Recommended by the Universsty of Calcutta, Dacea, Patna, Utkal eto.,
as a text-book for B. A. & B..Sc. Examwmations

DIFFERENTIAL CALCULUS

BY

B. C. DAS, M. Sc.

PROFESSOR OF MATHEMATICS,
PRESIDENOY COLLEGE, CALCUTTA ( RETD.);
EX-LECTURER IN APPLIED MATHEMATICS, CALCUTTA UNIVERSITY

AND
B. N. MUKHERIJEE, M. A.
Premchand Roychand Scholar

PROFESSOR OF MATHEMATICS,
SCOTTISH CHURCH COLLEGE, CALCUTTA ( RETD. )

)

SIXTEENTH EDITION

U. N. DHUR & SONS, PRIVATE LTD.
15, BANKIM CHATTERJEE STREET,
CALCUTTA 12



Publaished dby
DWLJENDRANATH DHUR, LL. B.
For U. N. DHUR & SONS, PRIVATE LTD.,
15, Bankim Ohatterjee St., Oalcutta 12.

1ST EDITION—1949
2ND EDITION—1950
SRD EDITION—1952
4TH EDITION—19%4
5TH EDITION—1955
6TH EDITION—1957
7TH EDITION—1958
8TH EDITION—1960
9TH EDITION—1961
10TH EDITION—1962
11TH EDITION—1963
12T7H EDITION—1964
13TH EDITION—1965
14TH EDITION—1967
15TH EDITION—1968
16TH EDITION—1970

Printed by
TRIDIBESH BASU,
THE K. P. BASU PRINTING WORKS,
11, Mohendra Gossain Lanpe, Calocutta 6.



PREFACE TO THE FIRST EDITION

THaIS book i8 prepared with a view to be used as a text-book
for the B. A. and B. Se. students of the Indian Universities.
‘We have tried to make the expositions of the fundamental
principles clear as well as concise without going into unne-
cessary details ; and at the same time an attempt has been
made o make the treatment as much rigorous and up-to-
date as Possible within the scope of the elementary work.

Proofs of cerlain important fundamental results and
theorems which are assumed in the earlier chapters of the
book for the convenignce of thé beginners and average
students, have been given in the Appendix. A brief account
of the theory of infinite series, especially the power series
13 given 1 the Appendix 1n order to emphasise their
peculiarity in the application of the principles of Caleulus.
Important formule of this book are given in the beginning
for ready reference. A good number of typical examples
have been worked out by way of illustrations. «

Many varied types of examples have been given for
exercise, in order that the students might acquire a good
grasp of the applications of the principles of Calculus.
University questions of recent years have been added at
the end to give the students an idea of the standard of the
examination, Our thanks are due to the authorities and
the staff of the K. P. Basu Printing Works, Calcutta, who
in spite of their various preoccupations, had the kindness
to complete the printing so efficiently in a short period of
time. Any criticism, correction and suggestion towards the
improvement of the book from teachers and students will
be thankfully received. ’

CALCUTTA, }

B. C. D.
June, 1949 B.N. M.



PREFACE TO THE EIGHTH EDITION

In this edition we have thoroughly revised the book
in accordance with the syllabus of the Three-Year Degree
Course for Differential Calculus (Pass Course). In some
places chapters have been re-arranged and a few well-chosen
examples have been added here and there to make the book
more useful. Differentiation of Determinants and a proof
of the converse of the Euler's Theorem on Homogeneous
Punctions have been added. We fake this opportumity of
thanking Prof. Joyti Choudhuri, M. Se. and Prdf. Tapen
Moulik, M.Se. for their help 1n the revision of the text.

CALCUTTA, B.C. D.,
July, 1960 B. N. M.

PREFACE TO THE SIXTEENTH EDITION

This edition is practically a reprint of the fifteenth
edition with some minor additions and alterations.

Our thanks are due to Sri1 Balen Mukherjee B. A. and
Sm. Kalpana Sircar M. Sc. for helping us considerably in
bringing out this edition promptly.

Our. thaaks are also due to the authorities and staff of
Messrs K. P. Basu Printing Works for efficient and prompt
discharge of their duties 1in spite of their wvarious pre-
occupations.

CALCUTTA, B. C.D.
March, 1970 B. N. M.

GREEK ALPHABETS USED IN THE BOOK

a (alpha) A (lambda) & (=)
8 (bata) u (mu) n (eta)
¥ (gamma) » (nu) ¢ (zetd)
6 (deltq) = (pv) A (cap. delta)
¢ (phai) e (rho) X (cap. sigma)
v (ps1) o (sigma) T (cap. gamma)
« (kappa) t (tau) & (epsilon)

8 (theta)
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SYLLABUS FOR THREE-YEAR DEGREE COURSE
DIFFERENTIAL CALCULUS (B.A. & B.Sc. Pass)

Rational, irrational and real numbers Linear continuum (Rigorous
treatment is not required).

Functions of a single variable. Limits of functions. Uontinuity
of functions, FExistence and attainment of bouhds and of all inter-
mediate values in a closed interval (Examples to be given, but no poof
required). Inverse functions.

Derivative. Its geometrical interpretation and the meaning of
its sign. Rules of differentiation. Rolle's theorom. Mean Value Theo-
rems of Liagrange and Cauchy. Buccessive differentiation. Ieibnitz’s
Theorem, Differential,

Taylor's and Maclaurin's theorems with Cauchy’s and Lagrange's
form of the remainder. Taylor’s series for such functions as

€%, sin =z, tos ¢ and for (1+2)", log, (1+2) when [z| < 1. Maxima
and Minima. Indeterminate forms.

Functions of two or more variables. Geometric notion of their
continuity. Buccessivo partial dorivatives. Statement of a set of
sufficient conditions (without proof) for the commutative property of
partial derivatives. Euler's Theorem on homogeneous functions.
Acquaintance with the rule for differentiation of implicit functions.

Applications : Tangent, normal, rectilinear asymptote and curva-
ture of plane curves. Envelopes.



List of Important Formula

{. Important Limits.

. sin ¢ . .
(i) Lto = = 1, where z is 1n radian measure.
>

n 1
(33) Lt (1+ 1) =¢ or, Lt 1 +x)=e.
n~>%oo . n ©=>

(iii) -z[_lfo :} log (1+2)=1. (iv) Lt ~_: ==1,
Q+2)"21_ _ w_'- _
O ) Lt =0

(vii) Lt 2"=0(-1<gz<<1).

n—>o0

iI. Standard Derivatives.

d -

7, @) =na Y ( ) n+1
diyoq. - 1.
dz(m)—l ’ dm(\/w) 2~/w

éi (e®)=¢6"; ja: (a®)=a® log. a.

jai (log )= ; ; jx (logg ) = ; log, e.
dtf» (sin z)=cos z ; dfv (cos )= —sin =.

d (tan ) =sec®x ; d (cot )= — cosec?z.
dz dz

(sec z)=sec  tan x ; j (cosec o) = — cosec z cob .
_ 1
e (sm ip)= Jl a ' i (oos 1p)= Ji-gh

K 1y 1. - __._-_L
dw(t“" &)= da:(mt 1+z°
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._d_ =21 ) = - ___]_-__-.__ H = e —

3 (800 '2) 21’ (cosec *x) Ja; =
Egz (sinh z)=ocosh z ; dm (cosh z)=sinh .

‘;i (tanh z) =sech?s ; d%c (coth &) = — cosech ?z.

d (sech #)= — sech z tanhz ; ;ld— (cosech z) =+— cosech z coth z.

‘gc (sinh™*g) = - Il%f?c’ ; o (cosh‘ z) - J:;— (z>1)

d - -
dn (tanh™*z) = - ;;- Hx<<1); di: (coth™*z)= — mg—-__'l (z > 1).

d -1y 3 ;1o 1 .
d_;‘(sech z, - Jl g s (@<1) ; (cosech Z)=- JrEr1

III. Fundamental theorems on Differentiation.

0) ;‘5 (=0, () o fodledt=ca’ (@)
(i) 4 {¢>(ac) (@) = 4'(z) £ v'(x).

(v) 5 {qb(w) x ()t = $laly’ (@) +v(z)p' ().

Derivative of the product of two functions
=first function x derivative of the second
+second funection x derivative of the first.

@ 3 162 @ds @-.dn @)

2y (@da (2)dbs (w)"'} +¢s' (@)ps (@)bs(z) -}
- +¢n’ (@)1 (@)da(@)-- ).

o 4 [$(a)) _ & (hole) - w(:r)dt(m)’
(vi) dr {lp(::)} z 'p(a:) v(z) # 0.
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Derivative of the quotient of two functions

- (Deriv. of Num.)* Denom. — (Deriv. of Denom.) X Num

(Denom.)¥
(vii) If y=5(v), v=0¢(),
' dy_dy dv,
. dr dv dx
dy dz e} dy _ /dm(dm PR .
(vm) d 1, 2e., e 1 dy\dy dz # 0)
(1x) Ii w=¢(t), v=.v’(t),
dy _dy [dz (dx .
de dt/ dt \d¢ o 0)

IV. Meaning of the derivatives and differential.
Zz = tan ¥, where ¥ 18 the angle which the tangent
at any point to the curve y =f(z) makes with the z-axis.
dy '
dz
dy=f(z) de, if y=f(x)

V. The nth derivatives of some special functions.
D" (z")=n
T (M)
D™am)= (m n) 1 @
D" (e%) =a™ ¢ ; D™ (%) = ¢®.

= rate of change of ¥ with respect to z.

2™ " (m being a positive integer > n)

L1 (=Dt ="t (m-1)1
" ‘v ta (a:+a)"“ i D" log (x+a)= (z+a)n
D" sin (az + )= a™ sin 5 +aw+b)

D" cos (az +b)=a" cos (m-'+a,w+b)-

2
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. * . nr nr
D" sin am=a"91n(2—+am) ; D" cos az=a" 003(2

+ aw)'

n
sin bz) =(a® + b2)T ¢ gin (bz +x tan™* b/a).

:Q"Wmc%m) =(a®+ bg)’% % cos (br +n tan™ *b/a).

‘;),.( 1 V(-

a1t g s
z? +a? a™te 6 sin Sn +1)8,

where 6 =tan™* (a/z).

D™ (tan™*z)=(-1)""* (n —1) ! 8in™8 sin n6, ¢
* where 6 =cot™*z.

Leibnitz’s Theorem.
(wv)n=un'v +"61un_1v1 + nGg'Mn—g'Ug e + uva.
VI. (i) Mean Value Theorem.

fle+hm)=f(@)+hf'(x+06n),0 < 6 < 1.
(ii) Taylor's Serles (finite form).

Faotm)=f@+1f @+ 2 F@)+ e -
hﬂ—l -1
+(—n—_—‘1)'f" (m)+R,..

”
Remainder R, = " wl ftx+06h). 0 < 8 < 1 (Lagrange's form)

_hM1-e""
n-1)1

f@)=Fla)+(z-a) f (a)+ ('v a) F @)+
AN O (-”’:;-7?- 7 la+ 6z - a)
0<oK1,
Remainder By = (a: - a) " {a +6(x-alk.

or, f" (z+6n) (Cauchy’s form)
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(iii) Maclaurin’s Series ( finste form ).
2
F(x)=£(0) +af’ (0> +g, 7" O+

(n 1) f700) + F< 1.

{iv) Taylor’s Series ( extended to infinity ).

A +k)= f(a:)+hf(a:)+ !f"()+

{v) Maclaurin’s Serles ( extended to wnfinaty ).

F@)=£0)+zf (0)+Z o1 f' (0) +++eer
{vi) Expansions of some well-known functions in series.

2 n
x

TR S T

2' n!

“’8 2 _ L n_“"_w_tl_
317 +(- g, +1)!"‘“ ,

51
+(- 1)”(2)1

xl
a.Bn+1

+<z;11>'+
sn

(2 T
.ee +(_1>""1a":+

for " 1<z 1.
for — 1 <z <1,

{a) & —1+

b)) sin z=2—
for all

{c) cos z=1— Sva.lues

z?
2!
s 5 of =

z
(d) sinh z=z+7% l+5'

9"

{e) cosha:-=1+2, *

(f) log (1 +:z:)--a:—"r‘22+m3s -

(0) Q+a) t=1—z+a®—2®+--

A-w)*=1+z+2%+2°+--
A+2) 2=1—-922+3x%— 42 +---

(1-2) &~1+1 13 185

9
2.4% Yo46

x+

for " 1< z<< 1.
for — 1 <a<l.

%+

for ~ 1 <e<1l.
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- ;® 5 2n—-1
() ta.n"w=a:-m3—+m — k(=12 % F o

5 2n—1
for -~ 1< 2 1.
8 5
(s) sin"z=z + ; ":g) +;2m5 +oee for ~ 1€z 1.

VII. Maxima and Minima.
(i) If f(c) =0 and f"(c) is negative, thent
f(z) is a mazimum for x =c.
(1) If f(c)=0 and f"(c) is positive,sthen
f(x) is a minwmum for z=ec.
(i) Iffle)=r"c)="--=f""*(c)=0and f"(c) # O, then
(a) if r is even, then f(x)is a MATIMUM OT & MIniMum
for & =¢, according as f7 (c) is neqative or positive :
(®) if ris odd, there 1s neither a maximum nor a mini-
mum for f(a:)_ at z=c.
(iv) jltematwe criterson for maxima and minima :
(@) f(z) is & maximum if ' (x + k) changes sign from
+to —, and
(®) flx)is & mmimum if f’ (z-+h) changes sign from
- to +,
as h, being numerically infinitely small, changes from
- to +.
VIII. Indeterminate forms.
(1) Form -3—

-El_f . 383 = -E_f“ i:é:; = :ﬁ,g:; ( I’ Hospital's Theorem )

; o #e) _ ,, ¢'(@).
i) Form or Lt o) =Ll v
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Ix.. Partial Differentiation.
G) If w=Az, v), and if fyz, foy exist and fym ( OF foy )

8%u _ 8%

is continuous, then ;5:551; Syor

(ii) If f(x, ¥) be a homogeneous function of degree =

in z, y, then z gv + vy of —nf(m, ). [ Buler's Theorem ]

of +v5f+ 2% =nf(z, y, 2).

Similarly, oz oy oz

i) I fle, 9)=0, Gi= =T (5 # 0).

o (v) If u=f(z, y) where z=d(t), y=v(2),
du _dudr  dudy,
dt ‘émdt by di
) It u=f(zx, ), du=fz dz +fy dy.
Similarly, du=f. dz+ fy dy + f- dz.
(1) If w=flrs, x,), where 21 =¢1 (2, ¥), T2 =2 (2, ¥),
S _ b dr1, Ou Sry . 6u _ du dry , du 67,

o o6xy Or 0Ty O 'Oy OXy OY  Oa oY
X. Tangent and Normal.
. (1) Equation of the tangent

V- “’=3Z (X—2), or, (X—a)fu +(Y —y)fy=0.

(ii) Egquation of the normal
Yoy & (X 2), or, X 2 -Y-u.
I

v
(iia) Cartesian sub-ttmg&nt =yly, ; sub-normal =yy,
Length of tangent =y J1+y.%/y1
Length of normal =y J1+y.>.
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iv) Aro-differential (Cartesian)

gf—cos v, Z’l =gin v, Z =t{an v

1. (9 v\® . (ds 2
( )*( ) 1 (dt) +(dt) ar)
- s _ ) fd|®
“/1+ dm) ' dy "/1 + dy)

ds =dz? + dy®.

