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In Memoriam

EVARIST GALOIS

FRENCH MATHEMATICIAN

BORN OCTOBER 25, 1811

DIED MAY 31, 1832

A delicate child, he twice failed exams to L’Ecole Poly-

technique, and entered L’Ecole Normale in 1830, only to

be expelled shortly thereafter for questioning his teachers

and engaging in revolutionary activities. Imprisoned briefly

for threatening the life of King Charles X, he was killed —

soon after in a duel sparked by insults to his politics and to

a harlot he hardly knew. Galois was 20 years old when he

was killed.

The night before he died, he wrote an incredible 31-page

document in which he developed the Galois Theory of

Groups. Largely esoteric to most people, it has emerged as

one of the most advanced theories of mathematics. Group

theory holds that pattern and structure exist in any real-

world situation or phenomenon and that they can be dis-

covered and described by borrowing tools from the various

branches of mathematics. These tools are used to form

groups of elements by which one can understand any prob-

lem and push ahead toward solution.



ACKNOWLEDGMENTS

Several publishers were most courteous and kind to allow me to use

certain materials for the Appendices. Among these were Barnes and Noble

for Appendices A, B, G; Van Nostrand for Appendix D; Holt, Rinehart,

and Winston for Appendix F; RAND Corporation for Appendix G; and

Technometrics for Appendix E. I would also like to thank the following

for permission to use various materials in the text: the M.I.T. Press for

Fig. 9:8; the American Institute of Planners for Figs. 10:1 and 10:2; and

Environmetrics for Fig. 10:3.



Problems of urban systems are near, if not past, a critical mass. With

more and more attention being paid to these problems, it is natural to ex-

pect a call for new approaches to problem-solving within an increasingly

technological society. The result has been an infusion of new methods of

analysis, as well as modification and improvement of classical methods,

from the scientific disciplines. Such fields of pure and applied science as

mathematics, general systems research, decision theory, operations re-

search, and comprehensive planning have lent their existing methods and

developed new methods for urban analysis.

As student, practitioner, and teacher concerned with urban systems, I

have been aware of the lack of an integrated text or reference book which

offered a concise presentation of the theory and application of scientific

methods to the analysis of urban systems. This condition meant that read-

ing lists for introductory courses on these matters, or courses which had

significant sections devoted to these matters, had to be overly long, frag-

mented, and often irrelevant, since only theoretical bases were established

and the student was asked to find applications on his own. Most of the

literature on application of scientific methods to the various social sciences

assumes that the reader is familiar with statistics, mathematics, and philos-

ophy of science. This is rarely the case. This is not to say that the existing

literature on introduction to and application of scientific methods 1s inade-

quate for the general educational mission; rather, the student of urban sys-

tems is overlooked. This book is an attempt to remedy the oversight, but

by no means do I wish to detract from the need for the serious student to

pursue such courses as statistics, operations research, calculus, algebra, etc.

This book is intended for use as a textbook for advanced undergraduate

and graduate courses concerned with an introduction to scientific methods

for the urban branches of planning, political science, sociology, economics,

geography, public administration, architecture, engineering, applied math-

ematics, applied statistics, business administration, operations research, and

systems analysis. A further use of the book could be for continuing educa-

tion and special educational programs as well as for personal understand-

ing and learning by students, researchers, teachers, and practitioners from

any of the above or related fields.

A broad range of subjects is examined in this book. It is meant to serve

as an introductory guide to the subject areas. One should by no means

expect to be an expert in scientific methods of urban analysis by virtue

Preface



of mastering the material presented here. One would have to refer to many

of the original works cited and perhaps undertake additional work in given

areas where one is weakest. The book should provide, however, a wide-

ranging introduction that would bring familiarity with most of the scien-

tific methods of urban analysis. This book should be acceptable in most

courses in urban analysis as a basic text, to be used in conjunction with the

original materials cited herein as examples of basic texts, as well as supple-

mentary materials suggested by the instructor. The same approach might

be useful for continuing education courses and, indeed, for self-education.

There are two perspectives within which this book has been framed:

(1) urban and (2) applied. The book is oriented to urban problems, issues,

and possibilities and is not a general presentation of scientific methods for

nonurban disciplines. The second perspective means that the applied nature

of scientific methods weighs more heavily than the theoretical nature. To-

gether, the two perspectives mean that this is a book which attempts to

introduce the student or practitioner of urban analysis to as much of the

theory of scientific methods as he needs to know, and also to demonstrate

what these applications are and can be with further development.

The content of the book is divided into five parts for convenience and

simplicity. The first part is a basic examination of the scientific method and

its relevance and utility for urban systems. The remaining four parts are

concerned with specific scientific methods from various fields as well as with

new and synthetic methods. The presentation of this latter material takes

the form of sections on theory, applications, recommended exercises, and

further reading. The second part of the book covers predictive and esti-

mating models: matrix methods, linear models, nonlinear and probability

models. The third part covers optimizing models: basic optimization, cal-

culus, and mathematical programming. The fourth part is a general over-

view of simulation and gaming. The final part is a general overview of ur-

_ ban information systems: automated systems within the context that they

serve as integrative mechanisms for scientific methods of urban analysis.

Atlanta, Georgia

January, 1972
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When a student ts first introduced to those sciences which

have come under the dominion of mathematics, a new and

wonderful aspect of Nature bursts upon his view. He has

been accustomed to regard things as essentially more or less

vague. William Kingdon Clifford, The
Exactness of Mathematical Laws (1872)

PART I

SCIENTIFIC METHOD



There are many ways to consider the meaning of urban which are more

or less valid according to the purpose for such a consideration. If we are

concerned with some quantitative measure, it is sufficient to accept the

U.S. Bureau of the Census definition of urban as constituting incorporated

municipalities which have reached a population of 2, 500 with certain den-

sities and socioeconomic characteristics. If we are concerned with a general

definition, it 1s sufficient to consider urban systems — entities with inter-

related parts or components — as having four components: (1) the phys-

ical features and characteristics of the area as delimited; (2) the political

structure and distribution of legal and political powers within the area;

(3) the economic basis and supporting structure for the area; and (4) the

complex interrelationships between individuals and groups of individuals

within the social order of the area.

Analysis involves the process of separating systems into parts or com-

ponents so that we can understand the nature, function, interrelationship,

and proportion of the parts within the whole. In mathematics, the queen

of sciences, analysis involves the solution of problems through equations or

the examination of characteristics of equations. In urban problems it is

often necessary to extend the concept of analysis to include an examination

of the quality, by some reasonable measure, of the urban system. Urban

analysis is the breakdown of urban systems into their physical, political,

economic, and social parts in order to understand them, determine their

problems, and seek solutions to these problems, which are usually inter-

dependent.

Science is a word which is Latin in origin (scientia) , being derived from

the verb scire (to know). The original meaning of the word was “the state

or fact of knowing.” The contemporary use of the word science is to indi-

cate a body of systematic knowledge and a method of analysis. Science is a

systematic body of knowledge which is recorded and preserved, arising

through observation, experimentation, and study. Science is a method of

analysis, since this recorded and preserved knowledge is used to discover

new knowledge, usually by the form of (1) imquiry, (2) problem-solving,

and (3) development of methods for analysis.

CHAPTER

Scientific Method and

Urban Analysis



4 : Scientific Methods of Urban Analysis

All knowledge and methods of analysis are obviously not scientific. Non-

scientific knowledge and methods are referred to as common sense, a simple

if misleading term. Common sense is a collection of insights, prejudices,

and feelings that an individual accumulates over the years through his

experiences. Intuition is sometimes considered to be artistic or unrestrained

creativity and thought. We can assume, however, that no activity of an

individual is completely unrestrained. Even the most “happening”’’-type

artist is using an inwardly ordered structure of analysis that may not be

explicit even to himself. There is little evidence to show that completely

unrestrained activity exists anywhere in the physical universe.

A major distinction between scientific and nonscientific knowledge and

methods is the ability to make explicit and to reiterate. Intuitive analysis

may be sound in that an analyst can “feel” that one approach to an urban

problem is better than all others. In the early days of city planning, for

example, architects developed plans more by intuition than by scientific or

even quasi-scientific reasoning. People accepted their plans because the

“expert knew what was best.” Urban problems have become sufficiently

complex and interrelated that more than intuition is generally needed for

solution. Intuitive analysis is difficult to use as a basis for solutions to urban

problems which must gain public approval. The public, in general, is leery

about spending money on solutions that are not fully convincing, and the

public, like many subgroups within it, is somewhat awed by scientific analy-

sis, The ability to reiterate findings from analysis is particularly relevant to

this argument. Scientific knowledge comes from findings that could be un-

dertaken by any analyst using the same environment and conditions. Scien-

tific experiments will always produce more or less similar results within

similar conditions, something which is rarely insured through intuitive

analysis. |

There is a distinction between intuitive and scientific knowledge, yet

there is virtually no way that the two can be separated in practice. Intui-

tive knowledge is an absolute necessity in the undertaking of any scientific

analysis. Intuition is essential in scientific analysis of urban problems be-

cause many characteristics and features of urban problems cannot be quan-

tified or related in mathematical terms. The “softness” of urban data and

functions necessitates that certain compromises, assumptions, and hybrid

analyses be made.

The basic quality which enables scientific knowledge to be more ordered

and consistent than intuitive knowledge is the amount of control possible

over conditions and environments. Scientific experiments always involve

some sort of control over the environment and conditions — the more the
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better. Since control over urban environment and conditions is difficult

to attain, it is necessary to state rigorously what the environment and con-

ditions were during the conduct of an analysis. Consequently, loss of control

will diminish the reiterative capabilities of discovered knowledge in dif-

ferent environments and conditions. The presence of these complicating

impediments to control in urban systems requires that intuitive analysis be

used in conjunction with scientific analysis for problems in these areas.

SCIENTIFIC METHOD

There is a method of analysis which has been derived from the scientific

knowledge of the ages. Method is used in the context of an orderly, ra-

tional, and consistent approach to the analysis of problems— in other

words, it is a process. There are several methods or techniques which are

used in varying degrees within the scientific method or process, but we are

concerned presently with the procedures.

The term scientific method is a common one and is used interchangeably

with many other terms to express similar concepts. In a purist sense, how-

ever, there are two branches of scientific method: (1) basic research and

(2) research and development. Another way of expressing this same dis-

tinction is to consider the difference between pure science and applied

science.

BASIC RESEARCH

Basic research is the discovery of scientific knowledge for its own sake.

Basic research is undertaken with the principal objective of adding to the

recorded and preserved body of knowledge that has arisen from science.

The basic research branch of the scientific method relevant to urban sys-

tems is a modification of a classical three-stage process:

1. Observation. Under various conditions and environments, urban sys-
tems can be studied using various methods to try to understand more

about them. |

2. Generalization. Observation of urban systems under varying environ-

ments and conditions allows for an ordering and generalization into hy-

potheses or theories. | |

3. Experimentation. While it is rarely possible or advisable to vary urban
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system conditions and environments for experimental purposes only, it is

possible to represent systems by various methods and to perform experi-

ments on these representations to determine what the effects and side

effects of changes would be, as well as to test various intuitive notions.

We can call these methods either models (representations of reality) or

simulations (imitations of reality), the latter being essentially a way of

using the former.

Basic research into urban systems is an important branch of the scien-

tific method. It often results in meaningful additions to our incomplete

and scant knowledge of urban systems. The inherent limitation in this

branch of the scientific method is that it does not allow for application

without further analysis. On the other hand, it is often the case that basic

research into urban systems must precede any attempts to apply scientific

knowledge.

RESEARCH AND DEVELOPMENT

Research and development, or the application of scientific knowledge

and methods to the solution of urban problems, involves another branch

of the scientific method. Research and development has the principal ob-

jective of using the body of knowledge, which is usually scientific knowl-

edge, and any new knowledge that can be discovered to reach certain

goals and objectives that have been predetermined. Research and develop-

ment is basically a problem-solving process, but there is sufficient latitude

in the process to have major applications to the interrelated, multiproblem

nature of urban systems. The research and development branch of the

scientific method is a classical five-stage process which can be modified

for urban analysis as follows:

1. Problem Definition. Solutions or resolutions can be found by formu-

lating the problem or set of interrelated problems. This is especially im-

portant; many urban problems are insolvable not because of their inherent

characteristics but because of the inadequate manner in which they have

been defined. This first stage is a quantitative/qualitative definition of the

problems in terms of conditions, environments, measures, interrelationships,

and human values in such a frame of reference that solutions or resolutions

may be discovered.

2. Representation. Through several methods, usually modeling or simu-

lation, the urban system is represented and defined problems are incorpo-

rated into this representation of the real world. This allows for observation
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and experimentation under conditions of control which are

sible or prohibitively expensive if done in reality.
3. Testing. Since there are many ways to represent real-world urban

systems, various attempts should be tested against past and present obser-
vations to insure that the most accurate representation is utilized. While

it is generally impossible to devise a perfect representation, and since

greater accuracy always entails higher costs and efforts, some reasonable
level of compromise must be reached depending upon the nature of the

problem.

4. Deriving Solutions. The major value of the representation lies in its
ability to test alternative courses of action that can be employed to solve
or resolve the defined problems. These alternative courses of action are

formed by intuitive analysis and then tested, or they are formed through
some mechanism within the representation itself, The representation is

used to evaluate the courses of action under various conditions, environ-

ments, and measures of problem-solving in order to reach a classification

of alternative courses of action by varying levels of performance and

effectiveness. |

5. Development. The classification of alternative courses of action that

can be used to solve the defined problems, if determinable, can be developed

into applications or implementations in various ways. The development

stage varies greatly with the nature of the analysts and their professional

orientations to urban problems. More or less typical examples of develop-
ment for urban systems are recommendations to decision-makers; admin-

istrative rules, regulations, and guidelines; legislative acts; dissemination of

findings; continuing research; and educational programs.

The research and development branch of the scientific method is rele-

vant to urban affairs because it offers a process which is interesting to

persons charged with the development of administrative, legislative, and

planning programs, as well as to analysts who aid these persons. It is
often difficult to decide when incomplete or inaccurate knowledge exists

about a problem. Basic research may be needed before research and de-

velopment can be employed for certain problems in urban systems.

either impos-

MATHEMATICAL FOUNDATIONS

Modern mathematics is considered to have Originated in the sixteenth
century with the work of René Descartes (1596-16 50), if we can agree that
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the concepts of variable and function are characteristic of modern mathe-

matics.1 This is not to say that there were no important predecessors of

Descartes but, rather, that these mathematical scholars were more con-

cerned with Aristotelian logic and geometrical analysis. Descartes initiated

the use of variables and functional relationships in mathematics, further

developed by such mathematical logicians as Gottfried Wilhelm von Leib-

niz, J. H. Lambert, George Boole, Augustus de Morgan, and others.

Mathematics is the study of relationships between entities which do not

have to remain fixed. The methods of mathematics have served as the

natural language and logical basis for science. The commonly held beliefs

of the exactitude, rigor, and conciseness of mathematics are usually of-

fered as the reasons for science’s use of the discipline, but it is also the basic

flexibility of mathematics to deal with simple or complex variables and

simple or complex relationships in the most direct and generic manner.

VARIABLES

The concept of variables is a foundation of mathematics as used in

scientific methods. A variable is a quantity which does not have to be fixed.

Variables can take on any one of a set of values which falls within a range

of values delimited by the set boundaries. |

Let us assume that we are analyzing the population living within cities

of various sizes within the United States. Let y represent the number of

people living in a city — it is a variable. Let us confine our analysis to

cities having a population of at least 2,500 and no more than 1,000,000.

Since x can be anywhere from 2,500 to 1,000,000, we consider this to be

the range of the variable x.

There are obviously many cities in the country which fall within this

range. We find that the designation of our variable as y is too restrictive.

We can overcome this apparent restriction by using a mathematical short-

hand called subscripted variables. We will let the subscript stand for a

category of similar entities, e.g., cities within a range of population in our

case. In essence, we are merely giving a code name to each city and its

population.

*For an excellent review of modern mathematics, see Phillip E. B. Jourdain,
“The Nature of Mathematics,” in James R. Newman, ed., The World of Mathe-
matics, 1 (New York: Simon and Schuster, 1956), 4-74.
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TABLE 1:1. Subscripted variables.

City Subscripted Variable

X1

2 X2

3 X3

30 X30
etc. etc.

If we want to refer to any one of the cities in general, we can use the sub-

scripted variable x; and let z = 1, 2, 3, ..., 930, etc.

The usual way of adding up the population of all the cities to find the
total population would be:

x1 + x2 + x3 +... 1 Xs0, etc. = total population.

A more convenient method is to use the mathematical shorthand %, which

means “the summation of”

30+

total population = >}* x.
t=]

This equation is read “the total population is equal to the summation of

the ith number of yx variables within the range of 7 between 1 and more

than 30.” As a matter of standard convention, a subscript such as 2 is

always a positive integer (whole number), but it is not necessary to start

the range of consideration for summation at 1.

Let us assume that we want to analyze the population of all cities within

certain classes by state. Assuming that we have established ten classes of

population size, we can form a table of values, or a matrix, in a rectangle.

TABLE 1:2. Matrix of states by population class.

(7>)

I 2 3 10

I X11 X12 Xe + KO

2 X21 X22 Xo + - + X20

3 X31 X32 » € 6300

State (<2)

50 X501 X502 X503 - + + X5010
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The shorthand for any population in our matrix would be xi;, where 2

is the row number and 7 is the column number. Since there are 50 rows

and ro columns in the matrix, we have a “50 by 10 matrix.” If we wanted

to find the total population living in cities by class, we would solve &y; for

each class; similarly, the population of each state would be Sy; for each

state. If we wanted to determine the total population of all classes of cities

in all states, we would use a double summation form:

1=50 7=10

total population = 2, 2 Xij-

The same effect could be obtained in longhand by adding each of the ele-

ments in the matrix, i.e., x1 + xu +... + xso10. An important point to re-

member when using double-subscripted variables such as xj; 1s that the first

subscript stands for the row position and the second subscript stands for

the column position.

These mathematical foundations provide sufficient basis for expressing

quantities subject to change as variables. The selection of variables, and

the measurement criteria to be used, are difficult problems which vary

greatly from subject to subject. While the mathematical foundations are

convenient for expression of variables, intuitive analysis is often required

to select and measure variables.

FUNCTIONS

The concept of functions is a basic tenet of modern mathematics which

has much relevance for urban analysis. A function is a rule to show the

association of one set of variables with another. Since we have chosen to

consider variables within sets, we can call the ranges of the variables of all

sets the domain of the function. Urban analysis almost always deals with

domains of real numbers (not imaginary numbers). For example, if we

were to consider y = f(x), which is read “‘y is equal to a function of x,”

and further consider _y = 2x, which is read “‘y is equal to twice the value of

any value of x,” we could conclude that » = f(x) = ex and that the

function denoted by f can be stated “take any value of x and multiply

by 2.”

Another way of studying functions is the predicative approach. For

example, we can say

St. Louis is a city
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is the same as

f(x),
where

x is a set of urban settlements, in this case only one,

f is a function, in this case “is a city.”

In another example we can have multiple functions:

Atlanta is a city [f.(x)],

Atlanta is young [f2(«)],

so that

Atlanta is a young city [ fi(x) +/2(x)].

Functions can be used to classify variables in this way.

Functions can also be used to compare sets of variables. For example,

New York is larger than Atlanta [f(x1,x2)],

where

f is a function, “is larger than,”

x, = New York,

x = Atlanta.

This type of comparison is sometimes called nonsymmetric because one set

of variables is different from the others. A symmetric comparison function

is of the kind

Philadelphia is near New York [f (3,2) ],

where

fis a function, “is near,”

x, = Philadelphia, a city,

xe = New York, a city.

Symmetric functions imply that f(x1,%2) is the same as f(x2,x,) ; for exam

ple, New York is near Philadelphia. Nonsymmetric functions do not make

this implication; for example, Atlanta is not larger than New York.

The most common use of the concept of functions for urban analysis is

to express relations. For example, we often see such relations as

dpi = pi/ ais
where

dp; = density of population for any city in the set 2,

ps = population of city 2,

a; = geographical area of city 2,

and, in this case, the function is division of the population variable by the

area variable.
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Functions are used commonly in urban analysis to show three basic

types of relations, usually though not always expressed in mathematical

terms:

1. Deterministic. The cause-and-effect relation which holds that x will

always occur or be absent when y occurs.

2. Probabilistic. The chance relation that y may or may not occur or be

absent when y occurs, but we can say that there is a probability p, that x

may or may not occur when y occurs.

3. Pseudo. We know that x and y are often present or absent in the

same way time after time, but we doubt that one causes the other. For

example, umbrellas are usually opened on city streets when it is raining,

yet we know that opened umbrellas do not cause it to rain and we know

that rain does not cause umbrellas to open — and we also know that um-

brellas are opened sometimes on city streets when it 1s gloriously sunny.

To deal with such problems, we can devise pseudo relationships which

may not have cause-and-effect characteristics.

We have stated that the domain of functions (of any of the types) is

usually all real numbers in urban analysis. In order to work with functions

efficiently, we try to limit the range of consideration by looking at only a

certain part of the domain — this is called an interval. Since the range

of a function is usually — oo — + oo, or minus infinity to plus infinity, we

must place restrictions on values to be considered, as seen in Fig. 1:1. We

will only consider values for our function which lie between a and b in

our example because all other values of the function are not interesting

to us. There are three types of intervals:

1. Closed. We will consider [a,b], which means all values between a and

b including a and b.

2. Open. All values in the interval (a,b), which means any real num-

ber in the interval except a and b.

3. Mixed. It is sometimes found that one end of an interval may be

open and the other closed, such as (a,b] or {a,b).

As a practical matter in urban analysis, we try to deal only with closed

intervals. Open intervals are often impossible to analyze because of the

impossibility of determining how close you can get to a value such as a

or 6 without ever reaching it (there are an infinite number of steps which

get smaller and smaller). As a matter of practicality, we often use in-

equality signs to express the interval we are considering:

a<y <6 denotes a closed interval,

a<.y <6 denotes an open interval.
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Mixed intervals can be expressed as

asy<b,
a<y<b.

This is an important foundation of mathematics which is useful in simpli-

fying the application and, in some cases, the costs of scientific methods to

urban analysis. It also requires that the urban analyst has a good under-

standing of what is relevant in a problem and what is irrelevant.

ALL REAL NUMBERS

a b

— co ~~ | ame | 0
cee aie al

INTERVAL OF y

Teg ee

DOMAIN OF y

Fic. 1:1. Domain and interval.

MopELs

The basic tenets and foundations of modern mathematics are most sig-

nificant in both the basic research and research and development branches

of scientific methods in the manner that they are used for representation

of real-world entities. Using the foundations of science and mathematics,

representations of the real world are developed and tested — the activity

often called modeling — and the representations are usually called models.

There are some cases where models may not be mathematical. We can

assume that there are three basic types of models:

1. Analog. This type of model uses one physical entity to represent an-

other. For example, there have been cases where traffic on city streets has

been represented by the flow of electrons through wires and circuits.

2. Iconic. These are common models whereby a scale representation of

the real world is made. For example, groups of buildings are often built

at a small scale so that a designer can analyze them; maps are drawn to

scale to show the location of physical and nonphysical characteristics of

cities.

SSR

<a YRS SEARS
sauce Soiaitanateeiots
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3. Symbolic. The most significant type of model is the symbolic model,

usually in mathematical terms, which uses symbolism to express the real

world, We will be concerned primarily with symbolic models, but we are

aware of the significance of analog and iconic models in urban analysis.

BASIC SYMBOLIC MODEL

Russell L. Ackoff has stated that all symbolic models for scientific meth-

ods have the same basic form:?

0 = f(xi, di)

where v is some measure of performance of the real-world phenomenon

that is being represented; x; is a set of variables which represents decisions

or other aspects of the situation that can be controlled by either the analyst

or decision-makers in the real world; and y; is a set of variables which

represents decisions, environment, conditions, or other aspects of the situa-

tion that cannot be controlled or arise from outside the urban system and

are called exogenous.

This basic form of the symbolic model is interesting in that it clearly

shows that the analyst must have many insights and must exercise sound

judgment if he is to develop a model effectively. The analyst must deter-

mine what measure of performance is to be analyzed or what group of

measures is to be interrelated and analyzed. Control variables must be

selected that both allow experimentation with various alternatives for the

urban system and serve as a means of possible resolution of the problem

in the real world. The noncontrol or exogenous variables must be carefully

considered — they indicate what conditions cannot be changed and what

possible side effects may arise. The determination of the functions which

relate these variables is often the most difficult job for the analyst, and it

is often the reason for inadequate models, since the function is usually

based on incomplete knowledge of the urban system.

OPTIMAL SOLUTIONS

Models have much significance in scientific methods because they en-

able analysts to determine solutions to questions addressed to models. These

“Russell L. Ackoff, Scientific Method: Optimizing Applied Research Decisions
(New York: Wiley, 1962), pp. 108-140.
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O

Fia. 1:2. Domain of FC function.

questions usually pertain to the control variables, and the answers to the

model show what the effects of certain alternative decisions may be. Since

urban problems always involve noncontrol variables and are usually limited

to a certain interval of solutions, they are said to be under conditions of

constraint. Whenever a symbolic model is constrained, and we seek the

best solution to the model (or the problem that the model represents) , we

seek the optimal solution. The optimal solution is the best answer to our

question within the constraints that have been set.

A simple example may help to clarify the concept of optimal solutions.

Assume that the fiscal capability for a city in a given year is the total of its

tax and nontax revenues. We can model this situation by

FC=T+NYT,

where

FC = fiscal capability in dollars,

T = tax collections in dollars,

NT = nontax revenues in dollars.

Assuming that the city is not losing money, the domain of FC is any real-

number value which is positive, as shown in Fig. 1:2. In a given year let

us assume that political leaders have imposed a tax ceiling of a (on T), and

the economy, population, and characteristics of the city will probably limit

NT to 6 or less. This means that FC is constrained by o< T <a and
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Fic. 1:3. Constrained domain of FC function.
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o < NT <b. The interval is shown in Fig. 1:3. We can now test several

possibilities. We can see that the minimum fiscal capability of the city

(denoted as Min FC) is o at T = 0, NT = 0. The maximum fiscal capabil-

ity of the city (denoted as Max FC) isa+6 at T =a, NT =). This sets

up several decision situations. If we seek the maximum fiscal capability of

the city within the constraints, we would say that Max FC = a-+ 0 is the

optimal solution. On the other hand, if we wanted to maximize FC without

imposing taxes, we see that Max FC would be 6 at T = o. Similarly, Max

FC would be a if NIT’ =o0. The selection of an optimal solution, then,

depends upon some criteria established by the analyst.

Symbolic models can have maximum, minimum, and optimum solutions.

A general table (1:3) of solution types can help illustrate this. This table

TABLE 1:3. Types of solutions.

Criteria

Solution Time Resources | Effectiveness

Maximum Longest Highest Greatest

Minimum Shortest | Lowest Least

Optimum Middle | Medium Medium
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somewhat oversimplifies the case, but it is useful for explanatory purposes.

It shows simply that the optimum solution for models which also have

maximum and minimum solutions tends to be a compromise between the

extremes. The compromise is determined both by the constraints placed

upon the solution and the model and by the criteria for selection of opti-

mality selected by the analyst. The optimum solution does not necessarily

mean the best answer to the problem that the model imitates. In most

cases the optimal solution means the best answer with “all things con-

sidered” or within the constraints set for deriving any answer.

There is another set of alternatives, or perhaps a single alternative, which

exists for dealing with urban problems. The utopian solution is considered

to be the best solution to urban problems without constraints. If the con-

straints for solution can be removed or minimized, whether they consist

of resources, time, effectiveness, or human values, we can develop an ideal

solution to an urban problem. The utopian solution can be arrived at

through solution of symbolic models with all constraints removed or

through intuitive analysis. The utopian solution has been a factor in urban

planning for many years and continues to offer both insight and perspec-

tive. An operational role for utopian solutions can be made by including it

in the array of alternatives that the analyst will examine.* It may emerge

that a utopian solution is a valid course of action and that the main con-

cern of decision-makers should be to eliminate constraints which impede

the attainment of such a solution. It is also possible that utopian solutions

can assist the analyst in determining the effect of constraint relaxation on

other solutions.

VALUES AND SCIENTIFIC METHODS

A value is an inherent worth of any entity or belief. Values are held by hu-

mans as individuals and humans in groups with common interests, such as

communities. Issues and very real differences often arise between what

individuals and communities in urban systems value and what scientific

methods show to be the optimal solution to problems. The optimal solution

to a problem rests on the consideration of all things and the constraints as

they have been defined for the model. Individuals and communities often

will disagree about the need for consideration of all things or all con-

® For further examination of this concept, see Anthony J. Catanese and Alan W.

Steiss, Systemic Planning: Theory and Application (Boston: D. C. Heath, 1970). |
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straints. As has been noted, in its purest sense the scientific method tends

to produce relatively conservative solutions to problems. Human and com-

munity values may demand other than conservative solutions.

A common example in urban systems is found with freeway locations.

Most freeways are located by scientific methods which evaluate the costs

and the benefits of several variables (usually in terms of reduced time and

costs of travel). It is not uncommon to find freeways planned to traverse

fine residential areas, parks, historic areas, and natural areas. In terms of

which variables were considered, the solution may be valid, yet in terms

of human and community values about such nonquantifiable variables as

mentioned, the optimal solution may be completely unacceptable. What

then becomes the “best” solution? Who determines what is the “best” so-

lution? Such issues lie at the heart of many urban problems.

C. West Churchman has written about the general nature of scientific

methods and human and community values.* Churchman argues that

ethics — the science of what society wants a decision to be or behavior to

be-— has not been developed enough to serve as a sufficient basis for

resolving conflicts between optimal solutions and human and social values.

There should be an input of freedom into the scientific methods that will

help determine when optimal solutions must be tempered with other alter-

natives that arise from values, politics, morality, etc. On the assumption

that our greatest failure has been the inability to determine and measure

human and community values, Churchman concludes, “What seers to be

the distinctive contribution of the twentieth century to the theory of human

progress is the recognition that there can be no progress without conflict.

The challenge is to develop a science of values or ethics which can under-

stand what this means.”® Thus he argues that science can be of only

limited assistance to human progress, especially in urban areas, without

the development of a science which understands human and community

values.

The conflict between human and community values and optimal solu-

tions to urban problems formulated through scientific methods is a major

problem of urban analysis. This perspective should be deeply held by all

those who labor to improve urban systems. Progress is being made gradu-

ally toward the kind of challenge that Churchman has raised, but there

is much to be done. Scientific methods of urban analysis are only valid

‘ C. West Churchman, Prediction and Optimal Decision: Philosophical Issues of
a Science of Values (Englewood Cliffs, N.J.: Prentice-Hall, 1964).

* Ibid., p. 380.
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when they are tempered with an intuitive understanding of human and

community values.

RECOMMENDED EXERCISES

1. To the question “Should black children be transported to predomi-

nantly white suburban schools in order to achieve a racial balance?” the

following responses were found in one area:

J I 2 3
2 (Yes) (No) (Undecided) ih

1 (Students) 313 157 125 i

2 (Teachers) 56 65 10

3 (Parents) 114 200 60

Assuming that any cell can be represented as n;;, calculate and interpret:

3 2

(A) 2 ni (B) 2 aj
i= j=

3 2 3

(C) 2 2, Nii 2, Mat

=e (D) ="

Dy Qe Mii
j=1 t=)

3

2, Nee

Dy 2 Nj
jul iol

2. Write a brief essay on the differences between the scientific method

and the general planning process that exists in most urban areas.

3. Population (P) is a function of such key variables as births, deaths,

in-migration, and out-migration. For any given city in any given year

develop a population model. What variables are related to population that

cannot be measured? How accurate is the model?

4. Formulate and execute a survey to determine what human and com-

munity values exist concerning a given problem in a given city. Analyze

the conflicts, if any, that arise between these values and an optimal solution

developed by analysts.
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FuRTHER READING

Ackoff, Russell L. Scientific Method: Optimizing Applied Research Decisions.

New York: Wiley, 1962.

One of the foremost students of science and scientific method develops an

exhaustive analysis of both in this book. General in its orientation, it is useful for

a basic understanding of scientific methods and problems of optimal decisions.

Churchman, C. West. Prediction and Optimal Decision: Philosophical Issues of

a Science of Values. Englewood Cliffs, N.J.: Prentice-Hall, 1964.

The author is a pioneer in the application of scientific methods to management

problems and explores in this book the issues and conflicts that arise between

values and optimal solutions. The book is concerned with the major problems of

determination, analysis, and measurement of values, ‘and it concludes with a

profound challenge to science to take values into consideration.



I shall claim the privilege of a Freethinker; and take the
liberty to inqutre into the object, principles, and method of
demonstration admitted by mathematicians of the present
age, with the same freedom that you presume to treat the

principles and mysteries of Religion; to the end that all men

may see what right you have to lead, or what encouragement

others have to follow you.

Bishop Berkeley, The Analyst: A Discourse
Addressed to an Infidel Mathematician (1734)

PREDICTIVE AND

ESTIMATING MODELS



Most examples of scientific methods of urban analysis that already exist

in the real world, in a fully operational and practical perspective, are

relatively simple deterministic (rarely probabilistic) models. These models

involve variables that are set in some observed or theoretical functional

relationship and can be solved to find solutions to problems. It is this suc-

cinct simplicity of deterministic models that accounts for their popularity

and validity. When processed by digital computers, the additional dimen-

sion of speed is added.

The expression of models in matrix terms is especially advantageous for

digital computer processing. The digital computer solves problems in an

electrological sense that is not unlike matrix methods. Most library pro-

grams for computers require, in fact, that input be set in matrix terms in

order to provide valid and efficient output.

Tae Matrix APPROACH

The matrix approach, or the more traditional matrix algebra, further

simplifies and facilitates deterministic (and probabilistic) models. Matrix

methods are ordinarily used when subscripted variables or numerous data

observations exist in deterministic functional relationships for urban prob-

lems. Matrix methods provide a foundation for more advanced models in

addition to the simple manipulation facilitation in deterministic models.

Matrix methods are useful for the solution of many models, such as input/

output, linear programming, and simultaneous equations. The use of

matrix methods for probabilistic models has been of growing importance

in recent years, especially in demographic analyses, such as age-cohort-

survival projections, which we will explore later.

RUDIMENTS OF MATRIX METHODS

A matrix is any rectangular array of values. A matrix consists of rows

and columns. Symbolically, this is usually shown through the use of capital

CHAPTER

Matrix Methods
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letters for the matrix and subscripted lower-case letters for the elements

ayy 32
A= .

Q2q1 422

We say that a matrix is m X n in size, where m represents the number of

rows and n represents the number of columns. For example,

of the matrix:

I 2 3

45 6

is a 2 X 3 matrix. When a matrix has only one row and several columns,

or one column and several rows, it is called a vector. For example,

cm © NHN He
b = (5, 6, 7).

Vectors

Vectors have many interesting properties in the social sciences. It is

important to remember, however, that we are talking about vectors as

points in space. For example, Fig. 2:1 is the mapping of the vector

c=(5).

We can have n-dimensional vectors as well as our simple two-dimensional

example in Fig. 2:1. In Fig. 2:2 a three-dimensional vector is shown for

ay

d=| by

Cy

Regardless of the dimensions, a vector for urban and social science analysis

will always start at origin in a mapping.’ (It is possible to conceive of

cases in economics, planning, and other problem areas where vectors start

away from origin, but solution is improved by reconstructing the axes to

form a new origin.)

Tt is important to distinguish vectors as used in physics to represent magnitude
and direction from our intended use of the concept.
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Fic. 2:1. Points in space.

We usually call a vector of the form

Xn

a column vector. If we wanted to treat it as a row vector, we can transpose

the vector:

Pp’ = (x1, x9, .-- 5 Xn):

It may be recalled from plane geometry that vectors can be added, sub-

tracted, and multiplied. This is, of course, true algebraically. We can add

and subtract vectors:

XU X12

X21 X22

fi = » fo = 2

Xn Xn2
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Fic. 2:2. Three-dimensional points in space.

and

Xu 7k Xe

Xe1 —k xe2

Xn Xng

When a vector is multiplied by a single value, often called a scalar, the

following rule holds:

kx 11

Kxo1

kpr =

Column vectors can be multiplied by other vectors with the same number
of elements by a process called the inner product. Take two column vectors,
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ay by

ag be

fi ~ 3 fr = ’

An bn

as a matter of convention, transpose the first vector, or multiplicand, and

calculate according to the general form:

py pr = 2, abi.

Note that the result of an inner product is always a scalar; for example,

I 4

fi=| 2 |, feo=| 5 f5

3 6

hence

pife = (1X 4) + (2X5) + (3 X6) = 32.

Column vectors can be multiplied by row vectors with the same number

of elements by taking the inner product without the necessity of transposing.

Matrix Addition and Subtraction

If we consider a matrix to be a set of vectors, many of its mathematical

properties can be easily understood. It is possible to add and subtract ma-

trices if and only if they have the same shape, that is, the same number of

rows and columns. If two matrices have different shapes, they cannot be

added or subtracted. Consider, for example,

ail ay » «© «+ Alin bu bio oe 6 bin

a1 a9 ~ «© «6 Ban boy boo o 8 bon

A = co * » ; B — . td 2 ;

aml am . . . Amn bmn bind . . . binn

and adding or subtracting:
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Qu t bu a2 tbe . . . am Ou

dor + bay dx, tbe . . - Gan £ den

AtB=

aml + bint am2 + be s «+ «© Amn + bmn

The general rule is that a matrix A which is the same shape as matrix B

can be added or subtracted to form a new matrix C with the same shape:

A+B= C, in which Cig > aij + b5;.

Matrix Transposition

A matrix can be transposed by exchanging rows and columns, so that

row 1 becomes column 1, row 2 becomes column 2, etc. For example,

Qiu ayQ2 + +« + Qin

QI G22 « « « Gan

A=

aml Am? . . . Amn

can be transposed so that

Qyy gy wwe Em)

a12 a22 « . - Am?

A’ =

Gin Qn - +» « Qmn

As can be seen, if A is m X n, then A’ is n X m. Transposed matrices have

many useful properties which will be explored later.

Matnx Multiplication

Any matrix A can be multiplied by a scalar k; for example,

Q11 aig. « « Ain kay kare - 8 kain

QQ] a9. ww MOM kao kage, so 8 oe kaon,

aml aAm2 ‘ . ann k Am k QAm2 . * + k Qmn
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It can be readily seen that A and kA or Ak have the same shape.

A matrix A can be multiplied by a column vector x if the number of

elements in x is equal to the number of rows in A. For example, matrix A

multiplied by vector x is equal to vector y, or Ax = y:

@iy ai. . « Aly V1 auxi-t .. + AinX p

Qo a99 «se 2D X92 AX, + . 8 ~- 22nX p

Ami m2 .- . +» Qmp Xp Amixit . . . Ft ampXp

To put this another way, we are taking the inner product of p columns

and m rows with vector x to form a new vector y. Another example is to

take matrix B and multiply by row vector a:

by by a bin

boy bop s 8 8 ben

(a1, G2, ++ +5 ap)

p p Pp

= ( », aidan, > axbia, seey >, acbin)
i=1i=l i=1

If matrix A has the same number of columns as matrix B has rows, then

this process can be extended in order to multiply matrix A by matrix B to

form matrix AB. Unlike real-number multiplication, however, products

are not always commutative: AB + BA. In order to multiply A by B, the

number of rows in A must be equal to the number of columns in B. If we

say AB = C, then

Cig = Gaby > ainde; +... + ainda,
where

Q@yyo. « « Alp bi, . 8 b jo« « -« bin C1. lel CUS

Qi. .« « Ain . - 8 8 . 8 8 8 = . Ci

Qmi .- * * amp bt bn; . * oe bon Cm1l . . Cmn

An example may illustrate matrix multiplication:

a=(12) 2=(35)
3 4 7 8
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therefore

ap=(ixoris! eras yaa a)

3X5+4X7 3XO64r4xX8 43 50] °

however,

Bam {oir ex obec 7 (a 34 |

oX1+8X3 7K2+8X%4 gr 46 /’

and
AB # BA.

There is a major exception to this rule? When we have an 2 Xn or

square matrix with ones along the diagonal and zeros elsewhere, it is called

an identity matrix and is denoted by J. For example,

I0o0o

oO 1r100

0010

00 Ot!

isa 4X 4 identity matrix. The identity matrix multiplied by any matrix

A which fits multiplication rules always results in product matrix A; that is,

AI=IA= A.

Inverses

One may recall from algebra that for every real number n + 0, there is

an inverse, n~! or 1/n, such that |

nin t=n en = 1.

Some, but not all, matrices have inverses. A matrix may have an inverse

only if it is (1) square and (2) nonsingular.* If matrix A is square and

_ nonsingular, then it has an inverse A-* such that

AtT-A=A-At=T].

There are several ways to compute an inverse matrix — the simplest

* There are also some minor cases where AB=BA due largely to coincidence; for

example,

2 1 I2]; ]1 2 Q 1 _ 8 9

sal <Lé 3 fe 51*[5 4 27 20 |"
* A matrix A is nonsingular if its determinant d(A) + o. A determinant is computed

by adding all right diagonals and subtracting all left diagonals, the result being + o.

Most matrices in urban problems are nonsingular and have determinants, which is
another way of saying that the rows and columns of the matrices are not the same.

For further development, see readings listed at end of chapter.



way is through row operations. In row operations we use the mathematical

nature of augmented matrices to manipulate the matrix on the left side

so as to form its identity matrix— the resultant on the right side being

its inverse. For example,

*-(a4)3 4

we want A7!, so we use the augmented form:

Step I

12|10

34,01 ]°

We want the left-hand side to be J. Row operations require that we use

any real combination of rows or any multiple of rows to make the first

row become (1,0) and the second row become (0,1).

Step 2: row 2 — 3 (row 1)

I 2 IO

Oo —2 —3 1].

Step 3: row 2 multiplied by (—’%)

12/1 oO

o01|%—-—%/]-

Step 4: row 1 — 2 (row 2)

1o|—2 1

o1| % —"’%]-

Thus

~—2 I
At = .He =%)

+_{12 —2 I _{10

ameweney -'y,) (oe):
Buried in the process of row operations is the mathematical concept

which proves that we can multiply, add, or subtract rows in an augmented

matrix without changing the inherent mathematical meaning of the matrix.

This provides urban analysts with a most useful tool.

and as proof:

Solution of Equations

A practical application of matrix operations is the solution of simul-
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taneous equations. Let us develop a problem concerned with incomplete

data. We are considering felonies (x,) and misdemeanors (x2) for a week

in a given city in two police precincts or reporting units, but the reporting

practices do not make the distinction we seek. In precinct A there were

six arrests which officers say were in the same proportion of felonies to mis-

demeanors. Precinct B reported nine arrests with twice as many felonies

as precinct A. This can be shown as

A: x, +x, = 6,

B: 2x1 + x2 = Q.

In matrix notation this can be shown as

Kx =n

Cr) (2 (8).
While this example could be solved by simultaneous equations, it can also

be solved by matrix operations, since

K1Kx = Kn and

Ix = K—n, or

x = Kon.

This yields a vector which is the solution for the unknown x elements. It

is solved by the use of row operations on the augmented matrix.

or

Step 1

11/6

2119/]-

Step 2: row 2 — 2 (row 1)

I I 6

o—-1|—3]°

Step 3: row 2 multiplied by (—1)

1x1] 6

or] 3/]°

Step 4: row I — row 2

1 O0| 3

OI] 3 ).
Thus the solution vector shows that x = 3 and x, = 3. This allows us to
complete our missing data in the example.



Matrix APPLICATIONS

It is not possible or practical to explore all of the applications of matrix

operations to urban analysis. There has been increased emphasis on these

applications in recent years in deterministic models. Many everyday ana-

lytical problems of urban systems can be better handled through matrix

methods.

AGE-COHORT-SURVIVAL MODEL

A particularly interesting application of matrix methods has been for

demographic estimates and projections. Demographic models tend to be

inadequate in many urban analyses and fail to utilize efficient mathematics.

The matrix approach, coupled with the probabilistic age-cohort-survival

model, is a most sensible approach to correcting this situation.

The age-cohort-survival model evaluates the population by age groups

according to the pattern of fertility and mortality that has been observed

or predicted and introduces an explicit effect of net migration (regardless

of whether it is an increase or a decline). The age cohorts are analyzed

over time, often in five-year cohorts, as they change according to appro-

priate fertility, mortality, and net migration. Further refinements may be

made for race, sex, income, etc., depending on data availability and ne-

cessity. ‘The conceptual age-cohort-survival model can be shown symboli-

cally as

Prin = Pi: + (BP: + G) — (DP; +L),
where

P; = base population in year ¢,

n = number of years beyond ¢ for estimate,

B = birth rates,

D = death rates,

G = in-migration during n years,

L = out-migration during n years.

Urban analysts have introduced matrix methods into the solution of age-

cohort-survival models because of the computational and conceptual ad-

vantages. One approach utilizes matrix multiplication to analyze the ef-

fects of fertility and mortality and then develops a transition matrix to

account for the effects of migration on each age group.‘

* Andrei Rogers, “Matrix Methods of Population Analysis,” Journal of the Ameri-
can Institute of Planners, 32, no. 1 (Jan., 1966), 40-44; Nathan Keyfitz, “The

Population Projection as a Matrix Operator,’ Demography, 1 (1964), 56-73.
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The approach of Nathan Keyfitz, and the urban orientation given to

Keyfitz’s approach by Andrei Rogers, are interesting for our purposes.

Mortality can be treated through matrix methods to show the effects upon

a population which is divided into m age groups, assuming that the time

period n = 1 for simplicity. In this case the matrix equation is

DP; — Pn

where the two asterisks above P serve to indicate that the effects of fer-

tility and net migration have not yet been examined. The matrix of death

rates is expressed as

0 0 Oo O

a, oO O O

Oo ad O O

D _|00 @ O

mxm

0 0 0. .adm-10

The only nonzero terms are on the subdiagonal, which has the effect of

advancing each age group over the time period n = 1. In essence, since

these rates are actually the probabilities that any person in the mth age

group will survive to the next age group over the time period n, we have a

probabilistic model composed of n~ 1 probabilities. An example may

clarify this. Assume a population of 4,000 that is evenly divided into four

age groups: O-14, 15-29, 30-44, 45 and over. Assume, for simplicity, that

all age groups have the same probability of survival, where dn = .go,

which is another way of saying that 10 percent of each age group will not

survive until the next age group. The matrix approach for finding Pht,

then becomes

0000 1000 O

pr, =| 9 ° 00 1000 | _ | 900

0.900 1000 goo

00.9 0 1000 goo

The effects of fertility are examined in a similar manner. In ordinary

approaches fertility rates are determined for women in the child-bearing

age groups and a survival rate is applied to those children. In matrix terms

a seemingly crude approach is undertaken where a birth rate is computed

for each age group, regardless of sex, during a given time period, and these

births are summed for total increases. The computation of these rates,
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however, can include adjustments for child survival; hence the absence

of a sex breakdown (which is done for simplicity) does not interfere with

the conceptual validity of the model. The fertility matrix B is computed

in general:

00... 0 b bg bg... bb... 0... 0

Oo Oo Oo . .., . Oo... 0

Bo .

mxXm .

0 O0O...0 0 0 0.,..0 ...0.2.2.0

Note that only first-row elements which correspond to child-bearing age

groups are greater than zero. Returning to our example, and assuming

birth rates of .7 for the 15-29 age group and .5 for the 30-44 age group,

we see that

0.7.5 0 1000 1200

0000 1000 |_{ o

0000 1000 | | O

0000 1000 Oo

We can determine a “survivorship” matrix S$ by adding B and D, where

0 0 Oo... db bb... bh O O

ad, Oo O 0 Oo Oo Oo O

0 d@ oO. oO O0o...0 0 O

S 0 0 as o Oo 0 Oo O
=B+D=

mxm oe .

0O 0o0...0 0... dwt... 0

Using our example,

O .7 .5 0

sa] 9 9 9 O

0 .9 0 O

0 0.9 O

Since we account for fertility and mortality by S, we can find Pf,, = SP.

In our example

0.7.5 0\ / 1000 1200

000 I000 gooSP, = P#,, =| °9 =
0.9 00]| 1000 goo

0 0.9 of \ 1000 900
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The asterisk above P serves to indicate that net migration has yet to be

examined.

There are several scientific methods for estimating and predicting net

migration. Rogers has used matrix methods to determine the net migration

into an urban area from other urban areas in a California analysis.° This

analysis, coupled with his theoretical approaches, offers a valid approach

for a sophisticated application of matrix methods.° For less sophisticated

approaches, dictated by time, money, or data constraints, any number of

deterministic or probabilistic models can be employed to estimate and

predict net migration. In our terminology the product of such efforts is a

net migration vector (or matrix if several urban systems are being analyzed

at the same time) which we call 7, such that 7 = G— L. The vector T

allows us to solve for P:,,, where

Prin = SP: +- T tiny

and allows us to estimate population by accounting for the effects of

survivorship, fertility, and net migration. Assuming that

100

200
T=

150

IIO

in our example, we see that

0.7.5 0 1000 100 1300

9000 1000 200 1100

0.900 1000 150 1050

00.9 0 1000 LIO LOIO

Thus our hypothetical urban system is predicted to experience an increase

of population in the amount of 460 persons by the time ¢ + n, and more

than 91 percent of that population will probably be less than 30 years old.

GOALS-ACHIEVEMENT MATRIX

Matrix methods have been used in less quantitative models for urban

analysis. A good example of this type of application is the goals-achieve-

* Andrei Rogers, Projected Population Growth in California Regions: 1960-1980
(Berkeley: University of California, 1966).

“Andrei Rogers, “A Markovian Policy Model of Migration,” Regional Science
Association Papers, 17 (1966), 205-224.



ment matrix developed by Morris Hill to test alternative solutions for

solving urban problems or alternative plans for attaining urban goals.’

Hill uses cost-benefit analysis, which is a method for computing the rele-

vant direct and indirect costs and accrued benefits for each alternative

plan and devising a ratio or other ranking computation, in a matrix ap-

proach. Various interest groups in the urban system are included in these

computations through an analysis of the manner in which they perceive

the costs and benefits for each goal and plan. Rather than limiting the

measures of costs and benefits to the traditional resources of land, labor,

and capital, Hill argues that the measure can vary depending on the par-

ticular goal. For example, time saved in travel, housing units retained, or

other such measures may or may not be valid in a given application.

The goals-achievement matrix is developed by a vector which assigns

weights to each group in a manner indicating the desired distribution of

benefits. The costs and benefits are computed for each group by multiply-

ing the group weight vector by the overall urban system benefit index. The

plan or solution with the highest index would be ranked first. An example,

using a modification of Hill’s method, may be illustrative. Assume that

plans A, B, and C purport to satisfy goal set § of n groups in an urban

system. For each plan there is an associated benefit/cost index for the

entire urban system, which can be expressed as scalars ubg, why, and ub.

For each group there is an associated weight vector for each plan which

shows desired benefit distribution. The goals-achievement matrix would

take the general form represented in Table 2:1. Plans A, B, and C would

TABLE 2:1. Goals-achievement matrix.

Goal Set §

Plan A Plan B Plan C

Group I way woy wey

Group 2 was whe wee

. uba ub» ube

Group 2 Wan Won Won

total benefit = >° (waiuba; whiuby; web.) |
ix]

"Morris Hill, “A Goals Achievement Matrix for Evaluating Alternative Plans,”

Journal of the American Institute of Planners, 34, no. 1 (Jan., 1968), 19-29.
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then be ranked in order of their respective total benefit. Note that there

is much intuitive analysis in this model even though it is basically a deter-

ministic matrix model.

Tests of Matrix MopELs

Models should be tested in any application of scientific methods to urban

analysis. It is especially important to test matrix models because they usu-

ally take many variations for given problems. Matrix models often involve

input derived from intuitive analyses and informed judgment. While this

does not lessen the utility of such models, it does give varying results for

similar problem situations. The urban analyst should strive to develop the

most efficient and reasonably accurate model that 1s possible through ma-

trix methods.

Testing matrix models is largely an intuitive procedure based upon judg-

ment with an assist from several measures of performance that are bor-

rowed from applied mathematics or statistics (the science of data collection

and classification in mathematical terms of their occurrence or relative

number as a basis for inference). Three of these measures of performance

are examined: (1) graphic comparison, (2) root mean square, and (3)

chi square. It should be made clear, however, that these tests only provide

verifications of intuitive analyses or an added factor for a judgment.

GRAPHIC COMPARISON

The simplest and most common test of matrix models is a mapping or

graphic comparison of the results of the model and the real-world observa-

tions. Observations from the real-world problem are plotted in a mapping,

and the corresponding estimates or predictions from the model are plotted.

The differentials can be examined visually to determine how well the

model compares to the real world; of course, this means in the eyes of the

analyst.

Let us consider a well-known matrix model for illustrative purposes.

Nobel Laureate Jan Tinbergen of the Netherlands School of Economics

has been concerned with the distribution of people into urban centers and

agricultural or rural areas as a function of their employment in various

industries. In one of his models Tinbergen hypothesizes that the distribution

of population into centers of various sizes (determined by the variety and

number of industries and ranked in a hierarchy) can be estimated by a



matrix: model.* Tinbergen develops a series of matrix models which account

for employment, demand for products of industries, income, and popula-

tion distribution into centers in a rank order. He applies his models to

modern-day France (making several simplifying assumptions) and arrives

at the following results in Table 2:2. As can be seen, the urban centers

TABLE 2:2. Estimated and observed distribution of popu-

lation.

Number of Estimated Observed

Rank Order Urban Total Total
of . . .

Urban Centers Centers in Population | Population

Rank Group | (thousands) | (thousands)

7 I 5,100 7,813

6 4 35575 2,626
5 20 10,040 4,725

4 69 9,335 55317
3 203 5507 4,615
2 599 1,959 3,671
I 25257 1,314 52174
O _ 10,722 13,613

are ranked from 7 to o, with only one center (Paris) in the highest rank

grouping and no centers in the lowest rank grouping (rural areas without

urban centers).

The results of the model can be graphically compared to observations

on the number of people living in each type of center in France (Fig. 2:3).

This graphic comparison indicates something about the results from the

model and the real-world corresponding observations. With the exception

of Paris (rank group 7), the model tends to predict a higher concentration

of people in the higher-ranked centers than has actually been observed.

In the lowest-ranked groupings the model tends to underestimate the

population distribution within the centers and rural areas. The question

can then be raised about whether the model is conceptually adequate (in

this case the model is based on a set of assumptions that tends to reflect

optimal economic conditions, and the real world may not reflect these

conditions). It is assumed, however, that the observations are accurate

and that there are no computational. errors (although this is always a

possibility) .

® Jan Tinbergen, “The Hierarchy Model of the Size Distribution of Centres,”

Regional Science Association Papers, 20 (1968), 61-68.
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ROOT MEAN SQUARE

The root-mean-square test is a way to determine how much error or

difference exists between the real world and the results of a model. The

root-mean-square test is well known and is often called the standard de-

viation or o (the square of o is called the variance). It is used to determine

the percentage of error by computing the root mean square as a percentage

of the mean of observed data from the real world — this is called the

coefficient of variance or V.



