginning of a cycle must coincide with one of the master

curves in question, as shown in the diagram. In Fig.23(q), the field

curve lies between three-layer master curves for vg = 2 and 3. The

interpolated value of v2 for the field curve is found to be equal to

2.4. In Fig.23(d) the field curve is outside v2 = 9 and 24. The extra-

polated value of v2 is found to be equal to 35.

100

10 100-200

Fig.23. Method of reading by interpolation on logarithm scale. (a) Field curve

lying between two master curves, interpolation. (5) Field curve lying outside

two master curves, extrapolation. Beginning of a cycle coincided with the left

hand master curve. Unbroken curve = field curve; dashed curve = three-layer

master curve.
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Fig.24. Quantitative interpretation of a three-layer A-type field curve. Results:

o = 1.56Qm, po = 6.2Om, ps = 48.60Qm, Ar = 6m, he = 54m, hg = 00.

Unbroken curve = field curve; dash-dot curve = two-layer master curve;

dashed curve = three-layer master curve.

Example 8. Interpret the given A-type three-layer field curve

(Fig.24) with the help of the available two-layer and three-layer

master curves. Use the charts available for determination of the

auxiliary point (A-type, Plate ITI).

The procedure for interpretation is exactly the same as that in

example 7, except that here the A-point is to be located instead of

the H-point. The diagram (Fig.24) is self-explanatory and contains

all the necessary details. The interpreted results are also noted on

the diagram.

Example 9. Interpret the given Q-type field curve (Fig.25) with

the help of available master curves and auxiliary point charts.

The actual procedure for interpretation has been indicated on the

diagram itself, which is self-explanatory, and the results are also

noted on the diagram.

Interpretation of four-layer and five-layer field curves

Example 10. Interpret the given four-layer KH-type field curve

(Fig.26). Use three-layer and two-layer master curves and suitable

auxiliary point charts for the purpose.
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Fig.25.
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Quantitative interpretation of a three-layer Q-type field curve. Results:

pr = 560 Qm, p2 = 1400Qm, ps = 35Qm, hy = 7m, he = 18.2 m, ha = &.

Unbroken curve = field curve; dash-dot curve = two-layer master curve;

dashed curve = three-layer master curve.
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Fig.26. Quantitative interpretation of a four-layer KH-type field curve. Re-

sults: pi = 3.2. Qm, ps = 9.6m, ps = 1.75.Qm, ps = 00, Ar = 5.8m, he =

= 23.2m, fs = 68.4m, hg = co. Unbroken curve = field curve; dash-dot

curve == two-layer master curve; dashed curve = three-layer master curve.
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The following procedure may be adopted:

(a) On matching the left-hand part of the curve with a two-layer

master curve (Plate I) the values of p: and jy are obtained, as indi-

cated by the left-hand cross-mark. This gives p: = 3.2 Qm, 1 =

= 5.8m and pe = 3.

(b) The values obtained in step (a) are used in choosing the right

set of three-layer master curves. The first part (K-type) is then

superposed over the curve chart 89s in the COMPAGNIE GENERALE

DE GEOPHYSIQUE (1955, 1963), and, on matching, the value of v2

is found to be equal to 3. This set relates to wz = 4 and not pe = 3;

therefore, the value of v2 must be corrected (v2) by the principle

of equivalence with the help of the relation: veu2 = vg49 giving

vg = 4, Then, pe = 9.6 Om and fe = 4 x 5.8 = 23.2 m.

(c) Note the K-point with the help of K-type auxiliary point

charts (Plate IV) at the intersection of ug = 3 and v2 = 4, with the

(p1, 41) point on the origin.

(d) Match with the two-layer master curves (Plate IT), keeping K

on the origin to get the value of u = ps/px in order to decide on

the next three-layer curve for matching. This gives « = 1/4.

(e) Superpose (with the K-point on the origin) the last three-

layer curve (H-type) on COMPAGNIE GENERALE DE GEOPHYSIQUE

(1955, 1963) chart 83s (p2/p1 = 1/4 and pg = oo), and the following

values are obtained by matching: u = p3/px = 1/4,» = hs/hx = 1.8

(read by interpolation) and p4/px = 00, 1.€., p4 = 00.

(f) In order to check the value of pa, the H-point is now found

out with the help of Plate III from the values of u and » obtained

in step (e), keeping the origin at the K-point. A match with two-

layer curves (Plate I) with reference to the H-point gives pa/pH = 00,

and hence the value of pa is checked.

The interpreted values are noted on the diagram (Fig.26).

Example 11, Interpret the given five-layer (KHK-type) field

curve (Fig.27).

The procedure is indicated on the diagram, which is self-explana-

tory, with final results noted over this.
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Fig.27. Quantitative interpretation of a multi-layer field curve. Five layers

identified. Results: p) = 16 Qm, pe = 32 Qm, ps = 5 Qm, pa = 542m, ps = 0,

hy = 3m, he = 6.9m, As = 48m, As = 20m, fs = 001. Unbroken curve =

= field curve; dash-dot curve = two-layer master curve; dashed curve = three-

layer master curve.

PROBLFMS

Problem on interpolation

Problem 1. Construct graphically the following two-layer master

curves by exact graphical interpolation for the following cases (with

the help of available two-layer master curves). Explain the pro-

cedure.