(v) Angle between tangent and radius vector (¢)
tan ¢=T-gre ; sin ¢>=%§; cos ¢ = g:

v=0+4.
(vi) Arc-differential (Polar)

Z‘Z=J,’,2+(d7‘ 2;3::—J1+(rg:)2
Jas= ~/ ZZ) do ; ds= J;;(;greT dr

ds® = dr® +r® do*>.

. de dae 1
=p2 = - , = .
(Vll Polar sub-tangent r d / where r

dr
Polar sub-normal = a6

Perpendicular from pole on tangent (p)

p=rsmqb;p-lz-lz+1¢ d—’) 2+( )

r

(viii) Pedal equations of some well-known curves
(1) Circle % +y®=a?® (centre)---r=p
(2) Cirele 2% + y% =a? (point on the
circumference):--r% = 2ap
(8) Parabola y? =4az (focus)---p® =
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b® ~2a
(4) Ellipse ” ) a+? ba =1 (focus)--- p?y 1
zba
(5) Ellipse * 2? + bg =1 (centre)-* T +92=0%+p*

2 2 2
(6) Hyperbola Zn - Zs =1 (focus)'“za = 2f+ 1

- m2 y2
(7) Hyperbolg a® " p2=1 (centre)---

272
afpi’ —pt=g? - p®

(8) Rect. Hyperbola z? —y®% =a? (centre) - -pr=a?

(9) Parabola r= 1 +2czs 0 (focus) --- p® =ar

(10) Cardioide 7 =a (1 +cos 8) (pole)---r® = 2ap?

(11) Lemniscate 7* =a® cos 26 _ e
2_ 2 ¥ =a%p
r?=g" gin 26

n_ n
(09) 787 0002} ot =%,

XI. Curvature.

= Ls=r) 1.

2%
P"(1+yy; ) [y=r@)1;y, #0.

%
P=(1+ai‘g) [z=f(y)].,z, # 0.

o= e alymp0 ]

(72 s
P> fasts® -2f,,,f:f,,+fwf 2 [flz, ©)=01].
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(7' +"1 )i
r? +2r

p=— r=5(0) 1.

p= (u® + . )F Lu=r06)].

w®(u+ 1)

2
“TE L p=f@L =+ 5L =701
p=ILt gy [ at the origin, z-axis (y = 0) being tangent J.

2
p=1Lt gm [ at the origin, y-axis (x=0) being tangent ].

z® +y®

- 5 e
p= Ja+b2. Lt s+ by

[ at the origin,
az + by =0 being tangent ].

Chord of curvature through the pole=2p sin .

parallel to z-axis = 2p sin ¥
Gholrd o_f curvature { parallel to ¥-axis = 2p cos ¢

Centre of curvature
2 2
vi(l+9,?) g=y+ iV

E—m— =7z
va Ve ly=r(=)]
2 _ . 2
I T LN P2 )
2 Za
g=z—psiny, y=y+pcoswy.

. 2
Radius of curvature of the evolute —g';i-
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INTRODUCTION
NUMBERS

* @1. Numbers.

The earliest concept 8f numbers originated from count-
g, and the first set of numhers which was known to men
was the set of positive inteyers The arithmetical process of
subtraction needed an extension to megalive wniegers, and
zero was mncluded as a number. The process of division
required a further extension to rational numbers, which are

defined to be numbers of the form "::" where m and m are

integers, ultimately prime to each other, n being positive
and not equal to zero. It may be noted that terminating
decimals, as also recurring decimals, which are expressible
in the form m/n fall under this category.

0'2. Geometrical representation of rational numbers ;
rational points.

X P Y A P X

Take an indefinite line X’'OX for reference, and a suit-
able point O on it as origin. A suitable length OA4 on it
being chosen as unit, it we divide OA geometrically into
n equal parts, and take a length OP (or OP’) equal to m such
parts (towards the right of O if m he positive, and towards
the lett 1f m be negative), the length OP (or OP’), or the
point P (or P’, as the case may be) represents the rational
number m/n. The point P, representing a rational number,
18 called a rational point.
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0°3. Properties of rational numbers.

(i) Rational numbers are well-ordered. This means that
of two unequal rational numbers a and b, either a > b or
a<<b, also if a > b and b > ¢, then a > ¢, etc. In other
words, rational numbers are well-arranged in respect of their
magnitudes, points representing higher numbers always
fzmllmg to the right of those representing smaller ones, and
vice versa, 1n their geometrical representa.tmu

(ii) Rational numbhers are overywhere dense ; in other
words, between any two rational numbers however close,-
or within any interval on the a.x.is representing rational
numbers, however small, there is an infinite number of
rational numbers or points.

This mav he easily seen {rom the fact that however
close the two rational numbers @ and b may be, %a+b) is
a rational number lying between them. Simalarly, between
a and 3#(a+0d), as also between %(a+ D) and b we can insert
rational numbers, and so on. Thus there 1s an infinite
number of rational numbers between a and b.

0'4. Irrational numbers.

‘Whereas all rational numbers are represented by points
on the axis, and though 1n any interval however small there
is an infinite number of rational points, still the converse,
that every point on the axis must represent some rational
number, is not true ;

eg., OP = J2 s mnot
rational.
04 being umty, if AB be
taken at right angles to OA4
\ and equal to it, OB is joined,
| and on OX, OP he cut off
H equal to OB, OP represents
A P X ghumber equal to /9, which
is not rational.

Pyoof : For if ~/— = m/n, where m, n are integers pnme
to each other, m®=2n°, showing that m® and so m is an
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even integer (for the square of an odd integer is evidently
odd). Let m =2m', where m’is an mteger. Then we get
n? =2m'? and so w 18 also an even integer. Thus m and n,
which have a common factor 2, cannot be prime to one
another, thus leading to a contradiction.

Similarly, equations hike z® =17, 42* + 8 =21 etc. cannot
be solved 1n terms of rational numbers alone. Besides
radicals, sthere are other types of number like e, x,... (called
transcendental numkers) which are not rational.

., «There are therefore numbers other than rational
numbers, which are called irrational numbers, thus leading
to a further extension of numbers.

0'5. Relations of irrational numbers to rational
numbers ; representation of numbers (rational as well as
irrational) as sections of rational numbers.

Consider the number /2 There is no rational number
whose square 18 2. The system of rational numbers there-
fore can be divided into two classes, say L and 2, such that
all numbers of the L-class have their squares lessrthan 2, and
those of the R-class have squares greater than 2. Hence,
every number of the R-class > every number of the L-class.

Thus, 1, 174, 1'41, 1'414, 1'4142 ... belong to L-class
and 2, 1'5, 1°42, 1'415, 1'4143 .... belong to R-class.

The differences of the corresponding numbers of the two
classes are respectively,

1, 1, "01, "001, "0001......

Proceeding in this manner (by expressing /2 in a decimal
form, which will lead to an endless decimals not recurring,
and choosing the rational numbers of the two classes by
stopping at any stage) we can find a member of the L-class
and a member of the E-class which differ from one another
by as lLittle as we please. Our common-sense notion there-
fore demands the existence of a number z, and a corres-
ponding point P on the axis, such that P divides the
class I from the class B.
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But this number z is not ra.twnal and belongs to neither
of the two classes. Further, z? is neither > 2, nor < 2.

For if z® > 2, let £ =2+¢. Then however small ¢ may
be, we can get rational numbers of the R-class whose
squares being > 2 will differ from 2 by less than e. Such
rational numbers of the B-class will lie to the left of z, and
so the assumption that 2 18 the point dividing the two
classes 18 untenable. Similarly z? < 2. ‘

. z®=2orx= ,/2, and being not rational as proved
before, it belongs neither to class I, nor to class B. The
point P 1s thus only a point of section of the two classes of
rational numbers I and R defined Before, not belonging to
either class, and representing the irrational number /2.

This leads to a new idea of defining numbers as sections
of rational numbers, as follows :

“If by some means or other we divide all rational
numbers into two classes L and R, such that each class
contains at least one rational numhber, every rational numbher
belongs to elther 7. or R, and each number belonging to
R-class > every number of the L-class, then we obtain
a section of rational numbers which defines a number, ratio-
nal, or irrational, the particular mode of division defines
a particular number by its section.”

Three cases may arise : (i) The L-class has a greatest
number, but the R-class has no least , e g., Let all rational
numbers > 5 belong to R-class, and the number 5, as also
all rational numbers < 5 belong to L-class. The section in
this case represents the rational number 5, which belongs
here to one of the two classes, namely the I class. (11) The
L-class has no greatest number, but the R-class has a least
one ; e.g., All rational numbers <<—3 5 belong to L-class
and —8°5 with all rational numbers greater than this helongs
to R-class Here the section represents the rational
number — 3’5, and the number itself belongs to R-class.
(1i1) The L-class has no greatest number and the RE-class
bhas no least number, eg., All rational numbers whose
cubes are < 7 helong to L-class, and those whose cubes
are > 7 belong to R-class; there is no rational number,
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as can be shown, whose cube is equal to.7. The section
in this case represents the irrational number 3%/7, and
belongs to none of tho classes I and B which consist of
rational numbers only. ‘

If may be noted that the case in which the L-class has
a greatest nummber and R-class has a least number simul-
taneously is not possible, for otherwise, hetween these two
rational @wumbers there would be an infinite number of
rational numbers a& proved before, and they would belong
to none of the two classes.

. [ ] .
This extension of our conception of numbhers as sections

of rational numhers gi%es us a more satisfactory basis of
defining all numhers 1 a uniform way. We no longer think
of numbers as isolated members, but as an aggregate of
rational numbers divided into sections.

0°'6. Real numbers.

All kinds of numbers, rational as well as irrational,
positive or negative, including zero, constitute what are
called real numbers. LI,

It may ho thought that just as from rational numbers,
by dividing them 1nto two classes by sections, we get in
addition to rational numbers, a new type of numbers,
namely irrational numbers, similarly by sections of real
numbers again, we mav expect a further extension of
numbers. But this 18 not true. In this connection we state
the following theorem .

Dedekind’s theorem (on sections of real numbers)

If real numbers be divided wnto two classes I and R n
such way that

(i) every real number belongs to one class or the other,
(ii) each class contains at least one number,

and (iii) any number of the L-class s less than every number
of the R-class,
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then there exists a 1eal number a which effects th s section,
1.e., whach has the property that all numbers less than a belong
to Ii-class, and all numbers greater than a belong to R-class,
the number a 1tself may belong to either class.

[ I'or proof, see Iardy's Pure Mathematics ]

Thus as sections of real numbers we get real numbers
alone (unlike that in case of rational numbers) and not any
other new type of numbers.

Thus no further extension of numbers is possible ; e@nd.
the aggregate of real numbers is complete. The corres-
pondence (one to one) between all the points on the line
X'0X without exception (called the linear continuum)
and the system of all real numbers rational and irrational
(constituting what 1s called the arithmetical continuum)
18 now perfect.

0°7. Properties of real numbers.

(i) All fundamental laws of algebra which hold for
rational numbers (including index laws etc.) remain true for
irrational numhers as well.

[ For proof, sce Bromw:ich's Infinite Series, Appendux I ]

(ii) Between any two real numbers however close, there
exists an infinite number of rational numbers, as also an
infinite number of irrational numbers.

One special case of this 18 Art. 0°3(ii).

0°8. Complex numbers.

In order to fill up the gaps and bring about a uniformity
in the theory of equations, as also in all other theories of
higher mathematics, it has been found necessary to infro-
duce a class of numbers, called complex numbers. A complex
number has been defined by modern mathematicians as an
ordered couple of real nwumbers, 1.e., a pair of real numbers
united symbolically in a particular order for the purpose of
technical convenience. Thus a complex number is, strictly
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speaking, not a single number at all, but a pair of real
numbers with a proper order If the order 1s reversed,
we get a different complex number A complex number
may be expressed in the form [a, b], where o and b are two
real numbers. It is also represented, for convenience, in
the form a+1b, where the symbol 2 has no meaning by
itself , 15 merely indicates the order in which the real
numbers ¢ and b are considered. In defining all ordinary
algebraical operations with regard to complex numbers 1t
has been found convenient to associate the symbol 2 with
the property +*= —1, in which case all operations con-
egishent with the algebra of real numbers may be applied
to the case of complex nl.mlbers.

For geometrical representation and further introduction
into the algebra of complex numbers sco Chapter VI, Das
and Mukherjees’ Higher Trigonometry.



OHAPTER I

FUNCTIONS

1'1. In higher mathematics and various branches of
science very often we have to deal with changeable guan-
trtses which are snter-related to one another, and in many
such cases we have occasions to investigate how one of
these quantities changes with a gradual’change in the other.
For example, in a given amount of gas enclosed in a cylipder,
with a movable piston, and kept at a constant temperature,
the volume and pressure are interdependent, and a change
In one produces o corresponding change in the other ; or
again, for a {alling particle, the height from the ground
depends on the time, and changes with it , the area of
a circle changes with its radius ete.

In Differential Caloulus we deal with the way in which
one quantity varies with another when the change in the
latter is ultimately very small, or more properly, with the
rate of change of one quantity with another, as also other
allied problems.”

In these investigations we shall be dealing with the
relations between pure numbers which represent the magni-
tudes (with proper signs) of the quantities, and not with
the concrete quantities themsolves, so that the result
will be general in nature, applicable to anv pair of inter-
dependent quantities under similar mathematical conditions.

In the following discussions we shall he concerned
with the system of real numbers only, meaning by real
numbers, zero, integers, rational and irrational numbers,
positive or negative.

* While investigating problems of this type, Newton (in England)
and Leibnitz (1n Germany) were independently lod ot the investigation
of tho principles of Caloulus, towards the close of the seventeenth
century. The principles of Calculus, in some form, were also known
to the Hindus in India much earlier.
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1°2. Preliminary Definitions and Notations.

Aggregate or Set : A system of real numbers deﬁned
in any way whatever is called an ‘aggregate’ or ‘set’ of
numbers.

Illustration * The aggregate of positive integers ; the aggregate of
all negative rational numbers ; tho aggregato of all real numbers positivo
or negative ; the aggregato of all ratlional numbors from —~3 to +7 ;

* 11 1 1 1 1
the aggregate of numbers 133" -4 5" —§ ete.
® Variable : Let = be a symbol used during any mathe-
matical investigation, t¢ which may be assigned any numeri-
cal va,lue out of a given set of real numbers. Thgn r is
called a ‘variable’ or a ‘real variable’, and the tota.hty of
the values of  constitutes what is called the domain of =.

Illus.  In the expression z !, 2 may be considered a real variable
whose domain is tho aggregite of positive integers.

Note. Variables are usually denotod by latter lotters of the alpha-
oet, such as g, v, 2, u, v, w, £, 7, §, ete.

Continuous Variable : If z assumes successively every
numerical value of an aggregate of all real numbers from
a given number ‘e’ to another givem number ‘6, then & is
called a ‘continuous real variable’.

The domain or interval (as 1t will be sometimes called)
of 2 in this casc 18 denoted by (a, b) or a < x < b.

If @ be omaitted from the domain, it is indicated as
a<z<b

In the last case the domain is said to be open at the left
end, whereas the domamn a << 2 < b is said to be closed.
The interval @ < 2 < b is open at both ends, a and » being
both excluded from the domain of possible values of z.

Illus. : In tho expression ,/(5—z)(z+8), 18 & continuous real
variable whose domain is —8 & # < 5; again, in J/z+2//7—z, the
real variable £ has the interval —2 £ x < 7. Insin~'z, the interval
ofzis ~1<L 2L 1.
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The domain of the variable « in any expression contain-
ing x, as in the above cases, consists of those values of z
for which the expression has a definite real value.