In order to compute the root mean square, which we can designate as

rms, the following equation must be solved:

J > (observed — predicted)?
o=rms = .

number of observations

S(y—y,.2

g = rms =4| > X— XI ;

x = observed data,

Xe = estimated data,

n = number of observations.

or symbolically,

where

The root-mean-square test computes the difference between a real-world

data observation and its corresponding model estimate and squares this

difference to attain all positive values, which are then averaged by dividing

the summation by the number of observations; finally, the square root of

the resultant is taken in order to determine the average or standard devia-

tion from the real world. This can be expressed in terms of a percentage

of the mean of data observed for the real world (x) by

rms

V= —— 100.00.
xX

This test measures the relative difference or coefficient of variance between

the model results and the real world.

The rms and V of Table 2:2 can be calculated for illustrative purposes.

The result shows that the rms is 3,155, which, expressed as the coefficient

of variance, is 53.0 percent. In either test an analyst would conclude, as

Tinbergen did, that the model needs further experimentation and testing

before more applications are made. The graphic comparison may indicate

what areas need to be re-examined. While the rms and V may be inter-

preted differently by different analysts, the general rule is that a good

model has the lowest rms and V possible — within reason and within the

judgment of the analyst.

CHI SQUARE

The chi-square test is a measure of the difference between observed data.

and model results which can be used alone or with the root mean square

as a further aid in judging the appropriateness of a matrix model, The
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TABLE 2:3. Calculation of rms and V for Table 2:2.

x Xe X — Xe (X — Xe)?

7,813 5,100 2,713 7,360,369
2,626 3,575 —949 goo ,6o01

45725 10,040 — 55315 28 , 249,225
55317 9,335 —4,018 16,144,324
4,615 5507 — 892 795,664
3,671 1,959 1,712 2,930,944
55174 1,314 3,860 | 14,899,600
13,613 10,722 2,891 8,357,881

-* _ — 79,638 ,608

*X = 5,944

TMS = [-79:°3°,008 = 3,155,

V= [ 355 100 = 53.0 percent.

chi square, x?, is computed by using the following equation for observed

(x) and expected or computed (yx,) variables:

a2] BS).
As can be seen, when actual observations and model results are the same,

x” will be zero — although in practice this can never occur because seem-

ingly “perfect” models can be as invalid as “imperfect”? models. After

computing a x’, a standard table of chi-square values is consulted (see

Appendix A). The chi-square standard table gives the probability P that

there is no significant difference between observations and estimates or

observed and theoretical data. This is done by computing the probability

that the same theoretical observations could have been reached at random
or by chance. Chi-square tables are presented by degrees of freedom (df)
for a matrix, which means the number of opportunities in which values
can be freely entered and removed from other cells of a matrix after an

initial value has been entered.® The degree of freedom for m X n ma-
trices is computed by

°For further discussion of degrees of freedom, see Frederick E. Croxton and
Dudley J. Crowden, Applied General Statistics (Englewood Cliffs, N.J.: Prentice-
Hall, 1955), pp. 681-691. |



(m — 1) (n— 1) = df,

and for m X 1 vectors by

(m—1) =f.

An example of significance testing can be helpful. Assume that a rapid

transit proposal referendum was approved in two neighborhoods, and we

seek to determine whether there was a significant difference between the

voting patterns in these two neighborhoods (which are different in size)

(see Table 2:4).

TABLE 2:4. Rapid transit referendum.

Neighborhood 1| Neighborhood 2} Total

Approved 160 440 600

Disapproved 100 180 280

Did Not Vote 40 80 120

Total 300 700 1,000

We can compute a theoretical value y, by assuming that each neighbor-

hood would vote in the same proportion if there were no significant dif-

ference between them. For example, for disapproved votes in neighborhood

1, the theoretical vote would be (280/1,000) 300 = 84, which is the pro-

portion of disapprovals times the voters in neighborhood 1.

Summing from Tables 2:5 and 2:6, we get

x? = 5.71 + 2.44 = 8.15.

Since the matrix is 3 X 2, we see that there are two degrees of freedom.

Looking up x? = 8.15 in a chi-square table for df = 2, we see that P is less

than 0.05 and greater than 0.025. This means that the probability that there

is no significant difference between neighborhoods 1 and 2 in their voting

is between 5 and 2.5 percent. Since this is a very low probability, we could

conclude that there is a significant difference in the voting on rapid transit

between the two neighborhoods. As a general rule urban analysts consider

data observations to be “significant” when the chi square indicates a P of

less than 0.05 and “highly significant” when P is less than 0.01, but judg-

ment may yield different conclusions.

A special use of x? as a test of how well a matrix model estimates real-

world observations is sometimes called a goodness-of-fit test. Table 2:7

represents the output of a 13 X 1 matrix model that estimates income by
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TABLE 2:5. Neighborhood 1.

x (x ~~ Xe)?
x C - Xe —

Approved 160 180 2,22

Disapproved 100 84. 3.05

Did Not Vote 40 36 44

Total 300 300 5.71

Tas.e 2:6. Neighborhood 2.

x x (x ~~ Xe)?
Xe

Approved 44.0 420 *95
Disapproved 180 196 1.30

Did Not Vote 80 84. .19

Total 700 700 2.44,

TaBLE 2:7. Chi-square test of family income model.

Number of FamiliesFamily Income — v.)2
Range in Range* (x = Xe)*

Xe
(dollars) , Xs

Under $2,500 I 1.1 0.01

$ 2,500- 3,499 2 3.2 0.45
3500- 4,499 7 g.1 0.48
4, 500- 5,499 25 20.2 1.14

5,500- 6,499 33 35.0 O.11
6,500- 7,499 53 50.6 O.11

7,500~ 8,499 64 57-4 0.76

8,500- 9,499 44 52.0 1.23

9, 500-10, 499 31 37.0 0.947

10, 500-11, 499 27 22.0 1.14

II ,500—-12,499 II 10.2 0.06

12 5500-13 5499 4 3-7 0.02
13,500 or more I 1.5 0.17

Total 303 303.0 6.65

* This example is for illustrative purposes, and all frequencies of
observations have been included in the x and x. columns. In

practice one is well advised to group ranges or intervals that
have few observations, i.e., under $2,500 and $13,500 or more
in our example, with the nearest range. This avoids errors in
the computation of x? and other measures.
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number of families in a given neighborhood. The computed y? is 6.65 and

there are 12 degrees of freedom. The chi-square table indicates that P is

less than 0.90 but greater than 0.80. This means that the probability that

there is no difference between the observed data and the model results is

high, and the model may be judged appropriate, since it so closely approxi-

mates the real world.

RECOMMENDED EXERCISES

1. Let

II 22 33 14 II 25 IQ 20

Aa=| 5 61 ar 18 pal 22 36 10 33

~ \ 31g ro i 32; | 318 14 Ir 49

18 44 15 26 34. 28 13 50

Find

(A) A+B (8B) A-B

(C) 34+ 4B (D) AB

2. Let

1 8 X41 40A= ) = 5 = .: ; x (%) (eI

3. Develop an age-cohort-survival matrix model for any given city or

part thereof. Use local vital statistics to determine the survivorship matrix,

and use any readily available data for the net migration matrix (or estimate

if no data are available). Using five-year age cohorts, project the popula-

tion 20 years into the future, assuming that vital rates and net migration

do not change. |

4. Test the matrix model that you have developed in Exercise 3 by

using the latest census data and finding the rms. Start your model with

the nearest previous census for the area under study and conclude with

the latest census year. Find the rms for the estimated and actual values

for the latest census year.

5. Using the data presented for Exercise 1 in Chapter 1, use.a chi-

square test to determine if there is any significant difference between the

response of students, teachers, and parents.

Find x for Ax =.

ements

eee scien a
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FurTHER READING

Lipschutz, Seymour. Theory and Problems of Finite Mathematics. New York:

Schaum, 1966.

One of the well-known college outline series which treats matrix methods in

an easily understandable manner and offers the student an opportunity to solve

problems and verify his answers readily.

Perlis, Sam. Theory of Matrices. Reading, Mass.: Addison-Wesley, 1952.

A widely used textbook that treats matrix methods and related subjects in a

mathematical manner at a higher level than other textbooks yet retains compre-

hension. ‘The textbook also treats many subjects, such as determinants, that were

not possible to examine in any detail in the present book.



A major use of the scientific method has been to estimate and predict the

values of one variable by reference to the values of one or more associated

variables. When a model can be developed which estimates and predicts

variables through a pseudorelationship, based upon associated variables,

the method is known as correlation. In this chapter we examine the most

widely used form of correlation, which results in deterministic linear

models.

Linear models are quite popular in all types of urban analysis because

of their relative simplicity and accuracy. Linear models are by no means

flawless, and they have been criticized on logical and mathematical grounds.

There are pitfalls in the use of linear models which will be discussed. These

pitfalls can be overcome or at least noted in the use of such models. Despite

some recent philosophical arguments and lemmas, few scholars and ana-

lysts believe the real world to be linear; yet there is an appealing advantage

in the application of linear models to urban analysis because of their in-

herent simplicity and comprehensibility. It is argued that since our knowl-

edge of the rea] world of urban systems is imperfect, simplistic linear models

are attractive predictors and estimators of imperfect variables.

Three applications of lmear models are often found in urban analysis:

(1) trends, (2) relationships, and (3) explanations. Linear models point

out trends, usually over time, that may not be noted through intuitive or

graphic analysis. Relationships can be determined by using the theory of

correlation in conjunction with linear models. Linear models are used to

explain occurrences (and predict the appearance and timing of occur-

rences) when nonscientific methods are inadequate or unsatisfactory.

SIMPLE LINEAR MopELs

Simple linear models predict the values of a variable through its corre-

lative functional association with one other variable raised to the first or

zeroth power. Simple linear models are often called trend lines, straight

line projections, or regression lines. The last term is derived from the

computational process of correlation, which is called regression or curve-

CHAPTER

Linear Models
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fitting. A simple linear model takes the mathematical form of a straight

line, which 1s

Y=a-+dbX,

or for estimates and predictions,

Se = a + bx,

where y, stands for estimated or predicted y. It is common to call the left-

hand term (Y) the dependent variable, the right-hand term (X) the in-

the slope. A mapping of this model assumes the familiar straight-line form

of Fig. 3:1. As can be observed in Fig. 3:1, the point (vector) where the

dependent variable, the constant (a) the intercept, and the constant (b)

regression line touches the vertical or dependent variable axis is the inter-

cept a. The slope of the regression line, which is the number of units that

the dependent variable Y rises or falls for every unit of the independent

Y

Ye== a+ bx:

0

Fie. 3:1. Linear mapping.



variable X, is the constant b. The slope can be either positive or negative

to indicate the nature of relationship of Y to X, and for every variable

&, (read as “x hat” and meaning a given value for x;), there is a unique 4;.

A good practice for urban analysts is to pretest the observations by

graphic means. The plotting of observations of one variable for comparison

with another is called a scattergram. For example, consider the scattergram

shown as Fig. 3:2, which associates work-trip cost and work-trip distance
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Fic. 3:2. Scattergram of work-trip distance and cost.

from national observations made by the Survey Research Center, Univer-

sity of Michigan. Solely by observation, we would suspect that a linear

model could be developed, because the grouping of data has a steadily

increasing slope and seems to follow a straight-line form. When observa-

tions do not reflect such a pattern, it may mean that nonlinear models are

needed or that the data are too irregular to allow for any form of model-

ing. In special cases an observation of data may indicate that the nonlinear

curves might approximate the trend of the clusters, but there are methods

by which linear models could be used. For example, if we observe that

clusters of data seem to resemble the curve of a squared function, such

as Y = X*, we could use a logarithmic base to form a linear relationship,

such as log Y = 2 log X. This is called transformation. a ce ae a a a seca gas
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SIMPLE REGRESSION COMPUTATIONS

The first step in fitting linear models is to plot a representative sample or

selection of the observed data for the variables. This mapping is then ex-

amined for linear trends. The mapping is examined for variation by plot-

ting bands that generally group the data. These bands should be equi-

distant in order to indicate that linearity exists. The third and final visual

test should be an examination of whether the mapping seems to be nor-

mally distributed about the center line of the bands — that is, do the

data between the bands seem to take a bell-shaped distribution about the

center line of the bands? Those unfamiliar with the normal distribution

may wish to refer to the section on the normal model in Chapter 5, which

includes an introductory definition. These three visual tests are sum-

marized in Fig. 3:3.
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Fic. 3:3. Visual tests for linearity.

After having been reasonably convinced that the data would lend them-

selves to linear models through observation tests, the analyst can compute

the values for a and b, which are called the model parameters (inherent

characteristics). There are a number of computational rules or algorithms

that can be used for finding parameters a and b. With the use of digital

computers and library programs, the computational efforts can be minimal.
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i=l]

O X = Ki XxX

Fic. 3:4. Deviations from line of best fit.

For this reason it is valuable to discuss the algorithm most commonly found

in library programs for finding a and b by use of digital computers.

The algorithm most commonly used for digital computer processing is

called the line of best fit, as found by solving for the least-squares solu-

tion. The solution is called least squares because it minimizes the distance

between observed data and the corresponding estimated values from a re-

gression line. There are an infinite number of lines possible for approxi-

mating a set of observations, but only one will minimize the sum of the

squared differences between observed and estimated values. Fig. 3:4 illus-

trates this concept.

For computational simplicity we can use the linear model form y, = a

+ b(x; — #) (where z is the mean value for x) instead of the familiar y,

=a-+bx;.' The effect is to simplify interpretation and mathematically

improve the accuracy of the line of best fit. We solve for the mean of the

variables in the usual manner:

where n is the number of observations and both x and y have 7 vectors.

1 These two forms are the same except that the intercept is a for ye=a + bxi; how-

ever, the intercept is a — 6x for y=a + B(x: — x).
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Fic. 3:5. Three-point example.

Using classical calculus, it can be proven that the minimization of d*

can be accomplished by solving for a and b according to the following

equations:

a= Fae

2 [xi — #) (9s — 9)]
b= :

2D, (% — %)?

A simple example may be illustrative. Let

HDi

1.0 3.0

2.0 5.8

3.0 9.2

See Fig. 3:5 and Table 3:1.
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Ye == 6.0 + 3.1 (xi — 2.0)

| A

9+ | _
| 3.1

——..

y=6 as I a
| @

|
|

|

|3 -
|

|

|

|

|

{ 7 |

O I X= 2 3 x

Fic. 3:6. Fitted three-point example.

TABLE 3:1. Three-point example computations.

Xe Di xi | (ee — *)? | ve Fe — IPO -— DID)

1.0 | 3.0 | —1.0 1.0 —3.0 9.00 3.0

2.0 5.8 0.0 0.0 —0.2 0.04 0.0

3.0 | 9.2 1.0 1.0 3.2 10.24 3.2

x 6.0 | 18.0 0.0 2.0 0.0 19.28 6.2

=I x = 2.0 and 7 = 6.0

Therefore,

a=i> .= —18.0 = 6.03 2 Ji 3 . .O,

3 -~ i
2, L(x —aG-Dl 6,

b= 3 = 50 = 3.15

2D, (xi — %)?
tl

SO

Ye = 6.0 + 3.1 (x; — 2.0).

See Fig. 3:6.
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Fic. 3:7. Southeast Wisconsin linear model.

A real-world example of simple linear modeling was made by the

Southeastern Wisconsin Regional Planning Commission (SEWRPC) for

estimating and predicting the total number of trips (y,-) made by families

of various sizes (see Fig. 3:7).

Let us examine only three-member families. In this case the form Y = a

+ 5X was desired, so this required another computational algorithm (often

called the raw data formula) which is somewhat more cumbersome but

mathematically the same as the previous:

Ew) — (2 (Zp

Ea- (Ex)doen



> i >» Xi
text t=]

a= — )
nN 1

The above algorithm yields a cleaner equation, it would seem, yet the use

of ye = a-+ b(x;— %) for computational purposes makes handling more

easy.

TESTING SIMPLE LINEAR MODELS

If we return to the hypothetical example in which we fitted the simple

linear model y, = 6.0 + 3.1(x; — 2.0), we can examine the variance be-

tween the model results and the observed data. We can compute y; — y-

(where y; is an observation and y, is the corresponding estimated value as

predicted from x;), which is called the residual and shows the unexplained

variation. It can be easily noticed in Table 3:2 that the sum of the residu-

TABLE 3:2. Residuals of hypothetical example.

XG yi De Di De

1.0 3.0 2.0 +0.1

2.0 5.8 6.0 —0.2

3.0 2 g.1 +0.1

> 6.0 | 18.0 18.0 0.0

als in our hypothetical example is zero— only errors due to rounding will

change this situation. In any simple linear model where there is an a

parameter which is not zero, the sum of the residuals will be zero except

for errors due to rounding.

We know that an error exists every time we estimate or predict yy. which

is either greater or less than zero by the amount of the standard error or —

root mean square. ‘The commonly used test of the size of this error for

simple regression is the standard error of estimate (SEEg), which is found

by computing

SEE, = Vz (ii — De)*.
i=l

This is similar in many aspects to the root mean square except that it is.

the standard error or deviation of yy; values around the estimating equation
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Fic. 3:8. Theoretical types of perfect correlation.

Yo = a+ bx; or ye = a+b(x;— %). The variance V can be computed by

dividing SEE by j and multiplying by 100.00.

The most important test of simple linear models is the simple correlation

coefficient (r). The interval in which 7 lies is always —1.00 <7 < + 1.00. In

the theoretical case where r is-+ 1.00, we have a perfect positive correlation;

similarly, when r = — 1.00, we have a perfect negative correlation. It is also

theoretically possible to have a perfectly uncorrelated r = 0.00. The mappings

of these theoretical possibilities are shown in Fig. 3:8.

The real world does not yield any of the three theoretical possibilities

of perfect correlation or uncorrelation. We desire to test simple linear

models by computing r and accepting those models where 7 is close to

the extremes of the interval — values for r near zero would indicate that a

simple linear model is not acceptable. The decision on how close r should

be to +1.00 or —1.00 is a matter of intuitive analysis and judgment, as



assisted by several tests. In many cases, however, intuitive judgment and

analysis about given characteristics of a problem situation may be as im-

portant as quantitative tests.

One of the common tests of r is a determination of what the magnitude

of r should be, for a given degree of freedom df, to indicate the probability

that correlation is not due to chance. This is the so-called null hypothesis

test, which requires that r have at least a magnitude r, to prove that it is

not due to chance. This is a test of significance which can be readily used

by reference to a standard r or R table (see Appendix B). Like the chi-

square test, significance levels of 0.01 and 0.05 are used commonly.

The value for 7 is closely associated with its square (7), which is called

the coefficient of determination and is the ratio of explained variation to

total variation. The coefficient of determination is the percentage of varia-

tion of y about its mean (7) that can be accounted for by the simple

linear model. The remaining variation is accounted for by the residuals

and hence is associated with peculiarities of the real-world problem. For

example, if r? = 0.78, then we can say that 78 percent of the variation is

accounted for by the simple linear model and 22 percent cannot be ac-

counted for by the model. The interval for 7” is, of course, — 1.00 to + 1.00,

so that r and 7? tests should be complementary and expository. The value

for r? is computed in the following manner:

(x L(x — Us - |}

Eee] Eo-o)
The correlation coefficient (r) is found by taking the square root of 71’.

Another approach sometimes favored when not using a digital computer

is the raw data formula:

(na) [Padt==] j==]

~ n nn \2 n mn \2 1

wEelEx) [vede-(Z>y |i=l i=l i=l i=l

In this case the coefficient of determination (7?) is found by squaring r.

At this point the urban analyst must decide whether he is satisfied with

the simple linear model under examination. An insight can be gained by

using the intuitive logic test, whereby the analyst examines the size of a

and the sign of the slope of b. If a is unusually large in comparison to the

mean of the dependent variable 7, an intuitive basis for rejection may
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exist. Accordingly, if the sign of b, which indicates the direction of slope

as well as the sign of the correlation coefficient, does not seem intuitively

logical, a basis for rejection may exist. For example, if we are predicting

consumer spending by use of a family income variable, and if the model

states that spending increases inversely with income, we would have sev-

eral questions to pose, since this seems intuitively illogical.

A test of the efficiency of a simple linear model sometimes used is called

the index of predictive efficiency (IPE). This test is a measure of whether

the model predicts in the most efficacious manner:

IPE = 100.00 (1 — K),

where

KR=evVi-?.

This tends to be a somewhat severe test in urban analysis because of the

imperfection of our knowledge about real-world problems. For example,

in order to say that the IPE shows an efficiency of more than 50 percent,

we must have a correlation coefficient of 0.87 (which is quite high in many

cases of urban problems).

There are many other tests of the reliability of simple linear models, all

with varying degrees of relevance and necessity. For urban analysis the

more proper direction to pursue in testing simple linear models — when

coefficients of correlation and determination, standard error of estimate

and variance, and intuitive logic tests are not convincing to an analyst —

is to formulate a confidence level. Confidence levels can be computed for

the fit of the model — that is, the parameters a and b — and the estima-

tion and prediction values. Confidence levels have the effect of citing a

level, such as 95 percent, whereby an urban analyst could conclude that

“a model is fitted or predicts with 95 percent confidence.” This is achieved

by determining the range in which the hypothetical or true values of a, b,

and ye lie. This range is called a confidence bounds and is computed as

follows: |

f | 2 2

ora a—taf2 < trea satin,
n n

for Db | 2 2
bg [OF een <p 4s [—*

E 8) EG — 2)
= i=]

for j¢
[a + b(z; — x) — p| < truey, < la+ b(t; — %) + |,

where
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Ro Halon boo)
t = t-table value for confidence level at given percent and n — 2,

(%; — x)?
7

2d, (xi — #)?
*

aes

p=tXs[r+—+

The ¢-table is a standard table, included as Appendix C, which is a varia-

tion of the normal distribution, that specifies t-values for various confidence

levels. In urban analysis confidence levels are usually specified from 75

percent to 95 percent, depending on the problem and the data.

Let us assume that we have computed the above confidence bounds at

the 95 percent confidence level and find that for

Ve = 300 + 20(x; — 60),

where

n = 62,

5” = 6,200,

that

280 < true a < 320,

18 < true b < 2,

and for x; = 160 and y, = 2,300,

1,985 < true ». < 2,616.

Thus, since our values for a, b, and y, all fall within the confidence bounds

computed, we can conclude that this model is fitted and predicts with 95

percent confidence level.

CompLex LINEAR MopDELS

The real world is far more complex than simple linear models would

indicate prima facie. It often occurs that more than one independent vari-

able is associated with a dependent variable. When more than two variables

exist in a linear model, we call it a complex linear model or an example of

multivariate analysis.

An interesting thing happens when one variable is associated with two

others for estimation and prediction: a straight line is no longer adequate,

and a plane must be fitted which best encompasses the vectors. Assuming BSS ec Elo a en cc rennet = ANOS
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yea + bi( x1 — 1 ) + be (x2 —_— Xe )

~~. OR REGRESSION PLANE

CONFIDENCE

BOUNDS

Fic. 3:9. Complex linear mapping.

that y is predicted by x, and x2, this can be seen in Fig. 3:9. The equation

for a plane is fitted by using

Ye = at di(xr — #1) + do(x2 — Xe).

Complex linear models can include more than two associated or inde-

pendent variables. In fact, they can include x, associated variables, so that

Yo = a + bi (x1 — x1) + bo(xe — Xe) +ole. Ht bi (xk _ Xp).

It is not possible to map such an equation in two dimensions, but these

models can be mathematically formulated (they are still linear because

none of the variables are raised to a power other than one or zero). Asa

practical matter, when the number of associated x; variables becomes

large, the cost and added difficulties (due to error compounding and data

collection) often outweigh any analytical benefits, and it is better to delete

unneeded and minor variables. As a heuristic (a kind of rule of thumb

in mathematics), we seek to develop models that use no more than k =

5 associated variables and to avoid an excessive number of x, variables.

This rule of thumb holds that only the key variables which contribute the

most to correlation are essential.
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COMPLEX REGRESSION COMPUTATIONS

The concepts and previously stated assumptions of linearity, confidence

bounds, and normally distributed error for regression and correlation are

conceptually similar for both simple and complex linear models, although

the form changes. The plane of best fit (when more than two associated

variables are used, it is a hyperplane) is computed though the algorithm

of least squares, except that a matrix notation is more efficient. The

algorithm seeks
nr

Minimize >) (j; — jc)”
tal

or

Minimize > [j: — a — Xo by (% — %) |]? = Min ¥ (2).
wel k=] i=1

For a two-independent variable model this is

Minimize 3° [p; — a — b: (a1 — &) — (we — &)P.
t=]

The minimization of this two—independent variable model is accomplished

by
és da la —_ |
do doe be £2

and

Do= ie “|
Ci C22

where

TM%

dy = x (xu — %1)?,
Um

7

doy = dy, = YD, (x1; — £1) (xa; — %2),
.

=

doo = x (xe; — %2)°,

>= 2 (yi — J) (xu — %),

g2 = 2, (9s — 9) (mai — 2).

This minimization is accomplished through a classical calculus method,
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and the matrix equation is solved for b: and be, given that a = 9.” Within

the matrix equation the cj; matrix comes from the inverse of the di;

matrix, and the g; vector comes from known values for x and y, so that

| _ je | ie al
bs §2 C21 C22

Using a digital computer, this matrix equation is solved speedily and effi-

ciently. When working manually, it is sometimes easier to use the raw data

formula: for example, solve three normal equations for a, di, and b, which

minimize the deviations in the same way as above, except use the form

Ve = at bixr + doxe:

> i = an+ by 2 Hi + de 2, ais
t==1

n nr n n

D vixXu = a 2 xig + dy 2 (x2) + body (x1sXe3),
j=l i= = i=t

2 Dikei = a Pz Xai + Oy 2. (x1ixe7) + de 2 (x2).
i= t=

Regardless of whether the matrix equation or normal equation algorithms

are used, the same approach is used to calculate b; for any x;. In the ma-

trix approach it can be seen that additional d’s, b’s, and g’s are necessary

so that the number of rows is the same as the number of «x’s. In the normal

equation approach an additional equation must be added for every x

added to the model. It is obvious that the volume of computations required

to solve for a and b; in complex lmear models makes the use of available

library programs for such purposes on digital computers a most enticing

approach.

TESTING COMPLEX LINEAR MODELS

Tests of complex linear models are similar to the tests of simple linear

models. Residuals are computed in the same manner and should total

zero or very near zero. The SEE, (standard error of estimate for complex

models) is similar, although it must be corrected for additional loss in

degrees of freedom. This is accomplished by solving

* Minimization is covered in Chapter 6. For a brief treatment, see C. O. Oakley,
The Calculus (New York: Barnes and Noble, 1966), Chapter X.



Linear Models : 63

SEE, = -\asi = . (yi — a— bixy “wo bnxn)?,
—-i~

noting that k is the number of x variables.

The most important test of complex linear models is the complex cor-

relation coefficient, which is symbolized by R. The complex correlation

coefficient is similar to the simple correlation coefficient, but additional

variables contribute to the association. To further complicate matters,

sometimes the independent or associated variables (x) are correlated with

each other. For example, using income and education to predict miles of

commuting is deceptive because income and education may be more cor-

related to each other than collectively or singly correlated to miles of com-

muting. The heuristic to be followed is that a complex linear model should

not have a correlation between independent variables, called intercorrela-

tion (or sometimes muliicollinearity), that is higher than (or even close

to) the total correlation R.

The total correlation is computed by

by y piles — a) | + by > plas — ) | tet bl De wiles — a) |
R= 7

a (ys — 5)?

The total correlation (R) is the result of the partial correlation coeffi-

cients between the specified variables as influenced (or controlled for

influence) by the remaining variables. For our purposes we seek basically

to insure that the simple coefficient of correlation (r) between the inde-

pendent variables (x;) is not greater for any pair than for the total (R).

In the event that a pair of independent variables is highly intercorrelated,

this may indicate a poor model because the x’s may be more related to

each other than to y. Model revision may be needed, or often a com-

binatorial variable representing the common areas should be developed

(through such a method as factor analysis). Such a situation might also

indicate that the dependent variable has been selected inappropriately, and

alternative models should be sought.

Since the partial correlation coefficients each contribute to the complex

correlation coefficient and its square, the complex coefficient of deter-

mination, independent variables can be selected for inclusion or deletion

by the contribution that a specific independent variable makes to the

equation-——a process such as this is called stepwise regression. In most

cases the independent variable with the highest partial correlation to the
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dependent variable will be added. The analyst determines at what point

this is to be halted by determining how much contribution is being made

to R? by adding more independent variables. There is some point at which

the analyst is satisfied with the model or at least believes that no additional

variables could further improve the model.

The tests for intuitive logic and related tests, such as the JPE, are the

same for simple and complex linear models. Since complex linear models

are sometimes deceptive, the intuitive logic tests are important. ‘The urban

analyst should examine complex linear models for logical signs of inde-

pendent variables and correlation. Sometimes the addition of an indepen-

dent variable has the effect of destroying the logical association of another

independent variable — such a situation merits additional testing. The size

of the a and b parameters also merits intuitive logic tests, since they may

show peculiarities not readily detected through mathematical tests. A test

that will assist the analyst in examining b parameters is to divide b; by its

standard deviation or rms;. As a heuristic rule, a b parameter should be

greater than its rms — this means that the absolute value of b;/rms; should

be at least one. The higher the quotient and remainder, the better.

Having performed the R (and standard R-table), R*®, IPE, SEE-, inter-

correlation, intuitive logic, and b;/rms; tests, the urban analyst then has

the option of whether to perform the confidence-level tests. Confidence

bounds for a 6 parameter are computed by

by —t-5n-Wea < true bi < de tt on Won,
where

TMm

D (ys — 9)? — Se] bo Balen — He)
kal

n—-k—tI
S =

Confidence in a predicted j, is computed from the bounds for a given

predictor %;, where x1 = #1, x2 = %, etc., by

j-~dStruep<jptd,

where

I k k—1 k

d= t-s-aft > (45 — A)ou + 22, x (i — 2) (8 — Ae),
tes] fmt}

Linear Mope.t APPLICATIONS

Examples of linear models applied to urban systems are far too numerous
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to adequately describe here. At best, we can present a few examples which

are meant to be illustrative rather than exhaustive. To a certain degree

the application of linear models to urban analysis is limited only by the

imagination of the analyst and the proclivity for the real world to be de-

scribed in linear terms.

WISCONSIN MIGRATION MODEL

Urban analysts in Wisconsin were concerned with the development of a

model for estimating and predicting the way that families changed their

residence both within the state and from without the state (on the part

of new or returning residents). The analysts sought to use such a model

for describing mobility among urban systems within the state. After sev-

eral experiments a linear model using U.S. Census Bureau data was

developed.

The key variables used were

PMOV = percentage of population of a county that changed residences

within the last ten years;

UNEM = annual unemployment rate (percentage of total employed);

EMAN = average annual employment in manufacturing jobs (thou-

sands); | :

EWCL = average annual employment in white-collar jobs (thousands).

The following model was developed. The first computation was the

correlation matrix, as shown in Table 3:3. Note the so-called “mirror-

image” effect in Table 3:3, in that the lower portion of the matrix is the

same as the transpose of the upper portion.

TABLE 3:3. Correlation matrix for Wisconsin model.

“| PMov | UNEM | EMAN | EWCL

PMOV 1.0000 |—0.3326 0.2377 0.5933

UNEM | —0.3326 1.0000 | —0.3086 0.0416

EMAN 0.2377 |—0.3086 1.0000 0.4166

EWCL 0.5933 0.0416 0.4166 1.0000

The following model was computed next:

PMOV= 104.5—0.7201UNEM —0.0593EMAN-+0.3926EWCL + 0.7285.

The last term of the right-hand side is the SEE,, sometimes shown in this
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manner to indicate that a small error is known to exist for the complex

linear model. Since there were 71 counties in Wisconsin and, hence, 71

observations, correcting for four variables meant that there were 67 df for

the model. The value for R was 0.7085 and R? was o. 5020. All tests dis-

cussed above were used.

1. R Test. The standard R-table showed that an R of at least 0.4010

was needed to be 99 percent significant. The computed FR was well above

this value.

2. R? Test. The R? indicated that 50.20 percent of the variation of

PMOV about its mean could be accounted for in the model, while 49.80

percent could not be explained by the model. While there was much un-

explained variation, using intuitive judgment, this was acceptable.

3. IPE Test. The IPE test indicated a 29.48 percent efficiency, which

was somewhat disappointing.

4. Intercorrelation Test. The analysis of the correlation matrix showed

that EWCL and PMOY had the highest association, yet neither UNEM

or EMAN had a correlation with EWCL or with each other that was

higher than R. This showed that no signs of intercorrelation were found.

5. Intuitive Logic Test. It seemed logical that families would change

their residences more with increased EWC'L and less with UNEM and

EMAN, so the intuitive logic test was satisfactory.

6. bi/rms;, Test. All quotients of b;/rms; were greater than one, so this

test was satisfactory.

7. Confidence Levels. Computations showed that

0.6970 < true db; < 0.7310,

0.0490 < true J. < 0.0611,

0.3703 < true bs © 0.5113.

Since all 5; were within the confidence bounds, the linear model was satis-

factory at the 95 percent level.

The complex linear model for PMOV in Wisconsin counties was satis-

factory within the limitations set by available data and unexplained varia-

tion. While R, R?, and IPE would have been more satisfactory if higher,

the model seemed nonetheless adequate for the purposes intended. The

model was satisfactory in terms of the tests used and of intuitive judgment,

but it was not very efficient. Later examination of the partial correlation

coefficients of the independent variables indicated that EMAN did not

contribute very much to PMOV when the effects of EWCL and UNEM

were held constant. The model could have been just as satisfactory, per-

haps, without the additional complexity of the added variable EMAN.
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The use of the stepwise regression algorithm is recommended for such

situations. The stepwise regression algorithm seeks to develop the most

efficient and economic model, but the level of satisfaction is left largely

to the judgment of the analyst.

SEWRPC COMMUTING MODEL

We can review a linear model for the Milwaukee, Wisconsin, urban re-

gion in order to examine the efficiency and economy made possible by

stepwise regression. The model mentioned was an attempt to estimate

and predict the length in miles of the trip from home to work made by

commuters in the Milwaukee urban region. Input data were observations

of 14,554 commuters collected in a survey undertaken by the Southeast

Wisconsin Regional Planning Commission. The dependent variable was

home-work trip distance (HW) ; independent variables were the distance

from the center of the city to the work place (CW), the distance from

the center of the city to the home location (CH), and the family income

of the commuter (J). The independent variables were determined to be

the key variables, or those with the highest simple coefficient of correlation

with HW, from a prerequisite analysis of 15 selected variables believed to

be associated with HW. Using the Stepwise Regression Program of the

BIOMED Library on a Control Data Corporation 3600 Computer, the

very large input data file was processed step by step into a complex linear

model. Independent variables were added to the linear model by the

order in which they increased the value of R?. The correlation matrix is

shown as Table 3: 4.

TABLE 3:4. Correlation matrix for SEWRPC model.

HW CW CH I

Hw 1.0000 0.9521 0.6645 0.6134
CW 0.9521 I. 0000 0.0996 0.3892

CH 0.6645 0.0996 1.0000 0.4332

I 0.6134 0.3892 0.4332 1.0000

Table 3:5 is a summary of the effect of adding independent variables.

The tests for linear models were performed at each step, and each model

at every step was held to be satisfactory. As can be seen, the values of R

and R? increased slightly with the addition of CH and J, and the value of
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TABLE 3:5. Stepwise regression summary for SEWRPC model.

Variable 9
b b R R SEE,Step Entered 4 pt ° °

I CW {1.5200 | 0.9496 — — 0.9522 | 0.9067 | 0. 4632

Q CH |0.6315 | 0.9389 | 0.3841 — 0.9537 | 0.9089 | 0. 4601

I 0.4917 | 0.8978 | 0.3965 | 0.0002 | 0.9540 | 0.9099 | 0.4573

SEE, decreased slightly with the addition of CH and J. It was clear that

all three independent variables were associated with HW, and each made

the linear model slightly more reliable. The JPE showed that the simple

linear model at step 1 was 68.82 percent efficient, and the JPE increased

to 70.20 percent at step 2 and 70.44 percent at step 3. This means that

the addition of CH to the simple linear model of HW associated with CW

increased the efficiency of the model by only 1.38 percent, and the addition

of I increased the efficiency of the complex linear model at step 2 by only

0.24 percent. In the judgment of the urban analysts the model was satis-

factory at step 1, and the benefits of steps 2 and 3 were not sufficient in

light of the increases possible in R, R?, and IPE and the decrease in SEE,.

The most efficient and economic linear model in this case was the simple

hnear model of step 1:

HW = 1.5200 + 0.9496CW + 0.4632.

LocicaL AND MATHEMATICAL CRITIQUE

We started this chapter by stating that linear models are not flawless even

though they are most popular, efficient, and simple. Linear models are

among the best scientific methods applicable to urban analysis, but the

urban analyst should be aware of their weaknesses and pitfalls.

We have stressed that correlation is a pseudofunction that does not

guarantee cause-and-effect relationships. A common pitfall in the applica-

tion of linear models to urban analysis is to disregard this basic logical

foundation. This can have serious implications if such a model is used

for decision-making. The urban analyst should keep in mind that a linear
model is for convenience in estimation and prediction, and it is not neces-

sarily a true picture of functional relationships in urban systems.

The tendency to fall into a cause-and-effect posture with linear models
can lead an urban analyst to a number of logical and mathematical pitfalls.
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Variation in either the dependent or the independent variable may be

caused by variation in the other. This is true in intercorrelation as well

as in some examples with no intercorrelation, and the effect is that the

urban analyst often cannot be certain about which of the variables is caus-

ing the others to change. In other cases variation in two or more variables

in a linear model may be caused by a common force or forces which are

not even considered in the model. For example, the latter case is often

found when using linear models to estimate and predict nonwhite housing

characteristics by such associated variables as income, education, etc. when

such forces as racial discrimination and prejudice are causing variation by

intervention.

The tests for linear models are effective and generally reliable, but there

is always a possibility, however remote, that the linear model is deceptive.

It is possible that the variation noted for variables in a linear model is due

in large part to chance, even though significance tests show that the proba-

bility of a chance association is very small. It is largely a linear assumption

that leads an analyst to use linear models. There is always the possibility

that a nonlinear relationship better describes the real-world problem.

Finally, there is also the problem of the assumption of normally distributed

vectors in a scattergram about the line of best fit, and the same applies

for planes of best fit. We must use a ¢ distribution to solve and test linear

models (because it works well), yet we still base our mathematical argu-

ment on a normal distribution that is not affected by degrees of freedom

or nonnormal relationships. This is a mathematical problem which still

merits attention.

These are the major criticisms that are often found when linear models

are used. The pitfalls are to be noted and avoided by the urban analyst

whenever possible. We still maintain, however, that linear models offer an

interesting scientific method for many types of urban analysis. Their sim-

plicity and comprehensibility are found in few other methods.

There is a significant amount of scientific and mathematical work being

directed toward many of the criticisms of linear models. In the future

many of these criticisms may be resolved. Presently, one method for re-

ducing the possibility of pitfalls in the use of linear methods is covariance

analysis. Covariance analysis, in its simplest terms, is a method which seeks

to explain variance in associated variables by testing explanations of data

groups through the introduction of factors often determined by intuitive

analysis and judgment. For example, examining the four mappings in

Fig. 3:10, we notice that the two-variable scattergrams all have the ap-

pearance of linear associations. In mapping A the line of best fit appears
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to be the mean of the dependent variable; in mapping B the line of best

fit appears to be a simple linear regression; in mapping C it appears that

lines representing three distinct means of subsets within the range of y are

best; and in the last mapping, D, it appears that the values for y are best

found by taking simple regression lines for three distinct subsets of the set

of values for x. Thus linear relationships may exist in several forms, and

there are many combinations of the cases mentioned above.

Covariance analysis does not specifically show what causes variation in

a set of observations. This often requires intuitive judgment, logic, and a

little luck. Guidelines for an intuitive search of data groupings, such as

those shown in Fig. 3:10, can be effective. Geographical areas, such as the

South, North, West, and Midwest, may cause data groupings. Data group-

ings may be caused by race, income, sex, age, partisan preferences, ethnic

origin, education, personality traits and characteristics, and all those other

difficult-to-quantify aspects of humans and their associations. Covariance

analysis is helpful to the urban analyst as a scientific method to improve

linear models and otherwise explain changes in associations between vari-

ables. The real challenge is for the urban analyst to explain the causes and

effects not explained by linear models or covariance analysis and to use

such explanations for the solution of problems in urban systems.

RECOMMENDED EXERCISES

1. Develop a simple linear model for any given city that estimates and

predicts personal income by an association with education, say, measured

by grades completed. Also attempt to develop supplementary simple linear

models which predict and estimate personal income by associations with

such variables as age, experience (years in profession or occupation), and

mobility (years lived in city). Which model seems most satisfactory? Are

there signs of intercorrelation between any of the independent variables?

If so, how do you explain this?

2. Analyze the following complex linear model. Urban analysts sought

to test the hypothesis that urbanization within a state, that is, the per-

centage of people living in urban areas, was an association that increased

with increasing personal income and white-collar employment. The ana-

lysts selected a sample of 16 states throughout the United States.
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Yo = percentage of urbanization in state, j = 0.3875,

x, = percentage of white-collar workers in state, 4 = 0.1121,

xe = percentage of personal incomes above $10,000 in state, 2 = 0.6049.

Correlation Matrix

J XY Bo)

y | 1.0000 | 0.8257 | 0.7805

x1 1.0000 | 0.8266

Xo 1.0000

R=0.8446

R? = 0.7135

SEE, = 0.1031

Yo = —O.1LIO + 1.1283x1 + 2.4858x2

(rmsi) (0.9645) (1.1428)

3. Analyze the following complex linear model. Urban analysts sought

to test the hypothesis that the area of the central business district (CBD)

increased with the population and traffic of an urban system. The analysts

selected a sample of 13 urban systems in the United States.

De = area of CBD in acres, 7 = 566,

x1 = population of urban area around CBD, #1 = 1,510,860,

x2 = person trips per day to CBD, #. = 358,711.

Correlation Matrix

Dy x} x2

y | 1.0000 | 0.6430 | 0.8631

x1 1.0000 | 0.8913

x2 I .0000

R= 0.9267

R? = 0.8571

SHE, = 101.7759

Ve = 310 — 0.00007%1 + 0.001 x2

(rms;)

FuRTHER READING

(0.00037) (0.00018)

IBM Technical Publications Department. Concepts and Applications of Regres-

sion Analysis. White Plains, N.Y.: International Business Machines Corp., 1966.

A succinct and direct presentation of the major concepts of linear regression
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and suggested applications of these concepts. he report also examines the digital

computer programs in the IBM library which compute linear model parameters

and tests. ,

Draper, Norman, and Harry Smith. Apphed Regression Analysts. New York:

Wiley, 1966.

A detailed treatment of the concepts necessary for the application of regression

to various problems. The authors go into much detail on the various aspects of

regression and provide a most complete treatment. The mathematical concepts

assume some previous experience in related branches of mathematics.



The concepts of correlation and regression, as well as least-squares fitting,

are applicable to a large extent to urban problem situations which do not

have linear characteristics. Nonlinear models can be developed from many

of the same concepts for linear models through use of the methods of

curve-fitting, and many of the tests of linear models can be used for non-

linear models. There are a number of rules and tests that govern the use

of nonlinear models in urban analysis, but there is such a large number

of nonlinear models available that the urban analyst must use intuitive

judgment and satisfaction, more so than with other types of models.

There are so many nonlinear models that this chapter can do no more

than present the ones most commonly used in urban analysis. We will

stress two-variable nonlinear models for simplicity and understanding. With

a good foundation in such nonlinear models, the interested urban analyst

can seek out other nonlinear models for possible application. Two-variable

nonlinear models are especially well suited for the analysis of time-series

data to uncover trends. Since trends do not always follow the neat linear-

ity of the models in the preceding chapter, nonlinear models become inter-

esting for both estimating and predicting values that are subject to variation

of different orders at different times. Nonlinear models are by no means

limited to time-series data, and they are often used to estimate and predict

the values of dependent variables by an association with one or more inde-

pendent variables.

There are two types of nonlinear models in terms of their herent

mathematical basis: (1) inherently linear and (2) inherently nonlinear.

The distinction is that inherently linear models are nonlinear but can be

transformed into linear models through a variety of methods. Inherently

nonlinear models cannot be transformed into linear models and hence are

more complicated and difficult to utilize.

INHERENTLY LINEAR MopDELS

Inherently linear models, which are formed by the transformation of non-

linear models, are interesting to urban analysts. For simplicity we shall

CHAPTER

Nonlinear Models
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define inherently linear models as transformed nonlinear models which

do not have asymptotes (lower or upper limits) to the values that the

dependent variable can take.

MULTIPLICATIVE MODELS

Multiplicative models are found in economic analysis of urban problems,

especially with regard to such economic variables as productivity, consump-

tion, and expenditures. The multiplicative model takes the general form

Yo = axyxs’.

The multiplicative model is inherently linear because it can be transformed

into a complex linear model by expressing the equation in logarithms:

log y. = log a + d(log x1) + c(log xs).

If we let the log variables be temporarily replaced by substitute variables,

we see that this is a complex linear model.

Let

ke = log Key
v1 = log x,

Uo => log X25

d = log a;

then

Ze = A+ bu, + coro.

This mode] is developed in the same manner as the complex linear model,

and it can be transformed back to the original multiplicative model by

noting the substituted variables and replacing the original variables.

POWER FUNCTION MODELS

The power function model is the simplest form of the multiplicative

model and takes the general form

The mapping of this model can take several shapes depending upon the b

parameter value. Several examples are shown in Fig. 4:1. Taking the

logarithms of both sides of the power function equation, we find that we

have a simple linear function:
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0

Fic. 4:1. Possible mappings of power function model.

log y, = log a+ B(log x).

We can again use substitute variables for the log variables:

ke = log yey
c = loga,

w = log x.

This allows us to compute the simple linear model in the familiar manner

for

Ze = ot bw.

We can either leave the model in its transformed linear form or transform

back to the original variables.

The power function model is found frequently in urban analyses for

transportation in its negative form because it describes the way that traffic

variables decay with distance: these models are sometimes called decay

models. An illustrative example is Ralph W. Pfouts’s model for the way
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that distance is associated with the weight of goods shipped in the Pied-

mont Crescent Region of the Southeast, as shown in Fig. 4:2.”

EXPONENTIAL MODELS

The exponential model is quite similar to the multiplicative and power

function models, except that the independent variable becomes a power:

Ye = ab*,

Exponential models are used in urban analysis for time series and increas-

ing growth factor variables. Exponential models have been used a great

deal in transportation studies because traffic patterns often follow the map-

pings made possible by exponential models (see Fig. 4:3). The logarithms

of both sides of the exponential model can be taken, so that we have a

simple linear model:

7 Ralph W. Pfouts, “Patterns of Economic Interaction in the Crescent,” in F.
Stuart Chapin and Shirley F. Weiss, eds., Urban Growth Dynamics in a Regional

Cluster of Cities (New York: Wiley, 1966), pp. 31-58.
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O

Fic. 4:3. Exponential model curves.

log ». = log a+ x(log 5),

and letting

ke = log ye,
e = log a,

d= log 3,

we can solve

Ze = et xd.

We can solve for z; in the usual manner and can either use the model in

its logarithmic form or transform back to the original variables, which in

this case would be

= antilog ¢,

antilog d,

ye = antilog Z.

& |

oO II
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Fic. 4:4. Exponential model of average commuting distance

over years.

As a point of interest, it can be noted that we need not transform log y,

to z, and can solve for it in the same simple linear model fashion: this is

called a semilog transformation.

If we plot the average distance that a person commutes over a period of

years in the largest metropolitan areas in the United States, we find that

an exponential model can be fitted to the data. This is shown in Fig. 4: 4.?

INHERENTLY NONLINEAR MODELS

Many of the linear and nonlinear models we have and will discuss

belong to the family of polynomials whose general form is

Ye = at be tex*?tdxi +... +ete.

We have already discussed a group of these models, since the first-order

polynomial is a straight line:

*See details in Anthony J. Catanese, “Separation of Home and Work Place in
Urban Structure and Form” (Ann Arbor, Mich.: University Microfilms, 1969),

Appendix B, pp. 77-79.
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Fic. 4:5. Hypothetical second- and third-order polynomial models.

first order y.=a+t bx

second order ye = a+ bx + cx?

third order ye = a+ bx + ex? + dx8

fourth order ye = a + bx + cx’ + dx3 + ext

fifth order ye = a + bx + cx® + dx3 + ex* + fx?

etc. etc.

|

As can be seen, it is practical to express polynomials in this manner, since

the degree or order is always known by observation of the power to which

x is raised in the last term on the right-hand side of the equation.

The first-order polynomial model is a straight line and, of course, has

no bends. The addition of a second-order term has the effect of creating a

bend in the straight line, either positive or negative. The addition of a

third-order term to a second-order polynomial model can result in two

bends, and it is possible to have a mapping that changes direction. The

addition of higher-order terms to third-order polynomial models can have

the effect of adding bends, slope changes, and some rather strange-looking

mappings. For practical purposes we have not seen any significant use of

polynomial models beyond the third order in urban analysis, and we can

limit our discussion to these second- and third-order polynomial models.

As can be seen in Fig. 4:5, the familiar mappings of polynomial models

are parabolas for second-order models and sometimes reverse parabolas for

third-order models. It is obvious that there are an infinite number of map-

pings and curves that can be fitted by polynomial models. The change of

sion from + to — can in itself create an infinite number of mappings.
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Fic. 4:6. Mapping of ye = —1 + 2x — 3x”.

This is why polynomial models are of interest to urban analysts: they are

highly adaptive and flexible and are only slightly more difficult to use

than simple linear models. |

. SECOND-ORDER POLYNOMIAL MODELS

Second-order polynomial models are similar to simple linear models:

whereas a simple linear model indicates an association with a constantly

increasing or decreasing line, a second-order polynomial indicates an asso-

ciation with increasing or decreasing amounts of increase or decrease. To

be more specific, a second-order polynomial model is such that the second

differences — the differences between the first differences of y, — are con-

stant (see Fig. 4:6 and Table 4:1).

Second-order polynomial models are fitted to data observations (which

coe SP aaanrctascescsci Caen oe ee
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TABLE 4:1. First and second differences of

second-order polynomial.

Ve = —1 2x — 3x*

, y First Second

° Difference | Difference

—3 —9-7 — —
—2 —6.2 —3.5 —

—I —3.3 —2.9 —0.6

O —1.0 —2.3 —0.6

I 0.7 —1.7 —0.6

2 1.8 —I1.1 —o.6

8 2.3 —0.5 —o.6

4. 2.2 O.1 —0.6

5 1.5 0.7 —0.6

6 0.2 0.3 —~0.6

Source: Croxton and Crowden.

appear to be parabolic by observation) by the solution of three normal

equations for the parameters a, b, and c:

I. 2y = na+ box + c2x*

II. Sxy = adx + b2x? + c2x3 ©

LIL. 2x?2y = adx? + 2x8 + chx4

When using times series or any other discrete variable, it is advisable to

substitute discrete numbers that allow the sums of the odd powers of x to

become zero; the general rules for treatment of time-series data are shown

in Table 4:2. When the middle of a time series is taken as origin in this

manner, and the odd powers of x sum to zero, then the three normal equa-

tions can be simplified to |

I. Dy = nat ctx

Il. Sxyp = b2x°

TIT. 2x?y = adx® + cZx4

A little manipulation of these equations shows that

nux'y — Dx Ly

nix* — (2x)? ’

Dy — Cox
q =,

n

xy

Lx
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TABLE 4:2. Discrete-variable substitutions for time series «x.

Odd n Even n

x Discrete Substitute x Discrete Substitute

1960 —5 — —

1961 —4, 1961 —5

1962 —3 1962 —4

1963 —~2 1963 —3

1964. —I 1964 —2

1965 O 1965 —I

1966 +1 1966 +1

1967 +2 1967 +2

1968 +3 1968 +3

1969 +4 1969 +4
1970 +5 1970 +5

2x =0 2x =O

These equations can be readily solved by conveniently arranging the data

in tabular form for 3x?, %x*, Sy, Sexy, and yx?y. This computation can

be further simplified by the use of library programs for digital computers

which accomplish the same algorithm with breathtaking efficiency.

Urban analysts made use of the second-order polynomial model (and

TABLE 4:3. Long-run housing demand

data for Atlanta urban

system.

Housing Demand

Year (total population

needing

dwelling units)

1850 13,010

1860 14.427

1870 33,446
1880 49,137
1890 84,655

1900 — 117,363

1910 1775733
1920 232,606

1930 318,587
1940 392 , 886

1950 4735572

1960 556 , 326
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several other nonlinear models) to attempt to estimate and predict housing

demand for the long run in the Atlanta, Georgia, urban system. The data

used are shown in Table 4:3. A second-order polynomial model was fitted

to the data in Table 4:3, and the following equation resulted:

Jo = 1783.41 + 553-15 + 44.452".

The estimates and predictions of this model are shown in Fig. 4:7 along

with the observed data. From observation the model seems to account for

observed data quite well, but it merits further evaluation of error. As would

be suspected, the model shows that the growth rate in housing demand will

continue at an increasing rate into the future.

THIRD-ORDER POLYNOMIAL MODELS

Third-order polynomial models are rarely used in urban analysis, al-

though there have been some examples of its application in a few sophisti-

cated studies of the costs of urban facilities. The reason is that there are

few functions which lend themselves to the double slope of the third-order

polynomial model other than the s-shaped curves of urban problems —

for s-shaped curves, however, better models are available and will be dis-

cussed. For these reasons we will simply discuss the method for fitting

third-order polynomial models and reserve further discussion for later

subjects dealing with optimizing models.

Four normal equations are necessary to solve for parameters a, b, c, and

d for the general form

Yo = at bet cx? + dx’.

These four normal equations are

I. Sy = na + box + cdx + dzx8

II. Dxy = adx + b2x? + cXx? + dzxt

TIT. Dx?y = ax? + b2x8 + clx* + dzx°

TV. 2x3y = adx3 + b2x*t + Xx’ + dzx6

Computations can be simplified by using discrete substitutes for x in time

series in order to have odd powers of x sum to zero:

I. Sy = natcix

II. 2xy = b2x* + dzx*

III. 2x?y = adx? + cZx*

IV. 2x3y = bix* + dzx°
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Fic. 4:7. Second-order polynomial model for housing demand, Atlanta

urban system.

The observant analyst will notice a regular pattern of terms in the normal

equations for solving both second- and third-order polynomial models and

should be able to use these normal equations as guidelines for solving n-

order polynomials if such a case is ever warranted.

ASYMPTOTIC MODELS

There are several nonlinear models that have asymptotes to the values

that the y or dependent variable can take. The most interesting of these

models for urban analysis are the so-called s-shaped models, although the

s-shape is but one of several shapes that the mapping of the model can

assume according to the parameters used.