(a) we = 11 and we = 1/11

(b) we = 15 and peg = 1/15

(c) pe = 25 and me = 1/25

(d) po = 35 and pe = 1/35

(e) we = 44 and wo = 1/44

Cf) we = 31 and pe = 1/31

(g) we = 5 and pe = 1/5
(h) pe = 50 and pe = 1/50

Problem on three-layer graphical construction

Problem 2. Construct graphically the three-layer vertical electri-

cal sounding (V.E.S.) curves with the values given in Table IV.
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TABLE IV

VALUES OF THE PARAMETERS

FOR THREE-LAYER SCHLUMBERGER V.E.S. CURVES

ha(m) —ps(Qm)VES. p1 (22m) hy (m) 7 ps (Qm)

1 20 10 80 20 20

2 6 4 30 12 4
3 100 2 600 6 80

4 4 16 100 50 10

5 1 4 3 6 0

6 I 4 6 3 100

7 3 25 20 10 oo

8 10 100 120 80 oO

9 15 10 100 15 600

10 100 2 2 10 150

I 70 3 50 15 100

12 150 10 6 20 oo

13 10 5 5 5 3

Use the master curves, auxiliary point charts and Pylaev’s nomo-

grams whenever necessary.

Problem on four-layer graphical construction

Problem 3. Construct graphically the four-layer vertical electri-

cal sounding curves for the values given in Table V. Use theoretical

master curves, auxiliary point charts and Pylaev’s nomograms.

Problem on qualitative interpretation

Problem 4. Plot the field curve on transparent double-logarithm

graph sheet with a modulus of 62.5 mm from the values of the ap-

parent resistivity and corresponding half-electrode separation given

in Table VI. Interpret the curves qualitatively with the given values

of the resistivity of the second layer. Only two-layer master curves

may be used.

p2 = 180Qm for V.E.S.-1, 160Qm for V.E.S.-2, 6Qm for

V.E.S.-3, 11 Qm for V.E.S.-4, 9 Qm for V.E.S.-5 and 48 Qm for

V.ES.-6.



92 SCHLUMBERGER SOUNDING

TABLE V

VALUES OF THE PARAMETERS

FOR FOUR-LAYER SCHLUMBERGER V.E.S. CURVES

VES. Type pl hy pe he ps hs p4
No. curve (Qm) (nm) (Qm) (m) (Qm) (m) (Qm)

| AA 15 5 150 15 600 50 00

2 AA 10 10 50 30 300 80 Co

3 AA 15 5 10 10 80 40 500

4 AK 10 1 40 10 160 25 0

5 AK 10 5 30 10 60 20 10

6 AK 50 4 100 16 300 48 0

7 KQ 3 3 15 10 5 20 0

8 KQ 10 1 100 2 10 4 0

9 KQ 10 2 100 4 20 8 10

10 QQ 100 5 50 10 25 20 0

1] QQ 50 1 10 5 1 15 0

12 QQ 500 | 250 5 100 10 50

13 KH 10 1 40 3 30 20 00

14 KH 15 10 300 20 3 40 10

15 KH 5 10 70 10 10 20 00

16 KH 3 5 20 10 10 25 100

17 QH 100 2 10 10 | 20 10

18 QH 200 2 40 4 15 10 200

19 QH 50 5 250 50 10 100 25

20 HA 100 5 20 10 150 30 0°

21 HA 10 2 1 4 10 10 100

22 HA 500 1 50 10 500 50 re)

23 HK 150 3 10 10 300 20 0

24 HK 200 5 50 10 500 30 50

5 10 50 150 200 20

Problems on quantitative interpretation

Problem. 5 Plot the three-layer field curves on double-logarithm

graph sheet with a modulus of 62.5 mm from the values given in

Tables VII and VIII; then interpret the curves with the help of

available two- and three-layer master curves, and the auxiliary

point charts. The principle of equivalence should be used wherever

necessary.

Problem 6. Plot the four-layer field curves from the values given

in Table IX, and then interpret the curves with the help of three-

layer master curves as far as practicable. Two-layer master curves
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TABLE IX

APPARENT RESISTIVITY AND CORRESPONDING HALF-ELECTRODE

SEPARATION (DATA FOR FOUR-LAYER SCHLUMBERGER FIELD CURVES)

\, AB/2 (m):

\
\,

\,
V.ELS. \

J

2

3

4

5

6

7

8

9

10

M1

12

20 30

430 490

240 265

53.5 69

WW5 | 14.4

26 16.6

7.7 8.4

3.8 4.9

13 7.8

10 15

6.1 4.9

3.7 2.4

2.14 2.6 3.0

Resistivity (Qm)

2 3 4 5

186 186 187 203

$2 62 74 86

- 28 28 29

56 56 50 44

_ 51 51 52

_ 4.4 4.4 4.6

17 13.5 10.0 7.5

- 30 30 30

122 97 96 52

42 38 37.5 34

31 27.7 26.7 26

1.10 1.14 1.20 1.25

40 60 80 100 150

485 350 265 196 94

265 210 150 105 50

74 115 140 160 195

13.3 13.4 143 17 26

12.0 11.4 11.4 105 7.6

78 58 48 47 5.4

58 68 70 66 5.0

$6 49 34 29 2.1

20 30 40 50 75

5.1 7.1 86 100 13.4

4.1 5.2 62 7.0 8.5

37 44 50 8 63

6 8 10 15

220 250 280 360

100 «1262S 15521

30 325 363 45

40 33 28 21
50 45 42 33

48 52 58 65

60 40 32 3

29.5 28 25 18

39 19 92 8

30 20.5 15.5 8

23 154 1 5.¢

132 146 160 18

200 300 400 600 8

42 —-— =~ = =

32 36—(—i46—(is78s«é

340 215 150 - -

3606=C«S a

$1 22 - - =

68 98 126 18 20

34 °618 #415 13 1.

1S 07 - —- =

100 150 205 310 410

15.6 186 194 20 20

98 115 125 13 13

nee

74 93 10.7 NB -
OR ee a cette
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may be used for checking, and if unavoidable. Auxiliary point

charts may be used. The principle of equivalence must be used

wherever necessary, showing exact limits of equivalence for the

specific cases. Use logarithm graph sheet with a modulus of 62.5 mm.