Tho interval (a, b) is very often graphically represented
on the r-axis hy means of the length bounded by the two
points A (x=a) and B (x=>). The length of the interval

(@, b) is obviously 4B
c A B X =0B-04=b-a.

.
Constant : A symbol which retains the same numerical
value throughout a set of mathematical operations is calked
a constant.

.

Note. Constants (other than numerical constants like 2, =3, ¢, 7
etc.) are usually denoted by the earlier letters of the alphabet, such as
a, b, a, B, cte,

Absolute value : By absolute value of a quantity ,
as distinguished from its algebraical value, we mean 1iis
magnitude or numerical value, taken with a positive sign.
It 18 represented by the notation | z | which is =z, 0 or — =
accordihig as ¢ > = or < 0.

From the very definition the following results are
apparent, viz.,

() Jazb| < |a] + | b]| or more generally,
laxbtete | < Jal+|b]+|c] +eeer
()latb|>]al~|b]|, e, | |lal = |b] |
Ilus.: | =2] =2, |6]| =6, | —2+6]| < 2+6, | =2—6]| =246
| —6-2| > 6~2, | 2—6 | =6~2, oto.
Note. Meanwng of the symbol | x—a | < &

Ifex >a, 2—a <3, e, z<a+d If x<a,a-x<38 e,
a—38 < x. Hence, combining the two, we see that | z—a | < § means
a—-8 <z < a+5. Smmilarly, |z—a| £ 8 means a—-38 < o < a+3d.
Bymbol 0 < |x—a | < dmeans a—38 £ = < a+9, but z ¥ a.

Thus, | z| < d means ~8§ < z < 8.
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Functions : By a function of x defined for a given
domain, is wnderstood, a quantily which has a single and

definmite value for every value of « 1n 1ts doman
[ See note 1]

In other words, “If  and v be two real variables, so
related, that corresponding to every value of © wirthan a defined
domaain e get a definite value of v, then y 18 sard lo be
a function of x defihed n its domain

® In this case, the variable z, to which we may arbitrarily

assign different values, in the given domain, is referred to

as the independent variable (or, argument), and ¥ is called

the dependent variable (or, function). [ See note 2 ]

We shall generally denote functions of # by such symbols

as f(z), v(z), F(z), ¢(r) etc., where the mathematical forms
of these functions may or may not be obtainable.

Note 1. When an cxpression or equation which definos a function
gives two or more valuos of the function for each value of z, we call
the function mulisple-ralued. The definition given akove rofers to
a swngle-valued function with which we are mainly concerned in
all mathematical 1nvestigations. A multiple-valued function, with
proper limitations imposed on 1ts value to be used in any particular
investigation, can 1n general bo treated as defining two or more different
single-valuod functions of z, e.q., y=sin 'z (-1 < ¢ < 1) can be
broken up into y=smn~'z, where (1) ~dr < y L #m, () Ir L y < ¥,
(1ii) 37 £ y < 87 ete. ; again, y>=x can be broken up into y=+ A/z
and y= — Az, and so on.

More generally (without restricting to single-valued functions
only) a function of 2 may be defined as follows *—

If two quantitesx andy are so related, that corresponding to
values of x, there are values of v, then y 1s sard to be a function of .

Note 2. If y be a function of the variable x, it will generally be
open to us also to regard x as a function of y by virtue of the functional
relation between z and y, the proper domain of y being taken into
account in this oase, because it may so happen that the domain in
which y is defined is not the domain in which x is defined. For
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example y= /z can be writton as x=9?, the domain of £ in the former
relation being x> 0, and that of y in the latter is the aggregate of
all real numbers, positive or negative.

In the laiter case y will be the independont variable, z the depen-
dent one

Note 3 A4 function may be undefined (v.e., may not have a defintte
value) for some partrcular value or values of ¢ wn a guven anterval.
In this connection we may make the following rsm.uks :

Division by zero (symbols a/0, 0/0) meaningless.
The quotient of two finite numbers @ and b (rz, alb) is dofined as*®
the defimte finito number ¢ such that a=bz. Now, obviously, in the
division, zoro value of b 1s excluded , for if =0, then a (=br)=0,

and z can be any number Ilence, the ahove definition rules out division
by zero. Therefore, forms a/0, 0/0 arec moaningless.

The following simple illustration shows how dwnsion by zero leads
to fallacious results.

Suppose, x=v, (s 50, 4y 5 0), .". z?=zxvy.

O z*—y*=zy—y* or, (x+y)z—y)=y(z—y)

Hem:,o, dividing out by z —vy, r+y=9,2¢,2y=y, or, 2=1.

The fallacy 18 due to the fact that we dividel by x—y which is
equal to zcro.

Similarly, the assumption 0/0 =1, on the basis that anything divided
by itself 18 1, leads to fallacious results, as shown below.
0_3x0_0 _ 1

Q .
3x6—3x1—8, u.ga.m3x0— 0 0 P

3=1
From the above remarks, 1t will be apparont that

z* —25
the function f(r)= p—5 1S mot defined for x=5 ;
the function f(x)=sin (1/x) 18 not defined for £=0; ete.

Note 4. If f(x) denotes a certain function of z, then in case f(z)
is given by a mathematical cxpression involving , fla), w.¢c., the value
of the function for z=a may in goneral (but not always, as explained
in note 8 above, and also in (iv) Art, 1'4) be obtained by putting a
for z 1n the expression for f(z).
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Thus, if f(z)=sin z, f(0)=8in 0=0;

if flx)=2—5z+1, f(1)= =8, f(-1)=T;

1f flx)=2a?, flz-+h)=(x+h)* =x>+2zh+1?; etc.
whereas, if f(z)==x cos (1/x), f(0) 18 undefined.

1°3. Graphical representation of functions.

Taking the straight line X’OX, with origin O on it as
usual, to represent the real varialle @, the value of the
function, ¥ or f(r), may he represented parallel to the line
YOY’ drawn at right angles to X’OX, as 1n ordinary graphs.

«Cowresponding to every value of 2 (in the assigned domain)
the point is plotted whpse ordinate gives the corresponding
value of the function. he assemblage of the points, which
may or may not form a continuous line, represents the graph
of the function.

In drawing the graph 1t 1s not necessary to know the
exact mathematical relation between x and v (which may
or may not be obtainable) It will be sufficient 1f we know
the definite value of ¥ corresponding to every value (at least
a large number of values) of o 1n the defined domain.

The graph at once presents to the eye the way in which
the function is related to, and changes with the argument.

1°4. Some remarks on functions.

From the very definition the following points should
be clear :

(1) It 2s not essential for a function to be expressible by
a mathematical form always. For example, suppose x hours
after noon on a certain day, the temperature of a patient
is T degrees. Now to each value of # (up to a certain
number, depending on our contemplated period of ohserva-
tion), there corresponds a definite value of 7. Hence, 7 1s
a function of z by definition. But 7 cannot he expressed
analytically by a mathematical expression in terms of z.
Nevertheless, we can draw a graph which is the tempera-
ture chart of the patient, giving an idea how 7' changes
with the time . For other examples, see (vi1) of the next
arbicle.
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(ii) In some cases a function may have different matihe-
matical forms for different ranges of its domawn of existence ;
for illustration, see (v) of the next article.

(1ii) 4 function may be wundefined for some value or
values of the argument, as has already been remarked and
1llustrated in note 3, Art. 1'2. Also, every function cannot
be defined 1n every interval , thus, sin” 'z cannot be defined
1 the nterval (2, 3) for sin~* 2 has no meanmg, thére being
no angle whose sine is 2.

(iv) A4 function may be defined arbitrarily. For instarfce,
we may define a {unction as .

Sf(@)=2% when z < 0,
A0)=3,
flx)=%— 2 when & > 0.

The function is thus definitely defined for all real values
of z.

. 2 _
(v) The function w-mtgf’ and z+5 are different func-

tions. The former is undefined at =25, and so 168 domain
of existence is the aggregate of all real numbers excepting
5 for the argument z. The latter exists for all real values
of z. Hence. though for other values of 2 the two functions
are equal, there is a point of distinction at = =25.
- 2 _

A third function might be defined as f(z) =mw - 25 when
z # 5, and f(6)=20 Then the function is again different
from either of the first two. It exists for all real values
of z including 2 =5, but at =25 1ts value is different from
that of the second function z + 5.

If we define a fourth function by saying that f(x)
_z*—25

x—5
identical with the funection = + 5.

when z # 5, and f(5)=10, then this function is
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1'6. Examples of functions.

Below is given a number of examples of functions of
a variety of types, with their graphs 1n certain cases which
will help to form a clear notion about functions and will
further elucidate the remarks of the previous article.

2:1: +7

(i) Apalytical functions like =%, z9ig ebc. or more

generally, polynomitls 1m x of the type flr)=asz"+a,2"

F o +ap-12+a, (where n 18 a positive mteger), or
' ratronal algebrarc fumctions of the type Pla)/ Q(z), whero
P(x) and Q(z) are polynemials.

The domain of these are generally the set of all real
numbers ; 1n the last case tho zeroes of the denominator
are excluded, for the function is not defined at these
points.

(i) flz)== when # > 0
=0 when z = 0
=—z when z < 0.

The graph, as shown, consists X o) x
of two lmmes O4 and OB which
bisect the /¢ XO0Y, X'OY res-
pectively. Y

v

This is also the graph of the function f(z)=|z].
(iti)) fle)= J= Y
J(z) is defined for z=0, and

all positive values of z; graph

is a continuous curve (para- X'—a--...l x
bola) in the first quadrant. O"
(v) f@)=2! e

Or, f(z)=sum of first  terms of ]—3[,‘ + 21, + 31, +-
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The functions ‘are defined only for positive integral values
of z.

The graph in each case consists of a series of isolated
points.

(v) The height ¥ from the ground, at a time z, of
a perfectly elastic ball originally dropped {from a height A.

Y

XTTTTBT Janle 3 J2hlg 5 J2hlg

Here ¥ is defined for all positive values of z, hut express-
ed by different mathematical terms for different ranges ot
the values of z.

Thus, denoting the time of fall (from start to first impact),
v.e., (2h/g) by 4.

y=Il—%gz®, when 0 < z < #, (r.e., before first impact)

y=(x—2,) J2h—3g (€ —2,)%, when z, < z < 324
(i.e., between first and second impact)

y=(z— 32,) /2h— %9 (- 32,)%, when 8z, < z < 5z,
(z.¢., between second and third impact) etc.

The graph, as shown, consists of a series of parabolic
arcs, on the positive side of the z-axis.

1
. x
="-. Y
(vi) o - A

For z %0, y=x,
for =0, ¥ is not known x’

X
(undefined). o
The graph is that of the
straight line ¥y =, with the B ,
Y

origin left out.
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(vii) y=[z ], where [ 2] denotes the greatest integer
not exceeding 2.

Y
.
— i
: '
X’ -E.z ':-'1 0o 1 J; 3 X
P
—
v’
For I<ze<1,y=0; 1<oe<2y=1;

2<2<3,y=2;-1<2<0,y=~-1;
2 g << -1, y= -2 ete.

Thus, the graph consists of parallel segments of lme in
which the right-hand end-points are left out.
(viii) ¥ ==z sin (1/x).

Here v is not defined for z=0. Thus, the domain of 2
is the aggregate of all real numbers except 0.
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The graph is shown here, which is continuous every-
where excepting at £=0, where a point is missing on the
graph. Near 0, on either side, the graph has an infinite
number of oscillations with gradually diminishing amplitude.
The graph 1s comprised between the lines ¥y =z and y= — 2.

(1x) Functions like &%, log z, sin z, cos 'z, etc., which
are not algebraic functions are called 7' anscendental func-
twons. For graphs of first two, see § 16°9.

1°'6. Bounded functions and theil" Bounds.

Let f(z) be & function defined in the interval (a, bJ. If
a finite number K can be found sueh that f(r) < K for every
value of # in the interval, then f(z) is said to be bounded
above in the interval.

Similarly, if a fimite number % exists such that f(r) > k for
every « 1n the interval, then f(x) 1s said to be bounded below.

If f(r) is both bounded above and below in the interval,
then 1t 18 said to be simply bounded.

If f(x) is bounded above, then it easily follows from
Dedekind’s Theorem that there exists a defimite finite
number M such that M > f(z) for every value of x in the
interval, but & being any pre-assigned positive quantity,
however small, there is at least one value of z in the interval
for which f(z) > M —¢&. This number M 1s called the upper
bound of the function in the interval.

In & similar way, if f(«) be bounded below, then there
exists a definite finite number m such that m < f(x) for every
« in the interval, but given any pre-assigned positive number
&, however small, there is at least one value of z for whichk
flx) < m+e This number m is called the lower bound of
Az) in the interval.

‘We know, sin z, cos £ are bounded functions in the inter-
val (— #, a), the upper bounds of both being 1 and their lower
bounds being — 1.

For sin z, M=1 ; now, taking e =%, we can find at least

one value, say g-' of #, such that sing >1-%=%. Other
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values of £ can be obtained from the tables, for which
sin £ > %. The function defined in Ex.'(v), § 15 is
a bounded function in the interval (0, =), the upper bound
being & and the lower bound being zero.

For the interval 0 < =z < ; ' tan £ has the lower bound

zero, but no upper bound. For the interval — %<w< 0,
tan z has no lower bdund, but its upper bound is zero. In

the ifiterval (— ’2' <z< g)' tan = has neither lower bound

nor upper bound. Thus .we see that a function may have
different upper and lower hounds in different intervals.

The function z®+ 32+ 5 1n the interval 1 < o < 2 lies
between 9 and 15 ; so its upper bound 1s 15 and lower
bound is 9.

The function f(z)EN/ 6 :%,;E': _—3—) 18 not bounded above
in the interval 3 < z < 5, in which it is defined. * *

Let £ =3+ ¢, where ¢ is a small positive number.

_ [/ 5+ 5+¢ «/5* .

flz) @@= > 9% > g’ Which can be
made greater than any positive quantity by taking & smaller
and smaller. Hence f(z) has no upper hound.

1°7. Monotone Function.

Let z,, 23 be any two points such that =z, < 2, in the
interval of definition of a function f(z). Then f(z) is said to
be monotonically wncreasing if f(xy) < flwa) and monotons-
cally decreasing if f(z,) > f(x,). Thus 1 (0, 3x), sin z is
a monotonically increasing and cos  is a monofonically
decreasing function.

Sometimes the following definition is used. If for
2, < @5, fl@.) < flza), then f(z) is said to be strictly mono-
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tomically increasing, and if f(zy) > f(aa), then f(z) is said to
be strictly mornotonscally decreasing.

In the interval 0 < & < oo, the function €® is a strictly
inereasing funection, since ¢* < ¢”? when z, < z,.

In the interval 0 < z << e, the function f(z)= gi;j:“f

is & strictly decreasing function, for f(x,) > f(z,) when
2% < Zg. .

The example (vii) of § 1'5 is an example of a function
defined in the interval (0, 3), which is monotonic increusimg
but not strictly increasing. R

Examples I

1. If y=6 for every value of z, can y be regarded as
a function of  ?

2. If y=the number of windows in the house number =
on a particular road, is ¥ a function of z ?

8. Given f(xr)=2%— 10z + 3, find £(0) and f(— 2).

4. TI{ f(z)=sec z+ cos =, then f(zx)=f(— ).

5. It f@)=bT % +a%= " then f(a) +£(6)=fla +0).

6. If flx)=22— 3x+7, show that
{fle+h)—fla}/h=20—3+h.

7. Show that

(i)l ‘1_—_69'9 T
cCoOsS X —Smna

is not defined for o = }x.