Gompertz Model

One of the better-known asymptotic models is the Gompertz model,

named for its discoverer, Benjamin Gompertz, a nineteenth-century mathe-

matician. The Gompertz model describes a function in which growth incre-
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y y

0 x O x

Fic. 4:8. Two forms of Gompertz model.

ments of the logarithms decline by a constant percentage change. In urban

analysis the relevant forms are either an s-shaped curve with an upper

asymptote or a curve with a lower asymptote, as shown in Fig. 4:8, which

are the mappings of the general form of the Gompertz model:

Yo = ka”.

The s-shaped curve is the most interesting of these two forms and actually

has two asymptotes, upper and lower, although only the upper asymptote

(k) need be defined for the curve-fitting.

Since the double curve of the Gompertz model requires a double super-

script, it is most convenient to transform the equation to logarithmic form:

log ye = log k + (log a) b*.

Computations for the parameters a, b, and k are more complicated than

other models in this chapter. The observed data must be equally divided

into three parts and various summations made of the forms: 2%, log y, 22 log

y, %3 log y, respectively, letting n stand for the number of y observations in

each one-third summation. The parameters are computed by

hn = 23 log y — Ze log y

Ze log y — Zi log y’

b—1
log a= (Xo log y — Dy log y) (be — 1)?”

I bTM — 1log k= 4, log y — — log «|
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Gompertz models and other s-shaped curves have been used for many

years in urban analysis because they describe an association of growth,

change, and stability. Such a trend is common for economic, demographic,

sociologic, and physical development variables. Late nineteenth-century

German economists used Gompertz models to estimate and predict the

size and spacing of cities in Europe and America. Early twentieth-century

geographers and demographers in America extended the use of the Gom-

pertz model to population, traffic, and physical development.

Using the data from Table 4:3, a Gompertz model was fitted with the

following result:

log y, = 6.1671 + (— 1.4778) 0.8554”,

in which the parameters log k, log a, and b are defined. The mapping of

this model and observed data is shown in Fig. 4:9, and as can been seen,

the differences between the observed and estimated values appear to be

small from visual inspection. The Gompertz estimation and prediction of

housing demand can be interpreted to infer a four-stage development

process: (1) beginning of demand for housing, (2) increasing growth

and higher demands, (3) start of slowdown in rate of increase in demand,

and (4) stabilization of housing demand. This four-stage process offers

intriguing possibilities for many other urban problems and variables.

Logistic Model

The logistic model was developed by Raymond Pearl and Lowell J.

Reed and is often referred to as the Pearl-Reed curve. It was developed

for estimation and prediction of biological systems (albino rats, tadpoles,

fruit flies, yeast cells, etc.) and was later extended to demography, anthro-

pology, and sociology. It is based upon the theory that there is a law of

growth in spatially limited environments such that the amount of growth

of a system which occurs in any time period is proportional to the absolute

size already obtained by the unit of time being considered, as observed, and

the amount of resources needed for further growth in the environment.

The mathematical form of the logistic model is

_ k

Je = 1 + rottbe ?

wherein a, b, and k are parameters to be computed. A very interesting

* Raymond Pearl, Introduction to Medical Biometry and Statistics (Philadelphia:
W. B. Saunders, 1940), pp. 459-465.
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Fic. 4:9. Gompertz model for housing demand, Atlanta urban system.

algorithm that allows for simplistic computation of these parameters is

called the selected-points algorithm. Three points are selected which are

equidistant from each other, that is, yo, 1, yz, such that yp is near the be-

ginning of observations, y, is close to the middle, and y, is near the end.

Obviously, this is a subjective approach. The parameters are then com-

puted by solving |

p= Voy — Fi Oo ty)
yoy2 — Fi

k — Jo
= log ——",a = log yo

I yo (k — yr) |
b= —| log 2 |,

n OS “1 (E — yn)

where n is the number of observations.

The logistic model is quite similar to the Gompertz model except that

the Gompertz model describes a function with a constant ratio of suc-

cessive first differences of y,, while the logistic model describes a function

with a constant ratio of first differences of 1/y¢. This means that a mapping
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Fic. 4:10. Logistic model for housing demand, Atlanta urban system.

of y, first differences would result in a left-skewed distribution for the

Gompertz model and a normal distribution for the logistic model.

Fitted Gompertz models are similar to logistic models except that the

latter will show a faster attainment of stability as the function approaches

the asymptote k. This can be seen in Fig. 4:10, which is a logistic model

fitted to the data from Table 4:3. The resultant model is

_ 640.223
Ve = r+1 C (.3284—-0 22432)"

Trestinc NonLINEAR MopELs

The neophyte urban analyst may be astounded at the results of y,

mapped against observed y values from Table 4:3 in Figs. 4:7, 9, and 10,

which are from the corresponding second-order polynomial, Gompertz, and

logistic models. Upon inspection and, in fact, upon computation of residu-

als of y — y., the errors of estimated y, all appear to be acceptable. It is

primarily in the predicted values of y, that deviations appear among the
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three nonlinear models. Hence up to the year 1960 any of the three would

seem to reasonably explain the housing demand, yet the three models show

quite different predictions of future housing demand. As can be seen in

Fig. 4:11, the second-order polynomial model predicts a relatively high

housing demand, the logistic model predicts a relatively low housing de-

mand, and the Gompertz model predicts a housing demand almost midway

between the other two predictions (see Table 4:4). The urban analyst

would seem to have his pick of predictions, or he could play it safe and

present all three versions, indicating that these are the high, middle, and

low predictions and that one of them should be close to what will actually

happen.

TABLE 4:4. Comparison of nonlinear housing demand predictions, 1970-

2000, Atlanta urban system.

Model Year

1970 1980 1990 2000

Second-Order Polynomial | 670,300 783,400 | 905,300 | 1,036,000

Gompertz 640,900 724,800 | 819,000 876 , 300

Logistic 572,000 597,000 614,000 625,000

Simple Linear 554,600 609 , 900 655,200 720,500

The cold truth of the matter is that there are no hard and fast tests

that will replace the informed judgment and intuition of the urban analyst

for selecting a nonlinear model. The urban analyst should formulate a

hypothesis of the problem under consideration which describes the char-

acteristics of change associated with the variables. The urban analyst can

try to fit nonlinear models to the observed data in order to verify or refute

the hypothesis. Obviously, some urban analysts will be luckier than others

in such matters. |

If our urban analyst is luckless, or if the real world proves too unwieldy

for his informed judgment and intuition, there are a number of heuristics

that can be applied to help in the selection of the appropriate model. A

word of caution, however: it is always wise to examine relatively long time

periods for time-series data— or small geographical areas for spatial

analysis or many people for demographic and behavioral analysis, etc. —

the basic point being that more data often help when the associations be-

tween variables are uncertain.

The heuristics to the selection of an appropriate nonlinear model begin

simply. The urban analyst should plot his observations, or a reasonable
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Fic. 4:11. Comparison of housing demand predictions, Atlanta urban

system.

sample, on arithmetic grid paper. Excellent results can be obtained by such

automated methods as digital computer library programs for cross tabula-

tion, computer mapping for scattergrams, auxiliary machine mapping of

data from punch cards, etc. The point is that a visual inspection of the

observed data can be made, regardless of the method used for mapping,

and, hopefully, a recognizable model will appear to the urban analyst. If the

arithmetic grid mapping shows data clusters that appear to be always in-

creasing or decreasing, the observations can be mapped on semilogarithmic

grid paper to determine if linear transformations may be possible.

The urban analyst may still not be satisfied with the above tests of his

judgment and intuition. In this case a hand-drawn curve should be mapped

on the arithmetic or semilogarithmic mappings of the observed data. The

curve should be smoothed as much as possible. There are several character-

istics by which this smoothed curve can be tested, and these are sum-

marized in Table 4:5. This should assist the urban analyst in selecting an

appropriate linear or nonlinear model, and it should create some efficien-

cles, | |

The heuristic characteristics were compared with the nonlinear models

fitted to the data from Table 4:3 in a post facto testing. The observed
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TABLE 4:5. Heuristic characteristics for selecting linear and nonlinear

models.

Models and Characteristics

Test Linear | Exponential | Polynomial | Gompertz Logistic

First Constant | Constant — Skewed Normal

Differences percentage curve distribution

of y, curve

Second — — Constant — —

Differences

of

First — Constant — Constant —

Differences percentage

of Log y.

Second — — Constant — —

Differences 2

of Log y-

First — — — ~ Constant

Differences percentage

of 1/ye

Arithmetic Straight — —_ —_ Exponential

Grid line curve when

Mapping vertical scale
= 1/ye

Semi- — Straight — Exponential —

logarithmic line | curve

Grid

Mapping

data plotted on the semilogarithmic grid looked very much like an ex-

ponential curve (with the appearance of an upper asymptote so that it

could be a modified exponential model), which is the heuristic test for a

Gompertz model. Yet the plotting of the same data on arithmetic grid

paper with a reciprocal vertical scale resembled an exponential curve as

well; thus it may satisfy the heuristic test for a logistic model. At any rate,

these tests seemed to eliminate the second-order polynomial from con-

sideration.

The familiar tests of correlation and regression are applicable to non-

linear models and in our example, from above, are necessary to make a

final selection. The 7, 7°, IPE, and SEE,; (which we subscript to make
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clear that we are using it for nonlinear models) tests are quite similar to

those used for simple and complex linear models.

Correlation coefficients can be computed for nonlinear models by using

their generic foundation. The correlation coefficient is the square root of

the coefficient of determination in which the ratio of the explained varia-

tion to the total variation is taken:

explained variation

total variation

r? = 20 =I)" — 3 .
Z(y — 9)"

The coefficient of correlation and [PE can be computed from 7?. The

SEEn; can be computed by taking the square root of the total variation

minus the explained variation divided by the number of observations:

2 we
=a

3

total variation — explained variationSEE, = V = P

The results of the Gompertz and logistic models were submitted to the

r? and SEE»; tests in order to help determine which was the more satisfac-

tory model. The tests are shown as Table 4:6. As can be seen, both models

Tas_e 4:6. Variation in Gompertz and logistic models of housing demand.

Gompertz Logistic

Source Equation Amount | Percentage} Amount | Percentage
(thousands) (thousands) |

Unexplained | 2(y —»)? 25.09 9.5 41.70 17.9

Explained 2 (ve — 7)? 200.57 90.5 183.96 82.1

Total x(y — 7)” 225.66 100.00 225.66 | 100.00

worked well, but the edge would seem to be in favor of the Gompertz

model with its very satisfactory r? = 0.905. The SEE, were computed as

1,463 for the Gompertz model and 1,925 for the logistic model. While both

are acceptable for prediction, the Gompertz model is slightly better because

it has a slightly smaller amount of error. |

Most testing for nonlinear models assumes that the urban analyst has

already made a sound decision on what type of model to use. There is no

alternative from scientific methods to this often unsatisfactory reliance upon
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judgment. The best that we can do for the present is to make a good guess

about the type of nonlinear model to use, and then we can compute corre-

lation coefficients and error terms to see how well we did.

RECOMMENDED EXERCISES

1. Verbally describe and evaluate each of the following models. In

each of the models y, represents the number of housing units occupied by

black owners in various neighborhoods of a city. All data observations are

from the period 1900 to 1960 with 1930 as the origin year(o) and ten-

year units of time as x values.

9,355
1 10 .4971—-0, 32332)

Neighborhood 2». = (4,531) (1.5711)*

Neighborhood 3 y, = 1,101 + 2.51x

Neighborhood 4 y, = 3,316(53.21)9-5”

Neighborhood 5», = 3,200x—*-8

Neighborhood 6 », = 3,159 + 33.23% + 1.57%

2. From the data shown in the table, plot the observations, pretest for

model type, formulate a fitted model, and test for reliability. Having

formulated a satisfactory model, predict the property tax for 1970, 1980,

1990, and 2000.

Neighborhood 1», I

City of Atlantis: One Hundred Years of Property Taxation

Year Property Tax Revenues

(ten thousands of dollars)

1860 16.3

1870 17.9

1880 1Q.1

1890 29.3

1900 43.8

1Q1O 96.9

1920 150.3

1930 210.1

1940 241.3

1950 274.1

1960 295.9
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3. Critique the various nonlinear models from an “intuitive judgment”

point of view in light of your experience and insights into real-world urban

systems and problems.

FurTHER READING

Wolfe, Henry Dean. Business Forecasting Methods. New York: Holt, Rinehart,

and Winston, 1966.

A very good treatment of linear and nonlinear techniques for estimating and

predicting cycles and trends that are relevant for urban analysis. There is also

considerable detail on the nature of nonlinear models that is interesting to the

reader desiring more information.

Croxton, Frederick E., and Dudley J. Growden. Applied General Statistics. En-

glewood Cliffs, N.J.: Prentice-Hall, 1955.

This is perhaps the most famous textbook dealing with the applications of

statistics to a variety of problems and conditions. It is particularly strong on non-

linear models for the analysis of time series and for applications of correlation

and regression to nonlinear data observations.



Most of the models that have been examined so far are usually found with

deterministic functional relationships. A group of models, that we shall

call probabilistic, are those which are based on probabilistic functional

relationships. These are special models which are always probabilistic and

thus can be distinguished from matrix, linear, or nonlinear models that can

be used sometimes with probabilistic variables.

Deterministic models estimate and predict with conditions of certainty.

The real world of urban systems is often more complex and operates under

conditions of uncertainty; hence probabilistic models are warranted. It is

always comfortable for an urban analyst to use the simplest model, and

since probabilistic models are more complicated than deterministic models,

he may prefer to use the latter. This is a valid practice. Often it is not

astute to use the sumpler model because a probabilistic set of conditions oc-

cur that can be best understood and explained by probabilistic relationships

of variables under uncertainty.

We shall examine the basic laws of probability to establish a minimum

foundation for our examination of discrete and continuous random-variable

probabilistic models. Several models of particular interest for urban analy-

sis shall be discussed, illustrated by a number of examples.

FouUNDATIONS OF PROBABILITY

Probability theory arose obscurely from the gaming tables of seventeenth-

century France. Games of chance were intriguing to early mathematicians

and served as laboratories for formulating and testing laws of probability.

Having established laws of probability theory, mathematicians began to ex-

pound upon applications to physical and social science as well as decision

theory and philosophy.

The basis for probability theory is the performance of an act one or more

times under specified conditions of uncertainty — this is called a stochasttc

process. Each performance of an act under these specified conditions is

called a trial. For each trial there is a unique result which is often called

an outcome. The total of the trials under specified conditions of uncer-

CHAPTER

Probabilistic Models
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tainty is called an experiment. Sometimes an outcome is one or more

events, which are elementary possibilities for each trial.

We can examine these foundations by considering the flipping of two

coins, each coin having a head and tail. We can flip both coins at the same

time, but we have no positive idea of what combination of heads and tails

will result because flipping coins is rather uncertain. There are only four

possible events, however: (1) two heads, (2) two tails, (3) a head for the

first coin and a tail for the second, and (4) a tail for the first coin and a

head for the second. We can then define our outcomes:

O; = at least one head,

O, = at least one tail,

O3 = at least one head and one tail.

Thus we can see that the outcomes can contain more than one event. The

outcomes defined as O,, O2, and Os; include all possibilities of events.

Probability theory is conveniently noted in the symbols of set theory.

For example, we can show that the set (usually enclosed in braces) of out-

comes § for flipping two coins is

S = {(O1), (O2), (Os) }.

Similarly, we can say that the set of events F is

E = {(HH), (TT), (TH), (HT)}.

Some standard notation is worth mentioning since it is used so often.

If we want to express the probability that an element E of a set of events

with 7 possibilities occurs, we write P(E;). This is read “the probability

that E; occurs.” In order to express the probability that two or more events

occur as the result of a trial, say, FE; and E£;, where we assume 27 +, we

write P(E; 1 £;). This is read “the probability that E; and E; occur.” We

write P(E; U E;) to read “‘the probability that EZ; or EZ; or both occur.” If

we desire to write in our shorthand the probability that an event does not

occur, we write P(E;), which is read “‘the probability that £; does not occur.”

There are three laws of probability that are the underlying foundation of

probability theory:

1. 0<P<1. The probability of an event occurring can be no less than

zero or greater than one. Probabilities close to zero are quite unlikely to

occur, and probabilities near one are most likely to occur.

2. P(E; UE;) = P(E;) + P(E;) — P(E; NE;). The probability that E; or

£; occurs is equal to the probability that £; occurs plus the probability that

&; occurs minus the probability that £;and E; occur. In some trials FE; and E;

cannot occur together — this is called a mutually exclusive event —and hence
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P(E; 1 E;) = o. This means that in such cases — that is, only in cases where

events are mutually exclusive— we can reduce the law to P(E; UE;) =

P(E;) + P(£;). To illustrate further, it is obvious that both EF; and £; can-

not occur at the same time by definition, yet either E; or E; must occur;

hence P(E; UE) = 1 = P(E) + P(E).

3. P (E; 0M E}) = P (E; E;)P (E;) = Pp (E;| E;)P (E;). The notation P (E; E;)
is used to denote a conditional probability. It means that E; has a probability

of occurring if we know that £; has occurred. Insome cases we will find that

P(E; 1. £;) = 0 when P(E;) or P(E;) = 0; thus we can compute the proba-

bility directly for P(£;| E;) by definition. In some other cases we may find

that P(E; | E;) = P(E;), which means that E; is independent of E;, and this re-
duces the law to P(E; E,) = P(E;)P(E;). This means that the probability

of &; and £; occurring, when they are independent, is simply the product

of their independent probabilities.

Sometimes it is useful to picture the elements of an outcome set as

Venn diagrams. If we picture two sets, O; and O;, which represent pos-

sible outcomes, then Fig. 5:1 is a Venn diagram which may help make

the laws of probability somewhat easier to visualize. If O; and Oj; are

mutually exclusive, they will never intersect.

We can now return to our example of flipping two coins for illustrative

purposes. Since we know there are only four events, and there is no reason

that they cannot occur with equal probability, we can say that

Event Probabtltty

HH 25

AT £25

TH 125

TT £25

It is always best to break down outcomes into events and then examine

the outcomes O,, O2, and O; as we have defined them above. Intuitively,

we can see that the probability of outcomes is computed from the prob-

ability of events, and we can see that

Outcome Probability

Ox ~75

Oz 75
Oz 50°

The second law of probability can be examined for O, and Oz, that is, the

probability that at least one head or one tail will result, and we see by

substitution that
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Fic. 5:1. Venn diagram.

P(01 U Og) = .75 + .75 — .50 = 1.00.

This is intuitively obvious and serves as an informal proof of the law.

Similarly, we can use the third law of probability to determine if O, and

O, occur, that is, at least one head and at least one tail, and we see by

substitution that

P(011 03) = .66(.75) =

P(E;), when P(E;) > o.

The foundations of probability theory are essential for the use of prob-

abilistic models. There are two types of probabilistic models which are_

determined by the kinds of variables involved. Discrete random-variable

models are those in which outcomes of experiments are usually expressed

as positive integers. Continuous random-variable models are those in which

outcomes of experiments are usually expressed within a range of values

which need not be integers and can be any real numbers.

DiscRETE RANDOM-VARIABLE MODELS

Discrete random-variable models are quite interesting for urban analysis.

One way of looking at these models is to consider an experiment where

the outcomes are positive integer numbers. These outcomes arise one at

a time as trials end, and they can be plotted according to the probabilities

with which they have been observed, as seen in Fig. 5:2. We can generalize
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the discrete random-variable model by considering an €xperiment in which
there are n outcomes which can be given integer values. We know that
the probability of all outcomes must be unity or one, and so we can state

pooUrUeU...Un) =1 =p(0) + p(1) (2) +... + a(n) = ¥ p(x).

This means that if the experiment is performed many times, the prob-
ability that x will reach a certain value approaches p(x). Since there are
m-+ 1 outcomes (n+ 1 is used in order to account for + = 0), the prob-
ability of all being reached is one. The outcome of the experiment can be
thought of as a model where «x is the independent variable and p(x) the
dependent variable. In discrete random-variable models x can take only
positive integer values, and it describes the outcome of an experiment;
hence it is random.

In some cases we will not consider the whole of the n outcomes but will
consider only n; hence r <n. The probability that x takes a value less
than or equal to 7, or p(o. U1 U2 ... Ur), is called the cumulatine probability,
P(r). It is defined by |

P(r) = p(oU1 U2U... Ur) = p(o) + p(t) + +t p(y).

The cumulative probability function is considered the probability that an
outcome of an experiment yields a value less than or equal to r.

A related probability density function which is often used is the com-
plementary cumulative function. It is defined by

P(x) = 1 — P(x —1) = p(x) +p(et+1) +... + p(n).
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The interpretation of the complementary cumulative function is that it

gives the probability that the outcome of an experiment will yield a value

greater than or equal to x.

Probability functions p(x) are often characterized by two values for a

given problem, called the first moment and second moment (there are

also third, fourth, fifth, etc., moments). For practical purposes we can

consider the first moment to be the mean of the observations, which is

called the expected value in probability theory:

n

x= E(x) = 2, “iP (xi) = UL.

The second moment, for practical purposes also, can be considered the

variance of the observations:

Var(x) = > 2 P(x) — (®?.

This is simply the probability theory form of the familiar descriptive

statistics variance, where

a” (x3 — #)2.M:
I—

_ 1
=

Most probability models use moments to approximate model parameters,

called the method of moments.

There are several important discrete random-variable models. Among

the better known are the binomial model, Poisson model, uniform model,

and geometric model. While all are important, we will examine only one

which we feel to be relevant to urban analysis.

POISSON MODEL

The Poisson model is a significant discrete random-variable model be-

cause of its great flexibility and adaptability to complex random events in

the real world. The Poisson model is named for its developer, S. D. Poisson

(1781-1840), the great French mathematician. It is based on the concept

that events which happen one at a time in a random order in time or

space can be estimated and predicted if we consider a long period of time

or many trials and can determine the average value of x for any given

period of time or number of trials.

There are two basic assumptions incorporated in the Poisson model.
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The first is that the probability of m occurrences in time or space (t) is

exactly the same no matter where consideration of an interval of ¢ begins

and ends. ‘The second assumption is that events which occur in any interval

of time or space are independent of events that occur in other intervals of

time or space.

These two basic assumptions (and several others related more to mathe-

matical structure) are the foundations for the Poisson series, the general

form of which constitutes the Poisson model:

p(s Md) = o> APa

where

p(x; Mt) = functional notation of Poisson model,

e = Naperian log base = 2.7182,

\ = constant of proportionality,

¢ = time or space interval,

x! = x factorial; e.g., if x = 4, then

xl=4-3-2-1 =24,

Since the constant of proportionality » times the interval ¢ is the average

occurrence of x, which is u, and since it can be shown that » = Var(x) in

the Poisson model, then the more convenient form is to substitute up = Né:

Tied

p(x mu) =e eh

This is the same as the mathematical model

POs) = ples n),

which gives the probability of r or less occurrences. The cumulative prob-

ability function for the Poisson model is

i x ye

P(x mu) = Dee.
7=0 J°

The complementary cumulative probability function for the Poisson

model is

CO yw

P(x; 2) = » ee.
je J:

Consider a large city where the police find that they receive a mean

rate of five phone calls for aid per minute, but these calls come at random.

The Poisson model can be used to estimate the probability of a number

oc PLES cannon fanfare eR SET,
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of calls over some longer period of time, for example, one hour. The model

would be

x_. 9
p(x35) =e? oT

The scheduling officer is interested in determining the slow periods. He

realizes that the probability of no calls for any instant is infinitely small,

but he attempts to find for an hour the probability of no calls per minute.

Making the computations, he finds that P;(o) = 0.0067 and concludes

that a policeman’s work is unlikely to ever be very slow. Similar computa-

tions can be made for any value for x and any mean rate of calls.

The cumulative probability of the Poisson model is used for questions

about the probability that no more than 7 events (that is, r or less) will

occur in a period ¢. For example, suppose our scheduling officer is curious

about the probability that no more than two calls will occur during the

next two minutes. We have the mean rate proportional to the time interval,

¢ = 2 minutes, so we compute yw = 10, and

2 Pamed
> P(x;10) = P(2;10) = 0.0027,
j=0

-and he may decide that someone should not take a break, since it is doubt-

ful that no more than two calls will come for the next two minutes, For

convenience, an abstract of a table containing values for the cumulative

probability for the Poisson model is included as Appendix D.

The Poisson model has a complementary cumulative probability associ-

ated with it as well. The table for cumulative Poisson probabilities (Appen-

dix D) can also be used for complementary cumulative Poisson probabilities

by reviewing the definitions. An example may clarify this. There is a city

in the South that had, on the average, twelve racial disturbances every

four months. The mayor asked his urban analyst to predict (1) the likeli-

hood of one racial disturbance happening in the next month and (2) the

likelihood of more than one racial disturbance during the next month.

The urban analyst took the second question and developed a complemen-

tary cumulative Poisson model for u = 3 (that is, a mean rate of three

racial disturbances per month) :

oO 1

2 b(x33) =I 2 (x33)

1 — P(133)

= 1— 0.1991

= 0.8009.

i
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PROBABILITY OF %X Go

Fic. 5:3. Poisson model mappings for p = 1, 10, 20.

This meant that the probability of more than one racial disturbance in

the next month was 0.8009, and the city could expect trouble. Using this

same approach, the urban analyst predicted the probability that there

would be exactly one racial disturbance in the following manner:

£(133) = P(133) — P(o;3)
= 0.1991 — 0.0497

= 0.1494.

Thus it seemed most likely that there would be more than just one racial

disturbance.

The Poisson model takes a skewed form when mapped, but the shape

varies, with skewness decreasing with the increase of yu. This can be seen

in Fig. 5:3. The mean rate » determines the characteristics of the Poisson

model. When u is not given, it is necessary to estimate it over a long period

of time because of the random nature of events — this insures a somewhat

more satisfactory estimate of the real world. A heuristic approach to com-

puting a value for y is to select an interval ¢ and then observe a large

number of intervals N of width t. For each integer value of x we let Nz

denote the number of intervals in which the integer value of x has oc-

curred, so that

T = 0(No) + 1(Ni) +2(N2) +... + (V2),
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where

N=NotMi+No+... + Nz;

therefore,

fT
B=

One of the early applications of the Poisson model to political science

is a classic and illustrates many of the above points. W. A. Wallis was

interested in the vacancies that occurred per year in the U.S. Supreme

Court.t Wallis examined Supreme Court vacancies by virtue of death or

resignation over a period of 96 years (or 96 periods of interval, ¢ = 1),

Table 5:1 shows his findings.

TABLE 5:1. Supreme Court vacancies.

Number of Number of

Vacanciesin Year | Years x Occurred

(x) (Nz)

O 59
I 247

2 9
3 I

Over 3 Oo

Total 96

The computation for pw is reached by solving for T for N = 96, which is

T+ o(No) + 1(N1) + 2(N2) + 30s) = 0 + 27+ 2(9) + 3(1) = 48;

therefore,

The Poisson model is calibrated as

oon) = po. 0:5)”p(x; 0.5) = g 0.5 yr

By solving p(x; 0.5) for x = 0, 1, 2, 3, we can compute the number of years

in which similar x vacancies occur by multiplying by N = 96, as shown in

Table 5:2.

The Poisson model of Supreme Court vacancies shows that they are

, W. A. Wallis, “The Poisson Distribution and Supreme Court,” Journal of the
American Statistical Association, 31 (1936), 326-380.
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TABLE 5:2. Poisson model of Supreme Court vacancies for

B= 0.5.

wy: Probable Number of

Probability Years in Which x Residuals
x of x Vacancies .

p(x30.5) Vacancies Occur (N.—N:z)

° 96(x;0.5)

O 0.6065 58.22 0.78

I 0.3033 29.12 —2.12

2 0.0758 7.28 1.72

3 0.0126 1.21 —0.21

Over 3 0.0018 0.17 —O.17

Totals 1.000 96.00 0.00

random variables which are discrete and are estimated satisfactorily by

the method which assumes that a mean rate over a long period of time is

useful for stochastic processes. Note that the probabilities for x as estimated

by p(x;0.5) in Table 5:2 total 1.000. The estimated or probable number

of years expected for x to occur total N = 96, and the residuals for Vz —

N,, (that is, observed minus estimated) total 0.00. By way of interpretation,

Fig. 5:4, shows that the Supreme Court usually has no vacancies in a given

year, but when they occur, it is most likely that there will be only one.

We have examined only the Poisson model for the reasons stated pre-

viously. It should be noted, however, that many discrete random-variable

models are related to each other. A kind of hierarchy exists in that one

model is a limit, and hence a higher form, of another model. For example,

a limit of the geometric model is the binomial model, and a limit of the

binomial model is the Poisson model; another is the normal model. Fur-

thermore, under ideal conditions all probabilities of discrete random vari-

ables can be approximated by the normal distribution. We have not covered

the discrete normal random-variable model here because it is widely known;

but, more important, the ideal conditions needed or assumed for the normal

distribution are not always found in urban systems applications. The Pois-

son model is well suited for discrete random-variable urban analysis in

our experience.

ContTINUoUS RANDOM-VARIABLE MODELS

We have treated discrete random-variable models as random variables

sooron emit ILE ScroeeR RIOTER
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p(%50.5)
0.7 |

PROBABILITY OF x

Fic. 5:4. Mapping of (x;0.5) for Poisson model of Supreme Court

vacancies.

with nonnegative integer values, Certain problems of urban analysis cannot

be described in such terms, and it becomes necessary to consider random

variables that can take any value between zero and o (in some special

cases — 0 to +), which are usually called continuous random or

stochastic variables. Such a change requires some modification of the

probabilistic description of random variables in probabilistic models.

Difficulty arises in the mathematical impossibility of having the proba-
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Fic. 5:5. Continuous random variable x in [a,}].

bilities of all x values sum to unity, since x can be any real number (hence

there are an infinite number of x values, even if we restrict x so that it lies

in an interval a<x< 5). In mathematical terms the probability of any

specific value of x for a continuous random variable is zero. Mathematics

does give us an escape hatch in that we can consider a continuous random

variable x with a specific value lying in an interval a<x <b (see Fig.

5:5). Our analysis of continuous random variables will be concerned with

the probability that a specific x lies in some interval and not that it takes

a specific value. When we say that x has a specific probability m a con-

tinuous random-variable model, we are citing an approximation.

Continuous random-variable models can be developed by a form-giving

function, f(x), called the probability density function. The probability

density function should not be confused with the probability of x. The

probability of x lying in an interval a< x <6 is found by computing the

area under the curve formed by f(x), i.e., the cross-hatched area in Fig.

5:5. The computational method is called integration. The probability

for any specific value of x is the probability that x lies in a very small

interval from x to x + dx, where dx, called the differential of x, is infinites-

imally small (we shall consider its properties in the next chapter). The

total area under f(x) from —~ © to + «must equal unity, as shown in Fig.

5:6.

The probability of « in continuous random-variable models is somewhat

abstract, and practitioners prefer to use the cumulative and complementary

cumulative probabilities. The cumulative probability F(x) is the area under
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Fic. 5:6. Contimuous random-variable probability.
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Fic. 5:7. F(x) and F(x) for continuous random variable.

the curve of f(x) from — © to the specific value of x.’ The complementary

cumulative probability is F(x) = 1 — F(x).8 The cumulative probability

F(x) represents the probability that x will be less than or equal to a spe-

cific value for x; the complementary cumulative probability represents the

* The reader familiar with calculus will note that the derivative of F(x) is f(x),
in our terms.

*The reader familiar with calculus will note that the derivative of F («) is
— f(x), in our terms.
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probability that x will be greater than or equal to a specific value for x,

as can be seen in Fig. 5:7.

For continuous random variables the mean or expected value of x, p, is

defined as the area from — « to-++ ~ of xf(x)dx. The variance of x is de-

fined as the area from — © to+o of (x — #)?f(x)dx. These terms are

by way of definition, and computation is done in the more familiar

manner in practice.

GAMMA MODEL

There are many continuous random-variable models that could be

examined at this juncture. A variety of shapes and characteristics is

available through the numerous continuous random-variable models that

may be necessary and sufficient for specific problem statements. We have

selected the gamma model as representative of these models. The gamma

model has been used in traffic modeling on several occasions and has also

been applied to problems concerning queues, inventories, and investments.

The gamma model has three parameters, a, b, and m, and it is closely

related to several other models. The gamma model can be expressed, in a

foreboding manner, by

pe (x — m)*—l¢— bla—m)

I'(a) ,F(x3a3b3m) =

where

shape-giving parameter,

scaling parameter,

origin parameter,

= base of natural logarithms (2.7182).oe 8S SFA
il

For practical purposes the gamma function I'(a) can be approximated by

(a — 1)! The value for m is usually zero in urban analysis. Urban analysts

usually deal with the general form of the gamma model in which a > 0,

b>0, m=0, x>0, and hence /(x;a;b;m) > o. The parameters a and

are often computed by the method of moments, so that

2
Le

a= —
go?’

b=
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The method of moments works well when the value of a is fairly large

(say, a > 10). Our experience has shown that most urban analysis prob-

lems have rather small a values (say, @ <5) which result in the gamma

model taking the shape of left-skewed curves when mapped. A practical

method for dealing with this problem has been developed which facilitates

the use of the gamma model.* An algorithm can be used 1n five steps:

1. Select the origin parameter such that m = o.

2. Compute the expected value u and the log of the geometric mean g,

where

> log x
—log g =

3. Solve the equation y = log » — log g.

4. Using a table of » and ye values, as included in Appendix E, solve

a= yal).
5. Compute b from 6 = a/u.

This algorithm enables the urban analyst to employ the gamma model with

efficacy and efficiency of computation for many urban problems.

An interesting example of the use of the gamma model in urban analysis

is the estimation of the length of trips in the Toronto area.’ The Toronto

data are shown in Table 5:3. A similar model of Washington, D.C., is

shown in Fig. 5:8.

As the value of the a parameter gets very small, the gamma curve be-

comes highly left-skewed, approaching a smoothness. If a = 0, a variation

of the gamma model is the probabilistic exponential model. The probabilis-

tic exponential model approximates the form of the gamma model in which

a=0, b>0, m=o0, x20, and f(x) >o by using the expression

F(x3b) = beW®.

For such a case

We can prove mathematically that the cumulative probability function is

F(x) = 1 — 7,

Similarly, the complementary cumulative function for the probabilistic

exponential model is

*David Durand and J. Arthur Greenwood, “Aids for Fitting the Gamma Dis-
tribution by Maximum Likelihood,” Technometrics, 2, no. 1 (Feb., 1960), 55-65.

* Alan M. Voorhees, Factors and Trends in Trip Lengths (Washington, D.C.:
Highway Research Board, 1968).
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F(x) = e7®,

Development and solution of the probabilistic exponential model is sim-

plified using the above approach.

TABLE 5:3. Gamma model of trips, Toronto urban

system.

Length of | Observed Number Predicted Number

rip of Trips £ Trips

(x) (Ns) eee

I 39327 t 609
2 1,859 2,082

3 2,067 2,242

4 1,891 2,239
5 T ,948 2,146
6 1,787 2,004.

7 15473 1,838
8 1,232 1,664

9 15375 1,491
10 1,192 1,326

Il 844. 1,172
12 1,385 1,029

13 778 gor

14 378 785
15 444. 682

16 693 591
17 657 511

18 575 440
19 687 379
20 1,078 326

21 1,197 279

22 263 230

23 173 204.

24 137 175

25 Oo 149

26 O 127

247 O 108

28 234 92

bh = 8.868 m=0

log uw = 2.182 y = 0.366

log g = 1.816 a= 1.638

b= 0.185

_ oO. 1851-83 x 9.638 » —0.1852

F(x343;53m) ~~ r(1 ; 638)



114 : Scientific Methods of Urban Analysis

3.0 ¥ T J ! i l

nN “77 *h o ——a f(xj;a;b;m) =
fe <a
2 2.54°°°° xis e 0.182

< 2.0F

f P (2.54)
a

fy

O

o
< I.0 FF ~

BE
a
fol
©
PY
fx
Py

3 L h r I i

O 10 20 30 40 50 60 870

TRIP TIME (MINUTES )

Fic. 5:8. Voorhees gamma model of Washington urban system trips, 1955,

for percentage of total trips.

An interesting application of the probabilistic exponential model con-

cerns the length of time that a computer center will operate effectively,

measured by the mean value for its expected running without a break-

down.® If we know that » = 360 hours, and the probability density func-

tion is a probabilistic exponential function, we can compute various

probabilities about the computer center’s efficiency. For example, what is

the probability that the computer center will run without breakdowns for

180 hours or less? We map the probability density function by

I

360

el 360 .
F (x38) =

The cumulative probability function to answer the question is

F(x) = 1 — 7/360,

For x > 180

Fi 180) = 1 — ¢180/360

= 1 — 0.5

= 0.3935:

This problem is shown in Fig. 5:9 (also see Appendix F).

* Problem from Ya-lun Chou, Statistical Analysis with Business and Economic

Applications (New York: Holt, Rinehart, and Winston, 1969), pp. 216-217.
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f(x)
' r T T T Te

F (180) = 0.6065,PROBABILITY DENSITY FUNCTION | t 1 I x

O 180 360 540 720 900 1,080 1,260 1,440

HOURS

Fic. 5:9. Chou probabilistic exponential mode] of computer center efficacy.

NORMAL MODEL

Theoretically, a random variable, observed over a long period of time
or a large number of trials, will approach the familiar normal distribution:

I —
I (x) =f (u; g) = oan - (2p)? /262

Since there are widely available tables that list values for the normal
model, its forbidding mathematical form in actually quite simple to use.
Its geometric characteristics are shown in Fig. 5: 10, and these are prob-

ably familiar to the reader.

The normal model is often used in urban analysis for continuous random
variables. The inherent problem is that the assumption of normally dis-

tributed sets of observations, according the normal probability law, is often
difficult to apply in urban analysis, especially in urban behavior patterns.
Nevertheless, it is useful and is sometimes the only practical approach to
continuous-variable probability models.

It is possible to have a probabilistic model with two or more discrete
or continuous random variables, but it 1s quite difficult to develop and
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Fic. 5:10. Geometric characteristics of the normal model.

use such models. There have been some experimental attempts at modeling

urban problems for two random continuous variables using a normal

model. For example, assume that a person’s commuting drive in miles

(x1) and home location from the center of the city (x.) are random and

normally distributed for a large number of observations (for persons work-

ing near the center city only and excluding reverse and intersuburban

commuters). A probability density function f(¥1,x2) could be developed

from the normal model, and it would take the three-dimensional bell shape

shown in Fig. 5:11. The probability that x, lies in x, -+ dx; and xz lies

in x2 -+ dx, would be computed by finding the area under the surface for

these intervals through a double integration of the function for the two

intervals. The entire area below the bell-shaped surface and the plane

formed by the two random variables would be equal to unity. Such models,

as well as similar deterministic models, are quite interesting for the study

of surfaces in urban analysis, such as urban form, densities, and abstractions.
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Fic. 5:11. Normal model with two random variables.

Markov CHAINS

A special group of models derived from probability theory is called Markov

chains or processes. There has been growing interest in an application of

these models in urban analysis over the last two decades. We shall look

at the simplest of the Markov chains and suggest that the other types,

which have been studied exhaustively in physics and mathematics, may

hold potential utility for urban analysis.

The simplest of the Markov chains is discrete in time and space. It is

used where a system can be described completely in terms of its states,

and the discrete case means that it can be in only one state at a time.

“Discrete in time” is a term used to mean that the system is examined at

regular intervals, for example, every hour, every day, or every year. A

typical example is to consider a toll booth at the end of a tunnel; one

approach is shown in Fig. 5:12.
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STATE AND ANALOG | DESCRIPTION
}

1 (CJ no Cars

2. I car in booth

g. feje 1 car in booth, 1 waiting

4. [lee 1 car in booth, 2 waiting

5. [elece 1 car in booth, 3 waiting

6. [jeece 1 car in booth, 4 waiting

n. [@]@@@@-rre 1 car in booth, nm — 2 waiting

etc. etc.

Fic. 5:12. States of toll booth service system.

The general notation for a Markov model that is discrete in time

and space is that the system can be in any of 7 states—called the steady

state or state space——and is observed at any time ¢,, where r = (0, I, 2, 3,

..., 2). Markov chains with discrete space and continuous time for ob-

servations form a special category of mathematical analysis, often called

queuing theory. When both time and space are continuous in a Markov

chain, a complex type of mathematical analysis called a diffusion process

is found. Examples of discrete time and continuous space in Markov chains

are rare, but they are possible.

There are two important properties of Markov chains that are discrete

in time and space:

1. The outcome of each experiment belongs to a finite set of outcomes

Gy, Az, A3,-~~5 Om.

2. The outcome of any trial depends most upon the outcome of the

immediately preceding trial and not upon any other previous outcome;

for any pair of states (a;,a;) there is a given probability p;; that a; occurs

after a; occurs.

The probabilities ;; that represent the likelihood of a; occurring after
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a; are called transition probabilities, and they are usually arranged in a

matrix called a transition matrix. For example,

Py Py. . . Pim

Po Po... Pom

P = a . «

P ml P. m2 P. mm

The transition matrix represents the set of probabilities that the system

which was in state a; at time ¢ will be in state a; at f+ 1.

If we consider a system with three finite states, and we observe it at

finite times ¢, then the corresponding transition matrix would be

Py Py Pi

P=} Poy Pop Pog |.

Ps Pap, Pag

This can be mapped, as shown in Fig. 5:13, allowing the respective tran-

sition probabilities to be better observed.

Transition matrices are stochastic matrices. This means that each row

of the transition matrix represents the probabilities for the state a; and

hence must sum to unity, since the columns are the other possible finite

states:

YP = 1, wherez = 1,2,..., mM.
j=

Stochastic matrices must have nonnegative elements (with rows summing

to zero) and are said to be regular if all elements of P” are positive,

N= 1, 2,3,..-, ©.

The entry P;; in the transition matrix is the probability that the system

will go from a; to a; in one step, ¢-++ 1. We can form the n-step transition

matrix to determine the probabilities after n steps. The n-step transition

matrix is the transition matrix P raised to the nth power:

P(n) = P.

An interesting application of Markov chains has been made in the

analysis of attitudinal changes over time.’ We can examine certain aspects

"'T. W. Anderson, “Probability Models for Analyzing Time Changes in Attitude,”

in Paul F. Lazarsfeld, ed., Mathematical Thinking in the Social Sciences (Glencoe,

Ill.: Free Press, 1954), pp. 17-66.
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Fic. 5:13. Mapping of three-state Markov chain.

of this to clarify the above points. Assume a school bond issue in referen-

dum during January, and we consider those who voted and examine yes

and no votes. Given transition matrix P*, which represents the probabilities

that the attitudes will change in February for any individual, we can also

compute additional transition matrices for March, April, etc.:

Yes No

Pi) =P'=Yes/.g .1\, January to February,

No \.2 8

Yes No |

P(2) = P? = Yes/.83 .17\ , January to March,

No \34 .66

Yes No

P(3) = PF? = Yes/.781 .219\, January to April.

No \.438 .562

As can be seen, the probability that an individual will change his attitude

increases over time.

A limiting matrix T exists when a large number of time periods n are

considered. This means that P” can be approximated by T when 7n is

sufficiently large. If we can consider every row of the transition matrix as a

probability distribution, then we call the rows of the limiting matrix the

stationary distribution of the Markov chain.

This can be seen by referring to the example discussed above. Let

1_{°9 °!
P (3 a}
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Find

P,

P -( . Jor, in general, P = )
2

Pn
so that

pP=p
or

2, PiPi = P;, wheres = (1, 2,..., m).

Substituting, we have

(fr, p(9 3 J= (pi, pe).

Then

‘OQ pit 2p. = pr,
-I pit .8 po = pr,

and since

fat p2= 1,
then

fi = 2/3,
fi= 3

_ {°P7

_ (sa)
This means that in the long run the probability is p = .67 that an indi-

vidual will vote yes, regardless of his present opinion. In general, we find a

fixed point # for the transition matrix P, which is square, by solving the

matrix equations for pP = p.

There are some cases where a state a; of a Markov chain is called an

absorbing state, because the system remains in it once it has entered. An

absorbing state exists if the zth row of the transition matrix P has a one

on the main diagonal and zeros elsewhere in the row. For example,

ay ao ag a4

a [.25 .25 Oo .50

P=a, O 1.00 O O

a3 \.25 .25 .25 .25

as O 1.00 O oO

The az is an absorbing state by definition, but a, 1s not.
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Testinc Propasitiry MopELs

The very concept of randomness in probability models (discrete random

variable, continuous random variable, and Markov chains) makes testing

difficult. If a variable has randomness inherent in its character, it cannot

be estimated or predicted by deterministic models because the variance is

unwieldy and error terms would be large for an individual case. This

means that many of the tests for deterministic models are not applicable

even though they are mathematically possible.

In practical terms the test of a probabilistic model is its performance.

Performance is measured by comparing estimated and predicted values

from probabilistic models against the observed values. For example, Fig.

5:14 compares the probability model results shown in Fig. 5:8 with the ob-

served values. The interpretation of such a test is largely based on the

informed judgment and intuition of the urban analyst as well as on the

particular nature of the problem under consideration. As Fig. 5:14 shows,

there is such a large range of variation among the observations that a

probability model, such as the gamma model, may be the only scientific

method by which form may be given to the problem.

n 3.0 T

2 wee ESTIMATED
i

4 ~— OBSERVED

Soo b Z
B

faq
O

53)
0

s
7 I.0T7 —
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Fic. 5:14. Estimates from Voorhees gamma model and observed values of

Washington urban system trips, 1955.
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RECOMMENDED EXERCISES

1. Fire alarms come into the station house one at a time in a given

precinct’s terminal at the rate of one call every four hours over a 24-hour

period. Assuming that these calls are Poisson-like in distribution, the fire

chief asks you to find the probability that there will be (1) more than eight

calls in the next two days and (2) exactly eight calls in the next two days.

He has two men working the terminal that can each handle one call per

hour maximum in a 12-hour shift. What is the probability that (3) these

two men will be unable to answer some fire alarms?

2. A study by the traffic engineer of a western city shows that traffic

lights in the city work well for an average of 200 days and then either

burn out or lose phasing. His inspection crews examine and repair any

given traffic light every 100 days. What is the probability that a given

traffic light will be working when the inspection crew arrives?

3. The transition probabilities of Markov chains are often represented

by transition diagrams. Formulate the transition probability matrix from

the following transition diagrams:

i

v/ a B~Loe -
a ON “ V,On j@) Pout \,

\ \b*»~\_/
—) ©

(a) ae ae

(A) (B)

4. Formulate transition diagrams from the following Markov chain

transition probability matrices:
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1/2 1/2 0 Oo 1/3 2/3 0

P= oO 1/3 1/3 1/3 P= O 1/3 2/3
1/4 1/4 1/2 Oo 0 0

1/4 3/4 0 0

(A) (B)

FurRTHER READING

Chou, Ya-lun. Statistical Analysis with Business and Economic Applications.

New York: Holt, Rinehart, and Winston, 1960.

A very good treatment of statistics in a general applied manner for business

and economics with particular strength in probabilistic models. In addition to

description and application, Chou uses probability theory to formulate and apply

sampling and estimation theories.

Lazarsfeld, Paul F., ed. Mathematical Thinking in the Social Sciences. Glencoe,

Jil.: Free Press, 1954.

An early attempt to apply probability theory to familiar problems of such fields

of social science as politics, sociology, and decision theory. Many of the topics are

quite interesting for urban analysts, and many of the mathematical problems that

are raised have yet to be adequately resolved.



MASTER. Wherefore in all great works are Clerks so much

desired? Wherefore are Auditors so well fed? What causeth

Geometricians so highly to be enhaunsed? Why are Astron-

omers so greatly advanced? Because that by number such

things they finde, which else would farre excell mans minde.

SCHOLAR, Verily, sir, if it bee so, that these men by num-

bring, their cunning do attain, at whose great works most

men do wonder, then I see well I was much deceived, and

numbring is a more cunning thing then I took it to be.

Robert Recorde, The Declaration

of the Profit of Arithmeticke (1540)
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Estimating and predicting models are used to describe urban systems so

that we can understand them and predict characteristics of them in the

future, or under various conditions, so that we can test them. Optimization

models show what the best performance of urban systems could be under

various conditions and at future times. In this sense optimization models

are of interest to students of urban systems and are practical tools for

those that plan and make decisions about urban systems.

We earlier discussed four types of optimal performance: (1) utopian,

(2) optimal, (3) maximal, and (4) minimal. Utopian performance, for

most practical purposes, is largely derived from intuitive analysis and has

few if any constraints. Optimal performance is the best within the con-

straints established for the problem. In many cases an optimal performance

could be either a maximal or a minimal performance, depending upon the

characteristics of the problem and the constraints.

This chapter is concerned with simple optimization models, which quite

often have maximal or minimal performance as the optimal performance.

Simple optimization models are of the general form

Opt f(x);
subject to

g(x) = 0,
x => 0.

There is usually only one independent or decision variable in simple op-

timization models and usually only one constraint. The constraint often

takes the form of a boundary for the domain of the function. For example,

a(x) could take the form a<x <b, where a, 62> 0. Similarly, as a

general rule in urban analysis, we deal primarily with nonnegative values

for independent or decision variables (and consequently for dependent or

nondecision variables). The techniques most often used are classical and

have been borrowed from calculus. Calculus is used within a procedure

that will be developed for an optimal search.

The succeeding chapters are concerned with complex optimization

models, which often have several independent or decision variables and

CHAPTER

Classical Calculus and

Optimization
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a number of stages to be optimized owing to many constraints. The gen-

eral form of such models is

Opt f(x1, %2) .. + Xn)s

subject to

Z1 (x4, Mg, - 205 Xn) < O,

£2 (x1, XQ s+ 2 9 Xn) < 0,

Bm( x1, X2) ++ +9 Xn) SO,

Xt > oO.

As with simple optimization models, we generally deal with nonnegative

independent or decision variables in urban analysis. The optimization by

stage of complex optimization models requires mathematical programming

techniques, such as linear programming, nonlinear programming, dynamic

programming, and stochastic programming.

CONDITIONS FOR OPTIMIZATION

A set of conditions is necessary for an optimal solution to exist for a simple

optimization model (while we shall discuss simple optimization models,

the same set of conditions must exist for complex optimization models in

Yor ~— ne ome oe eee
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Fic. 6:1. Unique value functions.
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“yo
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Fic. 6:2. Trivial and non-unique value functions.

a modified form). These conditions we shall call sufficient and necessary

conditions for optimal solutions.

‘Only functions that have one and only one value for the dependent

variable for each value of the independent variable will be considered.

By this we mean that we use models that have unique values for the deci-

sion variable over the domain of the function (see Fig. 6:1). We may con-

sider functions where there are several values of the decision variable for

a given nondecision value, but these are usually trivial. We will not con-

sider non-unique value functions for mathematical reasons and for prac-

tical purposes in that they are quite unrealistic and are usually only

mathematical toys (see Fig. 6:2). We shall place an asterisk by the values

for optimal solutions, for example, x*, y*.

BOUNDEDNESS

The domain of the function, or at least the range of the decision vari-

able, must be bounded in order for an optimal solution to exist. In most

cases of simple optimization models this entails setting a closed interval

for the decision variable in which either a maximum or a minimum can be

found. Without a closed interval it is mathematically impossible to deter-

mine if a maximum or minimum exists; there is no way of knowing such

a value because there are an infinite number of possibilities (see Fig. 6:3).

A closed interval insures that a maximal or minimal value can be found,



130 : Scientific Methods of Urban Analysis

y=f(*) y= f(x)

f(x) = * f(x) =
ox<x<a osx<a

MAX == (4,0) MAX UNDEFINED
Yo pram TTT TT

{
{

i

|
t

|

|

|
MIN = (0,0) MIN == (0,0)

é I

0 a x 0 a x

Fic. 6:3. Closed and open intervals.

especially if it exists at the end-points of the interval, and further assuming

that a maximal or minimal value exists for the given function.

CONTINUITY

Urban analysis almost always involves continuous functions. A continu-

ous function is one in which there is an existing value for the dependent

variable for every possible value of the independent variable —in most

functions where the domain is a set of real numbers, this could be an in-

finite number of places. In heuristic parlance the rule of thumb holds that

if it is possible to map a function without raising the pen from the paper

within the domain, it is a continuous function (see Fig. 6:4). Discon-

tinuous functions are sometimes found in urban analysis and can be solved

for optimal solutions, if such exist, in certain cases. The mathematical

difficulty is that it is often hard to prove that an optimal solution exists

where there are discontinuous points within the function.

EXTREME VALUE THEORY

We can find optimal solutions to problems by using the well-known

extreme value theory, which incorporates many of the above concepts.

The extreme value theory holds that if a function is bounded, continuous,

and has real-number values, at least one maximum and minimum value
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must exist. The proof of this theory is beyond the mathematical scope

of this book and is left to the interested reader to pursue independently.

It should be noted that the extreme value theory provides at least one

maximal and minimal value, but often there are several intervening values

which appear to be maximal or minimal within a smaller interval for the

function, as can be seen in Fig. 6: 5.

The concepts of boundedness, continuity, and real-number values, as

incorporated in the extreme value theory, hold for complex optimization
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models where there are multiconstraints and several decision or indepen-

dent variables. It is necessary to modify the concepts to fit such conditions,

and it is difficult to map such concepts for these conditions, but the ex-

treme value theory does provide a theoretical basis for optimal solutions.

OptTIMAL SEARCH ROUTINE

Many simple optimization models require little more than a search of the

end-points for maximum and minimum values, especially where the func-

tion is linear or linear-like. In more complicated functions, however, we

must develop a routine to narrow down our search for optimal solutions.

One alternative is a complete enumeration of all possible values for f(x)

and x. We could then rank these values from highest to lowest and select

the extreme values as maximum and minimum. This might be possible if

we had a model with only integer values for x and f(x) and if the domain

of the function was quite small and finite. Even such a simple problem can

be tedious, however. In most models we consider all real-number values

(both integer and noninteger), and a complete enumeration is mathemati-

cally impossible because there are an infinite number of values for x and

f(x). Even where x and f(x) have an infinite number of values, however,

an optimal solution exists if the extreme value theory holds.

A far more sensible alternative in seeking optimal solutions for simple

optimization models is to use an optimal search routine. Our optimal search

routine is based on the extreme value theory and some of its implications.

In essence, we will use the theory to the extent that it points out three

types of places to look for optimal solutions. The first place is the end-

points of the interval for the decision variable. The second place is the local

maxima and minima if they exist. The third place is where local maxima

and minima appear intuitively yet may not exist mathematically.

The optimal search routine can be expressed in more formal terms in

order to allow generalization. Let us consider the optimal value for the

decision variable x* as belonging to a set of possible values S: |

x*eS=S, US, U $3,

where - :

Sy = a, b} 5
Sp = {local maxima and minima}, _

53 =| apparent maxima and minima or discontinuities} .
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The values for S; are straightforward and are obtained by substitution.

Values for S, are best obtained by using calculus. Values for S3 can be
obtained by using observation and calculus: sometimes maxima and min-

ima exist when calculus does not reveal them (usually at points of dis-

continuity or intersecting straight lines), but these maxima and minima

can be observed.