Problem 7. Interpret the multi-layer field curves plotted from

the values given in Table X, with the help of three-layer master

curves, auxiliary point charts and, wherever necessary, the princi-

ple of equivalence. Use graph sheet with a modulus equal to

62.5 mm.



CHAPTER 4

Wenner Sounding

In this section we shall discuss briefly the methods and techniques

available for interpretation of Wenner sounding curves. It appears

that in English-speaking countries the Wenner configuration is

used almost exclusively, whereas in many European and Asian

countries (including France, the U.S.S.R., and China) the Schlum-

berger configuration is preferred. It will be worthwhile at this stage

to compare the characteristic performances of the Schlumberger

and Wenner methods.

COMPARISON OF SCHLUMBERGER AND WENNER METHODS

The Schlumberger theoretical master curves are based on the value

of electric field intensity at the sounding stations, whereas the

Wenner curves utilize the potential difference between M and N.

Hence the Schlumberger and Wenner methods are sometimes

known as gradient and potential methods, respectively. It has been

shown in Chapter 3, and will be further demonstrated here, that

measurement with either of these arrangements tends toward the

same asymptotic values.

As the names suggest, the anomaly in the Schlumberger or

gradient method is rounded off, and the minor distortions are not

indicated. Wenner curves, in contrast, retain these distortions and

undulations, which are due to local inhomogeneities; as these are

normally irregularly scattered in the ground, they are not im-

portant from a practical point of view.

While the electrical properties of the various layers are reflected

to a remarkable degree in the Schlumberger curve, the theoretical
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condition that (MN/AB) > 0, required for apparent resistivity

calculation, is never fulfilled in practice. In Wenner’s method, such

difficulties are not met with, since (MN/AB) is constant (1/3).

In the gradient method, MN is changed after a number of changes

in AB; this cuts the working hours by about 50%. The cable length

is reduced, and cable continuity as well as leakage locations in

potential cables can be easily checked and detected.

The introduction of personal error in the Schlumberger method

is small, since only two electrodes are changed at a time (rather

than all four).

The Wenner method is sensitive to near-surface inhomogeneities,

but cannot always clearly resolve deeper events (DEPPERMANN,

1954). The master curves (MOONEY and WETZEL, 1956) available

for the potential method have been plotted for shallower events

only. In the case of four-layer curves, asymptotic parts have not

been plotted for a large number of cases.

a
ee mee ee

—* Pp(am)
Schlumberger

A —- AB/2(m)

Net

Wenner—> f(am)
B —-»> a (m)

Fig.28. Characteristic curves for Wenner and Schlumberger arrangements.

Segments J, 2 and 3 in Schlumberger arrangement correspond to the three

locations of potential electrodes.
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The Schlumberger configuration can account for both near-

surface inhomogeneities and deeper events. In Fig.28, the segment

numbered 2 (for a given value of MN) has been raised against the

normal trend, indicating the presence of a local inhomogeneity;

the actual trend for deeper events is obtained by interpolation

(Fig.28), as shown by the dotted curve for a laterally homogeneous

earth (DE Gery and KUNETZ, 1956). Since a local inhomogeneity

existed near one or both of the potential electrodes when MN has

the second value used, segment 2 of the curve is displaced upward

with respect to the other two segments. Segments / and 3 can be

connected easily by moving segment 2 downward to its correct

position (shown by the dotted line). The lower curve illustrates,

for example, what might have been obtained with the Wenner

configuration as it is normally used. On the smooth Wenner curve,

the effect of the local inhomogeneity cannot be differentiated from

the effects from deep horizontal discontinuities.

The most important advantage of the Schlumberger arrangement

is that the analytic-graphical method of construction of empirical

curves (explained in Chapter 3) is applicable only in the case of

“gradient arrangement”. Also, the technique of partial matching,

applicable to the interpretation of multi-layer curves, is possible

with sufficient accuracy only in the case of the Schlumberger ar-

rangement. On the other hand, the similar grapho-analytical ap-

proach and the technique of partial matching are not available

in the Wenner “potential method”’.

In the interpretation of multi-layer Wenner field curves through

the use of two- and three-layer theoretical master curves, 1.e., by

partial matching, Hummel proposed the reduction of two surface

layers to a single equivalent layer; he noted that this approximation

applies only for electrode spacing that is large compared with the

thicknesses of the two surface layers. Also, to apply the partial

match successfully, the second layer should be appreciably thicker

than the surface layer (MOONEY, 1954). The most important con-

dition for the applicability of Hummel’s rule with sufficient accu-

racy is that the three-layer curve must have a minimum. This means

that this rule is valid, strictly speaking, only for the H-type curve.
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ASYMPTOTIC VALUES AND AVAILABLE THEORETICAL CURVES

The apparent resistivity relation for a two-layer earth may be

written for the Wenner arrangement —see eq.(2.54)—as:

semis Sf Me = Att] an
p= Pi 1 | (1 + Qnhi/a)?}t ~ [4 + Qnhi/a)?}

As in the case of the Schlumberger arrangement—eq.(3.1)—the

above eq.(4.1) also gives the following limiting cases:

(1) When pe = pis p = p1

(2) When a> 0, p = pl

(3) When a — co, p = pe

Since pi and pe are known from the first and the last parts of the

field curve, respectively, the depth to the second layer (Ai) can

easily be found. Tagg’s method of interpretation may be used

(TaGG, 1964). Nowadays this method is not widely used since a

large number of curves are available for curve matching. Also,

Tagg’s method cannot be used unless one is quite sure of two

layers. This method, however, is briefly explained in the next

section for comparison purposes only. The curve-matching tech-

nique is discussed on p.106.

We can show, as in the case of Schlumberger (Chapter 3), that

for a multi-layer earth the asymptotic nature is still retained on a

double-logarithm scale. Thus, a total matching of field curves with

the theoretically plotted master curves may be done for the in-

terpretation of field data.