(ii) z?—5x+6 is not defined for 2 < = < 3.

e _
(iii) :r_ 85;%-1% is not defined for =2 ; also find

f(—5) and £(6) in this case.
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8. Draw the graphs of the following functions :
(i) ¥=1 when = > 0,
=0 when 2 =0,
= —1 when 2 < 0.
(i) y==2% for z # 1,
=2 forx=1.
(iii) f(z)=1 when & 1s an integer,
. =0 when # is not an integer.
(iv) y=cos (1/x). * (v) y=2 cos (1/z).

(vi) y=2— [z], where [2] denotes the greatest integer
not greater than «.

(vi) flz)= == D" (vain) fla) = 121

- s1n ﬂm.
sin a2z

(ix) fla)=1

(x) f(®)= Jx?, where the positive sign of the square
root is to be taken.

(xi) flx)=0 when |z|> 1,
=142z when -1 <2< 0,
=l-gwhen 0 <z < 1.

9. (i) Show that f(r)=sec « in the interval 0 & = < &=,
has the lower bound 1, and no upper bound.

(ii) Show that f(z)=922+42+6 in the interval
0 < 2 < 1, has the lower bound 6 and the upper bound 12.

1-6
1+6x
-1 <z <1, and 7 a positive integer, is bounded.

n
(i) Show that f(m)—( ) when 0 <0 <1 and

10. (i) Bhow that f(#)=-2— is monotone ascending,

z+1
x>0,
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o Shon U U S
(ii) Show that f(x)—z+1+w+2+ +a:+n z>0

is monotione descending.

x
(iii) Show that f(m)-(1+ %) ' £ > 0 is monotone
ascending.

11. Given the relation y%—6y—g&+7=0, which of the
following statements is true ?

(i) The equation defines « as a function of y for all
values of y. .

(ii) The equation defines ¥ as a function of « for all
values of z.

12. A taxi company charges one rupee for one mile
or less from start, and at a rate of (i) 50 paise per mile,
(ii) 50 paise per mile or any fraction thereof, for additional
distance. Express analytically the fare F (in rupees) as
a functign of the distance d (in miles), and draw the graph
of the function.

ANSWERS

1. Yes. 2 Yes. 8. 3; 2T, 7. (1) v% ; does not exist.
11. (i) True. (ii) Not true ; true only for values of z > —2.

F=1,for0<d< 1
12.00 { 52143 (@1 mrd > 1

(i1) { F=1,for0<d<1
F=1+4%m, for m < d < m+1 where m is a positive integer.




CHAPTER II
LIMIT

2'1. The whole structure of Differential Calculus is
based upon a concept of most oufstanding imporbance,
wmz, limit. We give below some fundamental definitions
and theorems regarding limits.

»

2°2. By the expressions ‘the variable  approaches the
&onsbant number @' or simply ‘z tends to the value a', we
mean that x assumes sugecessively values whose numerical
difference from a, 2¢, |2 —a |, 18 gradually less and less,
and can ultimately be taken to be less than any small quan-
tity we can name or imagine (2 ¢, less than any pre-assigned
positive quantity, however small), and we denote this by
the symbhol x —> a.

Here the successive values of x may be greater than, as well as
loss than a.

If the variable x, remaining always greater than a,
approaches a, such that ultimately & —a is less than any pre-
assigned positive quantity, however small, (but « # a actually)
then we say that x approaches or tends to ‘a’ from the rght,
and denote 1t by the symbol x—>a+0 or simply by 2—a +.

Similarly, when « is less than & always, and a—2 is
ultimately less than any pre-assigned positive quantity,
however small, we say « tends to 'a’ from the left, and
denote it by x—>a ~ 0, or simply by z—a—.

Illus: When the successive values of o are 19, 1'99, 1'999,...
we say ¢ — 2—0, and when the successive values of g are 2'1, 2°01,
2'001,..., we say & —> 2+0. If the successive values of z are 2-+1, 2—4§,
2+3,2-%,24+4, .. wesay x— 2.

2°3. Limit of a function.

L.:; f(x): When « approaches a constant quantity a
e "

from either side (but # a), if there exists a definite finite
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number [ towards which f(x) approaches®, such that the
numerical difference of f(z) and ! can be made as small as
we please (z.6., less than any pre-assigned positive quantity,
however small) by taking z sufficiently close to @, then
1 is defined as the limit of f(z) as = tends to a. This is
symbolically written as Lt f(z)=1.

x=>a

Mathematically speaking Lt f(x)=1I, provided? given any
x->a ®

pre-assigned positive quantity €, however small, we can deler-
mine anotlher positive quantity & (depending on & ) such’ that
| ((x)=1] < & for all values of z fatisfying 0 <| z—al| < 8,
i.e., whenever a—0 < X < a+4, but z # a.

3
Ex. () fia 2:§=6. For 1f £=8+35,, whether 3, be positive or

negative, ‘—)=6+61, and by taking 3,

2’—9_(z—8)z+38)_3,(6+3
z—3 z—3 - e,
z?—9

numericglly small enough, tho difference of-——3 and 6 can be made

as small as ‘'we like. It may be noted here that however small §, may
be, since 8, 7 0, we can cancel the factor £—3 1.e, &, between the

°_
numerator and denominator in this case. Hence, fl_ﬁ 8 % - 9=6. But

3
when &=38, the function ”E_—_-g is non-existent or undefined, for we

cannot cancel the factor z—8, which is equal to zero, in that case.
2
Thus, writing f(z)=?5;§9. Lt f(z)=6, whereas f(8) doos not oxist

or is undefined.

. @1y Lt 1_ in 1
Ex. (i) o sin z 0. For sin 2’ whatever small value ¢ may

have provided it is not exactly equal to gero, is a finite quantity lying
between +1 and—1, and so by taking z numerically small enough

(.., sufficiently near to zero), we can make z sin% numerically as

*As a particular case f(xr) may remain always egual to I when
« is sufficiently olose to a.
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small as we like, 1.6, © sini — 0!is less than ahy assignable gquan-

tity, Hence the limit is zero.

Here also the value of z sin :; when z is cxactly equal to zero is

non-existent.
3_
Ex. (i) f_i a ’;—_‘_g= —8. For wrniting 2= —1+35, we can show
2 -
. r,h&f the numerical difference of a; +37 and —3 can be made as small

as we like by taking 8 small .enough.
x? - 7
z+3
available, and that is also cqual to —3.

In this case the value of when x is exactly = —1 is also

Lt #(x): The limit of a function f(z) as = approaches
x->a+0

the value a from the right (i.e., from bigger values), is
that quantity l,, (if one such exists), towards which fl(z)
approaches, and from which the numerical difference of f(z)
can be made as small as we please by making # approach
a sufficiently closely, all the time keeping it greater than a.
It is called the Right-hand limit of f(z) as z tends to a,

and is written as Lt flz)=1,.
z>a+0

Mathematically, Lt flx)=1,, provided, given any pre-
z>a+0

assigned positive quantity &, however small, we can determine
a positive quantity S, such that | flx)—1, | < & whenever
I<z-a<ére,a<z<atd.

Lt o_/(:z:) is sometimes denoted by the symbol fla +0).

orat

Ex. (iv) L¢ 1 =0, as can be shown by writing a=2+35,
3

z>2+0 B4+e5-8

where § is positive, and then making & arbitrarily small when the
denominator becomes arbitrarily large.
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Similarly, f’-ﬁo-& flz)=—1; because when z remaining less than
gero, becomes arbitrarily near to 0, f(z) always remains equal to —1.
Sineo, zL_f 050 fla) #~ ﬂ -0 f()
ch)_t' o f(x) does not exist ; but by definition, f(0)=0 here,

(1) fla) and Lt  f(x) both exist but are uncqual.
x>a

Let fle)=0, forxz#0
=1 for =0.

As in (1i), it can be easily shown here that
Lt x)=0=1Lt z).
Zy o 7@ :e-)O-Of( )

.« Lt flx)=0. But by definition, f(0)=1.
z=>0

(w) fla) and It f(x) both exsst and are equal.
z>ra

This is illustrated by Ex. (iii) of Art. 2'8.
(v) Negther fla) nmor Lt f(z) exsts.
z>a

Let  f(x) =cos (1/x).
Here, Lt Ocos (1/x) does not exist [ See Ex. 1, Art. 210] and
x>

f(0) does not exist, as it would involve division by zero, and is other-
wise undefined.

2°'5. Symbols + o and — o,

If a variable 2, assuming positive values only, increases
without limit (z.e., ultimately becomes and remains greater
than any pre-assigned positive number, however large), we
say that x tends to infinity, and write it as x—>o°,

Similarly, if a variable z, assuming negative values only,
increases numerically without limit (z.e., —z ultimately
becomes and remains greater than any pre-assigned positive
number, however large), we say that « tends fo minus infinity
and write it as x—> — oo,
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Note. It should be borne in mind that there is no number such
as oo or —co towards which o approachos. The symbols are used only
to indicate that the numerical value of ¢ increases without limit.

2°6. Function tending to infinity : Lt #(x)= % oo,

x>a
As z approaches a either from the right or left, if fz)
tends to infinity with the same sign 1n both cases, then we
say that as z tends to a, f(z) tends to infinity,” (or loosely,
. the Iimit of f(z) is infinite), positive or negative as the caso
may be, and write 1t as.lI:f flw)=9o or — oo,
x=>a

If however, as z approaches a from both sides, f(x)
tends to infinity with different signs, we say, ‘f(z) does not
possess any limit as o tends to a’.

The formal definitions are as follows :

If corresponding to any pre-assigned positive quantity N,
however large, we can determane a positrve quantity 8, such
that f(x) > N whenever 0 < |z —a| < 8, we say

Lt flx)=eo.
x>rn

If wn the above circumstances, —f(x) > N whenever
0<|z—al< 8, wesay Lt flx)= — .
xr->a

Similarly, we may define the cases,

L f0me I e,
Lt flx)=— o, Lt flx)= — .
o>a+0 z>a=0

"According to some modern writers, this is described as ‘f(x)
becoming infinitely large’, and infinite limit is not recognised as
a limit.
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1 1
. Lt == Lt == . -, =00,
Illus : 04077 oo, Y] oo, o

Lt 1o, Lt 1w, .. Lt 1 does not exist.
x->0+0 = x>0 ®
In cither caso however f(0) does not exist.

2'7. Limit of a function as the variablé tends to
infinity : Lt £(x). .

As «, remaining positive, becomes larger and larger, if
there exists a definite finite number ! towards which f(x}
continually approaches, such that the numerical difference
of f(x) and I can be made as small as we please by taking
z large enough, we say Lt flz)=1.

x>0

Mathematically, Lt f(x)=1, provided, qiven any pie-
x-»00

assigned positwve quantily &, however small, we can deter-
mine a positive quantity M, such that |fw)— 1| < e for all
values aj: r =z M.

Similarly, Lt f(x) =’ provided, given any pre-assigned
X~>—00

positive quantity & however small, we can determine a
positive quantity M, such that | flz)—1'|<<& whenever
-z > M.

In a similar way, we may define the cases,
Lt flx)=o, Lt flx)=-o, Lt flx)= o, etec.
z->00 x> =00

Z->00
Dus: Lt 1 =0, Lt .1’=0'
>0 T x>=00T
1
Lt er=1, Lt :c’=|=o, etc.
>0 T» =0

2°'8. Fundamental Theorems on Limit.

‘We give below some fundamental theorems on limib
which are of frequent use.
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If Lt K(x)=1,and Lt @(x)=1', where ! and I’ are finite
x>a x->a
quantities, then
® Lt fx)x e(x}=1+1"

(ii) It {1(x) x s} =11,

(if) Lt {;‘(’;))} =L providea ' > 0.

. (1y) Lt F{f(x)}-F{Lt 1(x)}, 1.e., =F(), where F(u) is
2 functxon of % which is contmuous for w=1.- [

(y) If ¢lx) < flx) < v(z) 1n a certain neighbourhood
of the point ‘a’ and Lt ¢(x)=1 and Lt wlz) =1, then Lt (=)

z>a
exists and is equal to I.

In particular, if | f@)|<| 4(x)], ie., flx) lies between
- g(x) and g(x), and if Lt glx)=0, then Lt f(z)=0.
x—>a axra

For proofs of these, sce Appendix

Note. The first two theoroms may be extended to any finite
number of functions. In language, the first three theorems may be
stated as follows :

(1) The lumat of a sum or duflerence of any finite number of func-
tions is equal to the sum or difference of the limats of the functions
taken sevarately.

(11) The lumat of the product of a finule number of functions s equal
to the product of thewr luimuts taken sepaiately.

(11) The lumat of the quolient of two fumctions is equal lo the
quotient of their lumats, provided the limit of the denomanator is not
gero.

*8ee next chapter.
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As examples of (iv), we get
Lt log flx)=1log {Lt flx)}=1og I, provided I > 0.
x>a a=ra

Lt ()
Lt ™ =¢xa ! =¢,

Lt ok ={Lt_ ek =17, ot

2'9. Some Important Limits. .

. sin x . . .
(6] ,I(‘-Eo x 1, where z is expressed in radian.

3

measure.

From elementary trigonometry*, we know that if «
be the radian measure of any positive acubte angle ze.,
0< 2z < %=,

sin &

then sinz < 2 < tan z, or, cos £ < < 1. (1)

< 1l-cos® e, < 2 sin® iz.

0<1- s1n o
x

But 92 gin® iz < 2(ix)% < 3.

8ln *

Hence, 0<1- < 32,
Now, since 2° — 0 as ¢ = 0+0, we get
(1 smm)_o ve sinmﬂ1
z->0+o P ze010 T :

Alternatively,, noting that cosx —> 1 as #z —> 0, we can
conclude directly from (1) that L¢ (sin «/z)=1.

When — 3z <z < 0, puttingz= —2, weget 0 < z < %a.

sin sin(—2) sinz
Also, - ;w__ n (- ")- — =t

-— L4

*Bea Das and Mukherjees’ Intermediate Trigonometry.
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Hence, Lt ST BREo

z>0~-0 & 2040 2
Hence the result.

1.

n
(ii) (@) .I.'.t> oo (1+ -}1 ) =@, (1— = through positive inte-
gral values).

NCh: (1+-L) =e.

X +00

Por a complete proof, see Appendix.
. 1 *
\}}Or. Lt(14x)* =e.
x>0
For a complete proof, see Appendix
R 1
t = =1.
\}ui) :It‘-w z log (1+x)=1

Proof. We have

1 1
t -
L log (1 +:v)=Lt0 log (1+ax)%

1
log {ﬂo(l+m)“} [by § 2°8 (1v) ]=1log e=1.

[ by (1) above ]
ex

. -1
\(?’) :]E‘-Eo b4 =1
DProof. Put 6°=1+2.
Then, z=1log (1+ 2), and as z—0, 2—0.
e -1 _ _Z
Thaus, ﬁo @ {-’fo log (1 +2)
. 1
It {1/ Llog 1 +z)}
. 1
1/2,{3 1os 0+9)
=i=1. [y (in)]
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-8

\}) x»>a X= na"“

Sfor all rational values of n, provided a ts positive

Cask 1.

Wihen n 1s a positive integer
By actual division, we have
z"—a”

ﬂ—1+wn—ﬁa+wn-8 2
r—a

v
reqd. limit =1Lt ("~ *+2" %a+-+a" *)=na""",
x>a
since, the limit of each of the » terms as z—>a, is a"~ %, and
the limit of the sum of a fimite number of terms is equal to
the sum of their limits (4rt. 2'8)

CASE II. When n 15 a negative integer

Suppose, n= —m, where m 18 a positive integer and
a 7 C.

mﬁ —_ a-n w—m . a—m 1 a,m — am.
— . e e mR == - = - W -
r—a r—a z™a™ x-—a
1 1 1
Now, as x—a, limiting value of e g

m =

a a™a a
m -— am

and as z—a, limiting value of T-——4

—a ma™"* by Case 1.