CLASSICAL CALCULUS

Since classical calculus offers us assistance in finding values for two of the

three sets in our optimal search routine, we should spend some time re-

viewing the basic principles. The calculus, developed almost simultaneously

by Sir Isaac Newton (1642-1727) and Gottfried Wilhelm von Liebniz

(1646-1716), is most useful for our purposes in that it allows the computa-

tion of the rate of change in a function. This is accomplished by computing

the places where the first derivative is zero, f’(x) = 0, with respect to x.

A familiar analog is to consider a boy throwing a ball into the air. When

the ball reaches its highest point, its rate of change (velocity) will be zero.

y=] (*)

RATE OF CHANGE == 0

or f’ (x0) == 0;

THEREFORE HIGHEST POINT IS [%o,f (Xo) |

f (xo)

_ .

0

Fic. 6:6. Path of ball and highest point.

3° 3
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Fic. 6:7. Mapping of general function y = f(x).

We can compute the highest point reached if we know precisely when the

rate of change in the velocity of the ball was zero (see Fig. 6:6). For this

problem we can say that when /f’(%) = 0, then at x) we can compute

f(x*), the highest point the ball reaches. |

We can extend thése concepts for a general function y = f(x), as

shown in Fig. 6:7. The rate of change is called the slope of the function

and represents the increase in y for every unit of increase in x. The slope

of a function can be approximated by its difference quotient:

F(x) —f(%0)
x — Xo ,

We can substitute x9 + Ax for x in the difference quotient and assume that

x # x and that Ax is very small. This gives us

F (xo + Ax) — f(x)
(x0 + Ax) — Xo

and

f(%o + Ax) — f(xo)AS

We assume that as Ax gets smaller and smaller, a stable value, or limit in

mathematical terms, can be found. The limit of f(x) as Ax — 0 is called

the derivative. It is expressed by f’(«), where
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Fic. 6:8. Mapping of planning study cost function.

f(x) = lim F(x) — fo)

or, by substitution,

, tm Jf (x0 + Ax) — f(xo)
f(a) = lim Laat Ss) Se

We will use the above expression as the definition of the derivative. For

practical purposes we can consider the derivative to the equation which

expresses the rate of change or the slope of the function for various values

of x.

We can illustrate the derivative with a simple example. Let us consider

the costs of a planning study (C’), which we know to be the square of the

time spent on it (x); hence C = f(x) = x*. If we consider an interval, such

that a < x < b, what is the rate of change in the cost function as mapped

in Fig. 6:8? Assume that the value x) = 5 lies within [a, b|. The derivative

of f(x) at x) = 5 can be computed by making various substitutions for Ax.
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For example, Ax = 0.5, Ax = 0.1, Ax = 0.01, etc. The process of substitu-
tion, if carried out over a sufficiently long series, will eventually show that

a limit of ten exists for xo = 5.

We can demonstrate this in more general terms. Let C = f(x) = x’; then

f" (xo) —_ lim (xo + ae — (xo)?

x2 + axpAx + Ax? — x2

Ax

axpAx + Ax?

AX

_ _Ax(2x0 + Ax)
Ax

= 2x9) + Ax.

As Ax —> 0, we can assume Ax is negligible:

SF’ (xo) = 2X.

For x9 = 5, then

f'(5) = 10.

Let us take another example:

F(x) = ax — bx’.

Solve for f’(xo), where

. f (x0) = axo — bx6,
— fF (xo + Ax) = a(xo + Ax) — b(% + Ax)?.

Thus |

film) = [a(x + Ax) — b(xo +89)" — (axq — bx?)

axg + ax — (bx2 + 2bAxxy + bAx?) — ax + bxz

Ax

aAx — 2bAxxy — bAx?

Ax

‘Ax(a — 2bx9 — bAx)

— Ax

= a — 2bx) — DAx.

As Ax— 0, its value is negligible, so that

F' (x0) = a — 2bxo.

The astute reader may have noticed that a pattern exists for a general

solution of f’(x) for f(x). For simple functions, such as
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Fe) = *%,

this pattern can be generalized as

F (x0) = exp.

The first derivative of a constant is always zero, of course, since in practical

terms a constant has no rate of change. Using this general rule, we can

see that if

fle) =O +2,
then

F' (io) = 3x34 24.
Similarly, when we see

F(x) =P +e4+5,
we can compute

(xo) = 2x0 + 1.

The four general rules for finding derivatives of simple functions can

be summarized:

1. If f(x) = x*, where cis a real number, then f’(x) = ex}.

2. The derivative of a constant is zero.

3. If f(x) = e?, then f’(x) = g’(x)e7TM.

4. Iff(x) = log. g(x), then f’(x) = g'(x)/g(x).
These general rules are time-savers and are most useful for eliminating

tediousness when computing derivatives of simple functions. There are

many other rules for computing the derivatives of more complex functions,

and most calculus books have extensive lists of these rules. For example, the

four basic rules for finding derivatives of complex functions are:

1. The derivative of the sum is the sum of the derivatives; if a and 5 are

constants, and if F(x) = af(x) + bg(x), then F’(x) = af’(x) + bg’(x).

2. The derivative of a product of two functions is first times derivative

of second and second times derivative of first; if F(x) = f(x) - g(x), then F’(x)

= f'(x) -g(x) +2"(x) f(a).
3. The derivative of a quotient is the quotient of the derivatives, pro-

vided that the derivative of the denominator is not zero; if F(x) = f(x)/g(x),

me ) =e) — of)/

rg) = LE) = 8) FO)

a [e(x)P
4. The derivative of a composite function is found through the com-

posite function rule; if u is a variable which is expressed as u = g(x), and if f(u)

is a function of u such that F(x) = f[g(x)]|, then F’(x) =f’(u) -g’(x).
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Fic. 6:9. Complex function where f’ (xo) does not exist.

There may be points on complex functions where the first derivative

does not exist. For example, as seen in Fig. 6:9, the intersection of two

straight lines appears to be a maximum, but it can be shown through cal-

culus that the first derivative does not exist at x). The nonexistence of a

first derivative for a function is a clue that a maximum or minimum may

exist, and the optimal search routine set S'3 may include the optimal solu-

tion. Lack of first derivatives also may indicate discontinuous functions,

which may or may not be analyzed for maxima and minima. There is a

special case in which setting f’(x)) = o may yield values for xo, f(x) which

are not maxima or minima. Such a case is called an inflection point, as

shown in Fig. 6:10. An inflection point is a change in slope for a mapping

which results in an instantaneous interval of no rate of change. Inflection

points should be distinguished from local maxima or minima when using

the optimal search routine.

It is obviously useful to our purposes if we can employ some technique

which helps us to determine whether we have a maximum, minimum, or

inflection point when we compute f(x) = 0 for xo. Calculus is helpful for



Classical Calculus and Optimization : 139

f(#) Jo- ~~ e

f’ (x0) = 0

'

I

{
{

|

|

|

i

!

i

1

|

|

I

{
|1 . { .

oO a Xo b x

Fic. 6:10. Mapping of function with inflection point.

this problem. The second derivative of a function expresses the rate of

change of the rate of change (acceleration). It is computed by taking the

derivative of f’(xo) and is denoted as f’’(x). If the rate of change of the

rate of change is always greater than zero, or f’’(x) > 0, then a function is

said to be strictly convex and f’(xo) = 0 denotes a minimum. If the rate

of change of the rate of change is always less than zero, or f(x) <, then

a function is said to be strictly concave and f’ (xo) = 0 denotes a maximum.

We can extend the above technique to test for the inflection point. We

can take any number n of derivatives for a function. Let /*(x) =o and

‘f"+1(x) = 0; then we have two possible cases. If n is odd:

1. If f(x) > 0, then} xo, foo is a minimum.

2. If fet(x) <0, then} xo, f(xo)} is a maximum.

If m is even, then { Xo; f (xo) } is neither maximum nor minimum and is

an inflection point.

Although somewhat peripheral to our present discussion, if we call the

above technique of taking derivatives differentiation, then the inverse of

differentiation, integration, is interesting and useful for certain problems.
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As we mentioned in our discussion of probabilistic models, integration can

be regarded for practical purposes as finding the area under a mapped

function.

The formal expression for the first derivative of x with respect to y

= fla) is

3 =F

which is a first-order differential equation (where dx and dy are differen-

tials). Let us write the same thing in a different way. ‘The first derivative of

x with respect toy, where y = p(x), we can call simply f(x), so that

The solution of this equation would be y = $(x) = y1(%) +, and hence »,(x)

is any function where y’:(x) = f(x). The solution y’:(x) is called a primitive

function or antiderivative. The more formal way to express this inverse of

differentiation is to form an expression called the definite integral of the

function f(t) from a to 6 for the function F(x):

F(x) = [ “F(édt.

The function F(x) then is also an indefinite integral because F’(x) = f(x).

We can clarify this somewhat in the following equation:

y = b(x) = 9x) +o = F(x) +e= [pea +e.

This is simply the general solution to the differential equation we dis-

cussed above.

A further note of interest is the so-called fundamental theory of calculus,

where a function F(t) whose derivative is f(f) is continuous and then

fa = f(T,) — F(T).

This theory is fundamental because it links differential and integral calcu-

lus. The importance of the theory is that it reduces the problem of finding

the definite integral defined from T, to T, to finding a function F(t) whose

derivative is f(é). This is not easily computed, and standard tables of in-

tegrals are most useful.

One of the most practical applications of integration of functions in

urban analysis is the computation of the area under a curve generated by

a function. The most common example is the computation of the probabil-
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ity that a continuous random variable x lies in some interval a < x < b,

for which the reader may review the chapter on probabilistic models. When

we discussed areas under probability density functions, we implied that in-

tegration was the technique most useful for computation. It may be clearer

to the reader now if we restate that the area under a probability density

function f(x) is |
oo

_ F(x)dx = 1.

APPLICATION OF SIMPLE OPTIMIZATION

There has been a significant application of simple optimization models

in urban analysis. The usual procedure is to formulate an estimating and

predicting model of the problem situation and satisfactorily test it. Having

been satisfied that the problem has been explained and can be predicted,

the urban analyst can use simple optimization techniques, especially calcu-

lus, to determine if optimal values exist. The urban analyst can use optimi-

zation models as a test of predetermined or intuitive optimization values

as well. Alternative solutions to urban problems are sometimes tested by use

of simple optimization models to determine if theoretical and analytical

values are similar.

LINCOLN TUNNEL PROBLEM

A classic application of simple optimization models is the Lincoln Tun-

nel problem, in which many of the concepts that we have been discussing

were applied. The problem derived its name from the case of the Lincoln

Tunnel, which connects northern New Jersey suburbs to mid-Manhattan.

The operating and planning agency for the Lincoln Tunnel is the Port of

New York Authority (PONYA), a quasi-public organization established

by the states of New York, New Jersey, and Connecticut. |

By the early 1950s it had become clear that the tunnel was near ca-

pacity, largely owing to the growth of postwar automobile ownership and

use. The PONYA planners authorized a series of studies to determine ways

to get the most out of the facility within its existing limitations. The prob-

lem was to optimize the flow of traffic through the tunnel as constrained

by its physical capacity.
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The flow of traffic through the tunnel is a function of the capacity of

the tunnel and the speed and density of vehicles. The following variables

were formulated:

s = speed of vehicles in miles per hour,

d = density of vehicles in vehicles per mile,

v = flow in vehicles per hour.

The flow v is simply the speed times the density, so that

v= sd.

The analysts assigned to the problem studied the speed and density of ve-

hicles moving through the tunnel and recorded many observations over a

long period of time. Using a simple linear model, the analysts hypothesized

that speed decreases with the density of vehicles in the tunnel, and they

fitted the following model:

5S = 42.1 — 0.324d.

The simple linear model was satisfactorily tested. Implicit in the model

were many factors, the most important of which was an implicit effect

of physical capacity. Specifically, it can be noted that physical capacity af-

fects the linear relationship by imposing a constraint:

o<d< 42.1/0.324.

This means that if d > 42.1/0.324, the tunnel will be overflowed and traf-

fic will come to a halt (s = 0, a real-life fact familiar to many commuters

in the area).

The Lincoln Tunnel problem can be formally stated with the above con-

siderations in mind:

Opt v = sd,

subject to

o<d< 42.1/0.324.

By substitution we see that

u(d) = (42.1 — 0.324d)d

and

v(d) = 42.1d — 0.3244.

We compute the first derivative of this function and set it equal to zero to

determine whether there exists a local maximum or minimum:

vo’ (do) = 42.1 — 0.648d) = 0,

so that |
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0.648d) = 42.1,

dy = 64.9 = 65 vehicles per mile.

The second derivative of the function is

v'’(do) = —0.648,

which is a constant that is always less than zero; hence the value x = 65

is at least a local maximum, since the function is strictly concave.

The optimal search routine can be used to define the three sets where we

can find the optimal values for d in the problem. This results in

Si ={o, 42.1/0.324},
S_ = {65},
3

?

and thus

S ={0, 65, 42.1/.324}.
The next step is to substitute the possible values for d* in the equation

v = 42.1d — 0.324d":

v = o when d =o,

v = 1,362.9 © 1,363 when d = 65,

v = 0 when d = 42.1/0.324.

Therefore, it is obvious that

d* = 65,
v* = 1,369,

and, by substitution,

s®¥ = 21.0.

One other interesting quantity is the optimal spacing between vehicles (f),

which can be measured in feet by

f* = 5,280/d*,

f* = 81.

so that

The interpretation of this solution is that given the relationship between

s and d as a fixed constraint, the PONYA can optimize traffic flow to 1,363

vehicles per hour per Jane of traffic by setting the speed limit so that most

vehicles are traveling at about 21.0 (say a limit of 25) miles per hour, and

there is a space of 81 feet between vehicles in each lane of traffic (and,

consequently, there are 65 vehicles per mile), as shown in Fig. 6:11.
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Fic. 6:11. Mapping of solution to Lincoln Tunnel problem.

MINIMUM-COSTS MODELS

Objectives established for urban systems often conflict with each other;

hence one objective must be selected in preference to other objectives. ‘The

basis for selection of one objective over another depends upon many

forces and factors. In many problems of administration and capital con-

struction for urban systems, a basic tenet of engineering economy is often

used. The basic tenet is that the best compromise among conflicting ob-

jectives for public funds is to provide the facilities that will cost the least

to build and use over a period of time. This is usually a politically and

economically acceptable approach, since taxpayers do not like to see elabo-

rate public facilities requiring tax increases in urban systems. This is obvi-

ously not a perfect objective, however, since many social forces demand

that facilities be built which are not the least expensive: the social benefits

of such facilities outweigh the political and economic benefits of minimum

costs. Such a difficult conflict requires the urban analyst to use a great deal

of care when selecting minimum-costs optimization models for evaluating

plans. When the use of the minimum-costs model is valid, there are several

interesting techniques that we can examine.
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Administrative-Costs Minimization Problem

A well-accepted goal among public administrators (as well as business-

men) in urban systems is to minimize the costs of operations. The classical

analytical model, which is a simple optimization model, is called the eco-

nomic lot-size model. This is a relatively simple model that has been used

in business for several years and is finding more and more application in

public administration of urban systems. For example, when public admin-

istrators order goods by lots that are depleted over a period of time, such

as school lunch supplies, public service reports and publications, equipment

and parts which are expendable, and other kinds of stocks that are de-

pletable, the economic lot-size model is useful.

The economic lot-size model is based on a number of simplified assump-

tions and variables. The key variables are

¢, = cost of purchasing one unit of goods,

¢, = fixed costs of placing one order, assumed to be independent of

actual number of goods ordered,

¢3 = costs of holding or storing one unit of goods per unit of time,

d = rate of utilization or demand for goods required per unit of time,

x = size of lots ordered or number of units of goods constituting one

order,

n = number of orders placed per unit of time,

t = average number of units of goods in stock,

¢ = total costs per unit of time.

The objective of the public administrator is to minimize the total costs of

his operations; he requires an optimal lot size x* that will mimimize total

costs: £(x*).

Several of these variables are interrelated. As can be seen, x and 7 are

related through the rate of utilization of goods (d). If we assume that n

is an integer, such as n = 1, 2,..., m for days, weeks, months, years, etc.,

then we can use x as the key decision variable and attempt to express x as

a function of n wherever possible. The basic relationship is

x= —n°?

assuming that the total demand will be met over some period of time.

The average number of units of goods in stock during a period of time

is essential if we are to compute the costs of holding or storing the goods.

For practical purposes we can simplify this computation by assuming a

perfect operation in which orders are so placed that when a previous order
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Fic. 6:12. Depletion and storage of goods over time in a perfect operation.

is exhausted, a new order arrives for distribution. Intuitively, we can as-

sume that the average number of goods in stock is half the number of units

ordered:

- x

i-e,

2

This may be clearer intuitively by considering Fig. 6: 12.

Using these simplifying assumptions, we can formulate the total-costs

model by its components. The first component is the purchasing cost, c,d,

or the cost of purchasing one unit times the demand per unit of time. The

second component is the cost of ordering, con, or the cost of placing one

order times the number of orders placed per unit of time. Through substi-

tution we see that

Cod
tn =e.

The third and final component of cost is the holding or storage cost, ¢32, or
the cost of holding one unit times the average number of units in stock.
Again through substitution we see that

63x

C3t = .
2

These components are additive, so that our total costs are
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Fic. 6:13. Mapping of cost components and total-costs function.

t=t(x) = od + 28 4 BE
x 2

shown in Fig. 6:13.

Using the optimal search routine, we can see that the minimum costs of

the total-costs function ¢(x) is the local minimum for the function and can

be found by using the first derivative:

t (xo) = (— 1)eedxy? + = = 0,

Cod _ C3

xe ?

9 26ed
XxX —
0 3

63

\ 2Qcod
xo = .

C3

Two constraints are possible for optimization:

1. If d > 2¢2/¢3, then x* = xo:

ye = 2cod
— 3

63

and

2cedt ( Xo) = a

0

is strictly convex, so a minimum exists at t(x*).
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a. Ifd < 2¢9/c3, then x* = d and

d
t(x*) = od “+ C2 + ~~

Plan Evaluation Problem

A relatively simple extension of the minimum-costs problem has been

made for the evaluation of competing plans, the most common area of

which has been in transportation facilities, especially highway planning.

The transportation planning approach has been to compare alternative

plans by their respective system and travel costs. System costs are measured

or estimated for a period of time for the principal components of capital

costs amortized over a period of time at a given rate of return; main-

tenance and operating costs of the transportation system are measured or

estimated for a comparable period of time. The travel costs are usually

those which are borne by users: travel time cost, user operating cost, and

cost of accidents. The sum of the system and travel costs is called the total

costs for a period of time.

When a number of plans are being considered, a rank order comparison

can be made by increasing travel and system costs, as shown in Fig. 6:14.

In the case shown, seven alternative plans are compared, and the mini-

mum-costs plan appears by inspection to be plan 4 (a specific determina-

tion is made by computation and comparison of costs for each alternative

plan).

The total-costs curve often takes the form of a second-order polynomial,

since the additive system and travel costs are parabolic for a large number

of plans. When many alternative plans are being compared, it may be use-

ful to formulate a second-order polynomial model of the total costs. The

decision variables are integers, however, and a pseudofunction must be

used to imply a continuous real-number variable. There are i plans to be

considered, and the total costs can be approximated by (7), where

@(t) = al® — bite.

We can use a pseudo real-number variable x such that

F(x) = ax? — bx +e,

subject to

ox <i.

The function f(x) can be used to approximate the discontinuous integer



Classical Calculus and Optimization : 149

4 i

te ee ee es es C4
:

nn i

Es ts | RY
}

Q© TRAVEL COSTS TM— . te Z

55 te

|

SYSTEM COSTS $3 ie

$2
— :

—
So |

|
! l i |

PLAN O PLAN I PLAN2 PLAN 3 PLAN 4 PLAN 5 PLAN 6

ALTERNATIVE PLAN

Fic. 6:14. Plan evaluation by minimum costs.

function ¢(7), and the optimal search routine can be used. Taking the first

derivative of f(x),

FS’ (%o) = 20% — b = 0,

2axy = b,

b
“a>*=-.

2a

Hence we compute our solution sets for x:

‘= 0, i},

So =| b/2ah,

S3 =| qh,
and

S ={o, b/2a, i}.

Since we know that the total-costs curve is parabolic, it is likely that x* =

b/2a; yet it is possible that x* could be found in S; owing to an arbitrary

selection of the end-points for our closed interval. Thus all possible optimal
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values should be considered. Having determined an optimal solution for

f(x), we can use it to approximate the optimal solution for ¢(z). It should

be noted, however, that this approach is not foolproof: the possibility exists

that the optimal values of (x) may not be sufficient for determining opti-

mal values for ¢(i) if the value for x* is found to be midway between two

neighboring values of 7. The problem can be resolved simply by testing both

values of i and comparing the results of ¢(z) for a minimum. The possi-

bility may arise in some cases that the total-costs curve cannot be satisfac-

torily approximated by a second-order polynomial, and hence other linear

and nonlinear models should be explored.

Expressway Spacing Problem

One of the most sophisticated applications of the minimum-costs model

was made by the Chicago Area Transportation Study (CATS) for the

spacing of expressways in an urban system. The basic policy of the urban

analysts was to plan additional public investment in new expressways as

long as it led to overall decreases in total transportation costs — in other

words, new expressways were planned if the savings in total transportation

costs were greater than the investment costs. The key variable in such a

computation emerged as the spacing between expressways.

The expressway spacing problem can be stated succinctly. Given a par-

ticular network of expressways, other types of highways in the area, and

a particular pattern of trips by length, what is the optimal spacing policy

for a regular grid network of expressways? The Chicago urban system is

easy to make such a mathematical statement about because of its flat

topography and relatively regularized population and development density.

There are two components of the total-costs function. The first compo-

nent is the cost of expressway construction as a function of expressway

spacing. The second component is the cost of operating and using the

expressways as a function of expressway spacing, which can be called the

travel cost. Hence the total costs are

C= Cy + Cr,

where

IC = total costs of construction and travel,

C, = construction cost,

C = travel cost.

The simple optimization problem is

*Chicago Area Transportation Study, Final Report, vol. 3 (Chicago, 1962).
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Opt f(Ci, C2) = TC=Q+ G,

subject to

xz»,

z20,

where

Z = spacing of expressways.

The Chicago urban system was found to have a uniform density of

trip origins and characteristics, so that expressways were relatively similar

in design for various parts of the area. Construction costs were propor-

tional to the linear miles of expressways, and the linear miles of expressways

were determined by the expressway spacing. For practical reasons the urban

system was hypothesized as being square and the expressway network as a

grid. This yielded the following construction-cost function:

[2

Ci = 2¢ @

where

¢ = construction cost per mile,

/ = a constant describing the size of the region.

The travel costs were more complicated because it was necessary to

consider trips of varying lengths. Trips of a short length (a) were com-

puted and assigned to local streets other than expressways in the area.

These short trips, from zero to a miles, had a travel cost which was the

sum of their lengths times the cost per mile for traveling on local streets.

This was stated by
a

pe | Kaka for o—a,
where

p = density of trip origins in region,

K, = cost per vehicle mile on local streets,

F = distribution of trips with respect to length, such that F = dn/dr.

The travel cost of trips longer than a, but still not long enough to use

expressways, is similar, except that a part of the trip length may be spent

on local streets and the remainder on arterial highways. This can be ex-

pressed in the form

rb

pe [ [K.a+Ko(r — a) Fdr| for a— b.

The remaining trips and costs are those which are long enough to
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assign to expressways (that is, they are longer than b). Their computation

is similar to the above and yields C.:

a b

Cy = pt | KarFar +- [ [Kaa + Ky (r¥ — a)| Fer

+- I [K.a+Ky (6 — a) +K- (r — 8)| Far | for b—>00.

Since we are interested only in expressway spacing, we can ignore all terms

not containing b (that is, all trips less than the average distance used for

access to the expressway system). Using the following definitions,

[rear = Rand | Far = G,

the equation for C can be simplified to

C= 2c+ + pP (Ks —K.) [R(6) + 6G(~) — b6(6)],

The first derivative of C’ with respect to z is

dC

d.

db
C'(go) = Fe = ph (Ks —K,) P(b) — aP = 0,

where P(b) stands for the proportion [G(«) — G(b)|; so

26

= db| p(Ks -K.) & PO).
Empirical computation of db/dz, P(b), c, and » makes the equation

for z* simpler. In the Chicago case

2 _ 540
dz -40,

P(b) = 0.8ge7-°?,

fp = 20,000 trips per day per square mile,

¢ = $6,000,000 per square mile.

This simplifies the equation for z* to

ZF = 2.7Be-02858,

where K, —K, = $0.06 and an interest rate of 10 percent is assumed

(depreciation is neglected). For practical purposes z* = 3 miles was found

to be optimal (minimum costs) for Chicago. The results are mapped in

Fig. 6:15. Urban analysts at CATS used the model for predictive purposes

to 1980 for various rings (2) around the central city. As can be seen in
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Fic. 6:15. Mapping of CATS expressway spacing model.

Table 6:1, there is variation in p, c, and z in the various rings; hence sev-

eral z* exist, depending upon the ring, i = { O, I, 2, 3, 4, 5, 5, ”

Taste 6:1. Estimated zf for 1980,

CATS.

Ring | 1980 Current zt

: P | (mittions) | ies)

Q* 28,700 $14 3

3 25,300 12 3
4 19,600 8 3

5 13,400 6 4
6 10,000 4 6

7 7,700 2 6

*"o and 1: (the Loop and CBD) were

unique and were not computed.
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RECOMMENDED EXERCISES

1. The head of the data processing department in a medium-sized city

asks your help in cutting costs of his operations. Your first assignment is

to reduce the costs of operations for ordering punchcards. You find that

the demand for punchcards (which come 2,000 per box) is 125 boxes per

month. One box of punchcards costs $2.00, and it costs $1.00 to store each

box in the data processing center. The largest cost component is for placing

an order, however, since the process of invoices, telephone bids, and ad-

ministrative matters in the city comes to $50.00 per order of boxes of

punchcards, regardless of the number of boxes ordered. Set up an appro-

priate minimum-costs model and optimize the model to determine the

number of boxes of cards that should be ordered to yield the minimum

total costs (try the economic lot-size problem).

2. Given the following f(x), find f’(x) and solve f’(xo) = 0 for xo:

(A) fle) = 44 ®) fe) = 742—2

(C) fa) =2%-3¢4+4 O) /@) =

(E) fl) = 3 (F) log f(x) = loga + b(log x)

FURTHER READING

Carr, Charles R., and Charles W. Howe. Quantitative Decision Procedures in

Management and Economics: Deterministic Theory and Applications. New

York: McGraw-Hill, 1964.

One of the best textbooks on deterministic optimization theory and application
for both simple and complex optimization models. The theoretical foundations

are very good, and applications for business and economics provide interesting

possibilities for urban analysis. There is an especially good coverage of the eco-

nomic lot-size problem at various levels of complexity.

Taylor, Angus E. Calculus with Analytic Geometry. Englewood Cliffs, N.J.:

Prentice-Hall, 1959.

Classic among calculus textbooks, this is one of the most detailed treatments.

While the urban analyst would not usually need to be familiar with the advanced

topics in the later parts of the book, it is advantageous to have such a ready

reference source ranging from the fundamental to the advanced topics of cal-

culus. The incorporation of analytic geometry is especially relevant to many

spatial problems in urban analysis.



The most popular of the complex optimization models is linear program-

ming. While the mathematical foundations of linear programming (matrix

algebra, vector analysis, analytical geometry, and algebra) are found in

works several centuries old, the first solved linear program was not de-

veloped until 1947 by George B. Dantzig. Dantzig developed an algorithm
for solving linear programming problems and, with the collaboration of

Marshall Wood and Alex Orden, made several applications for the U.S.

Air Force concerning such military problems as optimal bombing patterns,

search and destroy tactics, and others as part of Project SCOOP (Scien-

tific Computation of Optimum Programs). Its first major testing ground

was the Berlin Airlift in 1949. A host of mathematicians, such famous

names as A. W. Tucker, John von Neumann, and T. C. Koopmans, had

advanced the theory of linear programming to mathematical sophistication

by 1955. [he paramount use of linear programming was not in the military

but in business. Sophisticated linear programming models have been de-

veloped and solved for fuel blending, airline scheduling, job assignment,

transportation and distribution, maintenance, and a host of other problems.

Linear programming has been applied to urban systems in recent years

with interesting results. The most important applications to urban systems

have been made to problems of transportation and land use. Increasingly,

we are seeing linear programming applied to urban administration, man-

agement, and economic development. Many abstract problems in urban

systems have been proposed for modeling and optimization through the

linear programming approach, but the results have been unconvincing.

Linear programming can be defined as a mathematical algorithm and

theory for optimizing problems stated in linear terms and subjected to

linear constraints. In many cases simple and complex linear models must

be fitted to the problem and constraints prior to use of the linear program-

ming approach. If the problem and constraints cannot be modeled in

linear terms, then linear programming is an inappropriate approach to

optimization.

The general expression for linear programming can be expressed as

follows:

Opt Lf, AQ s+ 9 Xn) = 61X1 + Coxe $+... CnXn]s

CHAPTER

Linear Programming
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subject to

Gx, + dexe+ . . . + AinXn < bi,

dix + dex2+ . + donXn < be,

AmiXi + Amoxet . ee + Omnkn S bm,

X10, %2> 0, - . 5 Xm 20.

The linear function describing the problem is called the objective function,

and the linear inequalities describing the limits are the familiar constraints.

The general linear programming expression is a variation of the general

complex optimization problem. This variation is made for flexibility in

objective function and constraint description as well as for certain compu-

tational advantages.

The principal formulation of the linear programming problem under

consideration, whether it be maximization or minimization, is called the

primal problem. For every maximization problem there exists a minimiza-

tion problem corresponding to it, and for every minimization problem there

exists a corresponding maximization problem. This ancillary problem cor-

responding to the primal problem is called the dual problem. The dual

problem can be expressed by transposing the A matrix elements (a;;), B

vector elements (bi), and C’ vector elements (c;), and forming a new

function (g), using dual variables (u;), such that

Dual Opt [g(u1, ue, ... 5 um) = bite + dota +... + bmittm)];

subject to

yi) “- dalla +. ©. Omillm 2 C1,

G12, + doglla + . . . Amallm = 025

Ainlli + Genta + ~~. . Amnllm = Cny

Uy > O,Ug > 0, . . . 5 Um> O.

We will evaluate the dual problem at a later point, but it is interesting to

note here that Max f = Min g, or vice versa depending on the given prob-

lem. In formal terms:

Primal Dual

Max/Min | f (X) = C’X} Min/Max {g (U) = B’U}
Subject to AX<B,X>0 Subject to A’ U>C,U>0

Max C’ X = Min B’ U or Min C’ X = Max B’ U.
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The concept of linearity merits further discussion. Linear programming

uses a special case of the linear model which omits constants by moving the

origin point of the variables to correspond to the origin of the function.

This means that the simple linear model f(x) = a + bx would have to be

adjusted to f(x) = bx by moving the f(x) axis from zero to a. The mathe-

matical reason is that linearity must be strict; in formal terms

f(ax1 + bx2) = af(x1) + Of(x2).

The addition of a constant to this strict definition of linearity would make

the above relationship only an approximation. This is not a serious prob-

lem to deal with in practical terms.

GEOMETRIC INTERPRETATION

The mathematical algorithm and theory of linear programming have their

roots in analytical geometry. Embedded in analytical geometry is the anal-

ogy to vector analysis and matrix algebra which lies at the heart of linear

programming. A geometric interpretation of linear programming can serve

as a simplifying and suggestive benchmark.

A few principles of analytical geometry are relevant to linear program-

ming. The essential notion of the additive nature of vectors, let us say in

two-dimensional space (2-space) for simplicity, is most important. Consider

two vectors, X1 = (1, 71) and Xe = (x2, y2), which can be added, so that

Ai + Xe = (x1 + Xo, Yr + ye).

This same algebraic principle has its complementary geometric equivalent,

as shown in Fig. 7:1.

We first noticed in our discussion of matrix models that a constant or

scalar k, multiplied by a vector, resulted in a new vector. This can be ex-

pressed by the multiplication of scalar k by vector X = (x1, x2):

kX = (kx1, kxe).

The concepts of vector additivity and multiplication of a vector by a

scalar can be combined; the resultant is called a linear combination. For

example, let us say that there exists a set of vectors Xi, Xo,..., Xm and

a set of corresponding scalars ky, ke, ..., km; the resulting linear combina-

tion is a vector we can call X, so that
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[(x1 + x2), (Ys Pye) J

O A

Fic. 7:1. Additivity of vectors in 2-space.

X=hXythXot ... thnXm-

Some special cases merit mention. If the k; > 0, then we have a nonnegative

linear combination. If the k; are nonnegative and

m

D k= I,
i=l

it is called a convex linear combination.

A few examples of the above concepts may be illustrative. Consider

X, = (3,7) and X2 = (6,2), so that all nonnegative linear combinations of

the form X = kX, + kX, will form a set of infinite vectors within the

shaded area called a cone (see Fig. 7:2). The convex linear combination

formed when |

2

k= 1
qo]

is a set of infinite vectors along a line joining X, and X, (see Fig. 7:3).
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Fic. 7:2. Gone formed by nonnegative linear combination for Xi, Xe.

A most interesting thing happens when we add another vector to our

consideration of convex linear combinations. Assume that we add 3 =

(7,6) to our above convex linear combination. All vectors that can be

generated from various values of k; are no longer along a line but within

an enclosed area called a convex set (see Fig. 7:4). The convex set is

important to linear programming in that it helps define an area in which

solutions to a problem can be sought. In our example for Xi, X2, and X;

all values for the convex linear combination lie within the convex set or

along the lines forming the borders and nowhere else. Hence, if any X;

= 0, and the remaining two vectors are not zero, then the values for the

convex linear combination lie along the line joining the positive vectors.

A convex set can be defined in geometric terms for practical purposes

as a set of vectors such that given any two vectors belonging to the set,

a line can be drawn to connect them which will lie entirely within the set.

The most common examples of convex sets are shown in Fig. 7:5. The

example shown as A results from a convex linear combination of XY; vec-
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Fic. 7:3. Set formed by convex linear combination for X,, X2.

tors. The vectors along the boundary line which are unique and are not

formed by the convex linear combination of any two vectors are called

extreme points. The example shown as B is the result of an infinite number

of convex linear combinations of an infinite number of X;; hence there

are an infinite number of extreme points along the quasi circumference as

well as an infinite number of vectors in the interior. The example shown

as C' is a nonconvex set which does not have any extreme points but does

have an infinite number of vectors within its interior — it is not possible

to form a nonconvex set with linear constraints.

This geometric interpretation provides an intuitive key to understanding

the linear programming model as well as providing the mathematical basis

for solution. The practical approach is to express linear programming prob-

lems such that the answers lie at the extreme points of the convex set. This

means that we have only to search the extreme points for a solution which

is optimal. |

The geometrical interpretation can be used to solve elementary linear
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Fic. 7:4. Convex set formed by convex linear combination for X1, X2, Xs.

programming problems. Consider the simple linear programming problem:

Max f (x1, x2) = X1 + 2%,

subject to

7%1 + 5x2 < 353
5x1 + 8x2 < 40,

Xi > 0,

xX > 0.

We can begin our solution of this problem by examining the nature of the

constraints. In general, constraints of the form

ayx%1 +... + aimtm Sb

are called half spaces when rendered as geometric expressions on a grid —

coordinate mapping. Our first tonstraint forms a half space when mapped;

similarly, another half space is formed when the second constraint is

mapped. Since we have restricted our x; > 0, then we need consider only
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Fic. 7:5. Convex sets and a nonconvex set.

the first or positive quadrant of our mapping. All values for x, and x2 lie

along the boundary lines or within the interior of the convex set formed

by the intersection of the half spaces that satisfy the four constraints, as

shown in Fig. 7:6. It is obvious from inspection that maximum and mini-

mum values must exist at the four extreme points. Since we have specified

a maximization for the objective function, we need only to evaluate each

of the extreme points to determine which yields a maximum f(x,,x2). The

reader may recall that this is analogous to the boundary search ($1) dis-

cussed as part of the simple optimization model’s optimal search routine.

There are two approaches to searching for the extreme point that maxi-

mizes the objective function. The first approach is to map the objective

function by setting it equal to certain arbitrary values and mapping the

resulting lines over our convex set (or hyperplanes where more than two

x; are used). Intuitively, one can imagine that, done carefully enough, the

line drawn closest to the extreme point that has the highest arbitrary value

is an approximate maximum. An example of this approach is shown in

Fig. 7:7, and it appears that Max f(xf, xf) = 10, for xf = o and x* = 5.
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Fic. 7:6. Convex set formed by two half spaces for x1, x2 > 0.

A more rigorous search can be made by the substitution of the four

extreme-point values in the objective function, a determination of which

yields a maximum:

(x1,x2) F (x1, x2) = x1 + 2x2

(0,0) oO

(5,0) 5
(2.3,3.6) 9-5

(0,5) 10

This complete enumeration of possible extreme-point values verifies our

geometric solution, and we can state that x* = 0, xf = 5, and f(xf, x7)

= 10, with the aforementioned knowledge of the heuristic rule that the

optimal solution is always found among the extreme points. While this

example may be trivial, the theoretical and mathematical foundation un-

derlies all linear programming algorithms and concepts.
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Fic. 7:7. Optimal search of extreme points by geometric substitution.

SrmupLex MEetrHop

It would be delightful if urban system problems were as simple as our

above example so that we could use geometric approaches to solutions.

Unfortunately, the real world is rarely so simple. Most linear programming

applications to urban systems involve several x; and many constraints.

Rather than our simple 2-space mapping, we must deal with n-space con-

figurations, often impossible to visualize or draw. For example, when we

have multiple x variables and multiple constraints, the area in which the

solution lies, called the solution space, takes a multifaceted, diamondlike

form. There are often very many extreme points to consider, eliminating

a complete enumeration for practical purposes.

Fortunately, George B. Dantzig developed a mathematical algorithm to

minimize our efforts when dealing with a linear programming problem in

which the constraints generate a solution space which is a convex set.

The algorithm is called the simplex method. The simplex method has

four basic steps: | |

1. Select an extreme point at a corner of the convex set or solution space

as a starting place.

2. Select an edge (or line) that goes through this extreme point such
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that f increases in value along the edge (or decreases in minimization

problems).

3. Proceed along the selected edge to the next extreme point which lies

at a corner.

4. Repeat steps 2 and 3 until an extreme point is found at a corner of

the convex set such that f no longer increases in value (or no longer de-

creases for minimization), and consider this point the optimal values for

the problem.

There are a number of special mathematical problems that create spe-

cial cases in limear programming. For the purpose of clarity we shall omit

special cases by adhering to two assumptions. The first assumption is that

we have a positive condition whereby all constants to the right of the

inequality signs in constraints, that is, the b variables, are nonnegative,

and that each row of the matrix of coefficients A has at least one positive

value. The second assumption is that we deal with nondegenerate condi-

tions, which means that the ¢ and b constants are not linear combinations

of fewer rows and columns than shown in the initial problem statement.

The four basic steps of the simplex method have mathematical comple-

ments. We shall examine the simplex method by restating the four basic

steps in terms of the mathematical concepts associated with each.

STEP I. THE INITIAL TABLE

Having expressed the problem in the proper linear programming format,

we must remove the inequality signs from the constraints by establishing

the equivalent problem; we use artificial variables, called slack variables,

to achieve this. We can rewrite the general expression as

Max ¢1x1 + Coxe +... Hb enn bt OXn41 + OXnge fo. . fF OXntm,

subject to

QyX1 + axe... + ainkn + Xngi tb OXnge bf . «© fF OXn im = Jr,

QaixX1 ft GegXe pee] oF Oankn F OXng1 + Xniza to... “+ OXn4im = bo,

AmiX} + Am 2X2 + * 5 4 + amnXn + OXn+1 + OXn+2 + * + 8 + Xnt-m = Bins
X12 0,%2 20, «1 6g Hn 0, Xng1 FO, Xnge 20, - ys Xam 20.

* This approach is the clearest we have found and is developed fully in Seymour

Lipschutz, Theory and Problems of Finite Mathematics (New York: Schaum,

1966).
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For simplicity and clarity we shall assume a maximization problem but

note that the simplex method is the same for minimization problems, The

reader may notice that the equivalent problem is solely the initial problem

augmented by an identity matrix of coefficients for the slack variables.

The initial table of the simplex method is obtained by regarding the

columns of coefficients of the constraints as vectors (Pn) and the slack-

variable coefficients as an identity matrix and then placing the b and c

elements as follows in Table 7:1. The last row of the initial table is called

Taste 7:1. Initial table of simplex method.

P, Po * ° » Pr

Qi «ayy » + © Ain Io... 90 by

ao, Go 7 «= « AM Oo Ir... . 90 be

Qm1 am? amn Oo oO . . * I bm

— Cl — C4 . ” a _— Cn oO O * . . O Oo

the indicator row and is simply the negative values of the objective func-

tion coefficients. The last entry of the indicator row is called the criterion

and represents the value of the objective function, in this case the value

of the objective function at origin.

Returning to the problem that we solved geometrically in Fig. 7:7, we

can express the initial table of the problem in the following way:

Pi, Py

in) I o 35

5 8 O I 40

—-I 2 oE®) Oo

STEP 2. THE PIVOT POINT

The pivot point is an element of the initial table that is computed in

three substeps:

1. Select any column which has a negative element in the indicator row.

. 2. Divide each positive entry in the corresponding column into the cor-

responding element in the last column. |
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3. Determine the entry that results in the smallest quotient from substep

2 and consider it the pivot point. In the remote case that a problem does

not have any negative elements in the indicator row, it has no pivot point

and can be regarded as an optimal solution to the problem with the proper

interpretation of the simplex method.

Considering our example, we can select either P, or P, and complete

all three substeps. If we select P;, then 7 is the pivot point; whereas if we

select P., then 8 is the pivot point. We shall select P,:

P, P»

7 5 I 0 35

5 oO 1 40

—I —2 O O O

STEP 3. COMPUTING THE NEW TABLE

The third step requires a set of computations which eventually results

in a solution to the problem. In essence, the pivot point is used as a start-

ing place for performing computations on the row in which it exists; then

use row operations to manipulate the other rows so that zeros result in the

same column as the pivot point.

The computation is performed in three substeps. Let the prescripted
term ,S be the simplex initial table with rows R;, whose pivot point is the

rth row and cth column — that is, if ,S has elements s;;, then 5,, is the

pivot point. One must compute a new simplex table 2S, with rows 2Ri,

using the initial table, and repeat this procedure until a terminal table

»S is found wherein all elements of the indicator row are nonnegative. This

means that k different tables for S may exist such that k=1, 2,...,

t,..., m, of which only ¢ is important to us. The substeps are described

below.

1. Divide each element of the pivot row iR, of .S by the pivot point

Spe to obtain the new row oR, of 2S by using

R=
Sire

If the pivot column c is labeled P,, where n = 1, 2,..., g, then label the

corresponding pivot row r as P,. It can be observed that this substep always

results in o5,, = I. |

2. All other rows of 2f;, where i ~ 1, are computed by row operations
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which involve adding the proper multiples of ,#, to the remaining rows 1R;

of 1S such that all elements of the pivot column ¢ are zero, except that

eSee = 1. This is accomplished by

oRi = + (Siclol, + ii.

3. Substeps 1 and 2 are repeated until all elements of the indicator row

are nonnegative, and if any row of a new table ,.S has rows labeled P,,

then these rows are correspondingly labeled in ;S and especially in ,S.

Considering our previous example, we can rewrite the initial table and

circled pivot point as

initial table = \S =

P, Ps

Ril 7 5 I 0 35
Re 5 O I 40

wR3 |—-I —-2 O O Oo

where the pivot point = Se = 8.

The new table 5 is computed and the result is

new table = oS =

P; Py»

oki 29/8 0 1 —5/8 IO
Py = oho 5/8 [ 0 1/8 5

os | 1/4 &O Oo 1/4 10

As can be noted, this new table 2S was obtained by dividing ,R. by Sr

= 8, multiplying 2k, by — 5 and adding it to 1A; to yield .R:, and then

multiplying .R, by 2 and adding it to ,R; to yield .Rs.

Our example is relatively simple in that only one new table must be

computed to find all elements of the indicator row to be nonnegative.

Hence in our simple problem 2S = ,S, or the new table computed from

the initial table is a terminal table.

STEP 4. INTERPRETING THE TERMINAL TABLE

The terminal table is the optimal solution to the linear programming

problem and has some interesting things about it to consider. The criterion
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of the terminal table is the maximum value of the primal problem and

minimum value of the dual problem (if the problem is reversed, then the

maximum and minimum values are reversed). Considering our example

above, we note that the criterion of the terminal table is 10; hence

Max f(x¥, x2) = Min g(*, u*) = 10,

which confirms our geometric solution.

The values resulting in the last column that have a corresponding row

vector P, represent the optimal values for the decision variables x*, x},

., x2. In our example only P, exists as a row vector in the terminal

table, so we know that xf = 0, xf = 5, which also confirms our geo-

metric solution.

The resulting elements of the indicator row corresponding to columns

with no P,, (these are the slack-variable columns) of the terminal table are

the values for the dual problem optimization. In our example U = {u,us},

uy = 0, and u; = 1/4. This can be easily seen if we rewrite the original

problem to form the dual problem:

Min g(u1, uz) = 3501 + 402,
subject to

qu + 5ue = I,

51 + Bue > 2,

uy > 0,

ug > oO.

We can interpret the terminal table such that

g(uy, uy) = 10 = f(x, x7),
where

ux = 0, xf = 0,

uy = 1/4, xy = 5.

There are quite a few versions of the simplex method in terms of the

kinds of matrices or tables developed. We have presented the most ele-

mentary algorithm that could be found. In practice the urban analyst

normally uses a computer and any of several library programs to solve

linear programming problems. However, the urban analyst should be at

least as familiar with what the computer is doing as would be entailed in

a basic understanding of the above discussion. To use an analogy, the above

discussion is conceptually similar to explaining to a reasonable person the

steps in starting a car engine, shifting to drive, controlling the moving car,

and turning off the engine when one reaches the desired destination. This
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would work well for most drivers, but one would be reluctant to enter the

Sebring 500 with only this knowledge and experience.

MEANING OF THE DUAL SOLUTION

The dual solution holds some interesting implications for planning and

management of urban systems. The dual variables are resource or shadow

prices in an economic sense. The linear programming problem corresponds

to the economic problem of allocating scarce resources in the best manner

in order to achieve some goal (maximization or minimization of an objec-

tive function). The dual solution represents the prices that should be paid

for the resources in economic terms of marginal prices.

The planning implication is that the dual solution represents the in-

crease (or decrease) in the value of the optimal objective function of the

primal solution that can be gained by relaxing constraints on the cor-

responding resource by one unit. Again returning to our example, uy =

14 means that Max f(xf, «}) can be increased by % by relaxing the

constraints on x, by one unit. There is a limit as to how far this can be

taken before an entirely new linear programming problem must be formu-

lated, and this can be determined by several types of analysis, often called

sensitivity analysis. The salient point is that the primal solution tells the

planner and manager what the best solution to the problem is within the

given constraints; the ‘dual solution tells the planner and manager what

they can gain for the urban system by easing the constraints for resources.

Planning and management of urban systems require change in constraints

in many cases, and this is where the urban analyst can specify the dimen-

sions of change.

SpeciaL Linear PRoGRAMMING Topics

We have examined the basic linear programming problem with the in-

herent assumption that the optimal values could be any real numbers.

Especially in urban systems such an assumption is not always possible. Use

of linear programming for problems of equipment replacement or use,

facility location, capital improvements, batch order sizes, transportation

scheduling, and many “go-no go” problems requires integer values for
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optimal solutions. Similarly, when using the linear programming approach

to choose among different alternatives, an integer solution is essential.

Consider the following general linear programming problem:

vw

Opt f(x;) = Pz C;Xi,
j=

subject to

7%

» Qigx; < bs,
qe=l

xj = 0,
where

J = I, 2, o © @ 3 1,

2= 1,2, ..., mM.

If all x; must be integers, we have what is often called a pure-integer

programming problem. If some x; must be integers and the remainder can

have real-number values, we have a mixed-integer programming problem.

A variation of the pure-integer programming problem is the combina-

tortal problem. The combinatorial problem seeks to find the best alternative

to solving a problem when there are any number of alternatives n that will

solve the problem. For example, the classic example is the traveling sales-

man who must visit m cities and return to his starting point. There are

(n — 1)! possible routes or tours that he can take, but only one of them is

the cheapest, shortest, and most efficient. While this may not seem to be a

mathematical problem, consider a candidate for governor of a state who

asks an urban analyst to find the shortest tour he can make of the ten

largest cities in the state. The urban analyst would find that there are

(10 — 1)! =9-8-7-6-5-4°3-2:1 = 362,880 possible tours — which.

one should he recommend as the shortest?

One of those little ironies of mathematics is that the easiest problems to

visualize, such as integer problems, are the hardest to solve. The pure- and

mixed-integer programming problems are among the most difficult to solve

and often cannot be solved. The alert reader may suggest formulation of a

general linear programming problem and rounding the solutions to the

nearest integers. Unfortunately, this does not work for any but the most

elementary problems because there are so many extreme points in many

problems that rounding the solution will almost guarantee an error. When

any elements a;; of the A matrix are negative, rounding is not possible in

most cases. Similarly, in both integer and combinatorial problems a search

of all extreme points or possible solutions is obviously beyond the capability

of urban analysts. In fact, for most problems a complete enumeration and
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search of all possible solutions is beyond the capability of even the largest

computers.

A kind of compromise must be used to find solutions to integer and com-

binatorial programming problems. There are many algorithms which in

some cases guarantee little more than an approximation, often unable to be

proved optimal. Nonetheless, there are three classes of algorithms into

which most examples fall.

1. Cutting-Plane Algorithms. These algorithms start with a general

linear programming approach but add a condition, usually an additional

constraint, that satisfies an integer solution. After a distressingly large

number of attempts (iterations) some signs appear that indicate conver-

gence (coming together) of non-integer and integer solutions. These al-

gorithms require a great amount of time, both human and machine, and

tend to be very tedious.

2. Back-Track Algorithms. The back-track class of algorithms rely more

on partial enumeration of possible solutions than on convergence of non-

integer and integer solutions. The basic approach usually involves gener-

ating a family of separate linear programming problems which essentially

find a solution piece by piece. The back-track notion appears in that a

possible solution usually points to other possible solutions which one must

go backward to compute. The most common examples of back-track al-

gorithms are the branch-and-bound algorithm, which is used to stratify

mixed-integer programming problems into integer and real-number vari-

ables, and the partial-enumeration algorithm, which separates partial solu-

tions from the variables until a full solution is found.

3. Heuristic Programming. A most popular and interesting class of

algorithms is the extension of the heuristic or rule-of-thumb idea into a

programming context. Sophisticated and simple heuristics are generated

for the particular problem under consideration which limit the number of

possible solutions. For example, in our traveling candidate scenario it may

be that a rule of thumb is to visit a particular city always before visiting

another city for any of a variety of reasons (but probably partisan in

nature). This would substantially restrict the number of possible tours.

The basic tool of the heuristic programming approach is trial and error.

In all of the classes of algorithms for mteger and combinatorial pro-

gramming problems, it is almost essential to use a computer and any one

or group of library programs available. Heuristic programming almost

always requires assistance from computer programmers to develop the

software for computer solutions,
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A special topic that one should also consider is optimization of net-

works by linear programming techniques. Networks are closed systems of

nodes and paths to represent flows in problem conditions. Networks have

been used in urban analysis for several years for work programming (criti-

cal path and program evaluation review techniques), division sequencing,

communications, and transportation.”

The classical problem of optimization in networks is the transportation

problem. The transportation problem involves the minimization of time,

cost, and effort in travel, subject to the constraints that all goods must be

delivered to all places where demanded or all origins must have destina-

tions. In economic terms the transportation problem requires minimization

of the cost of distribution, subject to the constraint that supply must equal

demand, The transportation problem is usually expressed as follows:

mm wT

Min >> 2 CigXipy
.

tex] jo

subject to

2 xiy <S; (supply or origins),
j=

>, x3 > D; (demand or destinations).
ton]

Thus

TMm n supply = demand3 S, = y D; ( pply )
j=l jal origins = destination:

where

I, 2, ...5 M,

J = 1, 2, ewes 1,

Xiz 20.

The network in the transportation problem can be depicted as shown in

Fig. 7:8. One must establish a stated time interval in which to consider

the constraints, often called the planning period in urban analysis.

The computational difficulty with the transportation problem is that

S; and D; are nonnegative integers; consequently, x= 1, 2, ..., 4.

Further, the equality constraint requires that a factor, called a dummy

variable, be employed to create an inequality for the proper linear pro-

gramming format. Fortunately, there are several approaches to solution

2See Anthony J. Catanese and Alan W. Steiss, Systemic Planning: Theory and

Application (Boston: D. C. Heath, 1970), especially Parts 2 and 3.
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DEMAND OR

DESTINATION

SUPPLY OR

ORIGIN

Fic. 7:8. Network for transportation problem.

of the transportation problem that have been developed because of its

extensive use. Some approaches salvage the simplex algorithm by deleting

one of the redundant supply or demand constraints. Other algorithms mod-

ify simplex and integer programming techniques; a fine example of this

is the Dennis transportation code.

APPLICATION OF LINEAR PROGRAMMING

There have been much interest in and work on linear programming appli-

cations in urban systems, much of which was fostered by the considerable

success of these optimization models in business and defense applications.

It is difficult to present an adequate coverage of the applications of linear

programming in urban analysis because the applications are being con-

tinually modified, revised, and restructured. The most sensible approach

seems to be to evaluate the linear programming applications that have

met with enough success that the applications are well known. Within this

perspective, we can examine linear programming models as formulated in

economic development, transportation, and land use and development.
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ECONOMIC DEVELOPMENT

Urban analysts are often called upon to evaluate and assist in the solu-

tion of economic problems of urban systems revolving around such matters

as income distribution, economic base and structure, and Jabor problems.

A distinct field of study exists for the analysis of economic development

problems at the regional level that uses highly sophisticated scientific tech-

niques —- it is called regional science. Regional science is a hybrid of eco-

nomics and urban systems planning. The classic work describing the

scientific techniques of regional science is by Walter Isard.

Linear programming is applied in problems of economic development of

urban systems for the optimal use of scarce resources, as constrained by

limitations on availability and consumption. Resources are defined in tra-

ditional economic terms of land, labor, capital, and natural resources.

Linear programming has been applied to such problems as firm and in-

dustry location, production scheduling, commodity flows and distribution,

and various special industry problems in such areas as petrochemicals,

fluid milk, airline routes, and coal mining.

Isard describes the general linear programming problem in economic

development terms, and we can profit from examining it.t If we consider

economic activities that can be undertaken in an urban system, in terms

of unit levels of operation that result in one new dollar of income, then

we know that resources, say land, labor, capital, and water, are required

for each unit level of operation. Consider two economic activities, x, and

x2; using an arbitrary measure of resource availability MM, it is known

that the urban system has available for consumption 644M units of water,

1.8MM units of land, 34MM units of labor, and 24MM units of capital.

TABLE 7:2. Resource requirements per

dollar of new income in

MM units.