Theoretical three-layer and four-layer master curves for Wenner

sounding are available in published form (MOONEY and WETZEL,

1956). The total number of Wenner curves is 2,300. Only 15% of

these are three-layer ones, the remainder representing four-layer

cases. A set of two-layer curves is also included to complete the

set. All these curves are plotted on double-logarithm graph sheets

with a modulus equai to 5 inches. The available three-layer master

curves may be classified into four types (as in the case of Schlum-

berger) with the values of the parameters as given in Table XI.
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TABLE XI

PARAMETERS FOR THREE-LAYER WENNER MASTER CURVES

Curve type p2| pi Corresponding ps/ pi

H 1/3 100, 10, 3, 1

1/10 100, 10, 3, 1, 1/3

1/100 10, 3, 1, 1/3, 1/10

A 10 100

3 100, 10

100 10, 3, 1, 1/3, 1/10, 1/100
K 10 3, 1, 1/3, 1/10, 1/100

3 1, 1/3, 1/10, 1/100

Q 1/3 1/10, 1/100

1/10 1/100

All of the above curves have been plotted for ten different values

of ve = hefhy = 1/4, 1/3, 1/2, 2/3, 1, 3/2, 2, 3, 4 and 5, making a

total of 350 three-layer curves available for interpretation.

In the case of the four-layer curves, the last asymptotic part of

a number of the sets have not been drawn. For this reason the

interpreter sometimes faces serious difficulties in matching the

field curves. In a recent set of tables and charts for Wenner ar-

rangement (ORELLANA and Mooney, 1966) more accuracy has

been claimed.

TAGG’S METHOD OF INTERPRETATION

Two-layer case

A direct method of depth interpretation is achieved in this case

by Tagg’s method. This method establishes a number of simul-

taneous equations, giving depth h as a function of the resistivity

factor K.

Eq.(4.1) indicates that the apparent resistivity for a given elec-

trode separation (i.e., a = constant) is only a function of h and K.

Thus, theoretically, two resistivity values for two electrode sepa-

rations are sufficient to obtain both A and K. In practice, several
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equations are set up for various electrode separations, and depths

are obtained graphically.

For graphical interpretation the following procedure may be

adopted (TaGG, 1964):

(1) Read the value of pi, the resistivity of the surface layer, by

extrapolation of the field curve plotted with the separation (a) along

the abscissa and p along the ordinate. When the value of p1 cannot be

found by extrapolation, the resistivities for the first few values of

small electrode separation are averaged out; the mean resistivity

is then taken as pi.

(2) Note the value of apparent resistivity p“) corresponding to

a certain value of electrode separation ai, and calculate p/p.

(3) Tabulate the values of (h/a), one for each value of K, corre-

sponding to the particular value of p"/p1. These are obtained

from the set of master curves (TAGG, 1964) (6/p1 vs. h/a), plotted for

various values of K. These curves are plotted on a linear scale and

can be found in several textbooks in the English language (see, for

example, DoBRIN, 1960; TaGG, 1964).

(4) Multiply the values of h/a obtained in step (3) by the corre-

sponding value of electrode separation to give the values of h, one

for each value of K.

(5) Plot the tabulated values of h and K and draw a smooth

curve.

(6) Choose a second value of a = az and repeat the above pro-

cedure to get a second curve of / against K.

(7) Read the value of h and K corresponding to the intersection

of the above two curves. pg is calculated from the value of K so

obtained.

(8) Repeat the whole process with an additional value of ‘‘a”

and obtain a third curve to ensure the accuracy of interpretation.

If the three curves do not intersect at a point, the center of the

triangle so formed may be taken to give the value of A and K.

Three-layer case

Tagg’s method can be extended to the three-layer case by the

method of successive approximation, provided the third layer does



TAGG’S METHOD OF INTERPRETATION 105

not appreciably influence the first part of the curve. This is valid

when the thickness of the second layer is two to three times the

thickness of the top layer. Use is made of the empirical relation

between the point of inflection on the right-hand part of the curve

and the depth of the lower layer (hy + Ae). In the case of a highly

resistive third layer, it is seen that this depth may be taken as

2/3 times the electrode separation at which the point of inflection

occurs.

The following steps may be adopted:

(1) Determine the value of p; as accurately as possible by taking

small electrode intervals and averaging these values.

(2) Now, considering the first part of the curve as a two-layer

case, proceed as outlined in the two-layer case above, and note

the value of hy and pe.

(3) Calculate H = hy + he—i.e., the depth to the third layer—

by using the empirical relation 41 + he = (2/3)d already mentioned.

(4) Determine the effective resistivity pe of the reduced layer,

combining the first two, given by the formula due to Hummel:

(Ay + he)/pe = M/pi + he/pe

(5) Treat the section as a two-layer case having resistivities pe and

p3, and the total thickness h; + he. Apply the two-layer method

now to the last part of the curve to get the value of ps3. Repeat

the previous step with successive values of (h1 + hg) to get a more

refined and accurate value.

As mentioned earlier, the procedure for interpretation of three-

layer curves by Tagg’s method holds good for H-type only. After

the appearance of a large number of two-, three- and four-layer

master curves plotted on double-logarithm papers, most of the

significance of Tagg’s method is lost. Thus, when these master

curves are available, Tagg’s method of interpretation is seldom

used. However, despite its serious limitations, Tagg’s method

sometimes provides a useful method of interpretation in a simple

two-layer case.
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INTERPRETATION BY CURVE MATCHING

We have already enlisted the various two-, three- and four-layer

theoretical master curves available for interpretation of Wenner

curves. Now we shall explain, in brief, how these curves by MOONEY

and WETZEL (1956) are used for interpretation by curve-matching.

Mooney and Wetzel, in presenting the master curves for Wenner

configuration, have used the notations R, D and a, representing,

respectively, resistivity (o), depth (4) and separation (AB/2).