2

n o_ .n
L_ﬁ a{;:,:'_ [ a,“*l‘"‘ mam-:l. = —ma~™" 1 mn—-l.
x>a

Case IIL

When n s a rational fraction

Suppose, 7=p/q, when ¢ 18 a positive integer and » any
integer, positive or negative. Let us put 2'/?=yand a*/?=10
a"—a" _a®/0—a®l?_y?-b®_(y*-b")/(y—b)
z—a z—a

v- 50 Ty = )
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Now, a8 £ —> a, 2*/%—>¢*'?, .. y = b. Again,as y —>b,
the limiting value of the numerator of the right side=pb?~*
(by Cases I and TI) and that of the denominaton=gd? *
(by Case I).

" —a =P P pipa_ P B-a n-1
= a = .
E_;a o—a bt g b 7 na
When n =0, the Imit 1s L# 0__ 0.
z>a T —Q

\(/1)' ’Eo (L'."_xx)_"'_l .

Proof. We have
Q+a)=-1_ {(1 +o)" -1 log (1+ a‘)}
ﬂo z ﬁo log (1 + a:) g
(1 +a)"- log (1+2)
z»0log (1 +x) x ffo ©
Now, put (1+z)"=1+2z Then = log (1+2)=dog (1+2).
Hence, as £ —> 0, log (1 +2)— 0 and so z— 0.
A+~ - It nz
olog (1+ x) >0 log (1 +2)

=Lt n/: log (1 +2)

Thus, Lt

—n/Lt log(1+z)}
= % =n [ by (112) .

log (Lt@

Also, L_fo =1 [ by (112) ]

x

"
Hence, Lt a +_a:)_ 1=n><1=n.

This result also follows by replacing .z by z+1 and a by 1 in (v)
above,
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\)ﬁ Condition for the existence of a limit. (Cauchy)
The mnecessary and sufficient condition that the limit

Lt flx) ewists and is finute, 15 that corresponding to any
x>a

pre-assigned positive number & however small (but not equal
to zero), we can find o posttive number 8, such that z, and
Ta beimg any two quantities satisfying 0 <lez—al< dj-

[Azs) = flza) | < e.

For proof see Appendix.

Note. In some cases even if we may not know the value of
a limit beforehand, we can determine by the above test whether a limit
nxists or not. Illustrations of this are given below.

Ex. 1. Show that Lt _cos 1 does mot exust.
x>0 T

In order that the limit may exist, it must be possible to find
@ positive mamber 3, such that z, and 2, satisfying 0 <|x|< 8
cos - —cos & < <
N Tq

where ¢ 18 any pre-assigned positive quantity.

Now, whatever 8 we may choose, if we take @,=1/2n7 and
©,=1/(2n+1) m, by taking n a sufficiently large positive integer, both
z, and z, will satisfy 0 < | ¢ | < &.

But in this case, | cos 1)z, —cos 1/x,| =] cos 2nwr—cos (2n+1)r|
=9, a finite quantity, and is not less than any chosen e.

Thus, the necessary condition is not satisfied, and so the required
limit does not exist.

Here, the right-hand limit as also the left-hand limit are both
non-existent.

Bx. 2. Show that f_{ o QT{;TF does not exsst.
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Here, taking x,= ~1/n, ©,=1/n, whatever 3 we may choose, by
taking # s sufficiently large positive integer we can make z, and z,
both satisfy 0 < | ¢ | < 6. But m this case,

1 1! 1 1
2+¢e' "1 2+t " 24" 24"
_ 1 1. 1 _ 1
T24e™ 246" 7 2+e' 2+e
which is a fAnite quantity and so cannot be less than any chosen e
however small. -

Thus, the necessary condition being not satisfied, the limit in
queation does not exist.

Here, the right-hand limig exists and =0, and the left-hand limit
exists and =4%.

2°11. Illustrative Examples.

Ex. 1. Fwnd the value of Lt x*.
x>2

By taking successive values of z which always remaining less
than 2, tend to 2, vuz,x=1'9,199, 1'999, .. we see thafxz* has the
values 8'61, 3°9601, 3°996001,... which tend to 4, and we can make the
difference between 4 and z? smaller than any positive number however
small by taking x sufficiently near to 2. Hence, the left-hand limit
is 4.

Similarly, by taking values of x, which always remaining greater
than 2, approach 2, viz., ¢=2'1, 2°01, 2'001,... we see that x? has the
values 4 41, 4'0401, 4'004001, .. which continually approach 4. Hence,
a8 before, the right-hand limit is 4.

Hence, value of the required limit is 4.

Note. Exaotly in the same way wo can show that Lt «"=ga",
z>a

where n is an integer or a rational fraction (except when a=0 and
7 is negative).

Ex. 2. Show that (3) Lt sin =0 () Lt cos @=1.
050 60

(s0s) Lt sim 6=sma; (w) Lt cosd=cos a.
b>a 6>a
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.

(i) Binoe, from the definition of sine of a real angle 8 in trigono-
metry, with the help of a figure, it may be easily seen that |sin 6 —0]
i.e., |sin @] can be made less than any positive number ¢ however
small by making | 6| arbitrarily small, 1t follows thn.tal_})% sin 6=0.

ii) Lt (1—cos 8)=Lt 2sin?§0=2x Lt (sin 46 Xsin 46
(“)0»0( ¢ ) -0 n*4 0—»0( n4 in 40)

=2x0 [ by (s) ]=0.

Lt cos 8=1.
-0 -
(iii) sin 6 —sin a=2 sin §(6 ~ a) cos #(6 +a).
As 0—>a, }0—a)—>0, .. Lt sin §(0—a)=0.
05a
Also |cos (0 +a)| < 1, .". Lt (sin 6 —sin a)=0,
f-»a

¢.6., Lt sin 6 =8in a.
0>a

(1v) Since, cos @—cos a=2 sin & (a —0) sin & (0+a), 1t follows as
in (1ii) that Lt (cos @ —cos a)=0, 1.e, Lt cos §=cos a.
6>a i>a

\}n. 8., Apply (3, <) definstson of lumat to +llustrate that
Lt (2z—2)=6.
z>4
Liet us choose e="01.
Then, |(2x—2)—6] < ‘01 if |22—8] < 01, s.e., 1f [w—4| < "005,
1.6., 3="005. Similarly, if e="001, §="0005 ; and €0 on.
Thus, 3 depends upon e, .., the nearer (2z—2) is to 6, the nearer
is to 4. We have,
[(2z—2)-6] < ‘01 if 0 <|z—4| < '005
1(2z—2) -6} < "001 if 0 <|z—4]| < *0005
and generally, [(2z—2)-6|<e if 0 <|z—4]< ge.
Henoe, 6 is the Iimit of 2z—2 a8 2 —> 4.
Ex. 4. Draw the graph of swn (1/z) and show that nesther the
right-hand lumat nor the left-hand limit exists as « tends to sero.
When =0, sin 1/ is meaningless and hence, its value is not
known.
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For all other values of x, sin (1/z) exists and may iake any value
from —1 to 1. Thus, the graph is a continuous curve with a break
at =0 and is comprised between the lines z=1 and z= —1.

YI

As z—>0+0 by passing successively through values 2/nw where
= is a positive integer which can bo made as large as we like, sin (1/x)
passes through values 0, —1, 0, 1, etc. taking m’tarmedla,te values at
intermediate points. Now it is evident that these values are taken
more frequently as x comes noarer to O and so sin (1/zr) does not
approach any fixed value as z—>0+0, but oscillates through all values
between —1 and +1 s.e., tho function has no right-hand limit. Since,
when z is negative, sin (1/z)= —sin (1/2), where s (= —z) 18 positive,
the function behaves exactly in the same way when z—0—0. Hence,
the left-hand limit also does not exist for the function.

Note. Hences, it follows that Lto sin (1/z) also does not exist.
z>
Ex. 5. Gwe an example to illustrate the following lumat-inequalsty :
If Lt ¢lo)=4 and Lt Y(x)=B and +f ¢(z) < Y(z) m a certasn
zva xT=>a

nesghbourhood of a except a, then 4 £ B.*

Suppose, #lx)=5+z2; Y(z)=5+38z>.
':Lioﬂw)=5=£_t>°¢(w). But ox) < y(x) if « 0.

*For proof of this important theorem see Appendix.
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Thus, the limits of the two functions are equal, even though
¢{r) < ¢(z) for all values of  on which the limits depend.

If however, ¢(x)=5+x?, yY(z)=T+8z?,
then of course, Li ¢(x) < Lt ¢(x).
20 x>0

X, 6. Eraluate g_io é{d(1+z)— N1 =)}

As it stands, theorem (iii) of Art. 2'8 is not applicable, since the
denominator x is zoro as z—0. But it can Be easily transformed into
a form in which the theorem is applicable. .

Multiplying numerator and denomin‘ator by N(l+2z)+ A/(1—zx), th
3 jt=Lt 2@ e
required Iimit a0 A TAFD)+ JA -2}

=Lt . .2 _2_
z>0 J1+z)+ J1-2) 2
since Lt W(l1+x)=Lt Wy=1(pulting 1+z=y),
x>0 y->1

1,

and similarly Lt JJ(1-2)=1.
x>0

Ex.7. I =1<% <1, then Lt x"=0. (n s a positive wnteger )
n->oco

«

Let us first consider the case when 0 < z < 1.

Put 2=1-p, so that 0 < p < 1. 8ince, (1-p)(1+p)=1-p?%, which
is less than 1, we have 1—p < 1/(1+p).
o e(eppr<lo <.l <1
Sooat=(1-p)t < 1+p)" < 1+np  np

.*. " can be made less than any given positive number e by taking
n large enough (z.¢ , taking n > 1/ep) ; but z™ is positive.

.". Lt 2"=0 when n—>oo,

Bince, (— )" =(—1)"s" the result also holds for —1 < & < 0,

when z=0, z" =0 for every positive value of n.

Hence, Lt 2" =0 when n—>co.

Note. When =z > 1, putting « for 1+p in the inequality
(1+2)" > 1+np > np, it can be shown that z" > %k, where % is any
positive number however large, for all n > k/p.

Hence, it follows that forx > 1, Lt x"s=oo,
n->00
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Ex. 8. Prove that (n being a positwve integer)
(i) Lt nx%"=0 when |x|<1.
n->c0

n
(ii) ’I'-im L =0 when |x]< 1

=oo when x > 1.

o
(iii) 'Iim i—l=0 for all values of x.

(iy) Lt m@m=Bm-2) - (m=—n+1)
n-»oo

o X" =0 when [x| < 1.

-
For proof sec Appendix.

Al

Examples 11
\}‘ Evaluate the followin /9 lLimits :

- 2%+ 22— 2 " z®—3zx+2
5 f_’fl 2% +2 \(}‘},L.fl z?—4z+3
- [ g2 - {595 — J/1-8:
(iii), Lt a Jag —r, (i Lt i112$ '\/1 3(3.
N xz>a x -0 x

\/2( Find the value of
”= 1 “ss
Lt Qe Foam T kentan )

m-fo boZ™ + bax™ ek o + by

va./ Do the following limits exist ? If so, find their
values :

”

@ ot - - (i) Lt 5B
>

x> BT X T X

\}( Find the values of :

. tan z s sin (z?),
v \(y Lz»to x “‘*’\(?} f-fo z

1—cosz, e l-cosz
~ (31) L i Lty s

&l
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7y ohsin /) 4. cosec £ — cob &,
9 (\v ) M e \,(“) E—fo «
so=1
(vif) Lt 922 (viii) Lt ¥'P. %
Y x>0 @r =0 @
: tan” 'z sin &
g eR T, =242,
(lx) f—l-o x j’X) .—{:)tco &
_sinz z+ +1
(3:1) ;;[-l)oo z+cos (xu) Lt o T3+ 1

) 1 1\
{?d) ffo sin z tan w)
5. A function f(z) is defined as follows :
fle)=2z when >0
=0 when 2z =20

= —x when z <O0.
Find the value of Lto flz).
v x>

Vﬂr./ A function ¢(z) is defined as follows :
&)=z when z < 1
=25 whenz = 1
=22+2 when z > 1.
Does f;_fl o(x) exist ?

. 7,/ Do the following limits exist ?
8 i) Lt2 [z], where [z] denotes the integral part of z.
x>
(i1) Lt1 {z® + Jx—1}

tanz_l

sas [
i) Lt wmeyy
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Given f(z)=ax®+ bx+ ¢, show that

Lt {'[(g"- k) __f(a:)} =%ax +b.

h->0

\ﬁ. Given f(z)=|x|, show that
';l.—l-io {f(n) — f(O)}/1 does not exist.

\}ﬂ’. If ¢(z)={z+ 2)* - 4}/x, then
Lt0 &(z) = 4, although ¢(0) does not exist.

4 2 —
\}1’. Show that Lt 2z —-8=8.
x>2 T 2

Applying (5, &) definition, find & 1f e="1.

2 2__ .9
12. (i) Is Lt 2 _r 9 app T 0%,
z2a T—A0 z3a T~ QA& g+a T—Q

_,2 1 __ 2_ 3y, 1 _
Gi) Ts It (c*-a®)xLt 1o f-fa{(w ¢*)x = a}?

z=>a

13. Evalaate
~ 2 3
i 1,2,.38. . ..4,.7nL
@) Lt {n’ + ot +n2}
2 2 2 4. 2
Gi) D¢ 1-F2TH3 et
fn->00 n
% Does Lto flz) exist when
x>

() fl@)=1{2*®+ 2" +1/2%} ?
(ii) f(=z)= {sm =+ sm% +z° sm;} ?

15. Evaluate
: n s "
) Elﬁww . (11) ’1"::“ S [C. H 1957 ]
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(i) Z¢ ‘f‘%(,??:T"(“’)- (0. H. 1966
Gv) ot 2 1

sy
16. Find the value of Lt 2 arc tan nz.
n»oc T

17. Evaluate
(i) Lt sin naz.
n—>00

~

1
(in) ’{t_,)tw ¥ mom¥na [C. H. 1957 )

18. (i) Prove that
Lt ot;a.n‘1 (a/xz®)= — 3=x, 0 or %x according as
x>
a is negative, zero or positive.

(ii) Draw the graph of the function f(z), where
f@=Lt (2 tan= )

19. T f@)=Lt ;' . show thet f(z=1, % or O
n->00 xr
according as |z|<<, =, or > 1. [C. H. 1950}
Draw the graph of f(z) in this case.

20. Given the function y=f(z) defined as follows :
f()=0 when z* > 1, f(r)=1 when z® < 1, f(z)=% when
x?=1,

Using the ides of a limit, show that the above function
can be represented by

flz)= Lt ' for all values of . [C. P. 1949 ]

1
i—_"_nn
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ANSWERS .

1. () % (ii) 3. (1ii) 1/8a. (iv) §. 2. Gu/bn.

8. (i) Does not exist. (n) 1. 4. (i) 1. (ii) 0.
(ui) O. (v) % (v) 0 (v1) &. (vii) igo'
(wi1) 1. (1x) 1. o (x) 0. (x1) O, (xii) O.
(xin) 0. %l 8: 6. Does not exist. 7. (1) Does not exist,
(11) Does not exist {(111) Does not oxist,

® 1. °05. 12. (1) No. (i1) No. 13. (1) 3. (i) 3.
14. (i) No. (1) Ng.