Required Units | Activity 1 | Activity 2

Water 0.5 0.6

Land 0.2 0.15

Labor 0.4 0.2

Capital 3.0 2.0

> Walter Isard, Methods of Regional Analysis: An Introduction to Regional Sci-

ence (Cambridge, Mass.: M.I.T. Press, 1960).

* Ibid., pp. 413-492.
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Fic. 7:9. Geometric solution of linear program for economic development

by Isard.

The resource requirements for each unit level of operation are shown in

Table 7:2. Hence the linear programming problem can be expressed as

Max f(x1, x2) = x1 + x2

subject to

(new income objective function),

0.5x1 + 0.6x2 < 6 (water constraint),

0.2%; + 0.15x2 < 1.8 (land constraint),

0.4% + 0.2% <3 ~~ (labor constraint),

3.01 + 2.0x2 < 24 (capital constraint),

x1 > 0 (nonnegativity constraint),

x2 > 0 (nonnegativity constraint).

Since this is a simple problem, we can use a geometric solution, as shown

in Fig. 7:9. Using the familiar geometric solution approach, we find

that xf = 3M M units and xf = 7.5MM units; hence f(x*, x*) = $10.5MM
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units. The same and similar problems can be solved by the simplex
algorithm with equal efficiency.

There have been highly sophisticated applications of linear program-

ming to such complex problems of regional science as interregional flows

of goods and services. Economic analysis in general has used the linear

programming model extensively. It is beyond the scope of our discussion

to go into these applications, but the interested reader will find individual

study to be rewarding in these areas. Economic development and regional

science, as well as economics per se, have used linear programming to a

higher degree than any other social science discipline.

TRANSPORTATION

Notable applications of linear programming to the form of the trans-

portation problem have been undertaken in urban analysis. The usual

concern is the determination of the optimal distribution of origin and

destination places in the urban system such that time, cost, or effort is

minimized. One of the more interesting of these attempts was undertaken

in the Buffalo, New York, urban system as part of the Niagara Frontier

Transportation Study." The project involved computation of the optimal

time for commuting, that is, the minimum time spent in commuting, and

comparison of the optimal time against the actual time.

The minimum time spent in commuting was computed by use of the

transportation problem:

TM nr

Min Tn = 20 Do aux (objective cost function),
jon] jo=l

subject to

nr

> ij = J: (destination constraint),
jal

m *
>. «7 = A; (origin constraint),
i=l

TMm

> xj; > 0 (nonnegativity constraint),
i=]

® The classic work in the field is Robert Dorfman, Paul A. Samuelson, and Robert

M. Solow, Linear Programming and Economic Analysis (New York: McGraw-Hill,

1958).

* John R. Hamburg et al., A Linear Programming Test of Journey to Work Mini-

mization (Albany: New York State Department of Public Works, 1966).
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where

T.. = minimum total travel time,

aj; = travel time from zone z to zone J,

x; = trips from zone 7 to zone J,

m = number of work zones,

n = number of home zones,

3: = work places in zone 2,

H; = homes in zone /.

The solution of this problem was accomplished by using the Dennis trans-

portation code.

In order to compare the optimal time spent in commuting with the real

world, the urban analysts developed an index of indifference, expressed by

Ta — Im

ar ar
where

I, = index of indifference for group s,

T, = actual travel time,

I, = probable travel time for complete indifference.

The actual travel time T, was computed by

TMm nr

Da = 2, Dig Hip.
i=l jal

The probable travel time, if commuters were completely indifferent to time,

was found by assuming that workers were allocated to homes on a propor-

tional basis. The equation for T, was the same as 7, except that

2, Ai
j=l

The index can be interpreted by taking heed of values for J close to zero

as reflecting patterns approaching the optimal; values for J close to one

reflect complete indifference to time spent in commuting to work.

The data from the Buffalo urban system were grouped according to in-

come, race, and driver status. As can be seen in Table 7:3, lower- and

middle-income groups are more sensitive to travel time than the high-

income group. It also can be noted that nonwhite nondrivers are the group

most indifferent toward time spent in commuting. There were many ex-

tensions and ramifications of the findings, but urban analysts believed that

the most important result was an explicit proof that commuters were not
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TaBLe 7:3. Index of indifference for income, race, and driver status

groups, Buffalo urban system.

Index

Grou Number Total Travel Time Average Travel | of In-

5 P | of Com- (hours) Time (minutes) |differ-
muters T > a Tm Tp, Ta Tm ence

I,

. Less 51,242 | 21,820.9 9,973.8 3,223.0] 25.5 11.7 3.8] 0.36

than

$4,999

. $5,000- | 108,696 | 50,806.6 25,358.0 9,059.3 | 28.0 14.0 5.0] 0.39 |

$7,999

. More 92,750 | 32,595.4 24,498.8 10,709.1 | at.r 15.8 6.9 | 0.63

than

$8,000

. White | 247,099 | 87,140.2 45,827.9 18,954.9 | 23.1 1-1 4.6 | 0.39

Driver

. White 45,536 | 12,846.1 6,625.8 2,545.6 |16.9 8.7 3.3 | 0.40

Non-

driver

. Non- 10,616 2,565.2 1,839.1 1,341.0 114.4 10.3 7.6 | 0.41

white

Driver

. Non- 6,919 3,254.7 1,716.9 755-6 | 11.8 9.1 6.6 | 0.65

white 2

Non-

driver

Al 252,688 |117,370.4 50,830.6 22,411.0 127.9 14.2 5.3 | 0.39
Commuters | 79*? oan _ —_ " " ° "

indifferent to the time spent in commuting (as some theorists have pro-

posed). Several avenues for further application of this approach exist and

should be traveled in the near future in urban analysis.

LAND USE AND DEVELOPMENT

Considerable interest and research in the mathematical modeling of

land use and development of urban systems have been generated since the
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early 1950s. Linear programming has been used in several of the successful

models with varying degrees of complexity and utility.”

One of the earliest attempts at modeling land use and development used

linear programming to distribute residential activities within an urban

system (Philadelphia).* The original problem used a variation of the

transportation problem of optimization in a network to assign families to

residential locations in order to optimize (maximize) their price- or

rent-paying ability (sometimes referred to simply as bid rent). The pro-

posed approach was to predict the optimal price- or rent-paying ability

of the family. For various reasons, not denying lack of sufficient data, the

model was not operational until the bid-rent concept was revised to reflect

actual, rather than optimal, family price- or rent-paying patterns.®

It is somewhat difficult to describe the operational version of the model,

which is sometimes referred to as the Penn-Jersey model, because of the

very large number of variables and constraints.*° Suffice it to say that

the objective function describes the preference of families for price or rent

for various-sized dwellings according to their incomes. The assumption is

made that socioeconomic factors are explained by the actual patterns, and

it 1S not necessary to evaluate each specific factor upon preference for

dwelling size for families of varying income — this is sometimes called

averaging out. The resultant optimal solution is a matrix which can be

interpreted to represent a three-dimensional spatial distribution surface

around the central city (where bid rent is the highest) and into the sub-

urbs (where bid rent becomes lower). Homogeneity is implicit in the

model, and critics have argued that it tends to distribute families within

space in an urban system in a manner which is quite unlike the real

world, Nonetheless, this pioneering effort has received considerable notice

and emulation.

A more pragmatic model was developed for the Milwaukee urban system

which assumed that the best plan for the area was that which minimized

"The only major integration of these models into a unified context that has

reached print is George C. Hemmens, ed., Urban Development Models (Washing-

ton, D.C.: Highway Research Board, 1968).

*J. P. Herbert and B. H. Stevens, “A Model for the Distribution of Residential

Activities in Urban Areas,” Journal of Regional Science, 2, no. 2 (Winter, 1960),

21-36.

* Britton Harris, Linear Programming and the Projection of Land Uses, P. J.
Paper 20 (Philadelphia: Penn-Jersey Transportation Study, 1962).

* Britton Harris, Josef Nathanson, and Louis Rosenberg, Research on an Equilib-

rium Model of Metropolitan Housing and Locational Change (Philadelphia: Insti-

tute for Environmental Studies, University of Pennsylvania, 1966).
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the cost of development." The constraints upon this objective were the

demand for various types of development (such as residential, industrial,

and commercial) ; limitations on land uses within zones, usually based upon

density of development; and ratios of land uses relative to other land uses

in a zone, established by zoning and other land use controls. The linear

programming model was used for the general problem, expressed by

Min cy = ¢1%1 + Coxe +o... He OnXn (objective cost function),

subject to

dix1 + doxge + ... + daxn = EF; (demand constraint),

xitxeot ... bon < Fn (use limitation),

Xn < Gxm (ratio constraint),

Xn = O (nonnegativity constraint),

where

¢; = total costs of development for period £,

¢; = cost coefficient,

x; = type of land use,

FE, = demand for each land use,

d; = service coefficients for supporting development, such as

streets, utilities, and improvements,

Ff, = limit on land use n in zone m,

G = ratio of land use n allowed relative to land use m in the

same or different zones for the area.

The above linear programming problem is the generalized set of expres-

sions for the comprehensive urban system’s land use and development.

Experience with the general model revealed that an urban system with

30 zones often yielded 400 decision variables and 60 constraints.

A trouble spot with the above model, often called the SEWRPC land

use design model, is that the values for the x;, or land use variables, are

integers. For practical purposes the urban analysts used the simplex al-

gorithm rather than integer programming and concluded that the approxi-

mation was 80 percent accurate. Nonetheless, the optimal solution is an

approximation when solved by the simplex method.

An example of the industrial land use submodel is illustrative of the

specific characteristics of the model. Considering only industrial land use,

the linear programming problem within the SEWRPC land use design

model is expressed by

“ Southeastern Wisconsin Regional Planning Commission, A Mathematical Ap-

proach to Urban Design: A Progress Report on a Land Use Plan Design Model

and a Land Use Simulation Model (Waukesha, Wis., 1966).
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Min C,; = > ¥ Cinlin (objective cost function),
i=l n=l

subject to

IN

> > Tin + Slin = Tig (demand constraint),
i=l n=l

J | *
¥ lin <Inz (ratio constraint),
j==]

we 2 . 7 ” : i (use limitation),
where

C, = total industrial land development costs (dollars) in pe-

riod #,

Im = industrial land for industry 7 developed in zone n (acres),

t=1,2,..., fandn=1,2,...,N,

C;, = cost of developing industrial land for industry 2 in zone

(dollars/acre),

Ziq = total regional demand for industrial land in industry z

(acres),d=1,2,..., D,

i’ = service ratio or ratio of service land area to industrial

land area,

3 = set of lands meeting requirements for industry 2,
Jit = set of lands not meeting requirements for industry 2,

Ine = Capacity limit for industrial land in zone n, z= 1,2,...,

ZL.

This linear programming program can be verbalized by saying that total

costs of development for industrial land are minimized in planning period

t, subject to the constraints that the land required for each industry must

be satisfied and that industry does not locate on lands that do not meet

requirements for that industry. The unusual data needed to calibrate the

industrial land use submodel were collected through the execution of an

original survey. Having solved the submodel for the 30 zones of the urban

system, the optimal solution for industria] land use, which was a suboptimal

solution for the comprehensive land use model, was linked to similar sub-

models for residential, service, agricultural, and special Jand uses.

COMBINED LAND USE AND TRANSPORTATION

Land use and transportation are integrated closely in real-world urban
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systems, and it stands to reason that a combined land use and transporta-

tion model would be valuable for urban analysis. Only a few attempts have

been made in this direction. One of the most interesting attempts at an

integrated model using the linear programming approach is still experi-

mental.** We will simply present its format and suggest that it merits

further experimentation and testing.

RJ KI

Min Z = 3) dD D> Crenni Xeni (objective cost function),
roel j=l k=1 t=]

subject to

< id
De de dy Adk(r i Xk(r7i = —Ad (traffic flow capacity constraint),

RIE

De De de — Lier ni Xk.i 2 —L; (residential land availability constraint),
iki=:

JI

De De Ork(r.)i Xk(r,i = Be (labor requirements constraint),
i.

Xk(rjyi =O ©(nonnegativity constraint),

Z = total housing and travel-time-to-work costs,

R = number of plant locations, indexed by r= 1, 2,..., R,

N = number of residential tracts, indexed by 7 = 1, 2,..., J,

«&K = number of different types of possible housing structures contain-

ing one or more units, indexed by k= 1, 2,...,K,

I(r, 3) = number of routes connecting destination r to origin j, indexed by

(7,9) t= Ty, 2, +++, I(r,J),
Xx(r,7¢ = number of people living in housing structures of type k at location

j who take route (7,7): to plant 7,

C;, = unit housing cost of structure type f,

Cw, ji = twice the unit cost of travel (round trip) on route (7, 7)2,

Cy, pi = sum of costs Cy and Ce, ji,

D = number of traffic lanes between two specified locations in the

transportation network, indexed by d= 1, 2,..., D,

dak(r, ji = unit of traffic flow over traffic lane d by people living in housing

structure type & at location j traveling route (r, 7)2,

Sd = velocity per unit of flow over traffic lane d,

A*¢ = flow capacity of traffic lane d at velocity §,

L; = total land available for residential land use in tract ,

i

* Jack Ochs, “An Application of Linear Programming to Urban Spatial Orga-.

nization,” Journal of Regional Science, 9, no. 3 (Dec., 1969), 451-459.
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liner, pi = land required for housing by a person living in housing structure

type & in tract 7 who travels route (r,7)z to plant site r,

B, = total work force required at plant site r,

bek¢r,pi = a person who works at plant site 7, lives in housing structure

type k in tract j, and travels route (7, 7)z to work.

l

The above linear programming problem, which we can call the Ochs

transportation and land use model, is a hybrid of the Penn-Jersey model

and the transportation problem. It seeks to minimize the total costs that

all people in an urban system pay for housing and travel to work as con-

strained by the traffic flow capacity constraint, which holds that the flow

of traffic over a traffic lane cannot exceed the capacity of that traffic lane;

the residential land availability constraint, which holds that the total land

use for residential development in a tract cannot exceed the amount of

land available for residential land use in that tract; the labor requirements

constraint, which holds that the employment needs of each plant be satis-

fied; and the familiar nonnegativity constraint.

There are several assumptions built into the Ochs transportation and

land use model— for example, marginal cost prices rather than other

pricing mechanisms are assumed — and data problems which impede its

full potential for urban systems planning, yet it is unique in what is at-

tempted. With further modifications and improvements, and the benefit of

fresh ideas on its use, it could be a prototype of linear programming appli-

cations for urban analysis in the future.

RECOMMENDED EXERCISES

1. Solve the following linear programming problem:

Min Ixy + 2X9 + T. 5x3 + 2X45

subject to

5X1 + 12% + 2x3 + 8x4 > 5s

6x1 + 5x2 + 12x3 + 10x, > 10,

1X1 1x2 + 1x03 + 1x, = 100,

xy = QO.

Use the simplex algorithm for this problem and determine the optimal

solutions for the primal and dual problems.

2. The Okefenokee Urban Development Commission wants to maxi-

mize the income of people within its urban system by allocating its scarce
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resources of land, labor, capital, and water among new industries locating

there. The urban analysts assigned to this problem devise a unit called the

Okefenokee delivery dollar, ODD, which allows both resources and income

to be expressed in common terms. This year only two industrial activities

want to locate in the area, a paper mill and a glue factory. Working with

the respective industrial representatives, the urban analysts found that the

following resources were needed, measured in ODD’s for each new ODD

generated within the urban system:

Resource Paper Mill Glue Factory

Land 0.60 0.70

Labor 0.30 0.40

Capital 1.30 0.35

Water 0.65 0.50

Resources within the Okefenokee urban system are not unlimited, and this

year there are 4.30 ODDs of land, 2.40 ODDs of labor, 4.55 ODDs of capi-

tal, and 3.25 ODDs of water available for new industries. What is the

maximum amount of new income that can be generated within the urban

system under these conditions? How much income can be added to the

above solution by adding one more ODD of land, labor, capital, and water?

Use either geometric or simplex algorithms in your computations.

FuRTHER READING

Levin, Richard I., and Rudolph P. Lamone. Linear Programming for Manage-

ment Decisions. Homewood, Ill.: Richard D. Irwin, 1969.

One of the few important works on linear programming that is written for

nonmathematicians, it attempts to present the essential concepts of linear pro-

gramming within the context of applications in business and industry. A par-

ticularly good section on the use of computers to solve linear programming

problems, as well as the statements for a basic program written in FORTRAN

IV, are invaluable to the reader who wants to know more about these matters.

Dantzig, George B. Linear Programming and Extensions. Princeton, N.J.: Prince-

ton University Press, 1963.

A more theoretical and mathematically oriented book than the above, it is

written by the master of the subject. The book is difficult to get through, but the

implications of the theoretical constructs of linear programming and the exten-

sions made by Dantzig hold great promise for the sophisticated urban analyst.



We have mentioned that linear programming is the most popular, well-

tested, and generally solvable form of mathematical programming. We

would be somewhat remiss, however, if we did not examine the other

important forms of mathematical programming, even though they are not

generally popular among urban analysts, not well tested and tried in urban

‘problems, and not always solvable for some problems. If little else, the very

mathematical perplexity of mathematical programming, other than linear

programming, is likened to the task of Sisyphus by many urban analysts.

Experience offers little solace, since it is scant in this area of concern.

With these conditions in mind, our discussion is primarily concerned with

the potential applications which are considered to be worthwhile because

of the interesting characteristics of mathematical programming.

When the objective function and/or the constraints are not adequately

described by linear expressions but are nonetheless deterministic, nonlinear

programming may be useful to the urban analyst. Urban problems that

require multistage planning periods in which time is a major consideration

in a step-by-step optimization may be solved by the use of dynamic pro-

gramming in some cases. Variables which are inherently stochastic, regard-

less of the linearity or nonlinearity of the functional relationships, may

necessitate some form of stochastic programming. Taken together, non-

linear, dynamic, and stochastic programming are the salient forms of

mathematical programming other than linear programming. There are

many variations of these methods and some special cases, which will limit

our examination to basic precepts rather than detailed algorithms.

The utilization of nonlinear, dynamic, and stochastic programming in

urban analysis is problematic because of the advanced level of mathemati-

cal methods that is required for solution of such formulations. Optimal

solutions are difficult because the elegant simplicity of the lmear pro-

gramming solution spaces are almost entirely lost, and hence the compu-

tational advantages of the simplex method are effaced. Solution spaces for

other than linear programming are often nonconvex, resulting in infinite

extreme points of which only one is optimal. Dynamic formulations require

a separate rationale and algorithmic theory called backward induction,

CHAPTER

Nonlinear, Dynamic, and

Stochastic Programming
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altogether different from our previous explorations. Stochastic variables

must incorporate probabilistic methods that are devious to optimize.

The formidable problems of formulation, solution, and implementation

of nonlinear, dynamic, and stochastic models are sufficient to daunt even

the stout-hearted urban analyst. The potential of these approaches is

exciting, however, because underlying theoretical structures reflect the

complexity of the real world. Complex mathematical methods may be

necessary for complex urban analyses. Advances in mathematical pro-

gramming, being made daily, may ease the burden of computation in time.

The possibilities for these methods are great, and future applications should

be significant even though present success 1s meager.*

NoNLINEAR PROGRAMMING

The mathematical foundation wpon which we can build our construc-

tion of nonlinear programming is primarily an extension of the concepts

discussed for the general form of the complex optimization problem and

the optimal search routine. Nonlinear programming problems usually in-

volve nonlinear objective functions, although it is possible to have nonlinear

constraints as well. Nonlinear constraints, however, do irreparable damage

to our efforts in that they create solution spaces which are nonconvex;

hence we have an infinite number of possible extreme points and can

never be absolutely sure that our answer is optimal. For example, consider

two linear and one nonlinear constraints:

£1 = 12 — XxX > 0,

£2=12~—%x1-= 0,

£3 = 12 — 22> 0,

X1, X2 = 0.

The solution space S formed by these three constraints and the nonnega-

tivity constraint can be mapped in the manner shown in Fig. 8:1. Within

solution space S the extreme points are (0,12), (12,0), (0,0), a = (1,12),

6 = (12,1), and an infinite quantity of extreme points lying on the curve

ab. The best that could be done for such a solution space would be an

approximation of the optimal solution if that solution were along or near

* Maurice D. Kilbridge, Robert P. O’Block, and Paul V. Teplitz, “A Conceptual
Framework for Urban Planning Models,” Management Science, 15, no. 6 (Feb.,
1969), B-246—B-266. )
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Fic. 8:1. Solution space for constraints g1, ge, gs.

the curve ab; if by some fortune the optimal solution for this particular

example were coincidental with one of the finite extreme points, a heuris-

tic solution could be computed.

Pragmatics dictate that we limit our sphere of concern to problems in

which the solution spaces are convex. Even with this limitation, there are

several problems which cannot be solved. There is no readily available

algorithm, like the simplex method, by which we can compute optimal

solutions for nonlinear programming. We can use any of three basic cate-

gories of algorithms for practical solution of urban problems: (1) classical

calculus, (2) method of Lagrange, and (3) gradient method.

In addition to limiting the scope of solution spaces, one should limit the

type of objective functions to be considered to convex or concave non-

linear objective functions. Convex and concave nonlinear objective func-

tions take on bowl-like forms when mapped (see Fig. 8:2). Using linear

constraints to guarantee convex solution spaces, one can solve many non-

linear programming problems, Extension of the optimal search routine

implies that optimal solutions lying along a boundary can be found by

some form of boundary search. Yet it can be seen that many types of non-
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f (x1,%2 ) f (x1,x2)

X41 x2 X1

X1

(A) CONVEX (B) CONCAVE

Fic. 8:2. Convex and concave nonlinear objective functions.

linear programming problems can have optimal solutions which are out-

side the feasible area formed by the boundaries, which are called exterior

solutions, or within the feasible area formed by the boundaries, which are

called interior solutions. These can be seen in Fig. 8:3. Exterior and

interior solutions require the use of algorithms that are similar to the

mental process one uses in climbing a hill and attempting to determine

precisely where he reaches the peak.

CLASSICAL CALCULUS

Classical calculus can be used to find optimal solutions to nonlinear

programming problems where the objective function is convex or concave

and the constraints form a convex set (these can be either linear or non-
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Xe X2 Xe

Uy,
ZL,

Oo x1 oO 1

(A) BOUNDARY SOLUTION _(B) INTERIOR SOLUTION (C.) EXTERIOR SOLUTION

Fic. 8:3. Three hypothetical nonlinear programming solutions.

linear in form, although the former is obviously easier to deal with). Ex-

terior, interior, and boundary solutions can be found using classical calculus

methods. While we shall not cover them, there are some nonlinear func-

tions in which no derivative exists that require a numeric search for possible

optimal points.

The extension of the concepts of differentiation to include partial dzf-

ferentiation is most useful for our purposes. Partial derivatives, usually

denoted by 0, are the partial rates of change of one variable of a function

with respect to another. A literal slice is made along an axis of the function

with regard to that variable, ignoring all others. For example, consider

F(t, %2) = 5x1 + 8x2 + xix, — xf — x95

taking partial derivatives,

0= =5 + xq — 2X1,

af = 8+ x4 — 2X,
Ox2

setting these equal to zero (to determine a maximum value), and solving

the simultaneous equations:

5—-an+ m=O

8 + X17 2X%_ = O

and

10 — 4x1 + 2%, =0

8 + Xi 7 2X%_ = O

18 — 3x1 = 0O

xy = 6,
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Substituting,

xo = 7.

It might be added that second-order partial derivatives are used to test for

strict concavity or convexity, although the manner is somewhat more com-

plicated than was discussed for second-order derivatives. In the above

example the objective function is strictly concave and unconstrained, so

that we can consider optimality for xf = 6 and xf = 7.

The constrained nonlinear objective function presents some difficulties,

but it is often possible to solve these problems with simple mathematical

tools from calculus, Let us assume the following nonlinear programming

problem :?

Max f(x1,X2) = 10%, + 20%2 + xixg — xf — 2x5,

subject to

£1(%1,%2) = 7 — x1 > O,

£o(x1,%2) = 8 — x2 > O,

£3(%1,x2) = 10 — Xi — Xe > oO,

x1, X2 2 O.

Application of the optimal search routine shows that f(*1,x2) is continuous

for all real-number values of x, and x2, and the solution space set is closed

and bounded so that we can use classical calculus for optimization. This

requires taking the partial derivatives:

0a = 10+ x2 — 4%,

0a = 20 + x1 — 4X2.

Setting these equal to zero and solving the simultaneous equations yield

%, = 4 and #,=6. One could confirm that the objective function is

strictly concave (in fact, the second partial derivatives are constants) ;

hence, if #, and % are feasible solutions, a maximum is guaranteed by the

optimal search routine. Feasibility of solutions is checked by substitution

__ of values in the original problem, and one can see that the maximum values

are feasible — in fact, they lie on the boundary — which guarantees that

xf = 4, xy =6; therefore, f(x*,x*) = 80. This example is mapped in

Fig. 8:4.

* For a more detailed treatment of this problem, see Charles R. Carr and Charles
W. Howe, Quantitative Decision Procedures in Management and Economics: Deter-
ministic Theory and Applications (New York: McGraw-Hill, 1964), pp. 236-248.
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10

Fic. 8:4. Optimal solution of nonlinear programming example.

The example has a fortuitous optimal solution because the maximum

points found by partial differentiation were feasible solutions, which means

that an interior or boundary solution exists. Many examples are less for-

tuitous in that maximum or minimum points found by partial differen-

tiation are not feasible solutions, but exterior solutions may exist. Assuming

that the objective function is everywhere differentiable, this requires a

boundary search according to the optimal search routine. Partial differen-

tiation is useful in such a boundary search because it offers the ability to

slice the function along axes formed by constraints — the procedure, none-

theless, is long and tedious for even simple problems.

METHOD OF LAGRANGE

Another category of solution algorithms for nonlinear programming

borrows the name of Joseph Louis, Comte de Lagrange (1736-1813), the

Franco-Italian mathematician who made such historic advances for mathe-

matics in analysis, differential equations, maximum-minimum problems,
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and probability. The method of Lagrange is particularly useful for exterior

solutions, even though it is applicable to boundary and interior solutions

as well.

The nonlinear programming problem must be expressed in terms of an

objective function, subject to equality constraints for the method of La-

grange. If one can achieve this, the method of Lagrange can be used to

develop a new function, called the Lagrangian function, which incorpo-

rates the constraints into a single equation, thus allowing for the optimal

solution of an unconstrained function. The general form which must be

adapted is

Opt f(x1, X25 «+5 Xn);

subject to

gi(x, XQ 5 5s 9 Xn) =

£2(%41, XQ 6 eg Xn) = 0,

Billet, %2 - 6 sy Xn) =O,

where f and g are everywhere differentiable. Notice that the nonnegativity

constraint is omitted since it is not necessary in this procedure.

The theory of the Lagrangian function is applicable to nonlinear pro-

gramming if one considers some extensions of calculus. Assume that the

nonlinear programming problem is expressed as

Opt f' (x1,%2),
subject to

§(*1,%2) = 0.

The effect of the equality restriction is that the search for optimal x, and

x2 values should be limited to those values which equal zero as a function,

g(x1,X2). In essence, borrowing from the theory of linear models, we see

that x, is interrelated to x, because of the equality constraint; hence x. is

a function of x,. Since this is so, we can define the calculus concept known

as the total derivative in the following manner: |

dg _ Ty
dx = 82, + 82, a, = 0.

It should be clearly understood that this expression is not the partial deriv-

ative of g with respect to x,; rather, it represents the rate of change of g

in the direction of x;, The partial derivatives of g with h respect to x; and x2

are represented by g., and gz, such that
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0g
Ox) 7 Say

Og
Ox2: 7” S29

Interpretation of the rate of change of x, simultaneously with x2, within the

constraint formed by g(x1,%2) = 0, is granted by the expression dx:/dxo.

By manipulating the expression for the total derivative, one can easily

verify that |

dx. Bay
dx, Sx,

This means that the simultaneous rate of change of x2 with respect to x,

is equal to the negative of the reciprocal of the partial derivative ratio. An

example may be enlightening; let

& (x12) = x1 + 3x2 6 = 05

taking partial derivatives,

Og _
Ox, = £2, =

Of 4, =a,
. Oxe ~~ Ex, = 35

by rearrangement of terms

6 — x1
= ;

3

taking the first derivative results in

ax I
_
—

dx 3 "

Then, by substitution for the terms dm, Oxo, and dx;/dx_ in the definition

of the total derivative,

dg _ dx2 _
dx, = 82, + Lx, dx, = 0,

dg ~i\.dx, =i + ~}=0
The same definitions hold for the objective function /, so that

af _ | aXe _
Tn = fx TS Tea?
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By substitution of

ae.
dx Ex,

in the total derivative of f, one finds by manipulation of terms that

f. a) f % .
Ezy Exe

This relationship shows that the ratios of the partial derivatives of f and

g must be equal for optimization. Using the Lagrangzan multiplier \ to stand

for this proportion, we get the expression

te, _— Se, — r,

which also can be stated by

Ja, + AZz, = 0,

Sf Xo + Agz, = 0.

The theory of Lagrangian multipliers and functions is put to work in

nonlinear programming by forming the Lagrangian function, which incor-

porates the constraints into the objective function. This can be seen from

our preceding terms as

Opt L (x1x2, 4) = f(x1yx2) + Ag(x1,%2).

The partial derivatives can be used to optimize this unconstrained La-

grangian function such that

OL _ af 4) ee
ax Ox dm

OL of dg _

dm Om On

aL
a = G(%ts *2) = 0.

Note that the partial derivative of the term with the Lagrangian multiplier

is the original constraint expression. The partial derivatives form a set of

simultaneous equations which can often be solved to find the optimal values

of x* and 2*.

Referring to the example used in the discussion of classical calculus, we

can change the constraints to illustrate a case where the classical calculus

approach yields a set of maximum values which is not a feasible solution;
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the existence of an exterior solution makes the method of Lagrange popu-

lar. Restating the original problem, we have

Max 10%1 + 20%2 + 1x2 — 2x? — OX,

subject to

8 — x1 — x) = 0.

Our previous solution to this problem, #:= 4 and % =6, is no longer

feasible because of the equality constraint. We can form the Lagrangian

function as follows:

Max L (x1,%2, X) = 10x1 + 20%2 + x12 — axt — 2x8 +A(8 — x1 — x).

The partial derivatives set equal to zero are

OL
an = 10 + x2 — 4%1 ~A = 0,

OL
Ox, = 20 -+ x1 — 4x2 — A =O,

AL
a = 8 m1 ee =O.

Solution of these three simultaneous equations shows that \* = 3, xf = 3,

and x; = 5. One can extend the use of the Lagrangian multiplier and

function to more complex problems by using Aj[gi(x1, x2, . ~~. , Xn) | such

that each constraint has a unique Lagrangian multiplier which can be

incorporated into the Lagrangian function.

The Lagrangian multiplier not only serves as a useful algorithmic tool

but it also represents a concept we have already discussed as part of the

dual solution of linear programs. Specifically, we can state, although we

will not take the space to prove, that the Lagrangian multiplier when

optimized, X*, is the resource or shadow price found by the dual solution.

The interpretation is that one can relax constraint g; by one unit, and the

improvement in the objective function will be the payoff rate of A*. To

reiterate somewhat, this is most useful information for planning and pro-

gramming of urban problem solutions.

GRADIENT METHOD

The third basic category of algorithms for solving nonlinear programming

problems is a child of the computer age. While the mathematical theory
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of the gradient method is not new, the advent of large-scale computers
with incredibly fast computational times has made this method more ac-

ceptable. Software and systems capabilities give further impetus for using

the gradient method, since it is difficult to write programs for classical

calculus and Lagrangian methods.

The gradient method develops a series of successive approximations by

which one eventually gets closer and closer to finding an optimal solution

to a problem. The term gradient comes from the formulation of a vector

of partial derivatives of decision variables in the objective function which

points the way toward values that increase or decrease the objective func-

tion efficaciously. The gradient allows an approximation of a quasi-com-

plete enumeration, so to speak, by showing the analyst the most direct

route or, as it is commonly called, the path of steepest ascent. An analogy,

albeit a crude one, is that of a blindfolded person walking up a hill with

a friend shouting directions from the foot of the hill — eventually, the

shouts will be less meaningful and one can sense intrinsically and intuitively

the steepness of the hill. When the steepness feels negligible, one can

safely assume that he has reached the peak. Unfortunately, the mathe-

matical equivalent of this process lacks the real-life test of removing one’s

blindfold to verify success.

Many methods and variations of the gradient method. have been devised.

For practical purposes we can say that there are two classes of algorithms

within the gradient category: (1) steepest ascent and (2) response surface.

The steepest-ascent class attempts to direct the analyst up (or down) the

hill formed by the objective function in the most efficient way — this

generally means a path that is perpendicular to contours of the objective

function’s bowl-like form.

An example of the steepest-ascent class is readily available for an uncon-

strained nonlinear function. Assume the nonlinear problem where one

seeks to

Opt f(r, x2, -.., Xn).

Letting f,; represent the various partial derivatives of the function and

X = (x1, x2, ..., Xn), the gradient is formed by :

me oe

Se,
Fy

I

f

Ten
mn
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A starting point must be selected for the computer to help one make the

climb —- this is usually an arbitrary selection based on intuition. Calling

the starting point X;, then by definition

Xt = (x11, MQ, sy X1n)-

The next point up the hill should be in the direction indicated by the

gradient, since that guarantees a perpendicular and steep climb over the

contours. An element of the change vector can be denoted as

ai; = fai(xu, X125 ce eg X1n)s fori = I, 2, re | i.

Many means exist for the computation of the next point, X., and all

needed remaining Xm. The most widely used and pragmatic approach is

to use an operator k to help guide the climber. The operator k is used as

follows: |

Xs = Xo5 = Xt kid,

where

Xs = (x21, X29 ee 8g xan).

Values for km are often constants, but some approaches use a variable

arrangement for km. Selection of values for km is critical, since they must

be sufficiently small not to bypass the optimal peaks. Ironically, however,

values which are too small create extreme reiteration cycles and waste

expensive computer time. Once again the judgment and intuition of the

urban analyst become overriding factors. Having weathered this problem,

the urban analyst awaits the computer’s determination of when it is ready

to quit climbing, although the machine must be carefully instructed on

how to tell when the top (or bottom) has been reached. There are related

problems of saddle points, which are conceptually similar to points of

inflection, that must be dealt with, depending upon the given circum-

stances. A graphic analogy of the steepest-ascent approach is shown m

Fig. 8:5.

Constrained nonlinear programming problems present somewhat more

of a challenge to both urban analyst and computer. The Lagrangian func-

tion formulation is the most popular way to deal with the problem if such

a function can be utilized. The response-surface class of algorithms has

many variations for dealing with the constrained nonlinear programming

problem — a practical approach uses a new function directing the climber.’

The Carroll algorithm formulates a new objective function,

*C. W. Carroll, “An Operations Research Approach to the Economic Optimiza-

tion of a Kraft Pulping Process,” Ph.D. dissertation, Lawrence College, 1959.
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X1O

Fic. 8:5. Contour diagram and steepest-ascent path of hypothetical non-

linear objective function.

A=E—1> WR;
t=]

where

A = created response-surface function,

_ & = original objective function,

A; = original constraints such that R; > 0,

W; = set of weighting penalties for each variable,

r = aggregate weighting criteria.

It should be noted that W; and r tend to be somewhat arbitrary; hence

experience and judgment can substantially reduce the number of iterations.

A five-step algorithm is used:

1. Select a starting value for r (relatively small, say, one).

2. Maximize the A function.

3. Reduce the value of ry and repeat maximization of A (r must not be

negative).

4. Repeat steps 1, 2, and 3 until 7 gets very close toand A ~ E.
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This algorithm uses the constraints as penalties, since they make the values

for A small; eventually one reaches r ~ 0 and can assume an optimal

solution.

SPECIAL APPROACHES

A number of special cases exist for nonlinear programming. An impor-

tant approach used often in urban traffic scheduling is quadratic program-

ming. ‘This approach is used for special problems containing quadratic

(second-order polynomial) and linear components in the objective func-

tion. Partial derivatives of the quadratic component are linear, and this

characteristic allows the simplex method to be revived. Separable program-

ming is used when the objective function is a sum of functions that can

be dis-aggregated —a linear approximation of each allows the simplex

method to be used. The direct linearization approach is simply the trans-

formation of inherently linear functions to linear expressions and the use

of the simplex method.

NONLINEAR PROGRAMMING APPLICATIONS

Significant applications of nonlinear programming techniques in urban

analyses have been rare. Interesting applications have been executed by

analysts working in quasi-private functions of urban government such as

investment planning, bond financing and administration, and user charge-

setting and administration. These uses often take advantage of the so-called

portfolio selection problem. A fine example of the portfolio selection prob-

lem was developed by Charles R. Carr and Charles W. Howe.* The Carr-

Howe portfolio problem has a linear objective function and a nonlinear

constraint.

Portfolio Selection

The scenario for this problem is a portfolio selection limited to two secu-

rities — with no particular amount of total purchase limit established —

and policy decisions to maximize dividend income and appreciation in the

form of capital gains. The decision has been made to give twice the weight

to appreciation as to capital gains. Since uncertainty is inherent, public

* Carr and Howe, Quantitative Decision Procedures, p. 253.
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officials have suggested the use of a risk index for each stock, which we

can take as given in the form

0.002x7 + 0.003x3 = 140,

where

x, = first security,

x = second security,

while all other parameters stand for given risk factors which have been

determined by past performance. Recent trends show that x, is expected

to appreciate by 10 percent and have a dividend yield of 8 percent; x, is

expected to appreciate by 15 percent and have a dividend yield of 4 percent

over the next year.

The problem is formulated as

Max U(x1, x2) = 2(.10x1 + .15x2) -+ .08x1 + .04xe

= ,28x1 + 34X29,

subject to

140 — .002x7 — .003x3 = 0.

The Lagrangian function is

Max L(x1, x2, A) = .28x¢ + .34x3 + A(140 — .002x7 — .003x2);

partial differentiation yields

aL
an .28 — .004%1A,

OL
an 34 —~ .006%2A,

Le 2 2“ar = 140 — .002x%] — .003X%5.

Setting partial derivatives equal to zero and solving three simultaneous

equations for the three unknowns gives

xt = 187.84,

Xp = 152.174,
A* = 0.30,

U(xt, x2) = 94.66.

However, the real, unweighted return per year would be $62.91 on an
investment of $340.61. _

Nonlinear Traffic and Land Use

Some sparse work has been undertaken on the development of nonlinear
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traffic and land use models which have a sound capability for optimization

through nonlinear programming. The polimetric model, an early if some-

what less successful version of the Boston region empiric model, is essen-

tially a set of nonlinear equations for differences in activities in various

zones, It was later used in the Philadelphia region under the acronym of

Resloc in a modified format.® Both of these models represent the forefront

of contemporary knowledge in using the capabilities and potentials of non-

linear models and inherent nonlinear programming for urban development

problems.

Dynamic ProGRAMMING

Everything that we have examined in mathematical programming to this

point has casually assumed that individual optimization decisions would

result in overall optimization in the future or at the end of the planning

period. Dynamic programming is based on the idea that some decisions

must be made for the whole system in a sequence of time in a planning

period in order to reach a true optimum. For example, in a 20-year plan-

ning period most mathematical programming techniques would hold that

an annual optimization decision would result in an optimal urban system

at the end of 20 years, even if simply by aggregation. Dynamic program-

ming theory holds that the urban system must be optimized over the full

period of 20 years in a sequence of optimal decisions which are related in

time and space — hence time and space become critical, and one must

optimize backward from the true optimum (backward induction).

Dynamic programming was originated by Richard E. Bellman in the

late 1950s and early 1960s while he was a young scientist with the RAND

Corporation. The theory and application of dynamic programming have

been highly developed by Bellman, his colleagues, and several other scien-

tists and mathematicians. Applications have been largely computer-based

optimization of multistage decision problems, particularly in such areas as

rocket trajectories and flight, inventory and production scheduling, feed-

back-controlled systems, and allocation of scarce resources. The last area

is especially interesting to urban analysts.

The crux of dynamic programming theory is bounded by Bellman’s

principle of optimality: “An optimal policy has the property that, what-

*Tra S. Lowry, “Seven Models of Urban Development: A Structural Compari-

son,” in George C. Hemmens, ed., Urban Development Models (Washington, D.C.:

Highway Research Board, 1968), pp. 121-163.
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ever the initial state and initial decision are, the remaining decisions must

constitute an optimal policy with respect to the state resulting from the

first decision.”* The principle of optimality is one of those curious para-

doxes of the English language in that its meaning is more complicated

than its statement. Dynamic programming is based upon the mathematical

notion that regardless of the starting point, all other points to be reached

must be optimal. Such a notion is often called recursion because optimiza-

tion must occur step by step over several stages. Thus the concepts of a

state, or the instantaneous condition of a system—such as the discrete

examples we used when discussing Markov processes for a toll booth —

and a stage, or a particular point in time during the planning period,

become crucial for dynamic programming. A major utility of dynamic

programming is for urban analysis because it is a mathematical theory and

method which inculcates the notion that one can change the state of a

system by making decisions about it in optimal sequences of stages such

that the overall outcome is an optimal system.

Dynamic programming is conceptually the most potent of the mathemat-

ical programming techniques, although, computationally, linear program-

ming is more powerful. Algorithmic techniques for dynamic programming

are many and varied, but the most well known are the numeric search

routine and classical calculus search routine. The result of these conditions

is that dynamic programming has considerable intellectual merit for urban

analysis because questions become as important as answers. Complications

arise in the real world in that sometimes there is a finite number of con-

secutive decisions to be made at each corresponding stage, called a bounded

horizon, but sometimes there is an indefinite number of decisions to be

made over an indefinite number of stages, called an unbounded horizon.

A general examination of recursive concepts and numeric search routines

is valuable at this point for a problem with a bounded horizon. Let the

given variable x be divided into n parts in such a way that the product

is a maximum. Recursive programming is useful for this problem if we let

fn(x) be equal to the maximum product. This simply means that we as-

sume x to be fixed and let n vary over all positive integers; hence x

becomes a function of n. We can define f(x) = x as the initial state, and

the initial decision can be represented by y. This results in the state just

preceding the second decision being x — y. For n = 2, then

fa(x) = Max pfi(x — ») = y(« — 9),

*Richard E. Bellman, Dynamic Programming (Princeton, N.J.: Princeton Uni-

versity Press, 1957). |
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subject to

o<y<x,

which is usually written in dynamic programming practice as

frlx) = Max { »(« —y)}.

Taking the first derivative and setting it equal to zero allows one to solve

this stage as y* = x/2, which is a feasible solution. Since n = 2, the optimal

decision sequence is (x/2,x/2), or

Srlx) = 2°/4.

Bellman’s principle of optimality allows one to generalize the above to m

parts or stages after the initial decision, which is written as

fnsa(*) = Max {n(x — y)}.

Optimizing, this expression becomes

Fnsi(t) = I" fm(% — 9%).

We can explore this further by letting n = 2, 3,..., m, and we can intu-

itively see that the optimal decision sequence will be »* plus the mth

decision for x — y*. For example, for n = 3,

F(x) = Max ly (x — 9)? ee
OsysSr | 4

and y* = x/3, and the optimal decision becomes (x/3,x/3,x/3) = +°/27.

We can continue this recursion to generalize that the optimal decision will

always be (x/n, x/n, x/n,..., x/n), so that

fale) = (x/n)”.

This generalizes to

fasi(2) = Max pS (x =.

Optimizing this expression yields »* = x/n + 1, or the decision sequence

[n/(n + 1)]x, which is

fra) =b/@+tor,

and the same expression holds for m and m+ 1.

or
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This type of recursive programming is adaptable to computer program-

ming but is limited in that only one constraint is easily handled. The

classical calculus search routine is used when several constraints are in-

cluded for a bounded-horizon problem. Consider a problem similar to the

above: let X = x1, %2,..-, %n and solve

Max y = x1, Xa). - +5 Xny

subject to

nr

De ue xX;
t=]

XL = OQ,

X92 > 0,

Xn =O.

Formulating a Lagrangian function, we find

n

Max L = My X25 oe 2 5 Xn + MX — 2, ¥]:
Gam

The solution is either a subset (x1, %2,...-, Xn) Of (%1, ¥2,. ~~. 5 Xn, A)

or a boundary of one of the constraint planes where x; = o. Taking par-

tial derivatives and setting to zero,

OL = 0,1 = 1,2 nOx; 3 5 m5 hme ey t¥8

OL n
= X-— 2). =oh 2, % = 0;

one can find that.

kx omen
m= t= 1,2; 9 Ny

Or

The inherent distinction between the numerical and the classical cal-

culus search routines is that the former changes a problem with n variables

into n problems with one variable in each. The classical calculus search

routine is more elegant, but partial derivatives may not always exist, and

an optimal solution may lie along a boundary which will not be revealed

by partial differentiation. Hence the computational aspects of the bounded-
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horizon problem are formidable. The future looks brighter in that modern

computers and software are improving daily, and the numerical search

abilities are becoming vastly improved.

Dynamic programming problems with an unbounded horizon have the

effect of making a difficult problem of computation become almost un-

thinkable. Nevertheless, there is considerable interest in this sort of prob-

lem. The unbounded-horizon problem is characterized as one in which

the number of optimal decision stages is not known or is indefinite. It is

analogous to developing a plan for the future of an urban system with no

particular end-point in mind — such fuzzy circumstances are not alien to

urban systems planning. Few plans are made for urban systems that con-

sider the end-point as absolute. As the planning period approaches the

horizon stage, changes and modifications are made in plans. The dynamic

| programming technique is useful in such a process in that some problems

have been solved which consider costs as the key variable. These problems

use a discount rate for costs such that an average cost per decision can

be determined over an indefinite, sometimes infinite, planning period. The

mathematics is quite advanced and we shall not belabor it. Suffice it to

say that integral series of equations can be formulated which operate

under conditions such that the discounted costs are minimized, and dis-

counted costs converge with the average cost per decision as the number

of decisions approaches infinity.

DYNAMIC PROGRAMMING APPLICATIONS

The SEWRPC land use design model, which was discussed in its basic

linear programming formulation, has a dynamic programming counter-

part. This has been one of the few large-scale applications of dynamic

programming to urban analysis.

Land Use Design Model

| The allocation application is used for land as a resource which has

| alternative uses. The typical formulation is based upon

R(x1, X25 - ~~ 5 Xn) = g1(x1) + go(xe) +... + gn(%n),

where X= xt xe+...+2x, and x;>0. The function R is called

the return function in that it represents the utility, such as minimum costs,

etc., of allocating the scarce resource of land among X uses. This formula-
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tion is conceptually superior to linear programming because land uses can

be integers and the return function can be nonlinear.

The basic resource-allocation algorithm of dynamic programming is

used to reduce the necessity of a complete numeric search routine by using

the procedure

Fn(X) =, Min [gn(*») + fr A(X — xa)];

where

fi(X) = Min [ei(X)],
n=2,3,...,N,

Xn =O.

This algorithm is used for the computation first of the minimum cost for

each level of land assigned to the first land use. The first solution f,(X)

is the minimum of the return function g,(x,). The second-stage decision

determines the minimum costs for the first and second land uses in com-

bination by yielding

f(X) = Min [go(x) + fi(X — x2)].

Consecutive stages are minimized for costs of land development of land

uses up to the nth stage — note that time is replaced by land uses in this

formulation, The computation for the nth land use is interpreted to repre-

sent the minimum costs of all land uses for each level of land in the region.

Using backward induction, the series of decisions fi, fz, . . . , fn iS pro-

grammed in a consecutive series starting with f,,x.; proceeding to the

second stage (which is actually the next to the last stage, since this al-

gorithm considers the last stage as the first stage), which is fri, X—%n;

and continuing in the same fashion for fr», ..., 1. The final result is that

all of the land in the urban system is assigned in order to minimize overall

costs of development (note that the planning period is assumed to be a

given year in the future). |

Experience with the above approach has demonstrated that an alterna-

tive formulation is necessary for including several constraints. The classical

calculus search routine can be employed and the problem restated as

Min R(x, XQ, + ew 5 Xn) — gi(x1) + go(x2) + ta + gn(%n);

subject to

i=]

we

~~ 2 at] < xi,
}==

xi > 0.
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The return function is the cost of land development, and the constraints

are all restrictions on the objective function, such as total land use demands

and land use relationships that were formulated for the linear program-

ming version. The Lagrangian function is

n ik n

Min L (x1, %2,..., Xn, 4) = 2, gi(%i) — 2 hilxs — Do aigxj).
j= i= j=l]

Horizon Plan

The theory of dynamic programming was found useful for the planning

of New Jersey’s urban development.’ Analysts working with various indica-

tors and predictive models determined that the full urban development of

New Jersey would occur around 2058 a.p. with a population of 20,000,000.

This was considered to be the horizon point or the year beyond which no

further predictions could be made. Over a period of years several alterna-

tive development plans were tested; using the backward-induction concept

and numerical search routines, consecutive decision stages were devised

which were called subhorizon plans. The analysts cautioned that the sub-

horizon plans for each alternative development strategy would have to be

reviewed periodically as one got nearer and nearer to the horizon point.

While the approach is not highly sophisticated in mathematical terms, it

does imply that the theory of dynamic programming has great potential for

urban systems planning.

STOCHASTIC PROGRAMMING

Each of the various types of mathematical programming that we have

examined has been based upon the assumption that all of the parameters

used are deterministic in nature — this is usually called deciston-under-cer-

tainty theory. Real-world problems often appear to be based upon uncer-

tainty about many matters which affect the parameters of mathematical

programming — hence this general field of study is often called deciston-

under-uncertainty theory. Common practice among urban analysts is to

develop deterministic mathematical programming models even where un-

certainty is found in order to simplify the model, even if at the expense of

"There were numerous publications over a period of years emanating from this

effort. The introductory monograph is New Jersey Division of State and Regional

Planning, The Various Alternatives of the Horizon Planning Concept (Trenton,

N.J., 1964).
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rendering only an approximation of the real world. One should recall that

this practice is logically sound in that by definition models are only repre-

sentations of the real world. In some urban problems, however, uncertainty

is too strong to allow for deterministic mathematical programming models

to be used, and the urban analyst must employ stochastic mathematical

programming models.

Stochastic mathematical programming has many variations and forms,

and, in general, all problems are not readily solved. Stochastic mathematical

programming models are considerably more complex than their determinis-

tic counterparts in both mathematical and computational perspectives.

The simplest type of stochastic programming model is the stochastic

linear programming model. One may recall that the linear programming

model was expressed by

nt

Maxy = >) cixi,
i=l

subject to

n

2 AyiXi < b;,
=

x; 2 0,

where? = (1,2,...,n) andj = (1, 2,..., m). In matrix terms

Max y = cx,

subject to

Ax < 4,

x => 0.

Suppose that the a;;, b;, and ¢; variables are all or partly random variables;

one must restate the linear programming problem in corresponding sto-

chastic terms.

Assume that the c; parameters are random variables; then the objective

function must be restated because it is not valid to optimize a decision

variable with random-variable parameters in terms of determinism. The

objective function can be cast in stochastic terms by the expression

n

Max E(y) = > Ete; Xi >= E(cx).
i=]

The constraints would require similar restatements if they contained ran-

dom variables. In practical applications urban analysts attempt to formu-

late stochastic linear programming problems with stochastic objective
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functions and deterministic linear constraints — this is the most elementary

case.

Even with these simplifying assumptions, only certain cases can be

solved. A sound approach has been developed in which stochastic linear

programming problems of this type can be solved by assuming that the

random variables can take any value within a finite set of values. This

means that there will be only a finite number of combinations of parameter

values to consider.* The algorithm uses a matrix M, where

Ci C2 » 6 « Cn oO

Qi. Qin. «se Ain J

Go, do » » » Gan de

M =

ami Gm2 + + + Amn Dan |

Using matrices and vectors,

nm {il

1 |¢ fo

M=— A |b

Since some of the elements of M are random, it can take on any of a

finite set of possibilities, which can be represented by ,M, .M, 3M,..., nM.

If we let #,; stand for the probability of £4, where & = (1, 2,..., 7), then

the probability that MZ will be ,A¢ would be

> b= I.
k=l

Assuming that the probabilities can be estimated, we can let cTM, A“, and

b®) represent the respective elements of ;,M, so that

nm tl

r jc lo
VM =

m |A®(5®

This means that cTM, A®, and bTM are what c, A, and b become when M

= ,M. The most common decision situation would call for the solution

of the optimization model for x; before computing further information

® Frederick S. Hillier and Gerald J. Lieberman, Introduction to Operations Re-

search (San Francisco: Holden-Day, 1967), pp. 530-536.
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about M. In such a case the optimization problem, in matrix terms, is

stated by

Max E(y) = Do pro x,
kal

subject to

A®x <4,

x > 0.

The simplex method can be used to solve this problem when the number

of finite possibilities (n) is not unreasonably large. Special cases of the

above problem may arise when values of x; cannot be determined until
values for random elements of M are known, In practical terms this re-

sults when decisions are made over different periods of time in a dynamic

setting and when decisions are made by different decision-makers working

at different parts of an urban system. Such special cases require that the

decision variables x; also take on a set of finite possibilities k and that

various forms of ,/4 be used where there are incomplete definitions of the

elements. While somewhat cumbersome, this special case is solvable, al-

though the computations are quite extensive.

Stochastic linear programming is based upon the assumption that the

constraints must be satisfied in order for an optimal solution to be found.

Since real-world problems often have a large number of various parameter

combinations — because the parameters are random — it is sometimes prac-

tical to use a method which requires only that the constraints be satisfied by

most of the parameter combinations. This approach to stochastic program-

ming is called chance-constrained programming.® In essence, chance-con-

strained programming uses an algorithm which designates that nonnegative

solution which probably will satisfy most of the original constraints as the

random variables take on their different values.

The algorithm commonly used requires that the original constraints,

De ayxa <S bj,
g==l

be replaced by -

P ps AziXy < sf = Gis
down],

where q; is a constant such that o < q; <1.

° A. Charnes and W. W. Cooper, “Chance-Constrained Programming,” Manage-
ment Science, 6, no. 1 (Jan., 1959), 73-80.
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Still in its infancy, general algorithmic approaches to solving the chance-

constrained programming model do not exist. Only special cases of the

chance-constrained programming model can be solved using algorithms:

(1) when aj; are constants and some or all of the cj and b; are random

variables, (2) when the probability density function of b; is the normal

model, and (3) when c; is not functionally related to b;. These special

conditions allow for the use of a rather complicated algorithm which is

basically an elaborate attempt to develop an equivalent linear programming

model that can be solved by the simplex method. This procedure results in

a considerable expansion of the original problem into an involved and

extensive model with various combinations and permutations which must

be considered for possible optimal solutions.

In order to overcome the problems of finding equivalent linear pro-

gramming problems for stochastic linear programming models that become

too large and cumbersome for practical solution, and to further incorpo-

rate the concepts of dynamic programming, much effort has been directed

in recent years toward stochastic dynamic programming models. These

models require forms of mathematics that we consider beyond the scope

of our intended readers. The urban analyst will usually require the as-

sistance of a mathematical programming specialist when dealing with

such formulations. Interestingly enough, however, the stochastic dynamic

programming model is only a little more difficult in strict mathematical

terms than a deterministic dynamic programming problem.