The following steps are recommended:

(1) Plot the field data on a transparent double-logarithm graph

sheet with a modulus equal to 5 inches (the same as for the theo-

retical curves) with p as ordinate and separation “‘a” as abscissa.

(2) Superpose the field curve on the various sets of theoretical

curves until a good match is found. Keep the axes parallel.

(3) Read out the apparent resistivity value on the field curve

which overlies Rg = 1 on the theoretical curve. This gives R1.

(4) Note the electrode separation on the field curve which over-

lies a = 6 on the theoretical master curve. This gives De for a

three-layer case and Ds for a four-layer one.

(5) Note the depth ratio which identifies the theoretical curve,

1.€., Dy: Do: Ds for a three-layer one.

(6) Then read the resistivity ratio for the group of curves with

which the field curve is matched. This gives R1:Re:R3s and

Ri: Re: Rs: Raq for the three- and four-layer cases, respectively.

Thus, from the values read out in the above steps, the values of

the resistivities p1, pz, p3 etc., and thicknesses /1, he etc., are easily

calculated. This is explained in the example immediately following.

It should be remembered that in many cases the field curves

cannot be matched fully with the available theoretical curves. In

such cases some interpolation between curves will be necessary.

EXAMPLE

Fig.29 shows the matched condition of a four-layer field curve
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Fig.29. Quantitative interpretation of a four-layer Wenner field curve. Com-

plete matching with the set of master curves by Mooney and WeTZEL (1956).

Results: p1 = 240m, pe = 72Qm, ps3 = 8Qm, ps = 240Qm. Ay = 7.5m,

he = 22.5 m, Ag = 15m, hg = 00, Ri: Re: Rs: Rs = 1:3:1/3:10. Di: De: Ds

= 1:4:6. Unbroken curve = field curve; dashed curve = four-layer master

curve.

(KELLY, 1962) on a suitable theoretical four-layer curve where-

from the following values are obtained:

(a) Ry = 24Qm

(6) Ds = 45m

(c) Dy: De:Ds3 = 1:4:6

(d) Ri: Re:R3:Rq = 1:3:1/3:10

The resistivities (91, pe, ps and p4) and thicknesses (Ai, he and hs)

of the individual layers are indicated within the diagram.

PROBLEMS

Problem 1

Plot the three-layer (V.E.S.) curves for Wenner arrangement (on

a transparent double-logarithm graph sheet of 5-inch modulus)

from the values given in Table XII. Interpret the curves with the

help of the album of master curves by MOONEY and WeTZEL (1956)

by means of the well-known complete curve-matching technique.
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Problem 2

Plot the four-layer (V.E.S.) curves for Wenner arrangement

from the values given in Table XIII, and then interpret the curves

by complete curve-matching. Use double-logarithm graph sheets of

5-inch modulus.



CHAPTER 5

Dipole Sounding

The various dipole arrangements have been explained and the ap-

parent resistivity relations derived in Chapter 2. It has been proved

there (in the section on D.E.S.) that the apparent resistivity, as

measured by any of the dipole arrangements, is related to that ob-

tained by conventional Schlumberger arrangement —as given by

eq.(2.81)-(2.84). This brings in the possibility of construction of

dipole electric sounding curves from conventional Schlumberger

curves. It is interesting to note that the azimuthal resistivity pg is

equal to the Schlumberger apparent resistivity p for the same spacing,

R = AO = AB/2 (see Fig.30). This means that the master curves

available for conventional sounding may be used directly for

azimuthal dipole sounding, the method of interpretation remaining

the same.

In this chapter we have outlined in brief some characteristic

features of dipole electric sounding, and have followed this with

a possible field layout for equatorial arrangement. A list of availa-

ble curves has been included, and the method of interpretation ex-

A

we R "
| R- Rts.
6 +

| P r pe
N- Nt

B

Fig.30. Bilateral equatorial arrangement. QO = R, separation; AO = R, ef-

fective distance in equatorial dipole arrangement. “Plus” when MN is towards

contact (inclined bed), “‘minus” when MN is away from the contact.
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plained. Some problems on radial dipole sounding have been

added. Since for equatorial arrangement the theoretical master

curves and the method of interpretation remain the same as for

conventional sounding (Chapter 3), we have avoided repetition by

not including any further examples or problems.

CHARACTERISTICS OF DIPOLE SOUNDING

Dipole electric sounding differs from conventional sounding in its

inherent possibility for bilateral and multilateral measurements.

This is explained in Fig.30 for the equatorial arrangement. For a

certain position of the current dipole AB, two potential dipoles

M*N* and M~-N- can be placed on either side at distances Rt

and R-. Thus, for a certain arrangement two values of resistivity

p* and pTM are obtained, corresponding to the mid-points of QO+

and QO-, respectively. The arrangement, usually meant for dipping

layers, may be called a two-way sounding, or bilateral sounding.

The symbols ‘‘+”’ and ‘‘—” indicate, respectively, whether the

moving electrodes in an arrangement are moving towards the

contact or away from it.

For a horizontally stratified earth, the values of both resistivity

p* and p~ will be the same. For an inclined horizon, the values of

p* and p~ will be different, and the difference will be a measure of

the inclination (dip) of the horizon. The average of p+ and p~ will

be the resistivity corresponding to the conventional sounding.

M- A Mt

- B Q N*

Fig.31. Dipole sounding over inclined bed. A+ = depth on the up-dip side,

h- = depth on the down-dip side; 4 = depth (average), is the same as obtained

from the symmetrical Schlumberger AMNB arrangement.
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=2

he

Fig.32. Effect of dip on bilateral equatorial dipole curves. Plus and minus signs

for up-dip and down-dip measurements. Second layer resistivity is infinite.

Thus, in case of dipole sounding, we can construct three curves—

the positive, the negative and the average resistivity curves.