15, (i) +o0 whenz > 1, Owhon —-1<gz <1, 1whenz=1,
no limit exists when 2 < ~1

(n)Owhen ~1 <z <1;3whenz=1;lwhonz< —lor>1.
not defined when z= —1.

(iii) flx) whon [z | > 1; glz) when |2z | < 1; %[ fl)+gla)]
when ¢=1 ; undefined when z= —1.
(iv) =1 when —1 < z < 1;0whena;=1;1when.[a:l>1.
16. 1 whenz > 0; O when 2=0; —~1 whenz < 0.

17. (i) O when z is an integer ; no limit exists if x is not an integer.
(u) O.



CHAPTER III
CONTINUITY

3'1. We have a common-sense idea of what a conti-
nuous curve is. For instance, in Art. 1'5, the curves of
examples (1), (iii), (v) are continuous, while those of (vi}
and (vii) are discontinuous, the curve ‘in (vi) having a point
of discontinuity at the origin 0. A function f(7) is
commonly said to be continuous provided 1its graph is
a continuous curve, and i there:is any discontinuity or
break at any point on the curve, the function is said to be
discontinuous for the corresponding value of 2. The general
notions of continmity of a function f(z) for any value of
the variable z require that the function should be finite at
the pomnt, and for a very small change in z, the change in
the value of f(x) should also be small, or in other words,
as wo approach the particular value of z from either side,
the function should also approach the corresponding value
of f(zx), and ultimately coincide with it at the pomnt. If
f(x) be non-existent at a pont, so that the corresponding
point on the graph 18 missing, or else, if the value of f(x)
suddenly jumps as « passes from one side to the other of
the particular value, or f(z) becomes infinitely large at
a point, then the function is diseontinuous there.

We proceed helow to give a formal mathematical defini-
tion of continuity.
32. Continuity.

A function f(x) 15 sard to be continuous for x=a provided
Lt flx) exists, is finite, and 1s equal to f(a).

In other words, for f(z) to be continuous at z =a,
Lt fle)=Lt flz)=f(a)
0 z->a-0

z>a+

or briefly, #(a+0)=f(a-0)=1(a).
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This may also be written 1n the form 'I:to't(a+h)-f(a).
>

If f(z) be continuous for every value of = in the interval
(a, ), it is said to be continuous throughout the interval.

A function which 1s not continuous at a point is said
to have a discontinuzly at that point.

Ex. (i) f(z)==?is continuous for any value a of z,

for Lt z*=a’.
z>a

1. .. o 1
L ince Lt
(i) f(z) = cos o8 discontinuous at 2= 0, since o, cos
doces not exist, [ Sec Ex. 1, § 210 ]
1 1
= is di = Lt
(iif) f(x) g0 8 discontinuous at £ =0, for L, (m‘)

18 not finite.

({v) If fz)=g sin :‘:whon z # 0, and f(0)=0, then f(z) is

1o ° -
x

[ See Ez. (), § 2°8]

continuous at 2=0, for L¢ gz sin
-0

(v) Iff(a:)=-5~:’_-c,1,(,—,—_,, when z72 and f(2)=3%, then f(x) is
discontinuous at =2, since Lt flx) # Lt flx) hore,
z=>2+0 x=>2~0

so that Lt f(x) does not oxist,
z->2

(vi) flz)=e~t*-®"? is discontinuous at «=a, since though
Lt flx)=Lt flx)=0, se., Lt f(a) exists and =0,
0 r>a~0 x->a

o—>at
f(a) i8 undefined.

Corresponding to the analytical definition of limit, we
have the following analytical definition of continuity of
a function at a point :

The function fi&) 1s continuous at x=a, provided fla)
exists and given any Dre-assigned Dosilive quantity &,
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however small, we can determine a positive gquantity &,
such that | flz)—fla) | < & for all values of = salisfying
a-d< s atl.

3°3. Different classes of Discontinuity.

(A) If f(a+0) # fla—0), then f(x) is said to have an
ordimary discontinusty at z=a. In this case, f(a) may or
may not exist, or if it exists, it may be equal to one of
Fla+0) and fla —0), or may be equal to neither.

To these 1s to be added thp case where only one of
fla+0) and fla—0) 18 existent, and fla) exists, but is not
equal to that.

I1\=-1
IMus: flx)= (2+ e’) has an ordinary discontinuity at z=0,
for Lt  f(z)=0,and Lt  flz)=1%.
z->04+0 x=>0-0

Note. Continuity on one side.

In casr where f(z) is undefined on one side of a (say for z < a),
if f(a+0) exists and is cqual to f(a) (which also cxists and is finite)
we say, as a special case, that f(z) is continuous at 2=a.

(B) If fla+0)=f(a—0)# fla), or fla) is not defined
then f(z) is said to have a removable discontinusty at r=aq.
Illus: fl@) = (z* —a®)/(x —a) has a removable discontinuity at

x=a, for f(a) is undefined here, though I.t f(z) cxists, and =2a.
z>a

Again, if f(z)=1 when z=a, and flz)=¢"*"*"" when z 3 a,
f(@) has a removable discontinuity at a, for Lf{ f(x)=0, whereas
x>a

fla)=1 as defined.

It may be poted that a function which has a removable
discontinuity at a point can be made continuous there by
suitably defining the function at the particular point only.

The two classes of discontinuity (A) and (B) are termed
simple discontinusties.
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(C) If one or both of f(a+0) and fla:—0) tend to + =
or — =, then f(z) is said to bave an infinite discontinuity

at a. Here, f(a) may or may not exist.

- 1
Illus: flz)=e *~® has an infinite discontinuity at w=a, since,

Jla—0)>co, f(a:)= 2), has an infinite discontinuity at x=2.

(D) Any point.of discontinuity which is not a point of
simple discontinuity, nor an infinity, is called a point of
® oséillatory drscontimusty. At such a point the function may
oscillate finitely or oscidlate imfinstely, and does not tend to

a limit or to + ™ or — oo,

Illus : f(:c)-=sin;; oscillates finitely at z=0

f(r)=m—; sin ;l— oscillates infinitely at x=a Lt z™z= -1)

oscillates finitely, and L¢ #™(x < —1) oscillates infinitely as n—>oo.
3'4. Some properties of continuous functions.
(:) The sum or difference of two continuous functions is
a continuous function ;
v.e., if f(z) and ¢(x) are both continuous at x=a, then
flx) + ¢(z) is continuous at z=a.
For in this case, by definition of continuity, Lt f(r) exists,
x—ra
and =fla), as also Lt ¢(r) =¢(a).
x=>a
Hence, Lt {f(x)+ ¢(z)} = Lt flo)+ Lt (z),
x>a ZTa>q x>a
=f(a) £ ¢(a), [See § 2'8(3) ]
whence, by definition, f(z) + ¢(z) is continuous at z =a.
Note 1. The result may be extended to the case of any finite
number of functions.

Note 2. If f(z) be continuous at z=a, and &(z) is not, them
f(z) + #(x) is discontinuous at 2 =ga, and behaves like ¢(z).
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(45) Product of two continuous functions is a continuous
function ;

ie., f(x) and ¢(z) being continuous at z=a, f(x) X Hxr)
is continuous there.

Proof is exactly similar to that in the above case, depend-
ing on the corresponding limit theorem [ § 2°8(iz) 1.

Note. This result may also be extended t6 any finite number of
functions.

P
(231) Quotient of two continuous Junctions 15 & continuous
Sunction, provided the demominator 1s not zero anywhere for

the range of values considered ;

ve., if flz) and ¢(x) be both continuous at z=a, and
#(x)#0, then f(x)/$(z) is continuous there.

Proof depends on the corresponding limit theorem
[§ 2°8(s2) ).

(ev) 'If f(z) be continuous at z=a, and f(a) % O, then n
the neighbourhood of x=a, f(x) has the same sign as that of
fla), v.e., we can get a positive quantity & such that f(x)
preserves the same sign as that of f(a) for every value of = in
the interval a—6 <z < a+56.

Let flzr)=sinx, a=3%n; then fla)=1 and hence 7 O
and positive Let us take 6=3n Then 1n the interval
In—ix<z<intin e, In < x < #x f(zx) is always
positive.

() If f(x) be continuous throughout the interval (a, b),
and of fla) and f(b) be of opposite signs, then there is at least
one value, say &, of « within the wnterval for which f(§)=0.

Tet flx)=cos ®, a=0,b=n. Then fla)=1, flb)= — 1.
Now cos £ =0 if 2 =3%s, which obviously lies in the interval
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(O, n), and so here £ =3%~. Similarly, if we take a =0, b= 3=,
we get another value of §, 11z, §x, besides 4.

(vi) If f(&) be continuous throughout the wnterval (a, b)
and iof fla) # f(b), then f(x) assumes every value between f(a)
and f(b) at least once in the interval.

Let flx)=22, a=0Q, b=1; then fla)=0, f(B)=1. Let
¢ be any number between 0 and 1. Then flz)=z%=¢, if
z= +9,/c, which evidently lies in (0, 1).

Let f(z)=sin z, a=0,b =52—n ; then fla)=0, f(b)= 1, so

fla) # f(b). Let ¢ be any number lying in (0,1). Then
sin z=c¢, if r=nn+(—1)" sin"%¢, =0, +£1, +2.... Now, for

n=0, 1, 2, only, x lies in the interval (O, 527:) That is, when

z=sm "¢, or x—smn"'¢, or 2x+8mm " 'c, we have flz)=c.
Thus f(x) assumes the value c at least once (here 3 times
and in the previous example, once only).

(ve1) A functrion whach s continuous throughout a closed
wnterval 1s bounded therewn.

The function f(z) = sin 2, is continuous in the closed
interval 0 < z < =z, and has the upper bound at z=3%n and
lower bound at £ =0 or @, and hence it is bounded.

(vier) A continuous function wn an wnterval actually
attawns 1ts upper and lower bounds, at least once each, wn the
wntarval.

The function f(x)=sin z, is continuous in the interval
0 2 no Its upper bound 1 18 attained at the point
@ = 3z and lower bound O is attained at the points =0 and
x=mn. Thus, f(z) attains its upper and lower bounds at
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least once each (here the upper bound is attained once,
whereas the lower bound is attained twice).

() A function f(x), contenuous zn a closed wnterval (a, b),
attains every intermediate value between ils upper and lower
bounds wn the wnterval, at least once.

Let flx)=z%, a= -1, b=2, then the upper bound of
f(x) is 4 and its lower bound is 0. Let ¢ be any number in
(0,4). Now, if 0 < ¢ < 1, then flz)=2%=c if z=.% ./c,
which lie in (—1,92); and if 1 < ¢ < 4, then flr)=2%=c,
if 2= =+ ./c, of which only + A/c lies 1n the interval (— 1, 2).
Thus flz) attains the value c at least once.

[ For formal proofs of (iv)-(ez) see Appendiz ]

8°5. Continuity of some Elementary Functions.
(1) Function ", where » is any rational number.

We know that Lt 2"=a", for all values of n, except

>a
when @ =0 and » is negative [ See Note, Ex. 1, § 2 11 ).

Hence, 2™ is continuous for all values of £ when = is
positive, and continuous for all values of z except 0 when
n is negative.

When # is negative and = —m say, where m is positive,
g"=g"™=1/z™ which either does not tend to a limit or —>
as z—>0.

(:2) Polynomaals.

Since the polynomial aoz™+a,a2" * + - +an is the sum
of a finite number of positive integral powers of x (each
multiplied by a constant) each of which is continuous for all
values of &, the polynomial itself [ by § 3'4(2)], is continuous
for all values of 2.
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(ii7) Rational Algebrarc Functions. .

aoZ"” +a12" "  + o +ap
Boa™ + bya™ X+ F b
being the quotient of two polynomials which are continuous
for all values of z, are continuous for all values of & except
those which make the denominator zero [ by § 3'4(221) 1.

(2v) Trigonometric Functions.

Since, the limiting values of sin £ and cos £ when z—>a,
wherg o has any value, are sina and cos a [ See Ez. 2,
§ 2°71 ], it follows that sin # and cos x are continuous for
all values of . *

Since, tan £ =sin x/cos #, tan # is continuous for all
values of = except those which make cos & zero, 7.6, except
for 2=(2n+1)n. Similarly, sec« is continuous for all
values of = except for £=(2n+ 1)kn and cot £ and cosec =
are continuous for all values of z, except when =0 or any
multiple of & when sgin £2=0.

(v) Inverse Circular Functions.

Inverse circular functions being many-valued, we make
a convention of defining their domain in such a way as to
make them single-valued. Throughout the book we shall
guppose (unless otherwise stated) that sin™*z, tan™ 2, cot™ 'z,
cosec 'z lie between — 3n and %= (both values inclusive)
and cos™'z, sec 'z lie between O and s (both values
inclusive), which are the principal values of these inverse
functions. It should be noted however that sin~ 'z and
cos” 'z have no existence outside the closed interval (—1, 1)
of «, and cosec” 'z and sec” 'z have no existence inside the
open interval (—1,1). All the inverse circular functions are
confinuous for all values for which they exist ; this follows
immediately from the continuity of the corresponding
circular functions.

Rational algebraic functions like
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(vi) Functron €®.

Corresponding to the positive number ¢, however small, we can
choose n sufficiently large such that (1+¢)" > e, [ *." (1+¢)" > 14ne,*

1
and e is finite ]. Thus, e" —1 <e Hence, if 0 <z < 1/n,
l—
*—1<e”—1<e and .'. Lt (*—1)=0, or, Lt ¢*=1. If & be
x>0+ >0+
negative, putting x=—y, Lt e*=Lt 1le¥=1. Hence, Lt e"=1.
y=+0+ x>0

z->0-

oLt e*°=1,4.e., Lt e =¢°. .'. €18 continuous at any point z=c.

x>0 x>
. .

(vis) Function log z, & > 0. *
It should be noted that log x is defined only for values of z > O.

Let log x=y and log (x+h)=y+%k Then ¢'=2x and ¥**=g+} ;
.. h=e'tk—g¥, As e 1s a continuous function of y, ¥t e¥, s.e.,
h->0as k—>0. Thus, {log (x+7)—log T} —>0as k — 0, v.e., a8 h = 0.
Henoce, log x 18 continuous

3:6. .INlustrative Examples.
Ex. 1. 4 fumction 1s defined as follows
flz)=2 when > 0, f(0)=0, f(x)= —a when x < O.
Prove that the function 1s contsnuous at x=0.
Hero, £i0+0 f(:c)=f_io+o z=0 and Lt 0 f(a:)=£io_o (—z)=0.

x>0-

Thus, Lt fle)=1¢ f(z) =£(0)=0 here.
z->0+0 x=>0-0

Hence, f(x) 18 continuous at @ =0.
For its graph, sec figure of § 1'5 (1i).
Ex. 2. A4 function f(z) 18 defined as follows :
f(:c)awsmi Jorz# 0
=0 for z=0.
Show that f(z) 1s continuous at z=0.

* Bee Appendiz.
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Since, | s1n (1/z) | < 1, by making |z | < e

we can make | # sin (1/x) | <,

where € is any pre-assigned positive quantity, however small.

1
Hence, ‘Li 0 sin - =0. Also, f(0)=0, as defined.
Thus, Lto fla)=7(0). .". f(x) is continuous at z=0.
x>

For its graph, see &gure of § 1°5 (viii).