Stochastic dynamic programming models are usually formulated as

bounded-horizon problems and are used for such matters as distribution,

transportation and routing, scheduling, inventories, forecasting, and com-

plex decisions when expressed in networks, usually called decision trees.

Random variables tend to appear in the objective function rather than in

the states, stages, or other constraints. The concepts of sequential decisions

and backward induction that are established in deterministic dynamic pro-

gramming generally hold for stochastic dynamic programming models.

Several algorithms have been developed and tested for the solution of

certain types of stochastic dynamic programming models which employ

basic concepts connected with Markov chains. In fact, this type of problem

is sometimes called dynamic programming in Markov chains. Most of the

solvable models seek to minimize the costs, present value, or other economic

factors associated with the probability of a system being in a given state.

This conceptualization lends itself to Markov chains, which express such

probabilities. For example, if one developed a decision tree which used a

Markov chain to express the probability that the system would be in state
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j, given that the decision d was made in state z, which is often expressed as

p(j|t.d),

then associated cost factors could be attached to a given sequential decision

y;. If we assume that the costs can be expressed by ¢;; and the values must

be discounted by some factor a in the expression ay;, the generalized re-

cursion for the stochastic dynamic programming is of the type

i=l

ji Min 5 pj | 1, d) AY; + ca 170 and yo ~ 0,
d® D(i) Lj=o

where D(z) is the set of possible decisions at state 7.°°

Recursive techniques and such others as successive approximations are

used to solve many problems expressed in stochastic dynamic programming

terms. Computer-based solutions are often mandatory, since the recursions

are numerous, and the urban analyst would be wise to include an experi-

enced computer programmer on any team that is organized for dealing

with these problems.

APPLIED STOCHASTIC PROGRAMMING

We know of no major urban analyses that were based upon stochastic

programming methods, although we have heard of several interesting theo-

retical and exploratory projects. Our comments on applications are limited

to a few prospects and to a call for further research on the applications of

these methods, since the concepts are so stimulating for urban problems.

The Center of Urban and Regional Studies at the University of North

Carolina has pioneered in the development of residential growth models

using Markov processes over a period of years.1t Similar work concerning

demography, migration, traffic, and economic growth is underway. Most

of the models that we are familiar with can be cast in stochastic program-

ming constructs with some additional effort and mathematical and com-

puter programming expertise. This approach would allow for optimization

of these models and would ease the 3 mission of urban analysts and urban

systems planners.

* Harvey M. Wagner, Principles of Operations Research (Englewood Cliffs, N. J
Prentice-Hall, 1969), pp. 739-765.

=F. S. Chapin, T. G. Donnelly, and S. F. Weiss, A Probabilistic Model for Resi-
dential Growth (Chapel Hill: Institute for Research in Social Science, University

of North Carolina, 1964).
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PROSPECTS

We have purposely treaded lightly on the mathematical aspects of non-

linear, dynamic, and stochastic programming, partly out of sympathy for

the reader and partly because we believe that these are advanced methods

which are more properly left to specialists and technicians. The basic

concepts of the subject, however, should be within the grasp of urban

analysts and should serve as a rallying point for the formation of inter-

disciplinary teams to deal with these more advanced forms of urban

analysis.

Concepts of nonlinear, dynamic, and stochastic programming that we

believe are relevant would include nonlinearity, multistage programming,

sequential decisions, planning periods and horizons, and Markov processes

in mathematical programming. Most of these concepts are particularly

new in terms of mathematical chronologies, and it should not surprise the

reader that their very infancy has not yet allowed the development of

rigorous methods for answering the questions that are raised. These con-

cepts appear to us to lie at the frontiers of knowledge and will most

certainly play a major role in future urban analysis.

RECOMMENDED EXERCISES

1. Write a brief essay showing the understanding you have acquired of

the following concepts: nonlinearity in objective functions and constraints,

sequential decision-making, and random variables in objective functions

and constraints. How would you distinguish these concepts among the

following forms of mathematical programming: linear programming, non-

linear programming, dynamic programming, stochastic programming.

2. Develop several problems that you believe would be relevant for solu-

tion by using nonliear, dynamic, and stochastic programming methods.

What practical difficulties do you foresee in the solution of these problems

and in the implementation of the results?

FuRTHER READING

Wagner, Harvey M. Principles of Operations Research. Englewood Cliffs, N.J.:

Prentice-Hall, 1969.
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The most extensive treatment in one place that we know of concerned with

operations research in general and nonlinear, dynamic, and stochastic program-

ming in particular for management problems. The treatment of dynamic and

stochastic programming is especially effective and sympathetic toward the non-

mathematician.

Hadley, G. Non-linear and Dynamic Programming. Reading, Mass.: Addison-

Wesley, 1964.

The classic mathematical treatment of nonlinear and dynamic programming

theory. The material is written for the specialist and makes many demands on

the reader. It will not be especially useful to the mathematically timid, but it

will be indispensable to the reader seeking to develop greater knowledge in these

areas.

Bellman, Richard E., and Stuart E. Dreyfus. Applied Dynamic Programming.

Princeton, N.J.: Princeton University Press, 1962.

The classic work in which the originator of dynamic programming and his

closest collaborator in theoretical development make the case for applications.

The applications are managerial and scientific and not especially related to urban

analysis, but there are some fascinating germs of ideas for urban problems.



Going around an obstacle is what we do in solving any
kind of problem. People act like hens who solve their prob-
lems by muddling through, trying again and again, and suc-
ceeding eventually by some lucky accident without much
insight into the reasons for their success.

George Polya, How to Solve It (1945)



Simulation is one of those terms which has come to mean many things to

many people. Urban analysts often deal with the simulation of urban re-

gions with regard to their economic, political, social, and physical compo-

nents. Psychologists simulate the behavior of an individual person in an

urban system — if such a person cannot behave well in an urban system,

the therapist may prescribe forms of simulated learning to resolve the

problem. Generals simulate the destruction of urban systems, and engineers

simulate the mechanical properties of streets, buildings, and utilities of

urban systems in order to build them. Thus simulation should be defined

depending upon one’s point of view of urban systems.

The term stmulation is derived from the Latin, stmulatus, which means

to zmitate. It may be recalled that earlier we said that the distinction be-

tween simulation and modeling was that the former imitates an urban

system while the latter represents the urban system. Such fine distinctions

are hardly needed for simulation and modeling because, in general, simula-

tion is a way of using models. In another perspective one can say that

representations of real urban systems are used in such a way that they

imitate real urban systems. We can state an operational definition of simu-

Jation: an approach in which the characteristics, form, and appearance of

urban systems are imitated in order to perform vicarious experimentation.

Major use of simulation is made for testing alternative solutions to urban

problems by using models to imitate urban systems. This naturally means

that experimentation can be perpetrated without disrupting the real world.

It also means that colossal failures can sometimes be avoided by discovering

errors in solutions. For example, a well-known simulation was conducted

by a transportation planning agency in the New York urban system which

tested various locations for a bridge between Long Island and Connecticut.

The simulation showed that regardless of the location, the bridge would

be saturated quickly after opening, and the traffic would become worse

rather than better in the areas to be served.

FUNCTIONS OF SIMULATION

There are four major functions associated with the use of simulation in

urban analysis. |

CHAPTER

Simulation
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1. Optimization. It often occurs that the optimization models we have

examined cannot be used for a given problem, or it may arise that optimi-

zation models only deal with a part of the problem. Simulation can be

used for linking models together in order to attain an overall optimization.

This is possible because simulation allows for the approximation of several

possible optimal configurations, one of which may be a good estimate of

the overall optimization values for a given problem. Simulation also is use-

ful when several possible outcomes could exist for an optimal solution;

then its inherent ability to determine and test alternative solutions to prob-

lems can be utilized.

2. Transitional Optimization. Most of the deterministic optimization

models yield optimal values for a steady state or final state of the urban

system. Assuming that dynamic or stochastic optimization models cannot

be formulated or are too difficult to formulate and compute for a given

problem, it may be possible to employ advanced forms of simulation to

determine optimal values for urban systems at various points of transition.

This useful function of simulation allows for the determination of dynamic

optimal solutions even when dynamic programming cannot be used.

3. Parameter Estimation. When all else fails in attempting to model an

urban problem, it may be possible to use simulation to estimate the param-

eters of a suitable model. Problems that are most difficult to model are

usually associated with poor and inadequate data. If past data are avail-

able or at least partial data on the problem in the past, and if the variables

are known, simulation can be used to create artificially a data file from

which parameters can be estimated. Even when no data are available, for

a problem in the future, for example, it may be possible to generate hy-

potheses which can be used as a basis for simulating the problem and

generating data in the artificial ways of simulation.

4. Gaming. It often occurs that the urban problem is too difficult, com-

plex, and unwieldy to model. When these conditions occur, usually involv-

ing numerous outcomes of decisions and intervening human behavioral

values, it is necessary to formulate alternative simulations of the problem.

This function is called gaming and is dealt with separately in the next

chapter because of its widespread popularity in urban analysis.

ForMS OF SIMULATION

Just as there are three basic forms of models, so there are three basic

forms of simulation.?
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1. Analog. This is the use of analog models to imitate the urban system.

An interesting example of analog simulation is MONIAC at the London

School of Economics. MONIAC is a series of hydraulic models — with

pipes, fluids, outlets, and inlets — which simulate the flow of money in the

British economy. Comparable simulations have been developed in the

United States as well.

2. Iconic. This involves the use of iconic models in real or simulated

environments to imitate urban systems. A familiar example from aero-

nautical engineering involves the use of scale-model airplanes in wind

tunnels to simulate flight conditions — this is an iconic simulation under

simulated conditions. Urban analysts have developed scale models of urban

developments and tested them for drainage and sunlight conditions. Ex-

amples of iconic simulations under real-world conditions are found in such

projects as the building of test highways which are opened for public use

for a period of time.

3. Symbolic. This type of simulation involves numerical rather than

analytical evaluation of variables and functions, using symbolic models.

The general symbolic expression is

W= FUU,, U3),
where

W = characteristics of the urban system,

U; = one or more control or noncontrol variables which generate

values in a numerical function,

U; = other independent variables and constants,

F = a numerical function.

Most symbolic simulations involve the random selection of a sample of ran-

dom variables (U;) and a set of deterministic variables or constants (U;)

to generate a probability density distribution (continuous) or probability

distribution (discrete) for computing numerical values for the outcome

(W). Since there can be different sets of values for U;, there will be cor-

responding differences in W such that it is better to consider w;, where 1

= 1,2,...,. Thus optimal solutions, parameter estimates, and transi-

tional optimization should be selected from the set W « { ts, Way sey

Wr} , and the expression is better stated by

Wi = fi(ui, U;)
for F = (fay fos -- +a):

*Russell L. Ackoff, Scientific Method: Optimizing Applied Research Decisions

(New York: Wiley, 1962), pp. 346-351.
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While we recognize the utility of analog and iconic models in many

problems of urban analysis, we prefer to emphasize symbolic simulation.

Symbolic simulation, which we shal] simply refer to as simulation, is the

most common type found in contemporary urban analysis, and the amount

of research and development underway is astounding.

METHODS OF SIMULATION

Simulation is used generally in urban analysis when it is not possible to

determine optimal solutions from optimizing models and mathematical

programming. Such urban problems tend to involve complex interactions

among variables and functions and several alternative solutions with vary-

ing associated costs and benefits.

There are no underlying, universal, and unified theories for the formu-

lation and solution of simulation. Most simulations are ad hoc by nature

and highly specific to particular problems. Simulations are even likely to

be quite different for similar urban problems in different urban systems.

The overall effect of this ad hoc nature of stimulation is both a problem

and a potential. The problem is that assumptions must be made frequently

about the urban system even if there is scant knowledge about the charac-

teristics for which assumptions are made. The potential is that simulation

becomes a highly flexible and malleable scientific method that can be used

for almost any urban problem no matter what the degree of complexity

and data inadequacy. Ironically, a common complaint among urban ana-

lysts is that simulations are based upon much judgment and intuition in

order to develop the foundation of assumptions upon which the simulation

is built. This often makes it extremely difficult to measure the validity of

the simulation without making further judgments and intuitive assumptions

about whether or not the problem has been explained and resolved.

SIMULATION AND COMPUTERS

One often hears it said that simulation was made feasible by the develop-

ment of the digital computer — some even prefer to call these scientific

methods by the name computer simulation. Beyond a doubt, the speed and

accuracy of the computer was the motivating force behind widened use of

simulation, although it should be made clear that the theory and method

of simulation were pioneered by seventeenth-century mathematicians with
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interests close to the gaming tables of the French Riviera. The methods

were and remain cumbersome and computationally noisome, so that the

computer brought an air of feasibility to simulation. Simulation is a nu-

merical method, to reiterate, and requires special programming approaches

for computer processing. The result has been a series of entirely new com-

puter programming languages: SIMSCRIPT, GPSS (general-purpose sys-

tem simulator), DYNAMO, and others. These languages allow for general

algorithmic computation of many different kinds of system simulations.

One could solve simulation problems by “running them on paper,” prob-

ably with a set of look-up tables for various measures and a trusty desk

calculator. Simulation is not impossible without the use of computers. The

more important question is whether running large simulation problems on

paper is practical. Again we stress the point that computers cannot do any-

thing that a man cannot do, but the computer, devoid of personality and

fatigue, can do those things that man can do, like simulation, with incred-

ibly better speed and accuracy. We would conclude this point by arguing

that simulation usually requires the use of computers in order to relieve

man of unreasonable burdens of computation, although this may be at the

expense of voluminous reports from the output of the simulation which

must be analyzed by man.

DETERMINISTIC SIMULATION

While most methods of simulation are stochastic, there are several types

of simulation which are based on methods that are more deterministic

than stochastic. Most of the deterministic simulations are uses of linked

models which imply or assume randomness among the variables but which

avoid stochastic expressions by using deterministic expressions based upon

assumptions.

Many deterministic simulations have their historical roots in the evolu-

tion of social physics, which is the name given to a movement composed of

theorists who attempt to utilize concepts of physical science for the solution

of social science problems.? The most popular and well-known method of

social physics has been the use of the gravity model, the simulation use

of which is called interaction simulation, based upon the transfer of New-

tonian mechanics to social and urban masses, be they people, jobs, traffic,

sales, or cash flows.

*The reader interested in this school might refer to George K. Zipf, Human

Behavior and the Principle of Least Effort (Reading, Mass.: Addison-Wesley, 1949).
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Interaction simulation is historically derived from the universal law of

gravitation, as expounded in the treatise Philosophiae Naturalis Principia

Mathematica, written by Sir Isaac Newton (1642-1727). Newton was a

mathematician who dedicated his life to the sound and coherent study of

mechanics. His universal law of gravitation held that an attractive force or

interaction between two masses was proportional to the ratio of the product

of their masses to the square of the distance between them:

F=G aa 2,

where

F = force of attraction or interaction,

M1, Mz = masses,

G = proportionality constant,

R = distance between M1 and Mz.

I

Application of the universal law of gravitation by social physicists began

in the nineteenth century and continued well into the twentieth century.

The universal law of gravitation was modified by other laws: Boyle’s law,

Dalton’s law, Charles’s law, and Brownian movement. This modification

allowed for the kinetic effects of forces to alter the interaction. For ex-

ample, just as barometric pressure and temperature affect the interaction

of gases, so do income and employment affect the travel of families. The

earliest applications of interaction simulation, as based upon the universal

law of gravitation, were concerned with the simulation of population and

migration, traffic, communications, and human behavior.

The most common application of interaction simulation in urban analy-

sis is for traffic movements. In this application the interaction simulation

assumes a kind of probabilistic attraction which is based upon the universal

law of gravitation, but the probabilistic basis is taken no further than an

assumption — it is peripheral to computation.

We can develop the interaction simulation by looking at a hypothetical

urban system with a population P and data gained from a survey of traffic

(usually called an origin-and-destination survey) that allows us to measure

the number of trips made within the urban system every day by the popula-

tion.’ For simplicity in development of these ideas, let us first assume that

all of the various sub-areas of the urban system, which we will call traffic

zones, are relatively homogeneous in size, population, race, income, occupa-

* Walter Isard, Methods of Regional Analysis: An Introduction to Regional Sci-

ence (Cambridge, Mass.: M.I.T. Press, 1960), develops the basic concepts and this

problem in much more detail for the interested reader. See especially Chapter 11.
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tion, education, sex, and general character. We can remove this oversim-

plification later. |

We can generalize our model and determine its mathematical expression

if we use the precepts of the universal law of gravitation in its modified

form. If we wish to first consider the movements between any traffic zone

z to any other traffic zone j, we can assume for further simplicity that the

relative costs and time of travel, usually called the friction factor, are equal,

say zero. Then we can assume that the universal law of gravitation and its

implied probability of attraction would hold: the probability of a person

making a trip from traffic zone 2 to traffic zone 7 would be the ratio of the

mass of the population of j to the total mass, P;/P. For example, this proba-

bilistic assumption would mean that in an urban system of P = 1,000,000,

where P; = 100,000, the probability of an individual making a trip from

any traffic zone 2 to traffic zone 7 would be

P;/P = 100,000/1,000,000 = 0.10;

more simply, there is a 10 percent probability that an individual will make

a trip to traffic zone 7 from any other traffic zone 7.

Since we know the total trips per day (T) from our survey, and the

population (P), it can be readily seen that the per capita trips are T/P

= K. Hence the probability that an average individual will make a trip

to traffic zone j on a given day will simply be the per capita trips times the

probability of making a trip to traffic zone 7:

P;x 2)

For example, in our urban system of 1,000,000 and traffic zone j of

100,000, we can compute the per capita trips per week as 20. Thus the

probability that an individual will make trips to traffic zone j is 0.10, and

he is likely to make two trips per week to traffic zone 7:

100,000
———— |= 2 trips per week.

If we want to know how many trips can be expected from any traffic

zone i to traffic zone j, we simply multiply the per capita measure by the

population of the traffic zone:

PP;
Ty =K—*,

where T;; = total expected trips from all inhabitants of traffic zone 7 to

traffic zone j for a stated time period (one day, one week, etc.). This same
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expression can be used to describe the total trips from all traffic zones,

including within j itself, by using the summation expression:

n 7 -f’.

pa Ts =K ~ ae,
t==1 i=1

where 27 = I, 2,..., 7.

This idealized interaction simulation is not practical because of our

simplifying assumptions. We must remove these simplifying assumptions

about homogeneity and friction factors in order to deal with real-world

problems. Since we have an origin-and-destination survey available, how-

ever, we can eliminate the simplifying assumptions by incorporating all

real-world deviations in a bit of mathematical sleight of hand. We can do

this by developing a simple linear model of the real world and incorporat-

ing it into our interaction simulation. The simple linear model is computed

by plotting the ratio of expected trips (174;) to observed trips (1i;) against

the distance from z to 7 (d;;) on double logarithmic scales to insure linear-

ity, as shown in Fig. 9:1. The simple linear model will take the familiar

form x = a-+ by, or in our terms,

Tg
log T; a — blog dj;.

The logarithmic values can be replaced by real-number values by taking

the antilogs and letting ¢ stand for the antilog of the constant a, which yields

Ly _ &

Ty a
or

l= ae.
a7

We have previously said that the expected trips (T:;) could be computed;

thus, by substitution,

c P:P; cKP;P;
Qi = ra K woe —+.

db, P a.P

We can factor out the constant cK /P and substitute another constant G to

simplify the expression:

| P;P;
iG = G b

a>.

This interaction simulation gives us the actual trips (J;;) from traffic zone

1 to j, including all real-world empirical friction factors. By using the sum-
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di;LOG OF EXPECTED TO OBSERVED TRI
Fic. 9:1. Simple linear model of expected to observed trips by distance.

mation, we could compute total trips to traffic zone 7 from all other traffic

zones:

DW l=GCGy
i=] =

a P;P;

= a

A double summation expression would yield all trips between all zones:

n on nen PP;

wv l= CLD Be
tan] j=] d=] jel ij

This is the general form of interaction simulation, although many varia-

tions and special forms are used in practical urban analyses.

Interaction simulation, whether based on the gravity model or on other

theoretical bases, is quite popular in many types of urban analysis. How-

ever, it has come under considerable criticism with increased application.

The mathematical critique is that probability of interaction 1s an assump-

tion which is not adequately proven or tested. Other mathematical assump-

tions have to do with the choice of the variable to signify mass; we have

looked only at population, but income, jobs, retail sales, or any other rea-

sonable measure of social mass could be used for urban analysis. The

mathematical problem is that different choices of mass for the same prob-

lem can yield radically different results. Similarly, the selection of sub-areas,
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whether they be traffic zones, census tracts, blocks, etc., can significantly

affect the results of interaction simulation.

A serious criticism has arisen regarding the justification of using the

precepts of the universal law of gravitation for urban problems. The law

is valid because it “averages out” deviations from unexplained forces. For

example, interaction simulations have worked very well in practice for

overall urban system problems, yet when they have been applied to sub-

areas with special characteristics, such as low income, high income, black,

low education, etc., the results have not been good. This situation arises

because these special cases are averaged out of the overall system simulation

and cannot be returned without special calibrations. This means that the

urban analyst should carefully choose the type of problem and areas of

application for interaction simulation.

STOCHASTIC SIMULATION

The most common and widely used form of simulation is the stochastic

simulation of urban systems. Stochastic simulation entails the random

sampling of probability density distributions and probability distributions.

The heart of stochastic simulation is the Monte Carlo method. The ro-

mantic name for this method derives from its birthplace among the gam-

bling tables and roulette wheels of the famous Mediterranean resort and

casino. While the roots of the Monte Carlo method trace back to the

seventeenth century, analysts did not begin to expand its applications until

the early twentieth century. The major extensions were made by the Italian

physicist Enrico Fermi (1901-1954), with major contributions by W. S.

Gosset, John von Neumann, and J. W. Mauchly.

The method of stochastic simulation ordinarily entails a random sam-

pling procedure by which a probabilistic numerical approximation of the

problem is developed. The most frequently used device for obtaining ran-

dom numbers, which one uses for random-sample selection, is the table of

random numbers, the most famous of which was developed by an elec-

tronic roulette wheel built into a computer by the RAND Corporation.‘

There are several other tables of random numbers. as well as numerous

computer-based programs which automatically generate random numbers

for random-sample selection according to some set of instructions about

sample size and numerical specifications.

“RAND Corporation, A Million Random Digits with 100,000 Normal Deviates

(Glencoe, Ill.: Free Press, 1955). The first page of random numbers from this

effort is included here as Appendix G.
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Random samples of data must be converted to random variables, in

order to approximate the problem, from the probability density function

that is given or artificially found. In general, the cumulative probability

model is used, and a variety of different random-variable measures can

be employed in order to approximate the problem. This sounds simple

enough, and it is, although actual situations make the decision about effi-

cient measures difficult. The mathematical basis, however, is not terribly

sophisticated, and this accounts for much of the popularity of simulation.

Let us consider an example in which an urban analyst has been asked to

simulate absenteeism in the sanitation department, which has been plagued

by strikes, work stoppages, and inefficiency. There are 2,500 members of the

sanitation department, and absenteeism is known to lie within the interval

from zero to 1,000 per day. The urban analyst determines from past data

that the cumulative probability for absenteeism is an s-shaped curve, as

shown in Fig. 9:2. Using a table of random numbers (such as Appendix

G), the analyst begins to select a random sample of values for the Y axis

(absenteeism range and probability range) which is used to generate ran-

dom-variable values along the X axis. For example, the random-number

sample 715 is used to generate the random-variable value x. The values

for X could simply be the actual values for the problem, such as absentee-

ism in our example, or some numerical derivative, such as logarithmic,

exponential, or equidistributed random numbers — whatever proves most

convenient and economic.

One can see easily that the trick is to find the generating function Y

= /(X) that enables the use of random-number selection for values of the

random variable. Often this is not a problem because past data are avail-

able which enable the determination of the generating function or an

approximation of it. Yet even when Y= F(X) is almost impossible to

determine, simulation can be used if a working hypothesis can be found to

approximate the generating function or, in extremely random problems,

if random numbers can be used to approximate the generating function.

Fig. 9:3 shows an example of a generating function that was approximated

from incomplete past data and working hypotheses about the characteris-

tics of the system. While this generating function has no neat mathematical

expression, it can be used, even in its graphic form, with a computer to

perform Monte Carlo method simulation.

Advanced forms of simulation are concerned primarily with improving

the generating function by reducing the variance o* of the estimates. There

are a number of well-developed procedures for variance reduction of gen-



230 : Scientific Methods of Urban Analysis

Y

(1,000) 1.0

(900) 9

(800) .8 -

(700) .7 ROT TT -

(600) .6F

{

1

(500) .5

(400) .4

(300) .3

(200) .27

).

f *¥% ATAVNIVA WOUNVa
(100) .r bPROBABILITY THAT ABSENTEEISM <_X preciesctace em cite te ee tea me ee eee me em me ae a ee ae me me ae

RANDOM VARIABLE

Fic. 9:2. Simulation of absenteeism.

erating functions.? As a general rule, we have found that the larger the

sample of data from which the generating function is developed, the better

the generating function’s estimates and the less the variance. This same

finding can be extended to say that the sounder the hypothesis used to

approximate the generating function, the more likely it is that the estimates

will have small variations from the real world.

The characteristics of the urban problem under consideration can be

specified after a satisfactory number of iterations of the Monte Carlo

method. Considering our previous example of the sanitation workers’ ab-

senteeism characteristics, the pattern of absenteeism can be simulated as

shown in Fig. 9:4. Having described this pattern, useful information can

be obtained by familiar statistical measures. For example, the expected

value of absenteeism, or the mean of F(X), can be computed in the fa-

miliar manner. Similarly, the standard deviation op(g) can be computed

and the values mapped as the upper and lower limits. This particular

*See H. A. Meyer, ed., Symposium on Monte Carlo Methods (New York: Wiley,
1956), especially H. Kahn, “Use of Different Monte Carlo Sampling Techniques,”

pp. 146-190.
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Fic. 9:3. Simulation with approximate generating function.

example has predictive and explanatory implications but relatively few

optimization possibilities. Nevertheless, it could be used as input data to

optimization models which consider control variables.

An illustrative simulation problem may be useful at this point. Let us

consider a problem in which the urban analyst is requested to simulate

traffic flow over a segment of a highway, as shown in Fig. 9:5.° The urban

analyst uses a familiar traffic measure known as the average daily traffic

(ADT), which is simply a statistical measure of the average number of

vehicles in segment A per day for a period of a given month. The decision-

makers have before them a proposal to close down the segment and add

two more lanes because traffic jams are expected owing to the design ca-

pacity of 10,000 ADTs. The urban analyst is to simulate traffic over seg-

ment A for a period of 30 months in order to determine (1) what the ADT

is likely to be and (2) what traffic tie-ups can be expected.

6 This example is based upon a problem developed and solved in Giuseppe M.

Ferrero di Roccaferrera, Operations Research Models: For Business and Industry

- (Cincinnati: South-Western Publishing Co., 1964), pp. 883-889.
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Fic. 9:4. Characteristic pattern of absenteeism by use of simulation using

the Monte Carlo method.

SEGMENT A

INTERSECTION I INTERSECTION 2

ADT cOUNTERS

Fic. 9:5. Average daily traffic in segment A.

The ADT on segment A has been recorded for the last 40 months and

is made available to the analyst, who then maps it as shown in Table 9:1

and Fig. 9:6; the latter uses the percent of observations of ADT by class,

often called the relative frequency. The probability and cumulative proba-

bility are easily computed from Table g:1 and are shown in Table 9:2.

The probability of a class of ADT is simply the conversion of the relative

frequency into a probability scale ranging from zero to one. The cumulative

probability is the accumulated total probability such that it represents the
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probability that a class is equal to or less than a given class, as shown in

the last column of Table 9:2. The cumulative probability of ADT by class

can be mapped as shown in Fig. 9:7. As can be seen, the ADT by class

takes on the appearance of a Poisson model for a discrete class of random

variables. This character in itself could be used for simulation, since ADT

is independent of temporal or seasonal influences in our example.

Knowledge of the cumulative probability of the past 40 months for ADT

by class is sufficient for the use of the Monte Carlo method for simulating

the next 30 months. We can select a set of random numbers, which for

convenience can range from 0 to 999 (or 1,000 random numbers) ; any

set of random numbers is acceptable, although multiples of ten facilitate

computations. The random numbers must then be assigned in proper pro-

portion to the cumulative probability. This can be done simply enough

Tas.E 9:1. ADT for segment A for last 40 months.

ADT by Class Number of Months Observed

O- 1,999 2

2,000- 3,999 10

4,000~ 5,999 15

6,000- 7,999 6
8 ,000- 9,999 3
10,000-11,999 2

12 ,000-13,999 I

14 ,000-15,999 i

16,000 or more O

2 = 40

TABLE 9:2. Probability and cumulative probability.

Number of Relative Cumulative
ADT by Class Months F Probability Probabili

Observed requency robability

Oo- 1,999 2 5.00 0.050 0.050

2,000- 3,999 10 25.00 0.250 0.300

4.,000- 5,999 15 37-50 0.375 0.675
6,000- 7,999 6 15.00 0.150 0,825

8,000- 9,999 3 7-50 0.075 0.900
10, 000-11, 999 2 5.00 0.050 0.950

12,000~-13,999 I 2.50 0.025 0.975

14,,000-15,999 I 2.50 0.025 1.000

16,000 or more O 0.00 0.000 1.000

Total | 40 100.00 1.000 —_
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Fic. 9:7. Cumulative probability of ADT by class.

by converting the cumulative probability to an interval which is found by

multiplying the cumulative probability by 1,000 and subtracting one (since

our first random number is 0). For example, the first cumulative proba-

bility of 0.050 for the o-1.g99 ADT class can be converted to an interval

of random numbers ranging from o to 049 — the next class would start

at 050, etc. The quantity of random numbers can be computed by mul-

tiplying the difference between each cumulative probability and its imme-
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TABLE 9:3. Assignment of random numbers to classes of

ADT.

Cumulative Random-Number Quantity of

Probability Interval Random Numbers

0.050 000-049 50

0.300 050-299 250

0.675 300-674 375
0.825 675-824 150

0.900 825-899 75

0.950 900-949 5°

0.975 959-974 25

1.000 975-999 25
1.000 — o

— — 2) = 1,000

diate predecessor by 1,000. For example, the first class would be (0.050

— 0)1,000 = 50, the second class would be (0.300 — 0.050)1,000 = 250,

etc. These computations are shown in Table 9:3.

Since we have previously stated that 30 months are sought for the simu-

lation, we should select 30 random numbers from Appendix G and deter-

mine the corresponding probability and ADT class. This can be done

simply by comparing the selected random number with the assignments

made in Table 9:3, or the random number can be plotted against the
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A)

p
G

3
mp 40 7 “
o
nl
mm

m 30.0QR *

me 30 - , ) “

pondss |

= 20.0

fe :

fx] |

ide] :

E 10 | :Zz - . : | i ~é 6.6 rd

gy

Ou ;
ees )©=“Sommeee

oO 2 4 16 18

ADT BY CLASS (THOUSANDS } |

Fic. 9:8. Simulated ADT by class and percentage of simulated frequencies

for next 30 months.
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TasLe 9:4. Thirty random numbers and corresponding

ADT classes.

jeraion | Random | Probabitiy | {D7 Clas
I 868 0.868 8-10

2 699 0.699 6- 8

3 937 0.937 10-12
4 681 0.681 6- 8

5 625 0.625 4- 6

6 935 0.935 10-12

4 113 0.113 Q- 4

8 4.40 0.440 — 4- 6
9 173 0.173 2- 4
10 876 0.876 8-10

II 817 0.817 6- 8

12 O13 0.013 O- 2

13 870 0.870 8-10

14, 417 0.417 4~- 6

15 957 0.957 12-14
16 030 0.030 O- 2

17 079 0.079 2— 4
18 069 0.069 2- 4

19 995 0.995 14-16
20 436 0.436 4- 6

21 755 0.755 6- 8
22 237 0.237 2- 4

23 946 0.946 10-12

24. 182 0.182 Q- 4

25 131 O.131 2- 4

26 190 0.190 Q- 4

277 84.4. 0.844 8-10

28 547 0.547 4- 6
29 426 0.426 4- 6

30 142 0.142 Q- 4

cumulative probability, as shown in Fig. 9:7, and the resulting ADT class

determined. In Table 9:4 we have selected 30 random numbers and

determined the corresponding probability and ADT class. The data in

Table 9:4 can be summarized as shown in Table 9:5, and the simulated

ho frequencies can be obtained. The simulated frequencies can be mapped

as shown in Fig. 9:8. This represents the 30-month simulation of the ADT

by class for segment A of the highway under consideration. The question

about traffic tie-ups because of exceeding the ADT capacity of 10,000
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Tasre 9:5. Simulated frequencies of ADT

class.

Expected ADT by Class Simulated

over Next 30 Months Frequencies

O— 1,999

2,000- 3,999

4,000~ 5,999

6 »000—- 7,999
8,000- 9,999
10,000-11,999

T2,000~13,999

14, 000-15, 999
16,000 or more OF eR OPP HMO NH

can be seen to be in the probability of 6:1. In other words, there is only

one chance in six that a traffic tie-up will occur over the next 30 months.

On the other hand, the urban analyst would point out that the simulation

reveals that there will be five months in which the ADT will probably be

over 10,000, which could result in horrendous traffic jams. The urban

analyst might recommend that the highway improvements be made with

dispatch. This example should point out the ad hoc nature of simulation,

and the careful reader will no doubt be able to recognize many alternative

simulations of this problem.

QUEUING THEORY

Queuing or watting-line theory is a special class of the simulation ap-

proach in which analytical methods are employed. Queuing theory is the

use of symbolic models with analytical and mathematical bases in order to

simulate the characteristics of a system with random and nonrandom vari-

ables. The principal distinction from simulation is that queuing theory

provides the ability to derive solutions from an analytical rather than a

numerical approach, and hence optimization is possible.

Queuing theory deals generally with systems that are subject to conges-

tion because of random arrivals or demands. We have briefly examined

the rudiments of queuing theory in our examination of Markov processes.

Making extensive use of the Poisson model and a special form of the

gamma model known as the Erlang model, queuing theory allows the

derivation of analytical solutions to such problems as waiting time, cost
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of waiting, length of queues, and number of servicing stations. The primary

function of queuing theory is to provide solutions to systems which have

problems of congestion owing to randomness of arrivals or demands.

We choose not to expend our energies on queuing theory, since the rudi-

ments are simple but the methods are complex — complex not in mathe-

matical terms but, rather, in the computational sense, which is admittedly

cumbersome and depends upon iterative methods. Standardization of queu-

ing theory expressions has caused some simplification in computation.’

CRITIQUE OF SIMULATION

Upon introduction, simulation has a tendency to blossom into love at first

sight with many neophyte urban analysts. ‘The mathematical foundations

are not complicated with regard to computation, and digital computers

ease most of the burden of computation anyhow. The versatility of simula-

tion is exciting, and the inherent foundation of assumptions based upon

judgment and experience, as well as intuition, appeal to many trained in

the social sciences. Simulation appears almost too good to be true, but

we Offer the fatherly advice of putting off the wedding until one has

learned more about the family and background of the intended.

We offer a critique of stmulation not to dissuade the urban analyst from

its employment but, rather, to alert the urban analyst to some of its draw-

backs. One problem is that simulation is a somewhat imprecise approach,

the results of which vary even with the same simulation and same problem

because of the randomness of the method. This is both a drawback and a

strong point. It is a drawback because imprecise solutions can result in

bad decisions, yet we know precious little about urban systems and our data

are imprecise. Thus it could be argued that simulation is a practical if

imprecise approach for using the practical if imprecise data of urban

systems. ‘The counter-argument would be that such imprecise approaches

do not leave the analyst with that arrogance of satisfaction and confidence

that is often needed to approach the decision-maker and proffer the opti-

mal solution to his problems. Once again the decision about whether or

not to use the approach, in its present state of development, is largely a

personal one to be made by the urban analyst.

The pragmatics of simulation have raised some basic issues related to

"The interested reader is directed to the following, which is written with some

fine English insight: D. R. Cox and Walter L. Smith, Queues (London: Methuen,

1961). |
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the whole question of applying scientific methods to urban analysis. Simu-
lation models, as we shall discover below, tend to become rather large,
unwieldy, and fraught with built-in assumptions that are often forgotten.
Few of the major simulations of urban systems are wholly understood by
any one urban analyst — a team is almost always required, if only to keep

track of the assumptions.

Since simulation is basically a numerical method, with the exception of

certain queuing theory approaches, its value as a learning tool is dubious.

The learning to be gained from simulation is directly proportional to the

knowledge that was used in making assumptions. Obviously, shaky or ques-

tionable assumptions are not likely to reveal universal truths about prob-

lems in urban systems, even though perfectly adequate and approximately

optimal solutions to the problems can be found. In other words, simulation

is inwardly a pseudofunctional approach to urban problem-solving and

does not deal with cause and effect in a direct way.

APPLICATION OF SIMULATION

Having made the above critique in good faith, we now turn to an exami-

nation of the major applications of simulation to problems of urban sys-

tems. Once again we notice the attractiveness of simulation as an approach

to dealing with urban problems in cases where all else seems to fail. Witness

the applications of simulation; they vary from highway traffic to hospital

services to international relations.* The applications are many and varied.

We have elected to examine two classes of simulation applications: urban

development simulation and urban dynamics simulation.

URBAN DEVELOPMENT SIMULATION

Urban development simulation concerns the imitation of the physical

growth of the urban system in terms of such components as housing, econ-

omy, population, traffic, and land use. One of the classic urban develop-

® Arno Cassel and Michael S. Janoff, “A Simulation Model of a Two Lane Rural

Road,” Highway Research Record, no. 257 (Washington, D.C.: Highway Research

Board, 1968), pp. 1-17; R. B. Fetter and J. D. Thompson, “The Simulation of
Hospital Systems,” Operations Research, 13 (1965), 689-711; Harold Guetzkow

et al., Simulation in International Relations: Developments for Research and Teach-

ing (Englewood Cliffs, N.J.: Prentice-Hall, 1963).
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ment simulation efforts was conducted in the Pittsburgh urban system.°

There were several stages of the Pittsburgh simulation, which started out

as a simulation in atemporal terms of one class of residential and three

classes of retail employment land uses.*° Later stages of the Pittsburgh

simulation were concerned with extensions of the classes of land use to

include commercial and manufacturing as well as retail and manufacturing

employment and population.1! The latter simulation was developed for

the Pittsburgh Urban Renewal Program and is often called the Pitisburgh

urban renewal simulation.

The Pittsburgh urban renewal simulation incorporated the methods of

interaction simulation and a technique borrowed from economics known

as input/output analysis, which essentially is a method for accounting for

the flow of resources between industries. These methods gave the Pittsburgh

urban renewal simulation a deterministic character, even though it would

be more proper to consider it a hybrid of deterministic simulation with

some basic probabilistic assumptions (that is, regarding interaction).

The Pittsburgh urban renewal simulation was an early attempt at appli-

cation of simulation to urban analysis, and it proved to be somewhat cum-

bersome and expensive. The rationale for developing the simulation was

to test alternative policies for urban renewal plans in order to determine

the resulting effects on population, economy, and land use (linear pro-

gramming was used to define optimal values). The major contribution of

the Pittsburgh urban renewal simulation to applications of simulation to

urban analysis was the successful design and implementation of a simula-

tion that linked several submodels, such as housing, land use, economy, and

population, in order to imitate overall urban development.

Stochastic simulation of urban development has been more popular than

deterministic simulation. A long-term series of simulation experiments has

been underway at the University of North Carolina since the early 1960s.

Several of the experiments have resulted in operational simulations of

residential development which are based upon the conversion of rural or

vacant land to residential use.*? The simulations are based upon the theory

ae S. Lowry, A Model of Metropolis (Santa Monica, Calif.: RAND Corp.,

1964).
* A time dimension was added later; see John P. Crecine, A Time-Oriented

Metropolitan Model for Spatial Location (Pittsburgh: Department of City Plan-

ning, 1964).

* Wilbur A. Steger, “The Pittsburgh Urban Renewal Simulation Model,” Jour-

nal of the American Institute of Planners, 31, no. 2 (May, 1965), 144-150.

TM There have been numerous reports. A good review is found in F. Stuart Chapin,

“A Model for Simulating Residential Development,” Journal of the American Insti-

tute of Planners, 31, no. 2 (May, 1965), 120-125. |
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of land use succession, which holds that land will be developed to its

highest and best use according to a definable index of attractiveness. At-

tractiveness has been measured by such factors as accessibility, available

utilities, street access, and nearness of schools to the given parcel of land.

The North Carolina residential simulation, as the above experiments are

sometimes called, used various techniques of random sampling, including

the Monte Carlo method, to simulate the development for residential pur-

poses of parcels of land within grids of test urban systems. Numerous as-

sumptions about the real world are built into this simulation in order to

guide it. For example, inherent heuristic rules state that residential den-

sities are predetermined through public policy, overdevelopment of land

is not allowed, and spillover residential development goes to the nearest

parcels not already developed.

Recent extensions of the North Carolina residential simulation have been

directed toward the simulation of the behavioral patterns of developers and

home buyers as constrained and shaped by public policies within an urban

system.*? This continuing research and development program for residen-

tial land development is most important because it has been directed to the

major user of developed land (homes) and has dealt with pragmatic de-

velopment and policy variables. The most recent extensions of the simula-

tion have been based upon linked submodels within the simulation that

deal with land prior to development, during development planning, as

affected by residential preferences during marketing, and as an element of

urban system structure after settlement. This linked-submodel approach

allows for policy testing via simulation at the key points of leverage where

decisions are needed by developers, public officials, and home buyers. Such

a simulation is most practical for the real-world problems of residential

land use planning and the provision of housing to satisfy demands in an

urban system.

The most well-publicized stochastic simulation of urban development is

the well-known San Francisco housing simulation.* This simulation was

developed for the City and County of San Francisco for testing alternative

policies to be used for the urban renewal program. Such public policies as

zoning, rent subsidization, public housing, and mortgage guarantees were

tested in alternative configurations and permutations for their effects on

* Edward J. Kaiser and Shirley F. Weiss, “Public Policy and the Residential

Development Process,’ Journal of the American Institute of Planners, 36, no. 1

(Jan., 1970), 30-38.
“ Arthur D. Little, Inc., Model of San Francisco Housing Market (San Fran-

cisco, 1966). :
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the future housing supply of the urban system. In this guise the San Fran-

cisco housing simulation is the best example of the use of urban system

simulation in problems that cannot be expressed in the dynamic program-

ming format because of complex interactions and relationships.

The San Francisco housing simulation was highly sophisticated in terms

of its mathematical and functional structure, yet, like all other simulations,

it was based upon a foundation of assumptions. The simulation essentially

was concerned with housing stock by type over various time periods consist-

ing of two-year intervals. Such aspects and characteristics as construction,

demolition, physical condition, rent, price, and occupancy were simulated

for various levels and degrees of public policies, which acted as both con-

straints and inducements to increasing housing supply.

The mathematical nature of the San Francisco housing simulation was

somewhat novel. Rather than using the usual Monte Carlo method, the

urban analysts employed Markov processes to develop transitional states

and optimization. Such methodology is rarely found in urban problem

analysis. The use of Markov processes allowed for probabilistic variables

to be built into the equations that generated the simulated values for aging

and deterioration of housing. This meant that the generating function was

essentially part of the system description, and random sampling was mini-

mized. While difficult in mathematical terms to formulate such expressions

for urban problems, this method allows for more efficient use of digital

computers for computations and output reporting.

The raison d’étre for the San Francisco housing simulation was to test

policies that could be used by the urban renewal officials in order to exe-

cute their basic charge of improving the housing supply and insuring that

every family had a decent home.*® Yet the critique that has arisen regard-

ing the simulation is that the alternative policies that were tested tended

to be expressible only in abstract terms. For example, on-off switches or

flags were used to instruct the urban analyst about the probable ownership,

occupancy, costs, and public policies for each of the sub-areas, which are

called fracts, as affected by such policies as urban renewal programs of

demolition, rehabilitation, and conservation within a perfect market en-

vironment. The result has been criticized as somewhat artificial and hy-

pothetical. Further criticism has been addressed to the omission in the

simulation of transportation and accessibility. The simulation more or less —

implies that each fract is independent of others and is equally accessible,

“Tra M. Robinson, Harry B. Wolfe, and Robert L. Barringer, “A Simulation

Model for Renewal Programming,” Journal of the American Institute of Planners,

31, NO. 2 (May, 1965), 126-134.
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and assumptions about preferences for types of housing replace such mat-

ters as commuting time and distances.

Nonetheless, the San Francisco housing simulation is a milestone in the

application of simulation to urban problems. The complex and rigorous

detail available from the simulation is new to urban analysis. The capabil-

ities that the simulation has for testing many combinations of public policy

provide a unique tool for planning and programming.

A recent spin-off from the San Francisco housing simulation has been a

series of efforts concerned with the simulation of the future growth of the

San Francisco Bay area. These efforts culminated in the Bay Area Simula-

tion Study (BASS)."® The BASS is a hybrid form of simulation that uses

both deterministic and stochastic simulation methods. The BASS has three

submodels:

1. Aggregate Forecasting. Simulates 21 kinds of industry and population

distribution.

2. Employment Location. Allocates the 21 kinds of industry to 777 sub-

areas within the urban system.

3. Residential Location. Distributes two types of housing for three

income groups among the 777 sub-areas.

A rather large variety of methods is used to achieve the desired output,

which ranges from complex linear models to transition matrices.

The BASS seems to be particularly oriented toward including transporta-

tion and accessibility characteristics that were missing in the San Francisco

housing simulation. These characteristics are included through the use of

a probabilistic time-distance matrix. The time-distance matrix describes

probable average travel time and distance between centers of the 777 sub-

areas according to mode of travel; the resulting matrix has 603,729 ele-

ments for each mode. This matrix allows the urban analyst to evaluate

alternative transportation plans for their effect on employment and resi-

dential location for the urban system.

The BASS is still under development and refinement but promises to

be a most useful simulation and perhaps another milestone in the applica-

tion of simulation to urban analysis. Reviewers have called for a wider

set of characteristics to be included in the simulation, even at the cost of

making the simulation more complex and unwieldy than it is already.

The future developments of BASS merit serious observation and analysis.

* Paul F. Wendt and Michael A. Goldberg, “The Use of Land Development

Simulation Models in Transportation Planning,” Highway Research Record, no.

285 (Washington, D.C.: Highway Research Board, 1969), pp. 82-91. |
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URBAN DYNAMICS SIMULATION

The most ambitious and perplexing application of simulation to urban

problems has been the hybrid of systems analysis and simulation, developed

to imitate the growth of urban systems.** Urban dynamics simulation was

developed by Jay W. Forrester as an extension of his well-known concepts

of industrial dynamics.** Industria] dynamics is a systemic approach to

simulating the growth process of industries as reflected and effected

through various managerial policies. Forrester has refined industrial dy-

namics so that urban systems can be simulated through the same methods

used for industries.*° Urban dynamics simulation is applied to a hypotheti-

cal urban system to simulate its growth and decay as represented generally

by construction and migration.

The intellectual basis for urban dynamics simulation is more theoretical

than the usual foundation of assumptions. Urban dynamics simulation is

based upon the theory of systems as being inherently counter-intuitive. This

theory holds that the intuitive answer to problems of systems will gener-

ally have adverse effects and may even compound the original state of

problems. The reason for this is that intuitive selection of solutions to

problems is made on the basis of our knowledge about simple systems,

while industries and urban systems are actually complex systems. Accord-

ing to the theory, complex systems, unlike simple systems, have numerous

states, many subsystems, internal relationships which are usually nonlinear,

and interacting feedback loops. The result is that cause-and-effect rela-

tionships in complex systems are vague and almost impossible to identify;

more important, they are shaped by historical events and forces from

outside the system.

Urban dynamics simulation is an extremely large and complex simula-

tion which is composed of 369 generating equations with 360 different

variables, both deterministic and random. A special computer program-

ming language had to be written in order to process the simulation; the

language is called DYNAMO II and is an extension of the earlier DY-

NAMO, which was written for industrial dynamics problems. Nevertheless,

despite the mathematical sophistication and Forrester’s critique of assump-

tions made by other urban analysts who use simulation, the foundation is

still primarily assumptions made about a hypothetical urban system as

“For further discussion of systems analysis for urban problems, see Anthony J.

Catanese and Alan W. Steiss, Systemic Planning: Theory and Application (Bos-

ton: D. C. Heath, 1970).

** Jay W. Forrester, Industrial Dynamics (Cambridge, Mass.: M.1.T. Press, 1961).

* Jay W. Forrester, Urban Dynamics (Cambridge, Mass.: M.I.T. Press, 1969).
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modified by theoretical constructs of the counter-intuitive nature of com-

plex systems.

Urban dynamics simulation generates trend lines for 50- and 250-year

periods to show the probable growth of the urban system according to

various policies and programs. Its utility, then, is largely policy testing,

although Forrester argues that it is a learning tool which should not be

used for real-world problems until further testing is completed. The trend

lines for growth are used to identify sectors of urban system growth, which

usually means the following in urban dynamics simulation: (1) under-

employed sector, (2) labor sector, (3) managerial-professional sector, (4)

premium housing sector, (5) workers’ housing sector, (6) underemployed

housing sector, (7) new enterprise sector, (8) mature business sector, (9)

declining industry sector, (10) tax sector, and (11) job sector. Like the

North Carolina residential simulation, urban growth dynamics simulation

uses an attractiveness scoring index which yields the probability of attrac-

tion of construction and people. The difference is that interacting feedback

loops within the urban dynamics simulation are used to imitate growth.

Policies such as urban renewal, political powers, and negative income taxes

are used to test the impact that each, or combinations of each, would have

upon the stimulated growth of the hypothetical urban system.

The first run of the urban dynamics simulation showed the 250-year

trend of growth, maturity, and stagnation for an urban system as gen-

erated by the numerous submodels used for the simulation (see Fig. 9:9).

As can be observed, the simulation shows that urban systems begin on

empty land and reach full development over the next 100 years. The simu-

lation holds that when the land becomes filled, new construction decreases,

and this results in spin-offs to raise the level of declining industries and

underemployment. The higher level of underemployment creates adverse

effects on the economy and affects skilled workers in a detrimental way.

Similarly, too much housing goes to the underemployed housing sector,

and more industries start to decline.

The interacting problems of the sectors of the urban system continue for

less than 50 years. Somewhere around the 150th anniversary of the initia-

tion of the urban system, the various sectors have been simulated to ex-

perience a mild renaissance, which becomes the foundation for an indefinite

period of stagnation, although stability would be a kinder word.

The urban dynamics simulation is significant in that two assumptions

are built into the generating models. The first assumption is that the

environment in which the system is functioning is limitless. The second

assumption is that the urban system is basically a closed system, although
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Fic. 9:9. Urban dynamics simulation of hypothetical urban system.

Forrester muddies the water somewhat by arguing that the urban system

is open but functions within a closed boundary.”° The closed-boundary

condition is essential if stagnation and decline in growth are to be simu-

lated, since these states of the urban system are related to the amount of

land that can be developed. Hence it is the basic resource of space for

urban development that imposes a closed-system characteristic upon the

urban dynamics simulation. Taken together, the limitless environment and

closed boundary of the urban system result in a closed system which draws

freely upon the resources of the environment without constraint and which

interacts with other urban systems solely by attracting their migrants and

investment dollars. No competition among urban systems exists in this

simulation.

The basic critique of the urban dynamics simulation has been its closed-

system milieu. While Forrester criticized other simulations which used

simple simulation, the inherent closed-system characteristics make it really

a simple system per se. John W. Dyckman commented several years ago

about the wisdom of urban analysts’ use of closed-system simulation:

Most of the [simulations] of theory, physical or social, are closed. The

systems are in equilibrium usually shut off from upsetting shocks from

outside the system. . . . Indeed, it might be argued that scientific analy-

sis is impossible without closing the system which is being examined. We |

have not been able to devise intellectual constructs which can handle

the open system, and the task of doing so may be inherently hopeless.

Any system which is exchanging influence with its environment is open,

and all of the phenomena of [urban systems] which we abstract for analy-

” Ibid. p. 12.
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sis are in the process of interacting with some environment. Hence, all

are open.”?

Dyckman’s comments are relevant to the urban dynamics simulation in that

it was necessary to close the urban system, at least in terms of its use of

land resources and competing neighbors, in order to make scientific analy-

sis possible. Yet one must not lose sight of the truisms that urban systems

do interact with their environments, do interact with other urban systems,

and are rarely if ever in equilibrium. Hence urban systems are open sys-

tems, and the urban dynamics simulation does not portray open systems.

The urban dynamics simulation, ambitious as it may be, is based upon

a constant supply of people, homes, and jobs which are attracted from

unknown urban systems, as well as nonurban systems, outside the hypotheti-

cal urban system being simulated. In the real world urban systems compete

with each other to attract people, homes, and jobs, and this results in some

urban systems losing growth not because of stagnation but because of tough

competition. The classic example is the last three decades of competition

between Atlanta and Birmingham. Similarly, the notion of a limitless en-

vironment merits reconsideration. The people of the United States have

become painfully aware of the foolishness of assuming that the environ-

ment, including its resources of land, water, air, quietude, and raw ma-

terials, can be constantly plundered by urban builders without all urban

systems ever being affected. Obviously, there are limits upon the use of the

environment, and it is no longer possible to exploit it without replenish-

ment and economic use.

The severest criticismeof the urban dynamics simulation has not been as

much about its methods and assumptions as about its interpretations.” For-

rester argues that interpretations should not be drawn too easily, but he

nevertheless volunteers several interpretations for public policies in urban

systems. The counter-intuitive bias inherent in the simulation naturally

results in the criticism of most contemporary public policies for urban

systems. For example, the urban dynamics simulation shows that any pub-

lic policies that seek to improve the lot of the underemployed and poor

are resisted by urban systems and result in decay and stagnation by attract-

ing more underemployed and poor people to urban systems. The alterna-

tive is not discussed, however. Other interpretations offered are:

TM John W. Dyckman, “Planning and Metropolitan Systems,” in Melvin M. Web-

ber et al., Explorations into Urban Structure (Philadelphia: University of Pennsyl-
vania Press, 1964), p- 223.

* For example, see G. K. Ingram, “Urban Dynamics,” Journal of the American
Institute of Planners, 36, no. 3 (May, 1970), 206-208.
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1. A somewhat Darwinistic purist ideology in that the urban dynamics

simulation implies that rugged individualism and personal sacrifice result

in overall urban system growth.

2. An argument that taxes penalize “those who contribute most to urban

system growth” and encourage more people to move to urban systems, since

they will receive better services without having to pay for them. The sim-

ulation, as one can easily see, is slanted toward high corporate profit taxa-

tion and progressive income and property taxes without any loopholes for

the rich.

3. A vague charge that urban planners favor housing over industry and

hence contribute to the decline of urban systems by attracting houses rather

than factories. Forrester argues that industry should be the least restricted

land use and should be allowed to do whatever it wants, since this is good

for the growth of the urban system.