Let us consider the case of a dipping bed as shown in Fig.31.

The conventional sounding AMNB with the centre at O gives the

depth of the horizon only at the centre O. If, however, we place

at O the current dipole of the bilateral sounding setup, it is possi-

ble to get from the three constructed curves, three depths—one on

the up-dip side (h+) at Qi, one on the down-dip side (h-) at Qe

and the average (h) at the centre Q. Thus, the location of the hori-

zon is more reliable for bilateral dipole sounding than the con-

ventional method.

The large number of master curves available for conventional

sounding may be used directly for azimuthal (or equatorial) dipole

sounding. Special theoretical curves have been constructed for the

radial (or axial) dipole sounding of a three-layer earth, and publish-

ed by ANONYMOUS (1957), along with two sets of two-layer curves.
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Theoretical curves are also available for an inclined layer lying on

an insulating or conducting base. Sets of such curves have been

published in English (AL’PIN et al., 1966). Examples of such curves

are shown in Fig.32 (for bilateral equatorial sounding) and Fig.33

(for bilateral axial sounding). It is seen from Fig.32 that even for

an inclination of 2°, the separation between the positive and nega-

tive resistivity curves is quite noticeable. For an axial setup, as is

seen from Fig.33, an inclination of as little as 1° can be detected

by the separation of the positive and negative curves. The con-

ventional setup, as mentioned earlier, is insensitive to any incli-

nation less than 15°. Thus, the resolving power of dipole sounding

6) Values of x for AB, M+ Ne
arrangement

‘S) Values of a for AB, M-N-
arrangement

Fig.33. Effect of dip on bilateral axial dipole curves. Plus, minus signs for

up-dip and down-dip measurements. Second layer resistivity is infinite.
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Fig.34. A typical equatorial sounding field curve (after BERDICHEVSKII and

PeTRovsku, 1956). Measurements with Schlumberger arrangement up to AO

(=R ) 200 m.

is much greater than that of conventional sounding for lateral

variations, the axial setup being more sensitive than the equatorial

setup.

As the dipole sounding is very sensitive to lateral variations, the

inhomogeneities of the surface layers can considerably distort the

resistivity values for the deeper layers. This is avoided by using

the conventional method for sounding up to a depth of 200-300 m.

Beyond that depth the sounding may be undertaken by the dipole

method. Fig.34 represents a field curve showing the use of various

layouts for different spreads (after BERDICHEVSKII and PETROVSKII,

1956).

In the case of deep sounding by dipole arrangement, the distance

between the power and measuring lines is large compared to the

lengths of the lines. As a result, the distortion effects due to mutual

induction between the lines, and the leakage of current from the

power line, are to a great extent reduced. It is claimed that when

the length of the power dipole is 1,000-1,500 m, that of the measuring

dipole 300-500 m, and the distance between them 10-12 km (for

the equatorial position), it is possible to trace the basement at a

depth of 2.5-3 km.
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Another great advantage of the dipole method is the possibility

for sounding on a curved profile. For conventional sounding, the

electrodes AMNB must lie on a straight line. In difficult areas (e.g.,

in forest, brush, or swampy areas) it is not always possible to

maintain the straight profile for long distances. In view of the fact

that dipole sounding (except the parallel setup) is independent of

the azimuth, it is not necessary for the centers of all the dipoles

to lie on the same straight line. The power dipole may be con-

veniently located, such that the center of the dipole lies on or near

a road. The potential dipole MN can be placed at locations on a

winding road such that it is in the azimuthal (or radial) position with

respect to the power dipole (Fig.35).

At present, most of the deep electric prospecting in the U.S.S.R.

is being done by bilateral equatorial (or azimuthal) dipole sounding.

As the field due to a dipole decreases as the cube of the distance,

the power required for a dipole sounding is larger than that re-

quired for a conventional sounding (where the field decreases as

the square of the distance). Thus, for deeper investigation, the

power required may be of the order of 15-20 kW.

The sounding is usually done by three field stations. The power

station for the power dipole remains stationary at one place for a

profile. The two measuring stations on either side of the power

station move away in steps. Radio communication is maintained

between the stations. The length of the power dipole is changed

when the intensity of the electric field at the measuring stations

N aoe

Fig.35. Dipole sounding over a curved path. Potential dipole MN in the

azimuthal position with respect to the power dipole.
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TABLE XIV

A TYPICAL FIELD LAYOUT FOR EQUATORIAL DIPOLE ARRANGEMENT

Observation R AB/2 MN/2 R K
number } (m) (m) (m) (mm)

1 0 3 1 3 1.26

2 0 4.5 1 4.5 3.0

3 0 6 1 6 5.5

4 0 9 1 9 12.6

5 0 12 1 12 22.5

6 0 15 ] 15 35.2

7 0 15 5 15 6.2

8 0 25 1 25 98

9 0 25 5 25 18.8

10 0 40 5 40 49,5

11 0 65 5 65 132

12 0 65 20 65 30

13 0 100 5 100 314
14 0 100 20 100 75.5

15 0 150 20 150 174

16 0 200 20 200 311
17 200 200 20 283 8.8

18 400 200 25 447 28.1
19 400 500 25 640 33.1

20 600 200 50 632 40.0
2] 800 200 50 825 88.5
22 800 500 50 943 52.9

23 1,200 500 50 1,300 138

24 1,600 500 150 1,676 99.7

25 2,000 500 200 2,061 139

26 2,000 1,500 200 2,500 82.2

27 3,000 500 200 3,041 445

28 3,000 1,500 200 3,340 198

29 4,500 1,500 300 4,743 373

30 6,000 1,500 300 6,184 829

31 8,000 1,500 400 8,139 141.6

32 10,000 1,500 400 10,112 2,713

(Fy -ABYn 2 2

1 No, 1-16. The arrangement AMNB : K = — —————---—
10 MN

(See Fig.2. A Vin m V;Z in A.)

an AM:AN
No. 17-32. The equatorial arrangement: K =

(See Fig. 30. AVinm V; LinA.)
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becomes negligible, but always so that length AB is kept less than

one-third of R. In planning a field program, it should be kept in

mind that for shallower investigations (up to 300-400 m) Schlum-

berger conventional sounding is taken, and that the value of AB

and R should be so chosen that R(QO) is at least three times

L(AB)—though it can be more. Also, MN should be one-fifth or

less of AB. An experimental layout for field work is outlined in

Table XIV (BERDICHEVSKI] and PETROVSKII, 1956) for equatorial

dipole arrangement.