Note. It should be noted that the function z sin (1/x) is conti-

nuous for all values of x, oxcept for z=0; because when z=0,
z sin (1/r) is meaningless. ®*In tho above example, the discontinuity of
z 810 (1/z) at z=0 has been removed by definstron of f(0).

Ex. 8. A4 function f(z) 1s defined as follows
fx)=4—z when0 <z < &
=8 when x=3§
=f—zwheny <z < 1.
Show that f(x) 15 duscontinuous at x =%
Here, xl_;)t;_o f(:t)=£v_tﬁ_o 3-x)=3-4=0.

Lt x)=Ii j-a)=3-4=1.
a:-»i+0f( ) ;_)Ho(u )=8—-%
Since, Lti flx) does not exist, honce f(z) is discontinuous at x=4.
z=>

Ex. 4. 4 function f(x) 1s defined wn (0, 3) wn the follouwng way :
fla)=z? whenO <z <1
=z when 1 < © <2
=3z when 2 L & < 8.
Show that f(x) is continuaus at c=1 and c=2. [C.P.1941]
When =1, flz)==. .°.f(1)=1.

Lt x)=Li x?=1;also, Lt x) =Lt x=1.
a:-»l—()f( ) x>1-0 ’ ¢->1+0f( ) x->1+0

Hence, Lt  f(x)=Lt  f(x)=f(1) here.
«->1-0 z->1+0

.*. fle) is continuous at & =1.
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Similarly, it can' be shown (from the defimition of the function in
the relevant ranges), that Lt flz)=Lt  flz)=/(2)=2.
z»2-0 x«->2+0

Hence, f(x) is continuous at z=2.

Examples III

~¥. A function f(x) is defined as follows :
fl@)=2" when  # 1, f(z)=2 when z=1.

Is flz) continuous at z=1 ?

- 2. Are the following functions continuous at the orlgifn 2"
@) flz)=sin (1/z) when z = 0, 7(0)=0.
(ii) f(@) == cos (1/z) when z 7~ 0, f(0)=0.
(iii) f(z) = cos (1/x) when z < 0, f(0)=1.
sin 1
(iv) flz)=— L. when # # 0

T
=1 when z =0.

(v) f(x)=sin = cos-;; when z # 0

=0 when z=0.

8. A function ¢(z) is defined as follows *
Hz) =a? when z < 1
=25 when 2z = 1
=g +92 when ¢ > 1.
Is ¢(z) continuous at z=1 ?
. 7 " A function f(z) is defined in the following way :
v f@)= -z whenz <0
=g when 0 <2z<1
=2-2 whenz 2 1.

Show that it is continuous at =0 and z=1.
[C.P. 1942]
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B. A function f(z) is defined as follows : °
f(r)=1,0 or —1 according as £ > = or < 0.

Show that it is disoontinuous at =0,
\9/ The function f (z) = %—

What value must be asmgned to f (4), if f (z) is to be conti-
nuous at £=4 ? R

. 7. Determine whether the following functions are
continuous at z =0.
(i) £ (z) =(z* + z® + 22%)/sin z, f (0)=0.
(1) f(x)=(z* + 4z® + 2x)/sin z, £ (0) =0.
Find the points of discontinuity of the following
functions :
() m +2’D'_"5 (-.) m3+2x+5.
% —8z+12 V 2% - 8z +16
9. A function f () is defined as follows :
flw)= 8+2r for ~§<2<0
3-2r for 0Lz <}
=-3-2r for x> §.
Show that f(«) is continuous at =0 and discontinuous
abz=§.
Given the function y=f(r) defined as follows :
f w) =0 when z® > 1, f(#)=2 when z? < 1, f(z)=% when
2%=1. Draw a diagram of the function and discuss from
the diagram that, except at points x=1 and z= —1, the

function is continuous. Discuss also why the function is
discontinuous at these two points although it has a value

1s undefined at ¢ =4.

/

for every value of z. [C.P. 1949 ]
ANSWERS
1. No. 2. (1) No. (i1) Yes. (iii) No. (iv) No.
(v) Yes. 8. No. 6. 8. 7. (i) Continuous.

(ii) Discontinuous. 8. (i) 6, 2. (ii) 4.



CHAPTER IV

DIFFERENTIATION

4'1. Increment.

The increment of a variable in changing from one value
to another 18 the difference obtained by subtracting the first
value from the second. An increment of z is denoted by 4z
(read as delta ) or . Evidently, increment may be posiﬁve
or negative according as the variable in changing, increases
or decreases.
~ Ifin y=f (), the independent variable z takes an incre-
ment Az (or &), then 4y (or %) denotes the corresponding
increment of ¥, i.e., of f(z), and we have

o y+Aay=f(z+A4az), r.e, Ay=f(z+ 4z)-f(z)
or, y+k=flz+h), e, ke=f(z+h)-f(z).

Tlustration : Let y==2.

Suppose, x increases from 2 to 21, e, Az='1;
then 9 increases from 4 to 4'41, e, Ay=‘41,
Suppose, ¢ decreases from 2to 1'9, se., Az=-—'1;
then y decreases from 4 to 3'61, w.e., Ay=-—'89,

Increments are always reckoned from the sarbitrarily fixed initial
value of the independent variable z.

If y decreases as ¢ increases, or tho reverse, then Ag and Ay will
have opposite signs.

. From a fixed initial value 2 of &, if x increases successively to 21,
2'01, 2°001, etc., then although the corresponding increment Am (=°1,
‘01, "001...) and Ay (=41, ‘0401, "004001,...) are getting smaller, their
ratio, 1.6, Ay/Oz being 4'1, 4°01, 4°001, ... is approaching a definite
number 4, thus, illustrating the fact that the ratio can be brought
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a8 near to 4 as we please by making Ax approach zero. Thus, the ratio
of the increments Ay/Az has a definite finite limit 4 as Az—>0, and
consequently, Ay—0.

4’2, Differential Coefficient ( or Derivative ).

Let y =f (z) be a finite and single-valued function defined
in any interval of 2, and assume z to have any particular
value in the interval. Let 4z (or &) be the increment of z,

oand let Ay (or k)=f (z +Az)—f () be the corresponding
increment of y. If thg ratio Ay/dz of these increments
tends to a definite finite limit as Az tends to zero, then this
limit is called the differential coefficient (or derivative) of f (x)
{or y) for the particular value of 2, and is denoted by f' (z),
2 if@h %oor, Dif@Y - i K 0T

Thus, symbolically, the d1fferential coefficient of y [ =f(z)]

with respect to x (for any particular value of x) is -

, dy _ ay _ ., fle+an)—f(z)
f'(@) or dx flmt-»o Az flzt-»o Az
or, = }‘to u’;(ihl:;”’i) » provided this lamat exasts.

If, as 4z—0, Ay/dz—>+ = or - e, then also we say
that the derivative exists, and = + o« or — o,

Note 1. The process of finding the differential coefficient is called
dyfferentiation, and wo are said to diyfferentrate f(x) and sometimes
dafferentiate f(x) with respect to @, to emphasisec that = is the indepen-
dent variable.

Note 2. g% stands here for the symboljz (y), a limiting process

and hence must not be regarded as a function dy--dz, although for
convenienoe of printing, it may sometimes be written as dy/dz.
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Note 8. The differential coefficient of f(z) for any particular
value a of @, is often denoted by f(a). Thus, from definition,

flay=Lt LrM=f), provides this timit exsts.

Note 4. If f'(a) is finste, f(x) must be continuous at x=a.

=Lt fla+h)=fla) '
) fioL—h
We can write fla+ 1) ~f(a) =ﬁ"‘;"‘1‘£:ﬂ¢) b

<o Lt fla+n)-fle)=Lt, {f(ﬁ+b,{:{1€’xh}
Lt flax=fla)  1s 4
h h=>0

h—0
=f'ta) x 0
=0, since f'(a) is finite.

%}_t’o Ma+n)=fla).

.*. from the definition of continuity, it follows that f(z) is conti-
nuous a.t’ T=g.

Hence, for the differential coeflictent of f(z) to exist finstely for any
value of x, the function f(z) must be contsnuous at the pownt.

The converse however s not always true, i.e., if a function be
continuous at any point, it is not neoessarily true that a finite deriva-
tive of the function for that value of = should exist. For illustration,
see § 4°5.

Again, a function f(z), though discontsnuous at & point, may have
an anfinste derwatve at a point. [ See Ex. 7(u), Examples IV(4) ]

. Lt flz+h) =flz) -
Note 6. The right-hand limit he 040 " for any parti

cular value of z, when 1t exists, is oalled the righi-hand derwalwe of

flx) at that point and is denoted by Rf(r). Bimilarly, the left-hand
imit Lt Se+r)—f) Lt fe-w-flz)

limit " 0-0 IS or, o —i when it exists,
is called the left-hand derwatwe of flz) at x, denoted by Lf'(x). When
these two derivatives both exist, and are equal, it is then only that the
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derivative of f(z) exists at . When however the.left-hand and right-
band derivatives of f(zr) at a are unequal, or one or hoth are non-
existent, then f(x) 18 said'to have no proper derivative at z.

Thus, though f'(r) may not exist at a point, one or both of the
right-hand and left-hand derivatives may exist (the two being unequal
in the latter case).

For illustration, see § 4'5, Ex. 4.

4'3. Differential coefficient in some standard cases.
» e (1) Differential coefficient of x".

Let f(x)=2z". .

Then from defimition, f' (r)= {l-fo (+ h;: - mn-

Now, writing X for =+, so that =X —2«, and noting
that when ©r—0, X—x, we get

F () =£It AT—;:‘ = ng™ * for all rational values of «.
-z
[ See §.2°9(v) ]
Thus, dix (x")=nx""1, for all rational values of 7.

Otheruse

=Lt ()l A RN ) e
flz)= h h0 % hlx

[ supposing z # 0]

" ﬁo (IL [ putting 2= h/z ]
=qnrt-t. [ See § 29(14) ]
The result can also be derived for any rational valueof n [ 5 0]
from the well-known inequality *
nX" ' (X—z) 2 X"—a"2 nz"" (X—1),
[ upper sign if n > lor < 0
and lower1f O <n <1
XX;: nz"-t.
*Seo any text-book on Higher Algebra (e.g., Sce § 10, Chap. XIV,
Barnard & Chald).

whence nX™* 2
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Now putting X =z + h, and letting & — 0, we get

Lt (24' h) "3
h~>0

tend to the same himit nz"-*.

=mng"* [ by § 2°8(v) ], since both extremes

When m s a positwve wnteger, the result can also be proved as
follows :

=Lt @t —a"
f'(z) h=>0 h .
—rt " htin(n—1) "2 A%+ 4B -

h—>0 h o o
( By Biwnomaeal Theorem )}

=Lt {nz" " +in (n—1) g~ "h+ e+ 1"}
h—->0

Ne L

=nx

When m 18 not a posstwe wnteger, for an alternative proof, see Ex. 1,

§ 4'18. Bee also Ex. 2, § 4'13 for the case whon 7 has any real value,
not necessarily rational.

d d 1 d (1 n
Cor. Gz =1 (W=5ip & ()=~
Note. It is to be noted that i the above formula we tacitly
assumo those values of z as do not make z" or a"~' meaningless ;
e.g., of n be a fraction of even demomanator, zero and negatwe values of =
are excluded and of n—1 be negatwe, zero value for x s excluded.

Following the definition it may be seen in particular, that if
fle)=2", £ (0)=0 when n > 1, ' (0)=1 when n=1, and f'(0) is non-
existent if n < 1.

(ii) Differential coefficient of eX.

Let f(x)=6". Then from definition,
f' (@)=Lt e gy 1
z. h Her0 w2
since, ;].:'to (e®—-1)/h=1. [ See § 2°9 (iv) ]

Thus, a!_l; (eX) = e,
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(iii) Differential coefficient of a*.
Let f (x)=a®.

x+h _ @
Then, f ()= =Lt @ -h-_“_ —a®- Lt

h lo,
lLe"

Now, Lt “h »>0 hlog a

» Oh'—l ’
=#_t>0 —y” log a [ where '=h log a ]

= . e’ .”__1_ -
log a, " Lh, i o 1.
[ See § 2°9 (iv) ]

f (@) =a" log a.
Thus, d%: (a®)=a* log, a.
(iv) Differential coefficient of log x.
Let flx)=1log =.

Then, f(z)= Lt log(a:+h)-log.'r It -l-logm+h
h—>0 h . @

h
f-fow hlog(1+ )

- »l»Lt llog (1+z),[ where z = h]
T 20 2 x
- i [ See § 2'9 (112) ]

d 1
Thus, &= (log x) = =

\/261-. Proceeding exactly as above it can be easily shown that
5—‘; (logy x) = % log, e.
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(v) Differential coefficient of sin x.
Let f(x)=sin 2.
sin (r+h)—sin @
Then, f (x) {fo e

-1, 28in 3k cos (z+ 3h)

h—>0 h
- tho s—‘;’?h-cos (z+3h)=cos o,

because as & —> 0, cos £ being 2 continuous function of z,
cos (z+ %h) —> cos z, also by § 2°9(3), .Z.':to (sin 31/30) =1.

Thus, d'ix (sin x) = cos x.
(vi) Differential coefficient of cos X.
Let f(x)=cos z.

_ 7, cos(@+h)—cona
Then, f (z) ';P-fo g

- It — 92 sin 3% sin (x+ %h)
h~>0 h

sin %A
sh

= —ginz [ as mn (v) ].

=Lt —gin (z+3h)-
h~>0

d .
:.I‘hus, ix (cos x)= —sin x.

Note. It should be noted that in finding the above differential
coefficients of sin z and cos @, we tacitly assume that x «s wn radsan
measure, because we make use of the limit sin 3L/dh=1 as h—0,
which is true when % is in radian. Hence, the above results require
modification when g is given in any other measure.
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(vii) Differential coefficient of tan x.

Let f(z)=tan z.

Then, f(z) = %‘,t @Pﬁ."’.’.")_': tan z
-0

{qm (:r +17) _sin x}
720 h \cos (w+ 1) cosz

_sm(z+h—wx)

w0 I cos (z +h) cos
=7 BBA 1
»>0 h  cos (x+h)cos z

_(?os— g [z 5(2n +1)x ]

Lt (sin h/h)=1, and Lt cos (x + h) = cos z.
h~>»0 h->0

Thus, dix (tan x)=s8ec?x. [z#32n+1)a]

(vi1i) Exactly in a similar way, we can get

:—x (cot X)= —cosec?x. [z nx]

{ix) Differential coefficient of sec x.

d sec (z + h) —sec o
K3 — ¢ Beclz+h)—seca
e (sec z) Lh to

-1 L[ 1 ___1__}
;{fo h{cos (x+Hh) coszx
cos  — cos (z + h)

»>0 hecos(z+h) cos

2 sin %A sin (z + %h)
»>0 h cos (x+h) cos &
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- sin 35 . [ T
';Efo FVAR S (e + k) cos (z + i) cos 2

=1.sin w-—}g =tan z sec z,
cos?z
since Lt (sin 3h/%h)=1, Lt sin (z+3%k)=sin 2
h=>0 h=>0
and Lt cos (z +h)=cos x.
h->0

r

Thus, dix (sec x)=secx tanx. [2#3¥2m+1n] "

(x) Proceeding exactly in a similar way, we get

‘% (cosec x)= —cosecx cot Xx. [x#nn]

Note. For an altornative method of differentiating tan , cot «,
sec ¢ and cosec x from a knowledgo of the derivatives of sin z and

00s x, see § 4'4, Theorem V.

4’4. Fundamental Theorems on Differentiation.

In the following theorems we assume that ¢(z) and v(z)
are continuous, and ¢'(z) and v'(z) exist.