The counter-intuitive theory that is found throughout the structure of

the urban dynamics simulation is simply a mathematical way of developing

a biased imitation of the real world. The counter-intuitive theory can be

used to develop a simulation that can prove just about anything that an

urban analyst wishes to prove. The results of the urban dynamics simulation

are thus reactionary in light of contemporary approaches to programming,

planning, and action programs for solving the problems of urban systems.

One must recall, however, that the counter-intuitive characteristics which

Forrester insists be found in urban simulation are but untested assumptions

themselves. ‘This makes the interpretations unscientific in our viewpoint

because the alternatives have not been analyzed and tested. Similarly, the

use of these interpretations for decision-making would be inane because

they are biased by the simulation methods per se.

The urban dynamics simulation has yielded landmark values and con-

tributions which are not to be found in its learning, interpretive, and

policy aspects:

1. The breadth and scope of the urban dynamics simulation are much

greater and more synergistic than previous attempts at simulation.

2. The demonstration of the methods of simulation as a means of imi-

tating real-world urban systems and testing policies for their improvement

has been sound, qualified by our argument that other alternative simula-

tions must be offered for fair and wise decision evaluations.

3. The effective use of abstract models which were linked to form the

simulation, as well as the successful development of computational hard-

ware and software, has been most impressive.

Any attempt at simulation of urban systems is prone to inherit much of
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the personal bias and beliefs of the urban analysts. This is especially true

of large, unwieldy simulations which can only be understood by the origi-

nators. This should be minimized by the use of interdisciplinary teams and

a large measure of give and take. Most of all, every simulation of urban

systems should present a complete list of all the assumptions that were

made so that any reasonable person can easily detect points to which one

may or may not subscribe. This will probably mean that different persons

and groups will favor different simulations, but this is the essence of mod-

ern programming and planning for urban systems and is the valid approach.

RECOMMENDED EXERCISES

1. Select a segment of a highway in your community that has been sur-

veyed for traffic volumes in recent years. Develop a Monte Carlo method

simulation of traffic for the highway segment over some period of time that

is consistent with the available data.

2. Urban system simulations have tended to select characteristics for

the system — that is, the W in our general expression — that often reflect

the urban analysts’ professional and intellectual backgrounds and interests.

If you were asked to simulate an urban system, what characteristics do you

believe would be most relevant? How quantitative are these characteris-

tics? What assumptions would have to be made in order to employ scien-

tific methods for the analysis of these characteristics?

FuRTHER READING

Tocher, K. D. The Art of Simulation. Princeton, N.J.: Van Nostrand, 1963.

A classic book in the field of simulation which expounds upon the theory and

methods of simulation in terms of general systems. The work is the major exposi-

tion of the theoretical basis of the methods of simulation and some of the impli-

cations that may be drawn from simulation. The author tends to view simulation

as being as much an art as a science. |

Forrester, Jay W. Urban Dynamics. Cambridge, Mass.: M.1.T. Press, 1969.

Any urban analyst seriously interested in the application of simulation to urban

analysis should read Forrester’s book and become well acquainted with it, not for

its success or failures but, rather, as a case study of the methods involved. The

simulation is indeed extensive, yet the book omits much technical detail in favor

of attracting a wide audience.



Many urban problems resist attempts at modeling and simulation because

variables and functional relationships are vague, interactive, and often

unpredictable because of human behavioral inconsistencies and value

judgments. Scientific methods of optimization for such problems are im-

plausible, since so little is known about the structure of the problems;

sometimes the problem cannot even be stated precisely. As we mentioned

in the last chapter, such a seemingly hopeless situation can often be ana-

lyzed using the scientific methods found in that form of simulation called

gaming.

Gaming is a special kind of simulation that allows the urban analyst to

learn and understand more about urban problems by imitating the prob-

lems under simulated conditions. This generally entails role playing by

persons in order to make decisions for hypothetical problems; sometimes

actual data from real urban systems are used as well. Some theorists have

argued that gaming can do even more in that playing the game over and

over allows for the determination of certain patterns of behavior and deci-

sion-making by each role player. These patterns of behavior and decision-

making can be described in models which can be used for predicting and

estimating decisions. Our personal conviction is that such a use of gaming

is dubious, if not dangerous, because this procedure amounts to little more

than building models based upon variables and relationships found in

artificial experiments. As a friend of ours once commented, “Let them

play the game with real money, their own money, and there will be a

world of difference in the way that the game is played.”

The more commonly held rationale for gaming is that it is not a method

to estimate and predict decisions but an approach to learning and under-

standing more about apparently nonquantifiable problems. Gaming can be

used for teaching in cases where the problems can be well structured, and

where the gamemaster believes that subtle points can be made by role play-

ing which cannot be made in lectures. James S. Coleman, in responding

to criticism of the use of gaming as a learning tool, made the following

remarks:

Students have too long been taught things that are known, and have

too seldom been allowed to discover for themselves the principles gov-

CHAPTER
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erning a situation. ... The fascination with .. . games [is] the oppor-

tunity to learn about social organization by forming a caricature of

such organization and then observing the caricature. . . . The student

is learning how to incorporate this experience into his own life, learning

to recognize the dominant aspects of social environment so that he can

respond appropriately to them when he meets such an environment in

his own life.*

Indeed, Coleman’s notions have been widely accepted and adopted by

many educators in various areas of urban analysis.

EVOLUTION OF GAMING

Gaming was first applied to real-world problems in military and defense

contexts. Undoubtedly, the ideas of conflicting goals and competing players

lend themselves well to battlefield and strategic planning and decision-

making where there are two or more adversaries.” War games, which are

simulated battles, were used by Greek and Roman generals both to teach

their soldiers to fight efficiently and to learn about the behavior of soldiers

under simulated battle conditions. Charlemagne was known to command

his mathematicians to devise games which would reveal the most efficient

ways to move large armies across rugged topography and rivers. The mili-

tary use of gaming has continued up to the present with such games as

TEMPER that use large-scale digital computers to assist role players in

making decisions and then convert these decisions into simulated effects

upon the technology, economy, politics, and militaries of various competing

and conflicting countries throughout the world.* Gaming has been rela~

tively successful and quite popular with the military, since it has proved

to be a most useful method for learning and understanding strategic deci-

sion-making behavioral characteristics for adversary problems under con-

ditions of risk and uncertainty.

The scientific and mathematical bases of gaming were raised to high

levels of development through military and defense research, and with

* James S. Coleman, “In Defense of Games,” American Behavioral Scientist, 10

(Oct., 1966), 4

* For a discussion of basic problems of gaming in the military, see M. A. Geisler,

W. W. Haythorn, and W. A. Steger, “Simulation and the Logistics Systems Labo-

ratory,” Naval Research Quarterly, 10, no. 1 (Mar., 1963), 23-54.

*For further discussion, see Walter C. Clements, “A Propositional Analysis of
International Relations in TEMPER,” in W. D. Coplin, ed., Simulation in the
Study of Politics (Chicago: Markham, 1968).
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this elevation there came an interest from industrial and business ana-

lysts. The landmark theoretical work was written by John von Neumann

and Oskar Morganstern, in which they extended the theoretical base of

gaming to include problems of economic behavior and decisions under

conditions of risk and uncertainty. Thus they set the stage for industrial

and business gaming.* Gaming has found extensive use in industry and

business, although not without much criticism, for such problems as man-

agement decision-making, personnel selection, advertising, marketing, and

sales by companies which are in competition with other companies. A

well-developed body of theory has arisen from these applications.® As with

military and defense applications, much criticism and controversy have

surrounded the employment of gaming as a learning and understanding

tool, but many applications have been relatively successful and popular.

The present evolution of gaming has been generic to such an extent that

the method can be applied to any type of problem, whether military, in-

dustrial and business, or urban.® The basic requirements are that the prob-

lems which are to be simulated involve decisions under conditions of risk

and uncertainty where two or more players are involved. The generic evo-

lution of gaming has tended to result in a diminution of the conflicting-

goals and competing-players concepts. Gaming can be used in situations

where conflict and competition are vague and undefinable, although most

theorists believe that much of its effectiveness is lost in such applications.

The loss of conflict and competition in gaming as applied to urban analysis

has created several problems and much controversy over the usefulness of

the approach. There are, however, many urban problems which are sub-

ject to definable conflict and competition among two or more participants

in the decision-making.

The generic evolution of gaming usually has three purposes in urban

analysis:

1. Learning more about complex urban problems and understanding

the risks and uncertainties inherent in many of them.

2. Testing alternative solutions to complex urban problems and examin-

ing the risks and uncertainties attached to alternative solutions.

3. Approximating models of decision-making processes for complex

urban problems which are subject to conditions of risk and uncertainty.

* John von Neumann and Oskar Morganstern, Games and Economic Behavior

(Princeton, N.J.: Princeton University Press, 1944).

*For further background reading, see R. D. Luce and H. Raiffa, Games and
Decisions (New York: Wiley, 1957).

* Clark C. Abt, Serious Games (New York: Viking, 1970), explores the ramifica-
tions of this point in some detail.
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Having already stated our belief that learnmg and understanding, the

first purpose, is paramount for the use of gaming in urban analysis, we can

briefly mention the other two. The second purpose, testing alternative solu-

tions to complex problems, is a carryover from military applications. We

have found that the testing of alternative solutions by the use of gaming

does not result in clearcut findings for each solution but, rather, results

in learning more about each alternative solution. Hence we believe that

testing is actually a learning operation. Similarly, while several theorists

have argued that gaming can be used for approximating models of urban

problems when all else fails, we have found that gaming results in learning

and understanding more about the behavioral patterns of decision-makers,

from which analogies can be made with respect to the kinds of variables

and functional relationships that may be relevant for modeling the deci-

sion process. Thus our basic position is that gaming is best considered a

learning and understanding method which may have indirect benefits for

testing alternative solutions and modeling decision processes.

GAME THEORY

Game theory, the underlying scientific and mathematical structure of

gaming, has been largely oriented toward four types of games: (1) fwo-

person zero-sum games, (2) n-person zero-sum games, (3) nonzero-sum

games, and (4) infinite games. The mathematical complexities increase

with this ranking of types of games.

The overwhelming bulk of research and development in game theory

has been directed toward two-person zero-sum games, since they are the

simplest. As the name implies, two-person games, the persons being armies,

politicians, governments, individuals, or other suitable entities, consist of

two persons with conflicting goals competing with each other. One person

seeks to fulfill his goals at the expense of the other person. One person

will lose a portion of his assets or resources, and the other person will

acquire them; hence the sum of winnings and losses will be zero.

The real world of urban systems does not always involve only two com-

peting persons. When such a situation arises, it may become necessary to

use m-person zero-sum games in which any number (7) of persons may

be competing. This will substantially increase the possible number of

strategies to be selected. Games with a large number of persons become

quite unwieldy, and digital computers are needed to keep track of the

possible strategies and effects of moves by each player.
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Nonzero-sum games are for two or n persons in which the sum of win-

nings and losses may not equal zero. This situation arises when mutual

advantages, all players gaining by cooperative moves, are allowable. Co-

operation is allowed at preplay and at-play periods and is based upon bar-

gaining and negotiations between some or all of the players. Trade-offs

occur, in which players may incur a loss in order to achieve a greater gain,

such as one usually associates with such parlor games as Monopoly. The

result is that competing persons with conflicting goals make moves in

which all gain and none lose; therefore, the sum of winnings and losses

will be less than or greater than zero but not equal to zero.

The infinite game is a situation in which the number of strategies is

virtually unlimited. Such games usually encompass continuous, dynamic

decision conditions that involve not only the strategy selection but the

timing and phasing of strategies as well. It should appear obvious that one

has the easiest mathematical task with two-person zero-sum games and

the most difficult mathematical task with infinite games in which winnings

and losses may or may not be equal to zero.

SmmpLeE GAMES

We can learn much about the methods of game theory by examining a

number of simple games. While these games are admittedly simplifications

of real-world urban problems, this way of thinking about gaming applies

to all games. As a general rule, simple games are usually taken to mean

two-person zero-sum games.

TWO-FINGER MORRA

A sunny village square in southern Italy, with a warm wind blowing on

groups of men drinking zino and playing a game, seems an unlikely setting

to start our evaluation of simple games. These men will probably be

engaged in the traditional game, often called two-finger morra, or any

variation of it extending up to the full five fingers, in which they will

passionately throw out fingers and attempt to predict the number of fingers

thrown by an opponent, or throw a number of fingers such that the sum

of fingers thrown will be odd or even. Ex-sandlot baseball players will

probably recall playing a variation of this game, which we called Odds
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and Evens as young boys in New York, to determine which team got

first “ups.”

Two-finger morra, the elementary form of simple games, involves two

persons who are allowed to throw either one or two fingers simultaneously.

One player will choose evens, in which the total number of fingers must

be an even number, i.e., two or four. The other player will have odds,

which requires that an odd number of fingers be thrown, i.e., three,

Let us assume that player A has chosen evens, and the winner will receive

a dime from the other player. The game is a fatr game in that each player

has an equal chance to win, and we assume that payment will be made by

the loser to the winner. This means that each player has only two strat-

egies: each can throw either one or two fingers, let us say with the right

hand. The strategies and possible rewards can be shown as a payoff matrix,

as shown in Table 10:1. The payoff matrix is normally given for the first

player only, player A in our example, in that it expresses the possible pay-

TaBLe 10:1. Payoff matrix for two-finger morra.

Player B

Strategies
Strategies

I 2

Player A I 10 —10

2 —10 10

offs for each strategy that the first player could select. The payoff matrix

for the second player in zero-sum games is simply the negative of the first

player’s payoff matrix.

The entries in the payoff matrix, dimes expressed as pennies in our

example, are sometimes called utility values and represent the effect of

corresponding strategies. For example, if player A selects strategy 1 and

player B selects strategy 2, player A will lose a dime to player B because

the total number of fingers thrown will be odd. Utility values are expressed

as money, commodities, votes, or any other quantifiable payoff possibilities.

Sometimes in urban analysis utility values are expressed in qualitative

measures when quantitative measures cannot be devised; the most common

qualitative utility values are yes-no-maybe, go—no go, certain-uncertain,

like—dislike—no response.

From a village square in southern Italy to the sandlots of New York to

mathematical and scientific theory may seem like a long row to hoe, but
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this is the evolution of two-finger morra as a conceptual basis for game

theory and its methods. The structure of the two-finger morra game is

the same as most two-person zero-sum games: (1) strategies of player A,

(2) strategies of player B, and (3) payoff matrix.

The heart of the method of game theory, as well as the applicability

and relevance for urban analysis, lies in the development of criteria for

selecting strategies, which are usually called decision rules. Decision rules

can take any one of three forms for most games:

1. Rational Strategy. Assuming that each player is concerned solely

with his own gains at the expense of the other players, he will select the

strategy which corresponds to the decision rules which maximize utility

values.

2. Irrational Strategy. Assuming that each player is concerned with his

own gains but not necessarily at the expense of the other players only, he

may select the strategy which is a variation of the decision rules for any

of a variety of reasons.

3. Nonrational Strategy. Assuming that each player may or may not be
concerned with his own gains and may or may not be concerned with the

expense of the other players, he may select a strategy that is unrelated to

decision rules.

Decision rules are of great interest to urban analysts. Urban analysts

are involved with problems of decision-makers who require assistance;

often the urban analyst can provide this assistance in the form of decision

rules. Game theory is useful for determining decision rules based upon the

rational strategy. Decision-makers can accept the advice of the urban ana-

lysts and apply the decision rules in order to act as “rational men.” In

many cases, however, the decision-maker will consider factors other than

those related to the rational strategy and produce an irrational strategy —

this is what one might call the “art of politics.” Nonrational strategies are

outside the realm of scientific methods, since they are random at best.

Nonrational decisions are extremely rare in urban analysis, and few poli-

ticians and decision-makers can exist in today’s urban systems by using

nonrational strategies.

DOMINANT STRATEGY

A special case of rational strategy with considerable advantage and

interest to urban analysts is called dominant strategy. The dominant

strategy is that pleasant situation in which the strategy for rational selec-
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TABLE. 10:2. Payoff matrix for dominant-strategy game.

Player B

Strategies Strategies

I 2 3

Player A I 3 2 5

2 3 I 3

tion is obvious because there is no other strategy which will bring as high

utility values regardless of the other player’s moves. Considering Table

10:2 allows one to learn the nature of a dominant strategy. In this game

the dominant strategy for player A is strategy 1, since it is at least as good

as or better than strategy 2 no matter what player B may choose as a

strategy. On the other hand, player B has a dominant strategy. Player B

would eliminate strategy 3, since the other strategies are as good as or

better than strategy 3 in terms of minimizing losses (since in this game

player B cannot win anyway). Assuming that the two players are rational,

player B would realize that player A will most likely select strategy 1 and

therefore would select strategy 2 in order to minimize his losses. The re-

sult of this game would be that player A would receive a utility of 2 from

player B — this is often called the rational strategy value of the game.

SADDLE POINTS

Unfortunately, the complex urban world does not always allow urban

analysts to use games which have dominant strategies; if it did, digital

computers could do the job nicely without human intervention. There are

decision rules that can be used for two-person zero-sum games with ra-

tional strategy selection in the absence of dominant strategies. Considering

Table 10:3, we can examine the special case of the saddle point.

There is no dominant strategy in this game, and hence no rational

strategy is obvious. If player A were to select strategy 1, he could win 7

or lose 4, but since player B is assumed to be rational, he will realize

_ that player A is most likely to select strategy 1; thus player B would select

strategy 1 and player A would lose 4. If player A were to select strategy 3,

he could win 6 or lose 5, but since player B is assumed to be rational, he

would select strategy 3 and player A would lose 5. If player A were to

select strategy 2, he could not lose anything and could win 3, but player
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TABLE 10:3. Payoff matrix for saddle-point game.

Player B

Strategies

; Minimum
Strategies I 2 3 Payoff

Player A I —4 —I 7 —4

2 3 Oo 3 0

3 6 7! —5 75

Maximum Payoff 6 0 4 —

B, still assumed to be rational, would select strategy 2, and hence player A

would win nothing. The rational strategy value of this game would be zero.

Referring to Table 10:3, one can note that a column for minimum pay-

off values and row for maximum payoff values have been added. The

minimum payoff to player A would be zero for strategy 2, and the maxi-

mum payoff to player B would be zero for his strategy 2. The correspond-

ing utility value is also zero and lies in the second row and second column.

This is called a saddle point in that it has the extraordinary function of

setting both the upper and lower rational strategy values for the game.

Games with saddle points require that each player select strategies which

minimize the maximum losses. Such a decision rule is called the minimax

criterion. In our example, realizing that a saddle point exists, player B

would select strategy 2, since it would be the smallest of his three possible

maximum payoffs. Player A would apply the countervailing decision rule

and attempt to maximize his minimum payoffs, which is called the maxt-

min criterion, and hence player A would select his strategy 2. In other

words, using the concept of minimizing losses, player A would select the

strategy in which the minimum payoff is the largest, and player B would

select the strategy in which the maximum payoff to player A is the smallest.

The saddle point establishes the upper and lower rational strategy values,

as we mentioned, and these upper and lower values are usually the same

in simple games. When the upper and lower rational strategy values are

the same, a steady state is said to exist. The steady state is a game in which

neither player can improve his own gains, since each player is assumed to

be aware of the saddle point and is applying the maximin or minimax

decision rules. The game will terminate at the steady-state value, which

is zero in our example. Thus saddle-point games are fully predictable in

that neither player is likely to depart from the decision rules if we assume

rational strategy selections.
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IRRATIONAL STRATEGY

Sometimes a simple game of the two-person zero-sum type can involve

irrational strategies. Consider Table 10:4, which shows a game with no

dominant strategy or saddle point. As can be seen, the least that player A

could lose would be —3, and the least that he could win would be 3.

Thus the lower rational strategy value of the game is —3, and the upper

rational strategy value of the game is 3, using the mmimax and maximin

criteria. This means that there would be no rational strategy value for

the game (+3 and —3 equals zero).

TABLE 10:4. Payoff matrix for irrational-strategy game.

Player B

Strategies

Strategies. I 2 3 Paar

Player A I 0 —3 3 —~3

2 6 5 —4 ~4
3 I 2 —5 —~5

Maximum Payoff 6 5 3 —

However, it is doubtful that minimax and maximin criteria would be

used. If player A were to select strategy 1, he would maximize his mini-

mum payoff at —3; but if player B were to minimize his maximum payoff

to player A, he would select strategy 3 and lose 3. This would not please

player B, so he would ignore the decision rules and select strategy 2 and

win 3. Anticipating this change, player A also would ignore the decision

rules and select strategy 2 and win 5. Realizing this, player B would switch

back to strategy 3 to try to win 4. Then player A would consider moving

back to strategy 1, and the cycle would start all over again and conceiv-

ably never terminate. Such a game is called an unsteady state because

the decision rules do not yield a termination point. |

There is no simple way out of this dilemma. Game theory holds that

the way to play such a game is to use an irrational strategy to try to out-

smart the other assumedly rational player —in other words, to use irra-

tionality to offset rationality. The scientific way to do this would be to

select the random number, from an appropriate source, which corresponds

to an available strategy. This would throw the opposing player off guard,
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since predictability would be lost. The result is that neither player knows

in advance what the other player will do. Hence, if played to completion

in this manner, a steady state will exist, and the winnings and losses of

each player will be determined by chance. But at least the odds will be

the same for both.

MIXED STRATEGIES

Rarely does the real world offer the opportunity to use a single strategy

in order to win a game. Usually, mixed strategies are necessary. Game

theory holds that a probability distribution can be assigned to the discrete

number of strategies available to the players. This would take the form

x; = probability that player A selects strategy 7, where? = 1, 2,..., m,

33 = probability that player B selects strategy j, wherej = 1, 2,..., 2.

Since these probabilities must sum to one, players A and B would assign

values to each alternative strategy, the result being the probability dis-

tribution. The probability distribution determines the game plan, which is

the mixed strategy of each player for strategies i and j. In order to not

confuse actual and probable strategies, the original strategies are often

called the pure strategies. The actual playing of the game requires each

player to use mixed strategies as a method for determining which pure

strategy to employ.

A useful measure for mixed strategies is called the expected payoff,

which is essentially a measure of the demand for a strategy. The expected

payoff is measured as follows:

. mm cc

B= DD pita,
j=ml jal

where

E = expected payoff,

pi = probability that player A selects strategy 7 and player B

selects strategy ).

The expected value is a useful measure in that it serves as an estimation

and prediction of the average payoff if the game is played a number of

times. The problem, however, is that this tells little about the risk and un-

certainty of using probability distributions for strategy selection.

Many procedures exist for determining the decision rules when mixed

strategies are used, although none are foolproof. Extensions of the minimax
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and maximin criteria can be made by using a number of game theory hy-

potheses even when the mixed strategies are based upon probabilities.

Graphical methods have been developed by which the analyst can map

the game and determine the decision rules. Even optimization models have

been used to determine decision rules in mixed-strategy games. The equiv-

alent linear programming model, for example, would be

Max E = > > Paxiyi,
t==1 j=]

subject to

3 x piXiyg = lower value of the game.
t=1 j=l

This is based upon the assumption that the optimal decision rules would
be those that maximize the expected payoff such that it would be as good

as or better than the lower rational decision value of the game. There are

a very large variety and multitudinous versions of linear programming and

other optimizing models for mixed strategies, none of which is necessarily

better than the others.

CriTIQUE OF GAME THEORY

The basic critique of game theory is, “How realistic is it for real-world

urban analysis?” We have said that models represent the urban system

through simplification; this simplification is the inherent elegance of

modeling. Game theory is used to formulate games which attempt to deal

with the complexities of the real world through imitation of them, but

not necessarily through simplification and sifting or winnowing. The

result is that gaming may or may not imitate the real world, but critics

argue that game theory does not provide an understanding of why urban

systems function as they do or why residents behave in various ways.

Game theory sometimes serves as the basis for finding optimal solutions

to urban system problems that seem to be prima facie impossible to model.

The optimization takes form initially as decision rules that later become

model parameters. The danger is that the decision rules are almost always

based upon rational strategy selections, yet we have explained that even

some simple games require irrational or mixed strategies.

Gaming uses real people to play roles and make decisions. The unfor-
tunate result is that people often lose their uniqueness and individuality
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when they are told to assume a role, especially one in which they are

uncomfortable and act as they think they “should act.” On the other

hand, it also has been found that different people playing the same roles

in the same games will behave quite differently. Hence a variation is

inevitable in gaming. The degree of variation found for several runs of

any game may well affect its usefulness for urban analysis.

These are the most common and frequently heard criticisms of gaming.

We believe it fitting to present them at this stage as an epilogue to theory

and as a preface to applications. We consider many of these critiques to

be serious, but we still hold to our earlier statement that the learning

and understanding characteristics of game theory and gaming are the

most valuable. Furthermore, we have found that despite these criticisms

training is possible through gaming if and only if the roles are well under-

stood by the persons conducting the game.

OPERATIONAL GAMING

A kind of trilogy exists in gaming in that games provide the conceptual

and intellectual bases upon which game theory can be used for urban

analysis. When games are concerned with urban problems, whether hy-

pothetical or real, and when game theory is used to derive decision rules

for urban analysis, the procedure is generally referred to as operational

gaming. Operational gaming usually takes data from real urban systems

and simulates problems, alternative solutions, and effects of moves. There

are also cases in which real-world data have not been used, and data are

manufactured from hypothetical urban systems.

While operational gaming did not catch on in urban analysis until the

late 1950s, we already have three generations of games concerned with

urban problems. “Generation” is perhaps too harsh a word in that it

implies that some are old and impotent; this is not necessarily true. Never-

theless, the terminology is prevalent and we shall use it to examine

applications.

FIRST-GENERATION GAMES

First-generation games for urban analysis first appeared in the late

1950s and were in wide use in colleges and universities by the early 1960s.
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First-generation games are usually two-person zero-sum games, n-person

zero-sum games, or infinite-strategy games.

A fine example of the two-person zero-sum game was developed in 1961

for teaching the economic aspects of urban redevelopment problems.’ The

game used for this purpose is often called the prisoner’s dilemma. This

intriguing name comes from the analogy of the police arresting two sus-

pects for a crime and placing them in separate cells pending booking. The

police will talk to each suspect individually in order to get a confession.

Without collusion between each other, the suspects can choose not to

confess. This would mean that they would be released or booked for a

lesser offense. If both confess, the police might offer reduced charges or

punishment. If one confesses and the other does not, it is likely that the

confessor will receive light punishment for turning state’s evidence. The

prisoner’s dilemma, then, is that separation prohibits collusion, so that the

rational strategy selection for both prisoners would be not to confess even

though both would benefit by confessing. If one prisoner knew the other

would not confess, he could confess and minimize imprisonment.

The prisoner’s dilemma game is applied to landlords with properties in

declining areas by considering two adjacent properties with owner A and

owner B. Each owner has made an initial investment in his property and

is now deliberating on whether to make an additional investment for re-

development. The strategy will be affected by the alteration in investment

returns and by the strategy of the neighboring landlord.

The payoff matrix is defined on the basis of return rates on the original

investments and return rates for idle cash reserves, which are assumed

to be corporate bonds with 4 percent yields. The payoff matrix is shown

in Table 10:5. The utility to each owner is shown in parentheses, with

TABLE 10:5. Payoff matrix for prisoner’s dilemma game for

urban redevelopment.

Owner B

Strategy

Strategy Invest | Not Invest

Owner A Invest (.07, .07) (.03, . 10)

Not Invest (. 10, .03) (.04, .04)

"Otto A. Davis and Andrew B. Whinston, “The Economics of Urban Renewal,”

Law and Contemporary Problems, 26, no. 1 (Winter, 1961), 103-117.
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the right-side utility value representing the average return for owner A

and the left side representing the average return for owner B. For example,

this would mean that if both chose not to invest in redevelopment, each

would continue to receive the 4 percent returns from corporate bonds.

On the other hand, if both owners decided to sell their corporate bonds

and invest in redevelopment of their properties, it is assumed that each

would enjoy a yield of 7 percent.

The game has usually been played for apartment properties, in which

such factors as quality of neighborhood, parking, and amenities are im-

portant in addition to rental costs. This would mean that if owner A

invested in redevelopment, which would probably mean demolition and

reconstruction of the apartments with adequate parking and amenities,

he would be improving the quality of the neighborhood for owner B’s

tenants as well. Owner B’s tenants would benefit from the improved neigh-

borhood even though owner B had done nothing. It is highly probable

that owner B, being a rational capitalist, would raise his rentals as soon

as leases allow, since his property is now in a better neighborhood. The

payoff matrix assumes that owner B’s average return will rise to 10 per-

cent, even though he has done nothing but raise rents. Owner A will only

receive 3 percent return on his redeveloped property because it is in a

neighborhood of unimproved properties and hence cannot attract higher-

income tenants, as it might be able to do in an alternative location. The

counterpart situation is shown in the matrix in the event that owner A

did not invest and owner B did invest, assumed to be the reverse of the

payoff described above.

This is a dominant-strategy game for the payoff matrix used in our

example. Owner A would select not to invest, since he would receive a

higher average return regardless of what owner B does. Similarly, the

dominant strategy for owner B is not to invest, since he can receive a

higher average rate of return regardless of what owner A does. The

dominant strategies show that both owners of declining apartments in

deteriorating neighborhoods will not invest in redevelopment, just as both

prisoners would not confess. Even though both landlords would benefit

by redeveloping both properties, they could benefit more as individuals

by not investing. This is a simplified version of more elaborate prisoner’s

dilemma games that are used for teaching urban redevelopment and vari-

ous other economic problems of urban systems. Critics have argued that

it is an oversimplification of urban problems, but these sumple games have

been liked by both teachers and students.

Many of the first-generation games of urban analysts have been directed
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toward problems of land use and development, probably because of the

simplifications possible. New Town is an n-person zero-sum game which

uses 12 players; a two-person zero-sum version is also available.* The

players assume various roles as private developers, planners, urban ana-

lysts, and elected and appointed officials in a hypothetical urban system

that starts with no land developed. The game was designed to teach stu-

dents and interested persons about the factors affecting decisions made by

the various decision-makers and decision-influencers in the land develop-

ment of urban systems. The New ‘Town game will often confront such

problems as development controls, suburban versus central city develop-

ment, place of commercial and industrial land uses, competing and con-

flicting land uses, and urban redevelopment. While a simplified game, it

has been somewhat popular with students and urban analysts because it

combines elementary learning and understanding with some of the enter-

tainment usually associated only with parlor games.

Two more serious and sophisticated games for urban development are

infinite-strategy games. The first of these was developed by Richard D.

Duke and others in order to learn and understand more about the com-

plexities of nonquantifiable factors of urban development.® The game is

called Metropolis and uses the tri-county Lansing, Michigan, urban sys-

tem as a case study. Metropolis uses five categories of role playing:

1. Politicians. Settle conflicts arising over demands for urban space and

other scarce resources.

2. Bustnessmen. Make basic decisions concerning the enterprises that

determine the settlement patterns, as well as commercial and industrial

projects, which affect the economic base of the urban system.

3. Administrators. Develop goals for the growth of urban systems as

well as necessary controls on development.

4. Educators. Act as superintendents of human resources in the urban

system.

5. Judges. Resolve conflicts that cannot be settled through compromises

among the other players and establish the rules of the game for urban

growth decisions.

Metropolis was developed for varying numbers of players with relatively

unlimited strategies.*° Playing becomes so complex that digital computers

* New Town was developed by Barry R. Lawson while he was a student at Cor-

nell University. It is available from the New Town Company of Ithaca, N.Y.

* Richard D. Duke et al., M.E.T.R.O. (Lansing, Mich.: Tri-County Regional

Planning Commission, 1960).

* A summary of the conceptual aspects is available; see Richard L. Meier and

Richard D. Duke, “Gaming Simulation for Urban Planning,” Journal of the Ameri-

can Institute of Planners, 32, no. 1 (Jan., 1966), 3-17.
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are needed to assist the players with their decisions and determine the

effects of decisions. Interaction and cooperation among players become

quite involved, and computer models may be constructed to estimate and

predict the by-products, spin-offs, and side effects of decisions. A simplified

version 1s shown as Fig. 10:1.

A similar operational game experiment was taking place at Cornell

University during the design and development of Metropolis, and it has

became known as the Cornell Land Use Game or CLUG.TM The interesting

aspect of CLUG is that it does not define specific roles for the players.

It establishes a set of definitions for the hypothetical urban system and allo-

cates the resources of the urban system to the players, who then become

the decision-makers.

CLUG has been very popular with students of urban analysis because

it is somewhat entertaining, as is New Town. In terms of structure CLUG

is a sophisticated hybrid of “chess and Monopoly.” This is because the

strategies of the game are determined only by the rules of game; therefore,

role playing is only a response to the rules of the game. The rules of the

game for CLUG include a set of predetermined factors: (1) the location

and efficiency of the highway network, (2) the location of major points

of access to other urban systems, (3) a structure of real property taxation

to pay for the building and maintenance of needed community services,

and (4) a range of land use categories. Each player is given a fixed amount

of capital with which he can buy land and construct buildings in order

to get a return on his investment as well as to make profits from the opera-

tions of his investments (for example, he can spend part of his capital on

advertising in order to bring customers to his shopping center).

The CLUG has undergone several modifications, one of which did away

with the hypothetical urban system milieu by incorporating topographic

and transportation features from the Syracuse, New York, urban system.

‘The game has been used im both undergraduate and graduate courses at

a number of colleges and universities as well as by civic groups and even

as a parlor game. Some of the more advanced modifications require digital

computers for record keeping and determination of the effects of decisions

and strategies when a large number of players or infinite strategies are

allowed.

The first-generation games of urban problems were modest and, we dare-

say, entertaining (a quality which does not exist in later games). The

4 Allan G. Feldt, The Cornell Land Use Game (Ithaca, N.Y.: Center for Hous-

ing and Environmental Studies, Cornell University, 1966).

* Thid.
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games were developed solely for learning and understanding, with a dose

of pleasantness for teaching. The originators of these games talked only

in vague terms about the usefulness of operational gaming for modeling,

simulation, and decision-making.

SECOND-GENERATION GAMES

Second-generation games were extensions of first-generation games to

modeling, simulation, and decision-making for real urban systems. The

two foremost examples of second-generation games, Region I and City J,

were developed by the Washington Center for Metropolitan Studies in

order to simulate problems of urban systems using data from case studies.'°

Region I is a somewhat elaborate extension of CLUG which incorporates

several models of decision-making into the rules of the game.

City I is a game that attempts to simulate problems of various urban

systems in order to test alternative solutions. Teams of players are needed

to fulfill a number of roles for the political, economic, and social sub-

systems of the given urban system. A hypothetical version of City I deals

with 625 squares representing land areas that could be developed. Unlike

previous games, however, City I starts play with a fully developed central

city and a partially developed suburban subcenter, as shown in Fig. 10:2.

There are nine teams needed for City I which represent entrepreneurial

decision-making groups and government. A chairman is elected who acts

as the mayor, and he in turn appoints four cabinet officers for highways,

schools, public works, and zoning. The role of the governmental players

is to find out the strategies of the entrepreneurial teams and estimate costs

and benefits in terms of revenues and expenditures for alternative strat-

egies. Government attempts to balance pressures from the teams that are

seeking to maximize their investment returns with concerns for the pub-

lic good.

The entrepreneurial teams build and manage property holdings, which

they are given at the start of play. Each team has a portfolio of six types

of properties: (1) heavy and light industry, (2) business goods (inter-

mediate goods and machinery), (3) business services (accounting, com-

puters, etc.), (4) personal goods (supermarkets), (5) personal services

(medical, dental, and entertamment), and (6) residences. Each of the

business types of properties may be developed at any of three levels of

* See Region Manual and City I Manual (Washington, D.C.: Washington Center

for Metropolitan Studies, 1968).
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density, and there are low-, middle-, and high-priced residences. A digital

computer informs each team of its holdings in such terms as income, sales,

taxes, location, density, transportation costs, and price of goods. |

City I allows for any degree of cooperation and wheeling and dealing

among the teams that they wish. Much of the play actually consists of

players attempting to persuade opposing players to sell, buy, or assist with

the properties. Players also attempt to influence the government to grant

privileges and immunities in such matters as zoning. The game is played

for a prearranged time period, and the team with the highest returns from

their portfolio development is the winner.

The problems simulated in the infinite-strategy game of City I are

diverse. Political problems almost always arise in terms of which team

can influence the government in legal ways. Basic qualities of management

and finance are needed or must be developed by teams if they are to re-

main in the competition. In one game a team was particularly concerned

about the high unemployment rate in a downtown ghetto area and decided

to sponsor a Model Cities program by cooperating with the government.

After much simulated trouble over boundary lines, federal regulations, and

politics, the team was able to attract business and industry to the Model

Cities area and effectively eliminate unemployment. The rest of the urban

system suffered, however, in that unemployment rose in other parts of

the urban system, an interesting point of speculation for real urban systems.

The City I game is complicated by a rather long playing time and the

large number of players — 30 to 100 players are needed for the average

session, which lasts two and one-half days. In order to overcome some of

the drawbacks of City I, several variations have been developed in order

to more effectively use it for teaching. Telecity is one version of City I

which is played by remote terminals linked to a central computer which

evaluates all player moves and strategies as well as keeps records. ‘Telecity

allows 25 to 60 players to play four or five rounds in a few hours.

The interaction between players in City I and Telecity is similar, as

shown in Fig. 10:3. The inherent interaction pattern is that players seek

to maximize personal gains by changing the status of the hypothetical or

actual city. In order to achieve this, the entrepreneurial teams interact with

players representing the economic, social, and governmental sectors, which

serve to establish certain constraints upon change even in the perfect mar-

ket mechanism which is assumed.

Region I, City I, and Telecity have been used as teaching devices in

colleges and universities to the extent that several thousand students have

played the game. But the teaching application has been almost entirely
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concerned with hypothetical urban systems, a point which critics often

raise as indicative of a certain artificiality and irrelevance. Nevertheless,

major contributions have been made to learning and understanding urban

systems through second-generation games.

THIRD-GENERATION GAMES

Third-generation games are the latest stage of the evolution of opera-

tional gaming for urban analysis. These games are still experimental, and

only a few are being played. The distinguishing feature of third-generation

games is that they push the generality of the game to the full limit of

scientific and technological capabilities in order to represent any urban

system. The result is a highly generic game that can be customized to suit

any given urban system by selecting the proper mix of characteristics.

Leaders in the design and development of third-generation games for

urban systems argue that second-generation games, while quite successful

for teaching, had little policy implications for decision-making in real

urban systems.** In order to deal with this shortcoming, Region II was

developed, which expanded upon the economic and governmental sectors

of Region I. Similarly, City IJ expanded upon the economic and govern-

mental sectors of City I in order to improve upon limited assumptions for

strategies and to allow the players to utilize strategies based upon social

consciousness.*° |

The current thrust of third-generation games is directed toward the

development and implementation of modular games. Modular games are

based upon the most common problem of simulation, the closed-system

nature of the existing examples. Modular games are built upon five

modules which represent five subsystems which interact to form the total

system. The five modules are:

1. National Module. A computer simulates the measurements at the

national level that affect all other urban systems at various lower levels.

2. Regional Module. Decisions are made concerning the allocation of

industries to rural and urban systems and hence concerning the under-

lying employment base of urban systems.

3. Metropolitan Module. Different from the regional competition for

* Peter House and P. D. Patterson, “An Environmental Gaming-Simulation Lab-

oratory,” Journal of the American Institute of Planners, 35, no. 6 (Nov., 1969),

383-388. |
* Environmetrics, Inc., Environmental Modeling: The Method for Total Solu-

tions (Washington, D.C., 1970). |
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industries in that suburban and central areas now compete for industries

and residences within the same metropolitan area.

4. Central City Module. The details of higher-level decisions are de-

termined for such matters as zoning, politics, social problems, and voter

preferences.

5. Neighborhood Module. The reaction and feedback of individuals

are simulated. The social sector becomes very strong at this module, and

citizen participation and advocacy of citizen causes are significant among

the players. Thus the national module, almost entirely computer-based,

sets the framework for urban systems in which to compete for economic,

social, political, and physical gains. ‘This is much more reflective of real

urban systems in an open-system context, and the hierarchy of decision-

making is realistic (see Fig. 10:4).

Having simulated the national module by digital computer, it is pos-

sible to use modular gaming for any given urban system with few structural

changes. This is possible through the rather sophisticated rules of the game

and use of the digital computer. One such experimental example of modu-

lar gaming, which is called the environmental model, allows for hundreds

of players to make decisions for several different urban systems.*® The de-

velopers of the environmental model argue that it not only has learning

and understanding potentials but also allows real-world decision-makers

and urban analysts to pretest programming and planning alternatives in

order to simulate the effects both within and without the urban system.

While it is too early to judge the success or failure of such third-genera-

tion games as the environmental model, it has raised major issues for urban

analysis. Somehow it seems reasonable for people to react to even the

suggestion of large, complex simulations, with esoteric computer decision-

making, as an approach for programming and planning urban systems.

Yet to the urban analyst with a firm grasp of the proper role of scientific

methods in urban analysis, the prospects are exciting.

A most ambitious third-generation game is called Simsoc, which derives

from simulated society..* Simsoc is a teaching game for sociology, political

science, and psychology courses concerned with urban problems. It differs

from most other games in that it generates problems that the players must

solve; the programmed rules of most urban problem games generate forces

and factors that lead to problems. The salient feature of this approach is

that players must come up with solutions from strategies that are quite

numerous, sometimes infinite. The large number of strategies often results

** Thid. |

* William A. Gamson, Simsoc: Simulated Society (New York: Free Press, 1969).
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in several strategies yielding solutions that work equally well— this is a

basic point the game is designed to make.

Simsoc is similar to many of the stereotypes of war games in that spe-

cially designed rooms and equipment are suggested to improve play. Ideal

facilities would involve laboratories which isolate teams of players repre-

senting various regions of an urban society but allow them communication

capabilities. There also should be an observation station from which an

instructor or game referee has some degree of control. Playing time varies

from 60 hours and more, and the number of players can range from 20

to several hundred.

Players elect heads of seven groups which operate in four regions. Each

of the seven groups offers employment possibilities for the remaining

players if the players accept the overall objectives, which are as follows:
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(1) BASIN (basic industry) : to expand its assets and income as much as

possible; (2) INNOVIN (innovative industry): to expand its assets and

income as much as possible; (3) POP (party of the people) : to mobilize

members of the society who are sympathetic to the party philosophy to

work for party programs and contribute money to the party; (4) SOP

(society party): to mobilize members of the society who are sympathetic to

the party philosophy to work for party programs and contribute money

to the party; (5) EMPIN (employee interests): to see to it that mem-

bers of society who are not heads of basic groups have adequate subsistence

and a fair share of the wealth; (6) MASMED (mass media): to keep

society informed about important events; and (7) JUDCO (judicial coun-

cil) : to clarify and interpret the rules of the game as honestly and as con-

scientiously as they can. Players may belong to more than one group: they

may, for example, work for BASIN and be a member of POP, or any other

combination.

Players must then simulate their lives as individuals and as members of

an urban society. They must work to gain subsistence or they will die; they

can join political parties and causes; and they are assumed to have indi-

vidual goals for power, wealth, and popularity within their talents and

powers. As members of the society, they can establish governments to pro-

vide police, welfare, conservation, and other services. A series of national

indicators are provided which measure the food and energy supply, stan-

dard of living, integration of social groups, and public commitment to the

society.

When the players have developed the society according to the rules of

the game, the true learning objective can be introduced by the game

referee. This consists of the introduction of problems for the players in

the seven groups of the four regions to overcome. The usual problems are

epidemics, earthquakes, and wars. Realism is possible in Simsoc by using

various options in the game. Since there are four regions, it is possible to

have some regions more wealthy in terms of resources and jobs than others.

This will likely lead to rivalries between regions and concentration of polit-

ical powers in the wealthy regions. Migration between regions is allowed

through the use of the travel tickets which each player has received. He

can move about the society in hope of finding his place and gaining wealth.

To heighten the realism and introduce some Darwinistic concepts, unem-

ployment, arrest, sickness, and death can occur.

Simsoc has been played in a number of colleges and universities and has

been very worthwhile to students. Unlike most other third-generation

games, Simsoc does not attempt to apply decision-making patterns to real-
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world societies. It is a modular game, however, and it is based upon the

third-generation concepts of open systems and generic characteristics.

This discussion of first-, second-, and third-generation games has dealt

only with what we consider to be the most significant and well-known

games. In reality there is probably in existence or under development a

very large number of games dealing with all or some urban problems. The

very popularity of operational gaming gives rise to more and more experi-

ments and new accomplishments, unlike many other aspects of scientific

methods. With operational gaming, however, we enter into the twilight

zone of science and art. We have explained science in a manner which

relies upon judgment and intuition, but with gaming the scientific nature

of the methods becomes somewhat vague.

RECOMMENDED EXERCISES

1. Select a problem which has received attention in the mass media of

your community. Determine two principal decision-makers and formulate

strategies for the two key roles. Determine through any means available

what the possible political payoffs might be and enter these as the utility

values in the payoff matrix. Develop a set of decision rules and find the

rational strategy value.

2. Attempt to develop a simple game of hypothetical urban system.

Borrowing from the Simsoc approach, make the game problem-oriented

and introduce urban problems into the urban system. If possible, play

several rounds of the game with interested colleagues.

FuRTHER READING

Von Neumann, John, and Oskar Morganstern. Games and Economic Behavior.

Princeton, N.J.: Princeton University Press, 1944.

While this famous work was not written necessarily for the layman, it is sufh-

ciently lucid and well written that the interested reader can understand it. The

book is a landmark work in that it formulates the framework for the application

of the mathematical properties of game theory to real-world economic problems.

Gamson, William A. Simsoc: Simulated Society. New York: Free Press, 1969.

While just one of a number of important games, this work includes several
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selected readings dealing with the theory and application of gaming to societal

problems. It also provides detailed instructions and directions as well as all

needed materials for the person who would like to play a third-generation game

with the greatest of ease. All that is necessary is to convince several others to

play the game.

Abt, Clark C. Serious Games. New York: Viking, 1970.

This highly readable book explores the work of the author and his firm, which

is a leader in operational gaming for educational and instructional programs.

Serious games are defined as operational gaming which simulates life and human

conflicts. Examples of serious games are drawn from government, the military,

and industry.



We may hope that machines will eventually compete with

men in all purely intellectual fields. But which are the best

ones to start with? Many people think that a very abstract

activity, luke the playing of chess, would be best.

A. M. Turing, Can a Machine Think? (1937)
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Underlying the whole of urban analysis is a process for the collection,

manipulation, interpretation, and dissemination of data, information, and

intelligence. One can formally define data as the unitary relationship —

one-to-one relationship — of an observation and a real-world phenomenon.

For example, an item of data concerning population would be an observa-

tion of one person, one group, one race, or any other dis-aggregation. Data

must be manipulated from their original state of facts into a more mean-

ingful state of knowledge, which is the definition of information. Infor-

mation is the use of data to determine the succinct and salient knowledge

that is needed for urban analysis. An even higher form of information is

intelligence, which is the inherent ability of a system to seize essential fac-

tors from complex information about complex urban problems. The defi-

nitional structure forms a hierarchy, as shown in Fig. 11:1, which can

serve as our operational working hypothesis.

o—- C INTELLIGENCE » ———

a C INFORMATION >

Fic. 11:1. Hierarchy of data, information, and intelligence.

Urban analysts rarely function as decision-makers, but they advise de-

cision-makers on optimal choices. One can argue, then, that the main

work of urban analysts is the provision of information and intelligence to

decision-makers (assuming that most decision-makers have neither the

intellectual equipment nor the desire to spend time on the personal eval-

uation of the data and analytical techniques used to generate information

and intelligence). The urban analyst assembles data; manipulates data

by use of predictive and estimating models, optimizing models, and simu-

lation and gaming; interprets the results; and disseminates the intelligence

to decision-makers with recommendations. The functional process of urban

CHAPTER

Urban Information Systems

ja
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analysis is greatly improved, then, if one has an effective and efficient sys-

tem for data, information, and intelligence. |

Systems of data, information, and intelligence are usually called urban

information systems. An urban information system is a complex of people,

equipment, and processes interacting to provide information and intelli-

gence from input data for assistance in decision-making. The term inter-

action is critical in that it implies that men, machines, and knowledge —

for example, science — must work together in a concerted action. This

means that we can quickly dismiss myths about “machines taking over,”

“science gone wild,” and “rampant technology.” One can readily see that

this approach is one in which machines are simply tools to ease the burden

of manual mental work for urban analysts, and scientific knowledge acts

as a constraint on the sophistication of this effort. The reason that we

choose to stress urban information systems is that we view them as overall,

integrative, and coordinating mechanisms for urban analysis. They pro-

vide convenient umbrellas over the whole of urban problems and enhance

the information- and intelligence-providing responsibilities of urban

analysts.

As a genera] rule, urban analysts are users rather than collectors of data.

Urban analysts should resort to data collection at the source only when

there is no feasible alternative for assembling data. Urban analysts are

more concerned with the use of data in urban information systems than

with detailed procedures for its collection.

Urban information systems facilitate the accessibility, availability, and

consistency of data that urban analysts require for their activities. But

urban information systems cannot be adequately developed if the models

and simulations needed for the conversion of data into information and

intelligence are not available or likely to become available. Hence, urban

information systems are not likely to be used to their fullest capacities and

capabilities without an underlying analytical system of models and

simulations.

CONSTRUCTS

Urban information systems are developed ideally to provide two types of

information: (1) management information and (2) programming and

planning information. Management information is the day-to-day oper-

ational information and intelligence needed for an urban system. It in-
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Fic. 11:2. Hardware configuration.

cludes such basic operations as billing, accounting, inventories, payrolls,
and statistical summaries as well as more advanced management oper-
ations like budgeting, audits, personnel classification, and annual reports.
Programming and planning information is related to longer-range infor-
mation for comprehensive planning — physical, social, economic, and
political — as well as for the programming of operations, both operating
and capital. Urban analyses are involved with both types of information,
depending upon the nature and temporal dimensions of the problems
under examination.

The term equipment in our definition generally applies to the hardware
of the urban information system. The generic hardware configuration for
an urban information system is shown in Fig. 11:2. The input component

allows the data and instructions for processing to enter into the central
processor untt. The central processor unit performs computations as in-

structed within the capacity of its memory and the speed of its arithmetic

units. When data are stored, the input must draw upon the file storage,

which usually takes the form of punchcards, magnetic tape, or magnetic

drum or any combination thereof. The inquiry and control component

provides the man-machine interface or the interaction between operator

and central processor unit. The urban analyst is rarely the operator of the

hardware, although some advanced simulation and gaming approaches

require that decisions be made before the machine can process further data,
and hence the urban analyst must advise the operator on further pro-

cessing. The result of the above components working together, with a set

of instructions to the machine on what to compute, called software, and
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valid data that the machine can utilize, is output. The traditional output

takes the form of typewritten alpha-numeric characters on standard print-

out paper, but more and more we are witnessing the use of computer

graphics in the form of tables, graphs, perspective and scale drawings,

maps, movies, and televisionlike displays.* The future will undoubtedly

herald more computer graphics, since they simplify the derivation of

intelligence from information generated by the hardware.

The paramount concern of the urban analyst is not with the hardware

configuration but with the system configuration. The system configuration

of an urban information system is the result of the interfaces of man,

machine, and knowledge; the latter takes expression in our definition

through the analytical system. This system configuration is shown in

Fig. 11:3.

A process must be developed by which urban analysts can use urban

information systems as tools for assisting their analyses. The process in-

volves the formulation of questions from problems, which can be translated

into queries, that can be submitted to the hardware configuration.? This is

not a semantic game but, rather, an operational definition. There are in-

numerable urban problems that can be posed in many terms, but there

are relatively few that can be formulated into questions that are relevant

for analysis and can be expressed in the analysts’ terms by translation to

queries. For example, one can argue that housing is a problem in a given

urban system. This problem must be transformed into a series of questions

if one is to explore it through analysis. Suitable questions might be, ‘““What

areas have poorer housing conditions than others?” “What is being done

about poor housirig in these areas?” “What should be done about poor

housing in these areas?” Yet even these questions are not in the proper

form for analysis using an urban information system. Queries are the

analytical statements that can be made to the urban information system

with its incorporated analytical system. Queries would take the following

form: Given areas A = (1, 2,...,), which have the housing supplies

X = (x1, 2, ... 5 %n), what is the percentage of each element of X that

has the following conditions C = (Ca, 6, ¢c, .--, Cx) that we have defined

as “poor”? What public and private programs are underway or completed

im A that have reduced f(.X), where /(X) is the percentage of poor hous-

ing? What optimal solutions are there to Min f(X)? Queries give the ques-

* For further details, see Anthony J. Catanese, James Grant, and Edward Kash-

uba, Application of Computer Graphics to Urban and Regional Planning (Atlanta:

Georgia Institute of Technology, 1969).

* Kenneth J. Dueker, A Recommendation for a State Planning Information Sys-

tem (Madison: Wisconsin Bureau of State Planning, 1967), pp. 1-16.
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Fic. 11:3. System configuration of urban information system and analyti-

cal system.

tions raised by the problem statement a quantitative basis by which optimal

solutions can be determined.'In more and more cases this quantitative basis

is integrated with a qualitative basis of judgment that both expands the

reality of the information and still remains within our conceptualization

of scientific methods.

Within the realm of activities performed by man in this system configu-

ration are data assembly and interpretation of output. Data are collected at
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the source or assembled through familiarity or a search of available data.

After the processing the urban analyst interprets the information and ex-

tracts relevant intelligence for presentation to decision-makers and as an

aid in preparing recommendations. If the output is unsatisfactory or needs

further processing, the analyst will refer to the original problem statement

to check for accuracy, or he will consult the general body of knowledge on

the problem for insights on how to make the modifications. This activity

is called feedback, and the operation is often called the feedback loop.

The state of knowledge wpon which the urban analyst has developed his

models, simulations, gaming, and problem statements is largely an opera-

tion performed by man. We show an interface with the analytical system,

however, because it has been our experience that the state of knowledge

is often expanded by the development of an analytical system, which often

uncovers new knowledge.

The analytical system, which has been the stuff of this book, is pri-

marily an interrelated and complementary organization of models, simu-

lations, and games which provides the urban analyst with the tools for

data manipulation and problem-solving. We have included in Fig. 11:3 a

box called monitoring and reporting service because this may be the major

contribution of the urban information system in conjunction with the ana-

lytical system. The monitoring and reporting service is any coordinated set

of techniques and methods that provides urban analysts and decision-

makers with the following: (1) intelligence about conditions — social,

economic, political, and physical—— within the urban system at specified

time periods; (2) “red flags” that show what conditions, areas, or groups

are near a critical mass or trouble spot; (3) early warning signals that

sound the alert for possible breakdowns in the urban system, such as traf-

fic, fires, crime, etc.; (4) opportunity places or points of leverage and

potential that can resolve future problems; and (5) progress reports on

steps taken to solve problems and improve the urban system’s performance

and general quality of life. The monitoring and reporting system must

draw heavily upon the analytical system, data, and processing capabilities

in order to provide this worthwhile intelligence operation. It is, in this

sense, the capstone of the intelligence function of an urban information

system. | |

The machine realm of the urban information system is essentially the

same as our previous description except that we incorporate a data base

and somewhat expand the notions of control and handling. The data base

is composed of all available and potentially available data, most often in

machine-readable form. The control and handling component is expanded
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to include certain real-tzme operations, that is, the type of operation that

uses a hardware configuration to perform ongoing functions such as regu-

lating tratlic control devices, locating fire alarms, directing emergency

services, etc.