A comparison of Table XIV with Table I clearly indicates that

up to a depth of about 20 m, both the Wenner and Schlumberger

arrangements are used. After this, up to about 300-400 m, only

the Schlumberger arrangement is used; this is followed by dipole

sounding for still deeper investigations.

AVAILABLE CURVES AND QUANTITATIVE INTERPRETATION

For azimuthal or equatorial dipole sounding curves (D.E.S.) the

method of interpretation is the same as in V.E.S. with AB/2 equiva-

lent to R (i.e., AO, Fig.30) in D.E.S. R (= QO in Fig.30) is known

as “separation’’ in the equatorial dipole arrangement and R (= AO

in Fig.30) is the working distance equivalent to AB/2 in the Schlum-

berger vertical electrical sounding. Bilateral D.E.S. curves may be

used for determination of a dip angle as low as 5°.

For quantitative interpretation of radial and axial D.E.S. curves,

the album of radial master curves published by ANONYMOUS (1957)

are available for use. The two-layer master curves for radial ar-

rangement are presented in Plate X.

Theoretical master curves for radial dipole sounding are availa-

ble for the following three-layer cases:

ps/p1 = >, (p2/p1)?, (p2/p1)*, (p2/p1)t, 1, 0

vy = (ho/hy) = 1/9, 1/5, 1/3, 1/2, 1, 2, 3, 5, 9, 24

= (pa/p1) = 1/39, 1/19, 1/9, 1/4, 3/7, 2/3, 1, 3/2, 7/3, 4, 9, 19, 39, oo
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The curves are plotted on double-logarithm scale (with a modulus

of 62.5 mm), with p/p: along the ordinate, and R/2h; along the

abscissa. Out of the 62 sets of curves 2 are for two-layer cases. In

this case, R is the distance between the current and the measuring

dipoles.

The interpretation procedure for three-layer radial dipole sound-

ing field curves with the help of published curves (ANONYMOUS,

1957) may be summarized as follows:

(a) Superpose the left-hand part of the three-layer D.E.S. field

curve over the two-layer master curve set (for radial, Plate X).

Keep the axes parallel, and try to obtain a match with one of the

two-layer curves. This gives pi, 41 and “& = pe/pi. In case, there

is no match, use interpolation.

(6) Try to guess at a value of ps from the asymptotic part of

the curve, and note the approximate value of p3/p1.

(c) Try to match the curve now, as a whole, over any of the

three-layer curves available. An approximate value for p3/p1 acts

as a guide in the choice of the proper set of three-layer master

curves. If an exact match is obtained, this gives the value of

i = po/pi and v = he/hy as well as the value of ps.

(d) Repeat step (c) in order to get a refined set of values if an

exact match has not already been obtained in step (c).

PROBLEM

Plot the three-layer radial D.E.S. field curves from the values

given in Table XV and then interpret the curves with the help of

the two-layer (Plate X) and the available three-layer master curves

(ANONYMOUS, 1957) for radial arrangement. Use a graph sheet with

a modulus equal to 62.5 mm.



CHAPTER 6

Geological Applications

Geological information regarding the formations which constitute

surface and subsurface lithology is a necessity in the correct in-

terpretation of geoelectric sounding data. Further, drillhole data

at selected points are needed both for control and confirmation of

the results of geological investigations. From the point of view of

geophysical prospecting, an important prerequisite is knowledge of

the strike and the dip of formations; these must be known at

least roughly. For horizontally stratified earth, there is no problem

in the choice of the profile for sounding. In the case of dipping

beds, the sounding line is laid parallel to the known or estimated

strike of the formations. Therefore, the strike should be known

geologically, at least approximately, and confirmed geophysically

by taking two soundings at right angles to each other. As already

noted in Chapter 5, a dip of up to 15° does not affect the nature

of V.E.S. curves appreciably, but D.E.S. curves reflect the effect of

a dip as low as 2-3°.

Electrical resistivity sounding, as applied to various geological

problems, will be discussed briefly in the next few sections.

ENGINEERING PROBLEMS

Vertical electrical sounding, both Schlumberger and Wenner, can

be utilized for shallow engineering (civil and military) investi-

gations, such as the testing of foundations for the construction of

highways, railroads, bridges, dams, canals, reservoir sites, field

fortifications, shelters, munition plants, or for the location of con-

struction material. The problems mentioned here reduce to two
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main types: (/) determination of thickness of the overburden, or

depth to the bedrock; (2) location of construction material.

The base of the weathered zone presents a good resistivity con-

trast (highly resistive basement), representing a two-layer case;

with the second layer resistivity very high, the interpretation be-

comes very simple and quick (Chapter 3). All engineering structures

need to be built with the foundation within solid rock.

In the construction of tunnels, after locating the thrust zone (if

there be any), the condition of subsurface water may be studied

by sounding. This is possible because the crushed and water-satu-

rated zone usually shows a low resistivity. The results of sounding

may lead to a change in the direction and design of the tunnel.

The same is also true for mine shafts. Sounding can also be used

in the location of construction material when covered with al-

luvium.