The set of interrelated operations from the man, machine, and analytical

system realms provides an integrated and meaningful mechanism for the

overall application of scientific methods to urban systems. It helps to place

the role of the urban analyst in proper perspective as that of chief adviser

to the elected and appointed decision-makers within the urban system.

RATIONALE OF URBAN INFORMATION SYSTEMS

We would be somewhat remiss in our presentation if we did not examine

in some depth the arguments both pro and con regarding urban informa-

tions systems, since we have placed them in such a lofty setting. We must

develop a rationale that is suited to contemporary urban systems if we wish

to propose the development of urban information systems and complemen-

tary analytical systems.

Urban information systems are quite popular in many urban systems but

for all the wrong reasons. Somewhat mystified and terrified at the same

time by computers, mathematics, science, and technology, decision-makers

and public and private officials concerned with the future of urban systems

have rushed into the development of urban information systems. Their

rationale has been that urban information systems (1) are efficient and

economic and (2) free urban analysts and decision-makers, as well as

general administrative personnel, from manual toil so that they can con-

centrate on more important matters.

Urban information systems are efficient and economic in the long run.

For the initial period of system design and development and for that some-

what prolonged honeymoon period between the system and its new people-

users, costs will be very high and efficiency will be the impossible dream.

The first operating urban information system (in Alexandria, Virginia,

with a population of 120,000) cost at least $100,000 to develop, and oper-

ating costs for the first year were $160,000. These are rather high (over

$2.00 per capita), and there is little evidence that hardware and software

costs will go down in the future (on the contrary, costs are rising). Over

a period of years the operating costs of urban information systems may

decrease in terms of unit costs, but it is a grievous error to argue that
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urban information systems reduce the costs of operating urban systems,

except in the long run through optimum use of the intelligence such a

system provides. Parenthetically, we might add that recent advances in

time sharing, where many users share the same computer, and software

development, where new programs are shared by users, have eased the

cost problem somewhat, but inflationary price spirals quickly reduce the

savings.

The traditional argument — urban analysts are freed from unexciting

computational and data analysis tasks ——is somewhat more acceptable.

Our experience has shown, however, that the development of urban in-

formation systems requires more effort in these areas by urban analysts

rather than less. We suspect the reason is that few urban analysts have

integrated their models and simulations In a meaningful way into the

analytical system that is required for an urban information system. Simi-

larly, urban analysts must often fill the gaps in missing or poor-quality

data for the data base. Hence we believe that urban analysts will be freed

from their manual toils by an urban information system only after a period

of time has expired and the system is operating smoothly.

A more pragmatic and sober rationale for having urban information

systems can be developed if we are discreet in our arguments. We believe

that a viable case for the development of urban information systems does

exist when the following conditions are present in any given urban system.

1. When the scientific techniques and methods used for both manage-

ment and programming and planning information are sufficiently complex

and sophisticated, and the burden of computation can be eased by an urban

information system. This condition is consistent with our basic position that

urban information systems must be based upon analytical systems, since we

see no particular advantage in having any kind of system which simply

gives us more information to mull over without any analytical framework.

2. When the data base is sufficiently large and complex, and manual

processing methods are inadequate. Analytical systems require voracious

amounts of data, much of it complicated, and the problems of storage,

retrieval, and processing become beyond human capabilities. We might add

that in our view the major attractions of the digital computer are its

processing speed and its memory capacity.

3. When there is a sincere desire among urban analysts and decision-

makers to improve the quality of decisions by basing these decisions on

better information and intelligence. We know of no case where an urban

information system or an analytical system has been successful without the

empathetic understanding and appreciation for potential improvements in
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decision-making by those who make decisions and those who advise the
decision-makers.

4. When the conviction exists that the urban system can be improved
and the quality of life uplifted if changes are made at strategic points which
are based upon programming and planning established on a sound data,
information, and intelligence foundation. In essence, we are saying that
the people in the urban system must be optimistic and have confidence
that problems can be solved through programming and planning,

A STRATEGIC ApproacHy

Having defined our terms and established what we believe to be a workable

rationale, we now turn to an examination of “how to do it.” This aspect

of urban information systems should not be underrated, since there have

been several notable and costly failures by urban analysts who rushed head-

long and zealously into these areas without a strategic approach. The

strategic approach that we present has been tested to only a limited degree

in three urban information system projects: (1) the state of Wisconsin,
(2) the state of Hawaii, and (3) Fulton County, Georgia. All of these

projects were done in a consultative capacity rather than as continuing
staff. Nevertheless, we were impressed with the soundness of the logic and

the subtlety of the conflict-resolution devices, We might add that the

entire strategy was based on an operational heuristic: participation is the

surest way to minimize dissent and encourage support of urban information

systems. We now present our ten-step strategic approach for the design

and development of urban information systems.

STEP I. UNDERSTANDING OF THE URBAN SYSTEM

The first step in the design and development of an urban information
system is to reconnoiter the entire urban system in order to understand as

much as possible about it, without becoming entrenched in minutia. Par-

ticularly important is an understanding of the organization and functions
of the governmental and private decision-making process. It is most impor-

tant to identify decision-makers and the urban analysts, lobbyists, group
leaders, and bureaucracies that advise them. Urban information systems
should be based on the particular patterns of influence and rationality that

prevail in a given urban system, lest it become an irrelevant plaything.
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The interrelationship of the groups that make up the political, social,

and economic structure of the urban system should be examined. The

interactions of these groups provide a basis by which one can measure

information flows. Since urban information systems seek to improve the

flow of information, it is essential that these flows be well known by the

designers of the system.

The practical usage of an urban information system will be in providing

the management and programming and planning information needed by

staff and line agencies of the government or cooperating governments of the

urban system. This requires a sound understanding of the work programs

and functions of all agencies. This will prove useful for later attempts to

identify data, information, and intelligence needs.

STEP 2. FORMATION OF POLICY GROUP

The design and development of an urban information system have

proven to be unsatisfactory without the full cooperation of all affected

groups within the government of the urban system; possibly this could

also be extended to private groups in some cases. Applying our operational

heuristic of participation, we have found that the formation of a policy

group and task forces is the soundest way to insure participation and estab-

lish a forum for debate and involvement.

The policy group can take on various structures, but we favor a hierarchy

of groups arranged by functions, as shown in Fig. 11:4. The policy group

is composed of all affected agency heads. This group should be formed by

the chief executive and chaired by the agency head that will most likely

be responsible for the long-term management of the urban information

system. The policy group is responsible for all policy matters concerning

the design and development of the urban information system and the rules

and regulations governing its use and operations.

The data task force is composed of the chief technicians and urban ana-

lysts from the affected agencies who are knowledgeable about the raw

inputs in the form of data that are needed for the urban information sys-

tem. This task force should be concerned exclusively with the data needs

and demands of the affected agencies and make recommendations to insure

that an optimal data base be developed.

_ The technical task force is concerned with the software and hardware
specifications of the urban information system. As such, it is not essential

that every agency have a representative on this task force. The better



Urban Information Systems

POLICY GROUP

|
i, | —

DATA TECHNICAL USERS’
et eT wn nee > SD whe:

TASK FORCE TASK FORCE TASK FORCE

Fic. 11:4. Organization of policy group.

guideline is that the technical task force should be composed of the best
resources available to the policy group. This will often require outside
consultants that should report directly to the technical task force.
The users’ task force is instrumental m the design and development as

well as the continuing operations of the urban information system. The
users’ task force should be all-inclusive and open to all interested users
and potential users of the urban information system, During the design
and development period this task force would be concerned with the prac-
tical matters of analytical systems and demands for information and jntelli-
gence. During the continuing operations of the urban information system
the users’ task force would act as a feedback mechanism and provide sug-

gestions and recommendations of ways to improve the operations capac-
ities, and capabilities of the urban information system.

STEP 3. DATA NEEDS AND SPECIFICATIONS

Data are the raw materials which are converted into the finished pro-

ducts of information and intelligence. This makes the determination of the
data needed by the affected agencies and data that could be used if avail-

able (according to a consistent set of specifications regarding quality) a

critical task. Such a task should be carried out by the data task force with

the assistance and cooperation of all affected agencies and participating
private groups. In our opinion this step will make or break the success

of the urban system. Probably the most significant quotation from the early

computer years was the imumortal “GIG® — garbage in, garbage out.” In
less colorful terms any information system, or any computer usage, will be
only as good as the data used as input.

There have been several attempts to specify a washlist of data that
urban analysts should use in urban information systems. We frankly find
these efforts to be useless. There is great variation among urban analysts |
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and decision-makers as to what are considered useful data. Attempts to

postulate universal data items cannot possibly be successful because they

fail to recognize the very diversity that makes urban analysts, decision-

makers, and urban systems all quite different from each other. We would

argue that only the urban system can meaningfully describe its data needs.

This ad hoc approach may not sound sophisticated, but it is the only opera-

tional approach we have encountered that will sure a certain level of

SUCCESS.

It may not be necessary to identify every item or category of data that

is needed, but general specifications are necessary. These general data

specifications should be developed through an objective analysis of the

activities of all affected agencies and participating private groups. The

general specifications should deal with four topics: (1) data identification,

(2) data identifiers, (3) data files, and (4) privacy controls.

Data identification is more or less an inventory of what data are used,

needed, and desirable. For each data identification, some assessment of its

adequacy and availability will be needed. It is also important to study the

flow of data between the affected agencies. In Figs. 11:5 and 11:6 we show

the flow diagrams made in the data-needs study for Fulton County,

Georgia. As can be seen, data flowed haphazardly between various agencies

with no particular efficiencies or economies. The proposed flow, while

idealistic, would make transactions between the various agencies speedier

and more uniform, since data would be standardized.

Data identifiers are distinguished from data identification in that they

are concerned with methods for retrieving data according to codes repre-

senting spatial, person, and organizational taxonomies. Spatial codes vary

but are commonly based upon parcels, blocks, census tracts, voting districts,

and other sub-areas in a geographical sense. Modern urban information

systems use grid coordinate spatial identifiers, such as X-Y coordinates,

since they are ordinal numbers that can be aggregated in any polygonal

‘Shape which coincides with any conceivable geographical area, and can

be used for computations of distance, area, and related measures. A similar

type of modern spatial identifier is the address coding guide, which is

simply a look-up table used to generate coordinates or other areal aggre-

gations of data. We would recommend that either grid coordinate iden-

tifiers or address coding guides be used, and we would argue against the

traditional parcel-based spatial identifier, which is too rigid and inflexible

for adequate urban analysis.

Person identifiers are somewhat more problematic because of invasion of

privacy laws, rules, and regulations, as well as basic constitutional guar-
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antees made to individuals concerning their right to live in privacy. We

shall return to this subject below. Persons can be identified for this re-

stricted type of data by Social Security numbers, in general, and by special

codes when required. Similarly, data can be identified by organization in

terms of which agency collects, uses, and analyzes the data; this is usually

done simply by a devised code. The most important guideline for all three

types of identifiers is to make sure that the maximum flexibility and usage

of data are possible by having useful data identifiers.

Data files are the categories of structure given to the data base. As a

general rule, urban information systems should contain (1) property, real

and personal; (2) person, human and corporate; and (3) transaction,

sales inventories, housing, etc., as a minimum file structure. Another ap-

proach is to consider the data base as being highly interrelated; that is,

transfers of data should be simplified. Hence we should think of modes of

data: (1) person mode, for information on persons with respect to tax

audits, vehicle registrations, health records, etc.; (2) statistical mode, for

aggregation of data on persons, groups, and organizations in terms of per-

centages, means, and other statistical measures; (3) administrative mode,

for the financial aspects of administration of urban systems; and (4) plan

test mode, for testing plans, policies, programs, and proposals according to

specified criteria and the available data base.*

Privacy controls cast a pall over all of the above matters and merit

serious consideration. Invasion of privacy has been brought into the public

eye through disclosures about the all-encompassing data base of govern-

ment, especially the federal government, and certain abuses by such private

groups as credit associations. Much controversy has been raised concerning

the right of government to pry into the personal affairs of citizens and

about what precisely government needs to know in order to manage urban

systems. These questions have not been answered with any degree of ade-

quacy and pose serious obstacles and considerations in the design of urban

information systems.

No sound set of rules exists for determining what data are private and

what are public knowledge. The urban analyst should review all pertinent

laws, rules, regulations, and administrative guidelines when examining these

questions. At a minimum, all private data must be controlled and protected

* Melvin M. Webber, “‘The Role of Intelligence Systems in Urban Systems Plan-

ning,” Journal of the American Institute of Planners, 31, no. 4 (Nov., 1965),

289-297.

*Kenneth J. Dueker, “A Look at State and Local Information System Efforts,”
Proceedings of the 1968 ACM National Conference (Washington, D.C.: Association
for Computing Machinery, 1969), pp. 133-142.
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from misuse; this can be done, incidentally, through relatively simple hard-

ware and software mechanisms. Beyond that each policy group involved

in the design and development of urban information systems should deter-

mine the scope of privacy that the data task force should incorporate into

its efforts.

Consideration should be given to the retention of archival data, which

are data no longer used or out of date, that may be of historical interest.

Archival data are useful for testing models and simulations as well as for

their inherent interest to historians. Adequate storage facilities can be

made available at relatively low cost for retention of these data, but we by

no means condone saving every scrap of data. The data task force should

develop a set of guidelines that establishes the rules for determining which

data are of historical interest and which are not.

The data task force should also include provisions for updating data in

its design recommendations. Data become useless when they are not up-

dated in an orderly manner and with the same quality controls used in the

original data assembly. The data task force should recommend to the

policy group the agency responsibilities for updating given data items or

files. ‘These recommendations should include details related to timing, char-

acteristics, and costs of updating, and some set of safeguards to insure that

these recommendations will be implemented.

STEP 4. ORGANIZATIONAL AND STRUCTURAL CONSIDERATIONS

A particularly difficult task that the policy group should settle at a

relatively early date is the determination of the organizational and struc-

tural considerations of the urban information system. This is important

because an error in this aspect could result in great inadequacies that could

lead to failure as well as to possible agency abuses of information.

Problems arise in the organization and structure of the urban information

system in four areas: (1) administration, (2) operations, (3) costs, and

(4) rules and priorities. Administration of an urban information system

must be fair and impartial, if only because the people who contro] the

information of government tend to control the functions and operations of

government. ‘These people must be responsive to the needs of the govern-

ment of urban systems, yet they must protect the privacy of the information

that is not a matter of public record. The operations of the urban informa-

tion system necessarily are affected by the administration of the system. An

effective and flexible operational attitude should be developed so that the
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system runs well and can accommodate special or unusual queries. The

costs of the urban information system must be fully understood, and econ-
omies should be sought wherever possible, especially at the expense of the

inevitable gadgetry and empire building that tend to occur in many

computer centers. Finally, there must be a viable set of rules and regula-

tions, carefully spelled out, so that the urban information system can be

utilized to its fullest advantage and priorities can be established for queries.

Since these tasks are somewhat more complex in the real world of urban

systems and their governments than mere conjecture about their simplicity

would suggest, we believe that these matters should be the primary respon-

sibility of the policy group. This means that the policy group itself might

tend to become somewhat institutionalized, but it must not become rigid

and filled with special interests. The policy group must remain represen-

tative of the needs of urban analysts from many agencies and interest groups

as well as of the day-to-day managerial needs of the government of the

urban system.

Three basic organizational structures exist for urban information sys-

tems: (1) centralized, (2) decentralized, and (3) federated. The central-

ized structure would place all operational facilities and data bases within

a high-level agency, usually independent of other agencies, directly re-

sponsible to the chief executive of the government. The decentralized struc-

ture would allow participating agencies to retain their own data bases and

either share or individually develop their own operational facilities with

only minimum regulation by a policy group. The federated structure is a

compromise wherein participating agencies retain their own data bases

and operational facilities, but all of these individual subsystems are inter-

related by central switching facilities; in other words, machines would

interact with other machines to form a pseudocentralization. The last

structure is popular because agencies that have developed their own

information subsystems still retain a degree of autonomy and control via

rules and regulations that are built into the central switching facility. The

centralized structure is the most economic, but it is sometimes difficult

to develop such a structure when there are existing information subsystems

which agencies do not wish to relinquish. The decentralized structure is

the least desirable in a technical sense, since it is unnecessarily costly and

inefficient, but there may be extreme situations in which it is the only

acceptable alternative.

There is no optimal organizational structure for an urban information

system, since urban systems and their governments are so different from

each other. Special situations may require permutations of the three basic
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organizational structures. In all cases, however, an organizational structure

for an urban information system is constrained by three forces: (1) exist-

ing information subsystems, (2) agencies and their personnel, and (3) spe-

cial interests. Information subsystems, if and when they already exist, con-

stitute an obvious limitation on the organizational structure of an urban

information system in that they can rarely be completely erased or entirely

incorporated into a new system. This is amplified by the attitudes of the

participating agencies and the personalities of the individual decision-

makers in these agencies. Similarly, special interest groups obviously will

have special ideas on the nature and characteristics of the urban informa-

tion system. To handle such problems, we again argue that the heuristic

of participation in order to resolve conflicts should govern. If these mat-

ters can be debated and resolved through the forum provided by the policy

group and task force design and development approach, then cooperation

can be reasonably assumed.

STEP 5. TECHNICAL CAPABILITIES AND CAPACITIES

The major tasks of the technical task force are to develop the tech-

nical — hardware and software — capabilities and capacities of the urban

information system. We find that this task is extremely difficult for non-

technicians — which virtually all urban analysts would be — and recom-

mend that the total technical resources of the urban system be put to work

on these matters. There tends to be a furious competition among hardware

and software companies which requires that all special interests be isolated

from the technical task force; most certainly, politics should be completely

removed from the technical decisions. This will require a general agree-

ment among the participating agencies and a set of ground rules established

from existing rules and regulations of the government as well as from new

rules and regulations that the policy group devises. An especially important

element of this task is the estimation of costs and personnel requirements.

It almost goes without saying that this group should be fully aware of the

decisions of the data task force.

STEP 6. OPERATIONS AND TESTING

Having completed the preceding steps, it is now possible to proceed with

the initial operations and testing or debugging the urban information
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system. Initial operations would involve hardware, software, data base,
and models. As a general guideline, problems should be expected no matter
how carefully the design was developed. It can also be expected that ade-
quate debugging will take patience, but not an unreasonable time period.
The testing should include the rules and regulations of the urban infor-

mation system as well, in particular, (1) priority assignments, (2) user
identification, and (3) evaluation. The manner in which queries are
ranked for submission must be tested for fairness and efficiency. Such
routine matters as accounting, payrolls, and billings will merit special
priorities, since the government has responsibilities for these matters in

which time is of the essence. On the other hand, ad hoc queries should
not be placed so low on the priority assignment that they have unreasonable

turn-around times. User identifications must be tested to insure that abuses

are avoided and confidential and classified data are not violated. Evalua-

tion of the urban information system should be regular and concerned,
The policy group has the responsibility for most of the above matters,

but it should work closely with the users’ task force. The users’ task force

should make regular evaluations which include grievances, enforcement

of policies, adequacy of data and updating, and recommendations on the

overall adequacy of the system. The users’ task force also serves as the

principal liaison between the urban analysts and the policy group with

respect to the models and simulations that are to be made part of the

urban information system.

STEP 7. MONITORING AND REPORTING SERVICE

The design and development of the urban information being highly

advanced, the policy group can evolve an acceptable approach to the de-

velopment of the monitoring and reporting service. This development

would take the urban information system beyond the realm of manage-

ment and programming and planning information processing to the higher

realm of providing decision-makers with key indicators on the conditions

and trends of the urban system. The use of indicators as a basis for intelli-

gence for decision-making is not a highly sophisticated field, and inno-

vation should be sought. The proper approach to the development of the

monitoring and reporting service would seem to require the combined

skills of policy group, data task force, technical task force, users’ task force,

decision-makers, and private groups. Each group has contributions to make

to this endeavor which are vitally needed.
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STEP 8. INTERGOVERNMENTAL INTERACTION

Although somewhat longer in range than preceding steps and subject to

much variation among different urban systerns, it is logical to assume that

the urban information system may be enhanced by its extension to data

sharing and interactions with other governmental information systems, for

example, county, regional, state, and perhaps certain aspects of national

information systems. Much functional interaction exists already between

governments for information on such subjects as crime, traffic accidents,

housing, health, and welfare. In time, and as constrained by privacy con-

siderations, one can expect more extensive interactions between govern-

mental information systems at all levels. The overriding concern, in our

opinion, is not solely what data are available for sharing but what data are

needed that are available from other governmental levels in order to carry

out the management information, programming and planning information,

and monitoring and reporting service functions of the urban system under

consideration.

STEP 9. INVOLVEMENT OF DECISION-MAKERS AND THE PUBLIC

The involvement of the decision-makers and the public in the design

and development, as well as evaluation, of the urban information system

should permeate all other steps. We have found that ivory-tower planning

of any sort, isolated from decision-makers and the public and shrouded

with a veil of esoteric technicalities, is most unsatisfactory in modern urban

systems. There are right-to-know considerations of the public, but, more

important, people have a sincere desire to be kept informed of what govern-

ment is doing and how it will affect them. Decision-makers should be

informed so that they can foresee the benefits to their short- and long-range

decisions and not be overwhelmed by outpourings of incomprehensible

information. or the arrogant claims of charlatans (there are such people

involved in urban analysis, but we have found their numbers to be on the

decrease).

The specter of invasion of privacy should always prevail over the de-

velopment of urban information systems. Advocates of urban information

systems have brusquely put aside these considerations, too often with the

attitude that “anyone who has something to hide should be worried, but

the ordinary citizen should be unconcerned.” Such a flippant attitude is
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incorrect, if not unethical, and we seriously doubt that it could withstand

the pressures of modern urban system residents. In fact, we all have

something to hide no matter how trivial — how many of us would like it

to be widely known that our fathers once owned Edsels? Is how much

money we made last year really a matter of public record? Would urban

analysts want widely known what grades they received in freshman statis-

tics — or English? We may not be trying to hide anything, but urban life

is filled with minor embarrassments that are best kept to ourselves. The

public must be continually assured that government and its employees are

not snoopers and tell-tale gossips. Privacy is a constitutional right in the

United States and most free-world countries which must be preserved,

especially in the face of technological change.

STEP 10. CONTINUITY

There is no end-point to the design and development process for urban

information systems, since the tasks must be continually revised and up-

dated. Feedback should occur on a continual basis and changes made

when warranted. The urban information system should be expanded or

contracted as valid needs develop.

DESIGN AND DEVELOPMENT NETWORK

Incorporating these ten steps into an orderly process is not simple, but

it is essential. A network indicating the predecessor and successor steps

is a beginning point in the formalization of the process. We have attempted

such a network and display it in Fig. 11:7.

APPLIED URBAN INFORMATION SYSTEMS

There are so many applications of the concepts and technology of urban

information systems that we would be foolhardy to oversimplify the nu-

merous cases. Even if we were to present a general summary of urban infor-

mation systems, it would be obsolete and dated upon publication. The

more sensible approach, we believe, is to discuss three classic case studies
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which are timeless and represent the first major applications in this field.

We are further justified in this tack because these three case studies have

shown certain truths which are fundamental to further applications.

ALEXANDRIA, VIRGINIA, DATABANK

The first fully operational urban information system developed by a

major city was the Alexandria Databank, which was implemented in 1964.

The concept for Databank was an extension of the pioneering work by

Edward F. R. Hearle and Raymond Mason as published in their early

book, A Data Processing System for State and Local Governments (1963).

The design and development of Databank were initiated by the city man-

ager and the budget director, and all work was carried out by their re-

spective staffs and consultants. The Databank is centralized in the Data

Processing Department, which is responsible to the city manager. The orga-

nization and structure, as well as the design and development, are classic

examples of centralization of urban information systems.

Databank was designed to provide information for management decisions

and was specifically not to be used for such routinized functions as pay-

rolls, accounting, and billings. The Data Processing Department was con-

cerned with such daily clerical functions and had its separate system for

meeting those needs. Databank accounts for approximately 10 percent

of the operations of the Data Processing Department.

Two data files were designed for the original Databank: (1) parcel file

and (2) street section file. The parcel file contained records for 20,000

parcels of land in the city and had 60 data identifications, such as location,

size, zoning, land use, value, number of occupants, number of school chil-

dren, and condition of improvements. The street section file was designed

to aggregate data items by the street section, usually a block, for such

items as traffic, pavement, services, and improvements. While most of the

data were collected from existing data files among the city agencies, a spe-

cial land use survey was conducted by firemen with rather good results

owing to their familiarity with the city. As a general rule, data have been

updated every quarter. This has proved to be troublesome, and efficiency

has not been as high as anticipated during the design and development

period. Problems of invasion of privacy have not occurred because the data

were relatively noncontroversial in nature— crime data were collected

but were aggregated to prevent person identifiers. |

The success of the Alexandria Databank has been difficult to measure,
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The highly centralized nature of Databank has resulted in some antag-

onism from affected agency personnel who feel that they were not ade-

quately consulted during the design and development period. Other per-

sonnel, however, have become quite enthusiastic over Databank and use it

regularly for their analyses. Some of the problems of centralization were

overcome by the Data Processing Department’s special courses and orien-

tations for agency heads and key personnel to familiarize them with the po-

tentials of the system. There have been strong signs, however, that many

people are quite unfamiliar with Databank in particular and urban infor-

mation systems in general. The near-legend story in Alexandria is that two

city employees were watching workmen unload a new steel safe ordered by

the city registrar when one asked the other, “Is that part of our new Data-

bank?’’®

The usage and costs of Databank have been difficult to evaluate. There

has been some indication that usage was not as high as had been antici-

pated during the design and development period, and usage appears to be

decreasing with time. Evaluators have linked this decline to unfamiliarity

and lack of participation by agency heads and personnel, while others have

blamed the problems involved in and lack of updating the data base. Many

programs have been underway to resolve the low and declining usage of

Databank.

The most frequent users of Databank have been the Planning Depart-

ment, the city assessor, and the city manager. This was to be expected

because of the parcel orientation and physical development character of the

data base. Some observers believe that the data base was too oriented

toward programming and planning information and not enough to the

plethora of other data needed for urban analysis.

The significance of Databank lies not only in its historical claim but

also in its place in centralized urban information systems. The influence of

the Planning and Data Processing Departments has given the system a

perspective that is not the major concern of many other agencies. The

conscientious effort to isolate management information has served as an

impediment to the dual functions of providing both management and pro-

gramming and planning information that we have suggested. Nevertheless,

the technical aspects of hardware and software have been well imple-

mented, and few notable flaws have been found. There is apparent sup-

port for the assumption that while costs have been higher than anticipated

* System Development Corporation, Urban and Regional Informational Systems

(Washington, D.C.: U.S. Department of Housing and Urban Development, 1968),

Pp. 15-25. |
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—running about $200.00 per query — the decision"makers have regardedthe investment as a sound one.

METROPOLITAN DATA CENTER PROJECT

A federal demonstration grant was made to the Tulsa MetropolitanPlanning Commission in 1961 to demonstrate how urban information sys-tem concepts could be applied to planning problems and analysis. A groupwas formed with four other urban system planning agencies to explorepossible applications, and the efforts have become widely known as theMetropolitan Data Center Project. The planning agencies each selecteda distinct application area: ( 1) Denver — land use Inventory, (2) LittleRock — school facilities, (3) Fort Worth — central business district, (4)Tulsa — community renewal program, and ( 5) Wichita — capital im-
provements program. Our interest in this unique experiment is in its

and structure of urban information systems,
The data needs and specifications were made by the participating agen-cies for the respective planning information of each. Since the data wereentirely physical, the parcel was selected as the identifier. Data collectionwas largely through respective agencies in each area by a voluntary arrange-ment. Consultants and technicians were used to develop the system’s capa-bilities and capacities. The system was fully operational by 1965, but withina few years it had virtually ceased to exist. Its demise was attributable tolack of funding and inherent problems of decentralization.
A disturbing amount of opposition to voluntary data sharing was foundin the early stages of design and development. In each participating cityurban analysts encountered difficulty in securing the data they needed fromthe regular data collection agencies. Observers related this to an unfamili-arity with the project and the feeling of being excluded from the club, so tospeak, by data collection agencies. It was necessary in a few cases for therespective chief executive to intervene to secure the needed data.Participants in the project concluded that this was the major drawbackin the decentralized urban information system. They concluded that anurban information system designed solely for Planning information wouldprobably be unsuccessful in the future. The participating cities all noted thedesirability of extending the data base to Management data and of in-

* Metropolitan Data Center Project, Final Report ( Washington, D.C.: U.S. De-partment of Housing and Urban Development, 1966) |*
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cluding some mechanism for participation of agencies that were excluded.

Some personnel of the respective planning agencies noted an actual feeling

of having created problems for their ongoing planning functions by going

it alone and having to coerce nonparticipating agencies to cooperate and

share data; all agreed that this was most unfortunate.

Technical considerations of hardware and software were acceptable,

although the computer used was probably too small, and the parcel identi-

fier proved to be overly restrictive and inflexible. This was quite similar

to the results of the Alexandria Databank. Most urban information systems

are now designed with grid coordinate or street address coding guide

identifiers to overcome the limitations of the parcel identifier. Costs were

judged to be acceptable for hardware, software, and operations. The total

project costs were $288,000, which included an estimated $0.72 per parcel

for data assembly and $0.89 per parcel for data updates. The average

query cost $73.87.

Important lessons were learned from the Metropolitan Data Center

Project which should be etched indelibly on the minds of urban analysts.

The go-it-alone philosophy proved extremely difficult to work with, as did

the somewhat abstract concept of decentralization. Admittedly, this ap-

proach is probably an extreme example of decentralization. The failure to

adopt the heuristic rule of participation to minimize conflict also proved

to be an impediment to success. Another lesson is that while technical

matters can be handled by technicians, there must be some familiarity

with the basic concepts of hardware and software by the users; it was

necessary to hold special training courses to overcome related problems.

Perhaps the most important lesson, however, is that urban information

systems must be as dynamic as urban systems themselves. It is an exercise

in futility to design and develop urban information systems with models

and simulations which are inadequate and data bases which are fixed and

undynamic. Such systems, as evidenced by the Metropolitan Data Center

Project, quickly outlive their usefulness and are left to wither away.

CALIFORNIA SYSTEMS

Urban systems in California have tended to experiment with information

‘systems quite heavily, probably owing in part to the abundance of tech-

nical resources available in that state. The state of California undertook

a series of explorations to determine the best design and development

philosophies to follow by using aerospace and defense industry technicians
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as consultants. The most interesting results were found at the state level,

largely stemming from a system design completed in 1965.’ This system

is officially known as the California Statewide Integrated Information

System, but it is the intellectual and conceptual content used to describe

the federated organization and structure that is best known.

Unlike many other urban systems in the United States, there were al-

ready much interest and partial implementation of urban information

systems in California by the early 1960s. Similarly, there were rather ex-

tensive information system capability and development at the state level

among the various functional departments. The designers were caught in

the curious dilemma of how to integrate such an extensive, if uncoor-

dinated, organization and structure of information systems. The solution

proposed was the federated approach.

The operational heart of the federated information system is information

central, which is described as “a computer-based communication system

joining independent centers in an automated means for exchanging infor-

mation.” The independent information systems are all participating urban,

county, special district, and regional systems as well as the participating

state departments. ‘The conceptual network is shown as Fig. 11:8. A four-

step routine is required for a typical query:

1. User requests information from information central using a remote

terminal which is part of his agency’s information system and is connected

via telephone lines to the state information system.

2. Information central automatically determines the location of the

information requested by the query.

3. Information central relays the query to participating agency with

data or information.

4. Information central obtains requested information and relays it to

the user that made request.

All of the above is done automatically with man-machine interactions at

the originating and data-supplying terminals. An elaborate set of rules

and regulations is built into information central to deal with problems

of data specification and quality, user identification, protection of private

information, and related problems.

The federated information system has been under development in Cali-

fornia for several years. The original design anticipated a development

time of at least ten years and total development costs of $98,000,000.

* Lockheed Missiles and Space Company, California Statewide Information Sys-

tem Study (Sunnyvale, Calif., 1965).

*Tbid., p. 6-1. |
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Fic. 11:8. Information central conceptual network.

Understandably, the work has been progressing slowly, since the proposal

is somewhat monumental in scope, even for California. Several prototypes

of the federated information system have been developed, the most notable

of which is the Santa Clara land use information system, or California

Regional Land Use Information System (CRLUIS), as it is officially

known.® This prototype, as its name suggests, is solely concerned with land

use data and was more concerned with experimentation than overall urban

information system design and development.

The significance of the California systems at this relatively early stage

lies in their breadth and scope as much as in their ambition. The concepts

of federated organization and structure and information central are most

interesting and will probably be relevant to future urban information

systems.

RECOMMENDED E:XERCISES

1. Select a nearby urban system, and design and develop a prototype

urban information system. Deal with most of the problems raised in the

above discussion, and utilize the full resources of the class or project group.

This is a longer-term project, usually requiring at least one month, since

°TRW Systems Group, California Regional Land Use Information System (Re-

dondo Beach, Calif., 1968).
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many interviews must be conducted with affected agencies. Always ap-

proach such agencies in a sympathetic vein, and make it clear that this

is a learning exercise.

2. Write a brief essay describing your personal interpretation of the

question of invasion of privacy. You may use your understanding of the

U.S. Constitution as formal background, but the major thrust of the essay

should be directed toward subjective beliefs and leanings.

FURTHER READING

Hearle, Edward F. R., and Raymond Mason. A Data Processing System for State

and Local Governments. Englewood Cliffs, N.J.: Prentice-Hall, 1963.

The classic book on the application of data processing and information system

concepts to urban systems. While much of the technical material is dated, it con-

stitutes a small part of the text. The significance of this work is the conceptual

foundation which is established; as mentioned above, it was later applied to

Alexandria, Virginia, and several other urban systems.

System Development Corporation. Urban and Regional Information Systems.

Washington, D.C.: U.S. Department of Housing and Urban Development, 1968.

The final report in book-length form of the contract between the U.S. Depart-

ment of Housing and Urban Development and System Development Corporation,

in which the latter attempted to survey the theory, principles, case studies, and

bibliography of urban information systems. The case studies are numerous but

relatively embryonic. The bibliography is the most extensive we know of, but

there are curious omissions of evaluative and critical publications. The most

useful aspects of this work are the theory and principles.
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Appenpix B. Standard 7 or R table.

Scientific Methods of Urban Analysis

Degree Number of Variables Desree Number of Variables
of O

Freedom 2 3 4 5 Freedom 2 3 4 5

I -997| -999 | -999 | -999 24 | -388 | .470 | .523 | .562
000 000 000 000 .496 | .505 | .609 | .642

2 950} -975 | -983 | .987 25 | -381 | .462 | .514 | .553
999 | 995 | -997 | -998 -487 | .555 | 600 | .633

3 .878} .930 | .950 | 961 26 | .374 | -454 | 506 | .545
959 | 976 | .983 | .987 478 | .545 | .590 | .624

4 811} .881 | .9g12] .930 27 | .367 | .446 |.498 | .536

917 | .949 | .962 | .970 .470 | .§38 | .582 | .615

5 .754| .836 | .874 | .898 28 | .361 | .439 |.490 | .529

-874| 917 | .987 | 949 -403 | .530 | .573 | .606
6 7071 .795 | .839 | .867 29 | .355 | .432 |.482 | 521

.834| .686 | .grr 927 450 | .522 | .565 | .598

7 .666) .758 | .807 | .838 30 | .349 | .426 | .476 | .514

798 | .855 | .885 | .904 449 | .514 | 558 | .591

8 .632| .726 | .777 1 .8r1 35 | .325 | .307 |.445 | .482

.765 | .827 | .860 | .882 418 | .481 | 523 | .556

9g .602; .697 | .750 | .786 40 | .304 | .373 |.419 | .455

.735 | .800 | .836 | .d6r .393 | .454 | .494 | .526

10 576; .671 | .726} .763 45 | .288 | .353 | .307 | .432

708 | .776 | .814 | .840 372 | 430 | .g70 | .501

11 .553| -648} .703 | .741 50 «| .273 | .336 1.379 | .412

684 | -753 | -793 | -82r|) 354 | -410 |.449 | .479
12 .532| .627 | .683 | .4722 60 | .250 | .308 | .348 | .380

.667 | .732 | .773 | .802 325 | .977 |.4l4 | .442
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APPENDIX B (continued)

Degree Number of Variables Degree Number of Variables
Oo of

Freedom 2 3 4 5 {Freedom} 2 3 4 5

13 .514 | .608 | .664 | .703 7O | .232 | .286 | .324 | .354

O41 712 | .755 | .785 302 | .351 | .386 | .473

14. 497 | .590 | .646 | .686 80 | .217 | .269 | .304 | .332

.623 | .694 | .7397 | .768 .283 | .930 | .3962 | .389

15 .482 | .574 | .630 | .670 gO | .205 | .254 | .288 | .315

.606 | .677 | .727 752 .267 | .972 | .343 | .368

16 .468 | .559 | .615 | .655 100 |.195 | .241 | .274 | .300

.590 | .662 | .706 | .738 .254 | .297 | .327 | .351

17 456 | .545 | .6o1 | .641 125 |.174 | .216 | .246 | .269

575 | .647 | .697 | .724 .228 | .266 | .294 | .376

18 444. | .532 | .587 | .628 150 |.159 | .198 | .225 | .247

5OI .633 | .678 | .710 .208 | .244 | .270 | .290

19 .433 | .520 | .575 | .615 200 |.138 |] .172 | .196 | .215

549 .620 | .665 | .698 161 | .212 | .234 | .259

20 .423 | .509 | .563 | .604 goo |.113 | .141 | .160 | .176

5397 | 608 | .652 | .685 .148 | .174 | .192 | .208

21 .413 | .498 | .552 | .592 400 |.098 | .122 | .139 | .153

526 | .596 | .64r | .674 128 | 151 | .167 | .180

22 .404 | .488 | .542 | .582 500 | .088 | .109 | .124 | .137

515 | .585 | .630 | .663 115 | .135 | .150 | .162

23 .396 | .479 | .532 | .572|| 1,000 |.062 | .077 | .088 | .097

.505 | .574 | .619 | .652 .08t | .096 | .106 | .r75

' Italic: 1 percent confidence level.

Roman: 5 percent confidence level.
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Appenprix C. Values of ft.

Degree of Probability

Freedom 0.50 0.10 0.05 0.02 0.01

I 1.000 6.34 12.71 31.82 63.66

2 0.816 2.92 4.30 6.96 9.92

3 795 2.35 3.18 4.54 5 84
4, 74! 2.13 2.78 3.75 4.60

5 727 2.02 2.57 3.36 4.03

6 718 1.94. 2.4.5 BZ.14 B.71

7 711 1.90 2.36 3.00 3.50

8 . 706 1.86 2.31 2.90 3.36

9 703 1.83 2.26 2.82 3.25

10 700 1.81 2.23 2.76 3.17

1 .697 1.80 2.20 2.72 3.11
12 .695 1.78 2.18 2.68 3.06

13 .694 1.77 2.16 2.65 3.01

14 .692 1.76 2.14 2.62 2.98

15 .691 1.75 2.13 2.60 2.95

16 .690 1.75 2.12 2.58 2.92

17 .689 1.74 2.11 2.57 2.90

18 .688 1.473 2.10 2.55 2.88
19 .688 1.73 2.09 2.54 2.86

20 .684 1.72 2.09 2.53 2.84.

QI .686 1.72 2.08 2.52 2.83

22 .686 1.72 2.07 2.51 2.82

23 .685 1.71 2.07 2.50 2.81
24. .685 1.71 2.06 2.49 2.80
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ApPENDIX C. (continued)

Degree of Probability

Freedom 0.50 0.10 0.05 0.02 0.01

25 .684 1.71 2.06 2.48 2.79

26 684. 1.71 2.06 2.48 2.78

27 .684 1.70 2.05 2.4.7 2.9747

28 .683 1.70 2.05 2.47 2.76

29 .683 1.70 2.04 2.46 2.76

30 .683 1.70 2.04 2.46 2.75

35 .682 1.69 2.03 2.44, 2.72

40 .681 1.68 2.02 2.42 2.71

45 .680 1.68 2.02 2.41 2.69

50 .679 1.68 2.01 2.40 2.68

60 .678 1.67 2.00 2.39 2.66

70 .678 1.67 2.00 2.38 2.65

80 .677 1.66 1.99 2.38 2.64

go .677 (1.66 1.99 2.37 2.63

100 .677 1.66 1.98 2.36 2.63

125 .676 1.66 1.98 2.36 2.62

150 .676 1.66 1.98 2.35 2.61

200 .675 1.65 1.97 2.35 2.60

300 .675 1.65 1.Q7 2.34 2.59

400 .675, 1.65 1.Q4 2.34, 2.59

500 .674 1.65 1.96 2.33 2.59

1000 .674 1.65 1.96 2.33 2.58

00 .674 1.64 1.96 2.33 2.58
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AppEenprx D. Cumulative probabilities for Poisson model.

r u=.!1 w= .2 w= .3 b= .4 M=.5

Oo . 90484 .81873 . 74082 .67302 .60653

I 99532 .98248 . 96306 .93845 . 90980

2 -99985 . 99885 - 99640 -99207 98561
3 1.00000 -99994 -99973 99922 -99825
4 1.00000 . 99998 -99994 99983
5 1.00000 1.00000 99999

6 I . 00000

r b=. b=. p= 8 b= .9 b= 1.0

O .54881 .49658 44.933 . 40657 . 36788

I .87810 84419 .80879 77248 .735'76

2 .97688 .96586 .95258 .93714 .91970

3 .99664 .99425 99092 .98654. .g8ror

4 .99961 99921 -99859 -99766 -99634
5 .99996 -9999! .99982 -99966 -99941
6 I .00000 -99999 .99998 99996 -99992
7 1.00000 1.00000 1.00000 - 99999
8 I .00000

p= 2 = 3 w= 4 w= 5 w=6

O . 13534 .04.9'79 . 01832 .00674. .00248

1 .40601 - 19915 .09158 .04.04.3 .O1735

2 .67668 42319 .23810 .12465 .06197

3 .85712 .64.723 43347 . 26503 .15120

4 .94735 81526 .62884. 44.049 . 28506

5 .98344 .91608 78513 .61596 .44568

6 .90547 .96649 .88933 . 76218 .60630

4 .99890 . 98810 .94887 . 86663 74.398

8 .999'76 .99620 .97864. 93191 84.724,

9 .999905 . 99890 .99187 .96817 .91608

10 -99999 -99971 -99716 - 98630 -95738
11 I . 00000 -99993 -99908 -99455 -97991
12 -99998 -99973 -99798 -QQILT
13 I .00000 .99992 99930 .99637

14 -99998 -99977 -99860

15 | T.00000 -99993 -99949

16 -99998 99982
17 I.00000 - 99994

18 -99998
19 I .00000
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AppENDIx D (continued)

r w= 7 w= 8 H=9 b= 10

O .00091 00033 .OOOI2 . 00004.
I .00730 00302 .00123 00050

2 .02964 01375 00623 00277
3 .081 76 04.238 .02123 .01034

4. . 17299 .09963 .054.96 02925
5 . 30071 - 19124 . 11569 .06709
6 .44971 31337 .20678 . 13014

7 -59871 45296 32390 22022

8 - 72909 59255 -45565 33282
9 . 83050 . 71662 58741 45793
10 .g0148 .81589 - 79599 . 58304

II . 94665 .88808 .80301 .69678

12 . 97300 . 93620 .875,77 -79156

13 .98719 .96582 .92615 864.46

4. 99428 -98274 -95853 91654

15 -99759 -99177 -97796 95126
16 . 99904. .99628 . 98889 .97296

17 -99964 -99841 -99468 -98572
18 -99987 -99935 -99757 99281
19 -99996 -99975 . 99894 -99655
20 -99999 -99991 99956 -99841
QI I .00000 -99997 .99982 . 99930

22 -99999 -99993 -99970

23 1.00000 .99998 .99988

24. -99999 -99995
25 1.00000 .99998

26 -99999
27 

I.00000
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AppEnpIx F. Probabilistic exponential model values.

x e* e*

.O1 .9g00 I.O101

02 .9802 1.0202

03 .9'704 1.0305

04 .9608 1.0408

.05 -9512 1.0518

.06 .9418 1.0618
07 . 9324 1.0725

.08 .9231 1.0833

09 .9139 1.0942

10 .9048 1.1052

.20 .8187 1.2214

- 30 - 7408 1.3499
40 .6703 1.4918

50 .6065 1.6487

.60 5488 1.8221

70 . 4.966 2.0138

.80 44.93 2.2255

.gO . 4066 2.4596

1.00 . 3679 2.7183

2.00 .1353 7.3891

3.00 .04979 20.0886

4.00 . 01832 54.598

5.00 .00674 148.41

6.00 ,00248 403.43

7.00 . 000912 1096.6

8.00 . 000335 2981.0

9.00 . 000123 8103.1

10.00 . 000045 22026.0
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10097 32533

37542 04805
08422 68953

QQOIQ 92529
12807 99970

66065 74.717

31060 10805

85269 77602

63573 32135
93796 45753

98520 17767
11805 05431

83452 99634
88685, 40200

99594 67348

65481 17674

80124 35635

74350 99817
69916 26803

09893 20505

91499 14523

80336 94598
44104, 81949
12550 73742

63606 49329

61196 90446

15474 45266
94557 28573
42481 16213

23523 78317

04493 52494

00549 97654
35993 15307
59808 08301

46058 85236

32179 00597
69234 61406

19565 41430
45155 14938
94864 31994

76520 13586

64894 74296
19645 09303
09376 70715
80157 36147

34072 76850
45571 82406

02051 65692

05325 47048
03529 64778

14.905 68607

39808 27732

06288 98083

86507 58401

87517 64969

17468 50950

17727 O8015

77402 77214
66252 29148

14.225 68514

68479 27686

26940 36858

85157 47954
II100 02040

16505 34484

26457 47774
95279 79953

67897 54387
97344 08721
73208 89837

75245 33824
64051 88159

26898 09354

45427 26842

01390 92286

87379 25241
20117 45204

01758 75379
19476 07246

36168 10851

34673 54876
24805 24037
23209 02560

38311 31165

64032 36653

36697 36170

35303 42614
68665 74818

90553 57548
35808 34282

22109 40558

50725 68248

13746 70078
36766 67951
91826 08928

58047 76974
45318 22374
43236 00210

36936 87203

46427 56788

46162 83554
79297 34135

32979 26575
12860 74697

40219 52563

51924 33729

59367 83848
54622 44431
16868 48767

68935 91416

45862 51025

g6119 63896

33351 35462
83609 49700

77281 44077

05567 07007
159560 60000

40419 21585
43667 94543
34888 81553

80959 OOII4

20636 10402

15953 34764
88676 74397
98951 16877

65813 39885
86799 07439
73053 85247
28468 28709

60935 20344

60970 93433
29405 24201

18475 40610

90364 76493
93785 61368

73039 57186
21115 78253

45521 64237
76621 13990

96297 78822

94750 89923

53140 33340
57600 40881

96644 89439
43651 77082

65394 59593
82396 10118

QIIQO 42592

03071 12059
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predictive efficiency, 58, 64; intuitive

logic tests, 58, 64; key variables for,

60; multivariate analysis form of, 59;

relationships in, 47; residuals, 55;

simple, 47-50; standard error of

estimate for, 55-56, 63-64; testing

simple, 57-58; trends from, 47

Linear programming: averaging-out

characteristics of, 180; cones, 158;

convex linear combinations, 158;

convex sets, 159; defined, 155; dual

problem, 156; dummy variables, 173;

economic development applications,

175-177; extreme points, 160; half

spaces, 161; linear combinations, 157;

marginal prices from, 170, 184;

nonnegative linear combinations, 158;

objective function, 156; planning

periods, 173; primal problem, 156;

regional science applications, 175;

resource prices from, 1'70; sensitivity

analysis of, 170; shadow prices from,

170; solution space, 164

Mappings: defined, 24

Markov chains: absorbing states, 121;

defined, 24; diffusion processes, 1185

n-step transition matrix, 119;

probability distributions for, 120;

processes of, 117; queuing theory and,

118; regular, 1193 states, 117-118;

state space, 118; stationary

distributions for, 120; steady states

of, 118; stochastic matrices of, 119;



transition diagrams, 119; transition

matrices, 119; transition probabilities,

11g

Mathematics: defined, 3

Matrix: addition and subtraction,

27-28; augmented, 31-32;

commutative, 29; defined, 9-10, 23;

determinant, 30; identity, 30; inverse

of, 30-31; multiplication, 28-31 ;

nonsingular, 30; row operations on,

31-32; shape of, 24, 27; simultaneous

equations by, 31-32; square, 30;

transition, 119; transposition, 28

Mechanics, 224

Method of analysis: defined, 5

Metropolis, 266-267

Metropolitan Data Center Project,

305-306
Minimum-costs models, 144;

administrative-costs minimization,

145-148; economic lot size, 145; plan

evaluation, 148-150

Models, 13-14; analog, 13; iconic, 13;

representations, 6; symbolic, 14

MONIAC, 221

Monopoly, 255

Monte Carlo method, 228-237;

generating functions for, 229; random

numbers, 228; relative frequency,

232; table of random numbers,

228, 323

Networks, 173

New Town, 266

Nonlinear models: curve-fitting of, 75

Nonlinear programming: Carr-Howe

portfolio selection, 201-203 ; Carroll

algorithm, 199-201 ; classical calculus,

189, 190-193; concave nonlinear

objective functions, 189; convex

nonlinear objective functions, 189;

defined, 187; direct linearization,

201; exterior solutions, 190; gradient,

198; gradient methods for, 189,

197-201 ; interior solutions, 190;

Lagrangian functions, 194;

Lagrangian multipliers, 196; method

of Lagrange, 189, 193-197; partial

derivatives for, 191; partial

differentiation of, 191; path of

steepest ascent, 198; portfolio

selection problems, 201; quadratic

programming, 201; response surface,
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198; saddle points, 199; separable

programming, 201; successive

approximations, 198; total derivatives

of, 194
North Carolina residential simulation,

241

Numbers: defined, 10; imaginary, 10;

real, 10; integer, 9

Ochs transportation and land use model,

182-184

Optimal solutions, 14-17

Optimizing models: calculus and, 127;

complex, 127; defined, 127; dynamic

programming, 128; linear pro-

gramming, 128; nonlinear program-

ming, 128; simple, 127; stochastic

programming, 128

Origin and destination surveys, 224-225

Penn-Jersey model, 180

Pittsburgh urban renewal simulation,

24.0

Polimetric model, 203

Prisoner’s dilemma, 264-265

Probabilistic models: defined, 97;

probability, 98; processes, 97-99

Queuing theory, 237-238

Region I, 269

Region IT, 273-274

Regression: algorithms for, 50; bi/rms:

tests of, 64; complex, 59-60;

confidence levels of, 58-59, 64; curve-

fitting for, 47-48; defined, 47;

dependent variables in, 48;

hyperplanes, 61 ; independent

variables in, 48; intercept, 48;

intercorrelation tests of, 64; intuitive

logic tests of, 58, 64; IPE tests of,

58, 64; least-squares method for,

51-55; lines of, 51; lines of best fit,

51; model parameters for, 50-55,

61-62; normally distributed errors in,

50; planes of best fit, 61; ror R

tests of, 57-58, 62-64; 7° or R’ tests

of, 57-58, 62-64; raw data formula,

54; simple, 47-50; slope, 48; stepwise,

63-64; straight line projections, 47;

transformations and, 49; trend lines

by, 47
Research and development: defined, 6;
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deriving solutions, 7; development, 7;

problem definition, 6; representations

of, 6-7; testing, 7

Resloc, 203

Root-mean-square error, 40-41

San Francisco housing simulation,

241-243

Science: defined, 3

Set theory: elements, 98; Venn

diagrams, 99

SEWRPC commuting model, 67-68

SEWRPC land use model, 180-182,

207-209

Simplex method: criterion, 166; defined,

164; equivalent problem, 165;

indicator row, 166; initial table, 166;

nondegenerative conditions for, 165;

Pivot point, 166-167; positive

conditions for, 165; slack variables,

165; terminal table, 167, 168-170

SIMSCRIPT, 223

Simsoc, 274-277

Simulation: analog, 221; analytical uses

of, 221; computers and, 222-223;

defined, 219; deterministic, 223-228;

foundation of assumptions, 222;

gaming, 220; iconic, 221 ; interaction,

223; numerical methods of, 228-229;

optimization through, 220;

parametric estimation by, 220;

symbolic, 221; transitional

optimization through, 220

Social physics, 223-224

Spatial distribution surfaces, 180

Specialized programming models,

170-1743 back-track algorithms, 172;

branch-and-bound algorithms, 172;

combinatorial problems, 171;

convergence, 171-172; cutting-plane

algorithms, 172; heuristic

programming, 172; iterations,

171-172; mixed-integer programming,

171; partial-enumeration algorithms,

172; pure-integer programming, 1771

Standard deviation, 40-41

Stochastic programming:

chance-constrained programming,

212; decision trees in, 213; decision

under uncertainty theory, 209;

defined, 187; dynamic programming

in Markov chains, 213; linear, 210;

successive approximations for, 214
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Systems, 244

Systems analysis: complex (open), 244,
246-247; simple (closed), 244, 246

Telecity, 271

TEMPER, 252

Theory of land use succession, 240-241

Traffic zones, 224-225

Transportation problem, 172-174,

177-179

Two-finger morra, 255-257

Universal law of gravitation, 224

Urban: defined, 3

Urban analysis: defined, 3

Urban dynamics simulation, 244-2409;

counter-intuitive nature of, 244;

industrial dynamics and, 244; sectors

in, 245
Urban information systems:

administration of, 296-297; analytical

systems in, 282; centralized, 297-298;

collectors, 282; control and handling

in, 286-287; costs of, 287-288, 296;

data task force, 290-291;

decentralized, 297-298; defined, 282;

existing information subsystems in,

298; federated, 297-298 ; feedback,

286 ; feedback loops for, 286;

information central for, 307; inquiry

and control, 283-284; interpretation,

285-286; monitoring and reporting

service and, 286, 299; operations of,

296, 298-299; policy group, 290-291 ;

priority assignments for, 299; rules

and priorities, 296-297; state of

knowledge and, 286; strategic

approach to, 289-301; task forces,

290; technical task force, 290-291 ;

user identification, 299; users of, 299;

user's task force, 290-291 |

Utopian solutions, 17

Values, 17-19

Variables, 8-10; range of, 8; subscripted, —

8

Vectors: column, 25; defined, 24;

direction of, 24; inner product of,

26-27; magnitude of, 24; in physics,

24; points in space, 24.3 row, 25;

scalars, 26; transpose, 25

Wisconsin migration model, 65-67

immeany, ~%,