In such engineering problems, vertical electrical sounding (prefer-

ably with Wenner configuration) is recommended, since the prob-

lems are related to shallow investigations only. However, the

Schlumberger configuration, with a smaller spread length, can also

be used.

ORE PROSPECTING AND HYDROGEOLOGICAL PROBLEMS

Ore prospecting

In ore prospecting, sounding has a limited application. De-

termining the exact location of deposits is possible when the ore

deposits are bedded ones, as, for example, in the case of coal. It

is also possible to locate certain minerals indirectly by mapping

the associated structures and zones of unconformity.

Resistivity sounding can be used to locate placer deposits of

gold, platinum, diamonds, etc. The main task of sounding here

is to map the underground relief and to determine the thickness

of the friable sediments. Even in the case of geophysical investi-

gation by profiling, a preliminary sounding must be done in the

initial stages to fix the current electrode separation to be used for

profiling.
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In general, in ore prospecting, sounding is widely used primarily

for the determination of the thickness of the quaternary sediments.

Hydrogeological problems

There are many applications of geophysics in water-supply and

-control problems. Control includes the design and construction of

irrigation and drainage projects, such as canals and aqueducts, and

in the planning of dam and reservoir sites for flood control and

power projects. This part of the problem has already been discussed

in Chapter 5, under engineering problems.

Prospecting for water is essentially a geological problem, and

the geophysical approach is dependent on the mode of the geo-

logical occurrence of water. Water may occur as: (/) ground water

proper; (2) fissure water; (3) mineral springs; (4) cavern water;

and (5) water issuing out of leaks, etc.

Geophysically, the location of ground water may be determined

in three ways: (/) direct; (2) stratigraphic, and (3) structural.

Direct methods are largely confined to well-logging, or locating

the sites of radioactive and thermal springs. The stratigraphic

method implies locating water-bearing formations through dis-

tinguishing physical properties imparted by the presence of water,

such as high seismic velocity, or increased or decreased electrical

conductivity. The structural approach means the mapping of key

beds that bear a certain stratigraphic or structural relation to the

water-bearing bed, i.e., mapping of synclines, erosional troughs, or

structural lows. Where erosional troughs or structural depressions

are formed by igneous or metamorphic rocks related to basement

topography, the magnetic method is suitable. When bedrock is

nonmagnetic, and differs in density, the bedrock may be mapped

by a gravity survey.

Most problems involving bedrock depth determination are best

handled by seismic and electrical resistivity methods. Exceptional

cases, such as large-scale artesian basins of considerable depth,

can be mapped by D.E.S. or by the seismic reflection method.

In arid zones, geophysical prospecting for ground water can be

done by means of electromagnetic sounding, where resistivity
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surveys cannot be conducted because the surface rocks have high

resistivity.

In the stratigraphic method of location, use is made of the fact

that water-bearing strata often differ in elasticity or electrical con-

ductivity from other formations in a series. Seismic refraction has

been used for locating the ground-water table. Unconsolidated

sediments, when saturated with water, show a considerable increase

in seismic velocity. A similar velocity contrast, which occurs at the

base of weathered zones, is applied to engineering problems. Usu-

ally, however, geophysical prospecting for ground water is done

by the electrical resistivity method, at comparatively low cost.

Thus, it is seen from the above discussion that vertical electrical

sounding (V.E.S.) is the most suitable method for ground-water

investigation in most geological occurrences. V.E.S. with the

Schlumberger (preferably) configuration is recommended for geo-

physical exploration of ground water. The Wenner sounding may

be used for shallow occurrences, such as the water-saturated zone

at the base of a weathered layer. Dipole electric sounding (D.E.S.)

may be used in exceptional cases, such as large scale artesian basins

of sufficient depth.

Examples of actual field problems on the stratigraphic location

of water are given at the end of this chapter.

STRUCTURAL MAPPING FOR OIL

Vertical electrical sounding with Schlumberger configuration may

be used for the determination of shallow structure, buried anti-

clines, etc., for oil exploration, provided the structures are at a

comparatively shallow depth.

Dipole electric sounding (D.E.S.) can, however, be applied for

regional investigations of large, unexplored territories and for

prospecting local, deeper structures interesting from the point of

view of possible oil and gas accumulation. D.E.S. can give know-

ledge of regional characteristics which may help in locating

structures underlying very thick sediments of uniform and thick

geoelectrical section, suitable for oil accumulation.
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EXAMPLES

Example |

Fig.36 gives the results of vertical electrical sounding with

Schlumberger configuration only, for the location of groundwater

in some coastal regions by the stratigraphic approach. This
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refers to the investigations in connection with the possibility of

saline water invasion (PATRA, 1967). Fig.36A gives the field curves

at three selected stations on a line, while the probable geological

section obtained from interpretation of the curves is presented in

Fig.36B.

Example 2

Fig.37 gives an illustration of an investigation similar to example 1

—1.., a hydrogeological problem. Fig.37A contains the sounding
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curves along a line, and Fig.37B represents the geological section

prepared from the interpreted results in connection with explo-

ration for ground water (PATRA and BHATTACHARYA, 1966).

PROBLEMS

Problem |

Interpret the set of V.E.S. field curves plotted from the values

given in Table XVI (Set I) obtained for the Schlumberger electrode

arrangement, and prepare a geological section from the interpreted

results. Assume that the sounding stations, serially located, are

along a straight line—with a station spacing equal to 1 km, and

the total length of the line = 2 km. The field work is supposed

to be carried out in a sedimentary area. Alternating beds of sand

and clay, covered with a thin layer of alluvium, are expected to

exist (evident from available borehole data).

Problem 2

Interpret the given set of Schlumberger V.E.S. field curves,

plotted from the values presented in Table XVI (Set Il), with the

positions of the sounding stations, serially arranged, along a

straight line. The station spacing is equal to 0.5 km, and the total

length of the line = 2 km. The geological conditions are found to

be the same as in problem 1.
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