Theorem 1. The differential coefficient of a constant 1s
zero,

d

i.e., = (¢)=0, where c is a constant.

Let f(z)=c for every value of z.

Then, f (z)= Lt [@+M=fz)
h->0 h

-7t %Cr: O
f-»'toh hL-foh 0.
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Theorem II. The differential coefficient of the product
of a constant and a function s the product of the constant
and the differential coefficient of the function,

.., dgx {cd’(x)}-c—d- #(x), where c'is a constant.

For, o {Cq'a(:r)} =Lt Gd>(-'1'+h)"cd>(w)

1 ¥+ h) *lz) _

h->0

= c¢'(z).

Theorem III. The dzﬁerentzal coefficient of the sum or
difference of two functions 1s the sum or difference of thewr
derwatives,

ve, %{ {H(x) + P(x)}='(x) £ P'(x).

Let fz) = ¢(z) + 9(x).
Then, f(z + &) = ¢(z + h) + v(x + }).

Now, fl@)=Lt I (z“”) —f(z)

1, folo+ h) +vla+ W}~ 16(e) + o)

h~>0

=Lt [¢Lm +R) = lr) 'P(;cLh)_— 'P(x)]

h->0

- St h) &7) | I Y+ h) ald)

h->0 h>0

=¢/(x) + w’(w).
Similarly, if f(z) = ¢(z) — v(z), then f'(zx) = ¢'(z) — v'(z).

Note. The above result can be easily generalized to the case of
the sum or difference of any finste number of functions.

Illus: If f(x) =~ 4 sin o+ 2?+5, then f/(x) =¢* —4 cos w+ 2.
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(3) If 1(x)=cosec x=‘ml1 P

Osmw—oosml _Ccosx
then f'(x)=———5-"-—"= 5
sin‘z Teinz

= —cosec x cot x.

4’6. Illustrative Examples.
Ex. 1.  Fund from first principles the derwatwe of sz, (@ > 0).
Let flx)= .

. f("’)‘Lt J(T+h) ~ N, [ by definstion ]

=Lt (:l‘+h) -7 = It _;
70 K N(@+R)+ N2} ne0 Ne+h)+ Nz 2 ,Ja:

Ex. 2. Fwmd from first principles the differential coefficrent of
tan~'z.
Let tan~'z=y and tan~' (z+h)=y+k.
Then, as ,—> 0, k — 0. Alsox=tan y, z+h=tan (y+£).
RN h=(w+h)-a:=tan (y+%k)—tan y.
tan~! (z+h)—tan~'z
. £ -1 =I t
DR - (tan ) =1 n
=Lt —.—_F_ .
k>0 tan (y+ki)—tan y

k-0 s1n k

= cos (y+7%) cos y

1 1

1
=cos”y sec?y =1+tan® vy 1+z3

Note. In a similar way we can work out the derivatives of the
other inverse ciroular functions from first principles.

These have however been worked out by a different method in § 4°8.

Ex. 8. Fund from definitson the differentral coefficvent of log cos x.
[C.P. 1933]

Let us put cos =1u, co8 (x+h)=u+k.

. kw=cos (x+h)~cos ¢ and so, when >0, 5> 0.
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4 — Lt logoos (z+h)~log cos &
o (log cos ) Lt 2

=Lt log(utk)—logu %
k h

h-0
Lt lg(+ku) 1 K,
h->0 kluw u h

As k=0, I]u—>0, .°. limit of 1st factor=1. [ See § 2°9 (121) ]

k _cos (z-t1)—cos & _ _sin (z+3h).sin 3k

Agan, h h

L ] -
as c=>01.e., h=> 0, k[l —> —sin x. Also, w=cos x.
.

da —smz_ _
s (log cos ) “eos T tan <.

Note. Differentiation from ‘first principles’ or ‘definition’ meauns
that wo are to find out the derivative without assuming any of the rules
of differentiation, or the derivative of any standard function, but we are
permitted to use fundamental rulos of limiting operations ( § 2'8) and
the standard limit results ( § 2°9 ).

Ex. 4. A function us defined in the followwng way :

flx)=|=z], s.e., flz)==, 0, or, —x, accmding asx > =or < 0;
show that f’(0) does not exast.

F0y=Lt f_____)(0+hh)’-f(0 =Lt [0,

h->0 >0 h

e f®W_pg h_
Now, Wa0+0 h  ha040 B L

e W_opg  —ho_
and h>0-0 A h>0-0 h L

Since the right-hand derivative 1s not equal to the left-hand dei-
vative, the derivative at =0 does not exist.

Ex. 5. A4 function s defined wn the followwng way :
fla)== stm% Jor z 7 0, £(0)=0.

Show that f'(0) does not exust.
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f(0+h)—f(0) h si (llh)
ro-g, -, 2

=Lt sin (llh), which does not exist.
h->0
[See § 211, Ex. 4]
"« f'(0) does not exist.
Note. In both the examples 4 and 5, f(x) is continuous at z=0
(Bee § 86, Ex. 1 and Ex.2) but f(r) does not possess derivative
at =0. .

Ex. 8. Iff(z)==? sin (1/x) when = # 0, and f(0)=0, find f'(O)
r©=Lt ﬁo*'h)—ﬂo) Lt = { n® sin X -o}

h=>0 h
=It .1. =
o (h sn 3 0.
['.* when % is not exactly zero, sin 711, is finite, not exceoding 1
numerically. ]

Ex(7. Fund from first prancaples the dervatwve of =, (z > 0).

Let flz)=z"=¢" logz
(z+h)log (r+h) x log x
=Lt € —e
f@) h=>0 h
It ezlog:c c(=-+h)l::,rz_(:z+h)—.w,:l‘og:;;_1
h—>0 h
xlogz]-t e* —1 2
h>0 £ /3
where 2= (z+4) log (x+h) —x log =
and hence z-> 0, as 1, = 0.
=a It f=1 1t 2 g Lt %, .. Lt Lt R
f@)=a=L PR ) " 14 h' o s 1.

Now. Lt 2Lt m{]og(n:+h)—loga;}+h_]og (z+ 1)
' h20 i n0 [

=Lt Lt
oty , log ( )+h_’0 log (x+ %)

1
"'f'.fo i 108 (1+%) +log z=1+1og ,

where % being 2z —> 0, as 1 —> 0.
f@)=2a" (1+1og ).
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Examples IV(A)
Find from first principles the derivatives of (Ez. 1-5) :

1.‘{(5/503 + 9. Gi) z* +6. v (i) 1/x (x 7 0).
Giv) 1/ Je (2>0). (v) 3a. (vi) Jzf+al.
(vii) z + Jz¥+1.

2.\}9/ eN®, (i) ==, (m) 2°°. (iv) €%/z.

3. (i) logiox. [C. P.1941] (ii) = log =.

s =(iii) log sin (z/a). [C. P. 19301 (iv) log sec .
4. (1) asin (x/a). [ C.°P. 1937 ] (1) sin®z.

(1) sin #2.  (iv) sin"ia. (v) A/tan .
(vi) (sin m)/z. (vi1) 2? tan z.
B. (i) e°*® at £ =0. (11) log cos = at z=0.
8. (i) f(x)==x2 cos (1/x) for z 0, £(0)=0.
Find f£(0).

(i) fle)=zfor0< 2 < }; fla)=1-=z for $'<z <1
Does f'(}) exist ?
7.0) flx)=83+2zfor — 3 <2< 0

=3-2zfor O0<z<g3
Show that f(z) 18 continuous at =0 but f(0) does
not exist. [C. P.1943]

(ii) flz)=0 when 0 < z < 3}; f(3)=1; flz)=2 when
<zl

Prove that although f(z) is discontinuous at z=3%,
F'(%) exists and its value 1s infinite.

8. flx)=1 forx <O
=1+sin2 for0 <L e < i
=9+ (x—3n)? fordn<Lz;
show that f'(z) exists at # =%n but does not exist at =0,
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9. flx)=56x—4 for0<a<l1
=422 -8z forl <z <2
=3z+4 forxz> 2.

Discuss the continuity of f{z) for =1 and 2, and the
existence of f'(z) for these values.
10. () flx)== for0<z<l1
=2-z forl<aeg<2 '
=x—x® for 2z > 2.
Is f(x) continuous at =1 and 22 Does £ () exist for
these values ?
(ii) olz) =3 (6* -a?), 0<r<a
=3 -2 -3 (a®/x),a <z <Lb
=3(® -a®)/z r>b;
show that ¢'(z) is continuous for every positive value of z.
[C.P. 1944 ]

Find the differential coefficients of the following with
respect to z (Bz. 11-13) -

11. (i) 32" +7z* — 2:::2 -z +6. (11) (z® - 3)%.

4

\yﬁ1+m+- St T (iv) (@ + 2 +1)°.
(v) (82° + 422 — 2)/z°. (vi) 1 +2)%/x.

(vii) 6272 — 8z~ +4. (viii) 4z % + 627 + 2.
(ix) %% +50° —4— 1 g +m~3—~l

(@) o +2 4% +3 J(&®) +4 Ja*) + 6 ().
(xi) & o+ 22 Jz+_f;a;_ Jm+-:};;-
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(xii) i/: ,,,—+.U ,+12€//w

(ziii) 2 sin z— % log © — 3¢ — 6 tan = — 7 cosec 2.
(xiv) loga z + log x® + e'°8 © + log ¢ + &**=,

12. (i) z"6®. (i) 22 log =. (i1i) z? log «®.
(iv) e® sinx. (v) 2% s1n . (vi) 10°.z*°
(vi1) cosZz. ) (vi1) sec z tan #. (1x) (x® +1) sin 2.
(x) 8z —T7)(8—"Tx) (zi) (z®+7)(z® +10).

(xii) (sin z + sec @ +ban x)(cosee z + cos x + cot ).
(xiii) cosec®z. (ziv) z tan z log @.

(xv) /z.e® sec 2. (=vi) (1 + )@ +22)(1 + 32).
(zvii) o(1 - o)1 —22). (xvin) o sec = log (ze®).
(xix) « cot « log (x%).e%.

(xx) cot x x log & x 10 x /z.

13. (i) 211;: @i1) c—og—w (ii) Si; z.
) o a:' [C. P. 1940 ) E"ﬁf’.
(vi) 15,;“ & (vii) .fi 1 (viii) 11‘ .
@it oiE @ilng
o FE i e e

GTREEE o B2 (5)

(xvii) sin r+cos o, (xviii) cob 2 + cosec 2,
sin @ — cos z cot « — cosec z
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(xix) 1+m+a: ( g;g_
Y1 -z+a2® -2+
(=xi) P_&Q” -¢” log z. (zxij) BRE_CS T 3 e

sin £+ cos o
14. Ify=J2w-J2 224 ina Y for =2,

S _8r%4 -
15. If fl@)=2 wgs_mllxlf% :

which f' (z)=0. .

Is there any value of = for which f' () is non-existent ?

» find the values of z f.or'

16. From the relation

1-2"

l+z+a®+- +g"=
1-2

deduce the sum of the serics
1+22+32%+ - +az™ ",
and hence, show that
1+22+82%+ - to e =(1-2)"2,0< || < 1.
17. If fl@)=1+2z forz < 0

=1 for0 €L a1
=222 +4x+5 fore > 1,

find f’ (z) for all values of = for which it exists
Does Lto f (x) exist ? Does f (x) exist ?
F e d

18. () If f(z)= — }x® forx < 0
and f(z)=2" sin (1/z) forz > 0,
find whether f' (0) exists for n=1 and 2.
(i) If f(z)=[x] where [x] denotes the greatest integer
not exceeding «, find f' (z) and draw its graph.
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ANSWERS

1. (i) 3z +2. (i) 4z°. () —1/z*. (iv) —%a".
™ a7t o) Jmraar (via) %ﬁl}

2. (i) eV*/2 ya. (1) ™. cos z. (in) 222, log, 2.2z.
(1v) (xe®—e®)x>. 8. (1) ==* log,, €. (1) 1+1log z.
(1) a=* cot (x/a). ' (1v) tan « 4. (1) cos (z/a).

*  Yii) sin 22. (ui) 2z cos 2. (iv) 1/ N(1—=2).
i J—ﬁ—w) (v1) —E’B—Zl_—mi? (vii) 2z tan z+2? sec’z.

5. (1) O. (i1) O. 6. (i) o. (1) No.

9. Oontinuous for =1 and 2, but f’(r) exists for z=1 and does not
exist for ¢ =2. 10. (i) Continuous at x=1and 2 ; f'(x) does not exist,
for =1, but exisis at z=2.

11. (1) 152°+98z°—4e—1. () 62° =36z +54e. (1) 1+z+= ot l'

(1v) 322+8z+5. (v) 9zt —4a=2+62-*. (v1) —2~2+3+22.
(vi1)) —12x=*+ 322, (vi) — :)w'}-l- 3.'0-}.

1

9 % 25 3
(x)24m+2+2m +8a:+2 w?,

(ix) 8z®+10c+x~*— 4z~ °—9z=*.

(x1) &w}+£wi+§z&—§m i—&x ';. (x1u1) 13:z;g+a; 3450 T—g M.
(x11) 2 cos z—3z~! —%6”—6 sec’z+ T cosec x cot x.

(x1v) @~ * logs e+ax~*+2+ e+,

12. (1) (z"+na""?) &% (1) z+2z log z.
(1) 2(x+ 2z log z). (iv) e (cos o +sin x).
(v) 2® (cos z+sin z . log 2). (v1) 10® (10z°+ «*° log 10).
(vii) —sin 2. (vin1) see x (seo’z+tan’z).

(ix) (2?+1) cos x+2z sin a. (x) —42zx+58.
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(xi) 5z*—21z? +20zx. (zii) —(sin x+sec z-+tan )

% (cosec x cot @ + 8in @ + cosec? ) + (cosecx + cos  + oot x) X
{cos x+sec x tan z+sec?x). (xiii) —8 cosec®z cot z.

138

14.

16, 1

17.
18.

(xiv) tan  log o+ log = sec?z +tan x.

(xv) €® sec o (1+2z+ 2z tan «)/2 Afx.  (xn1) 1822 +22x+6.

(xvii) 4z®—8z%—2z+1. (xvui) sec & {l+x+(1+z tan z)(x+log z)}.
(xix) e {x oot 2 (1+2 log x+z log ) —2? cot.soc"w log x}.

(xx) 10 cot z [(— 2 Wz cosec 22+ Wi log 10+§z'i‘) log m+a:'i].
a

(i) sec?a. (1) sec ¢ tan a. « (m) (z cos z—sin z)[z?.

(iv) ® (4 sin 2 —2 cos z)/sin’z.

(v) —e~ (cosecz +cotb x). (vi) 2"-* (n log £ —1)/(log z)*.
i) SR (vii) (g ) () )
. 2 cos o . 2 sin®

=) —:/;:—(i— »./a:)’. (xi) I—-snz)? (xii) (1+cos z) "
(xiii) 0. . (x1v) —2sin 2. (xv) e** (1+2x).
(xvi) —z~* tan z-+(1—1log ) sec?z. (xvii) m—m—:i—m-

2 cnsec x 2(1—27)
(evii) (oot z—cosec @)% ) (xix) i-z+a%)2"
(xx) 2(a:+ 1—-z=2—g"%).
(xxl) = [{a: sec?z+ (x— 1) tan o} log z+tan = J.

. 22° — (z? + 2x) cos 22
(exii) e { " (s z+cos )7 }
2%, 15. 4, 16 ; non-existent at 1, 10.

—(n+1)z" +ng"tt

(1-a)®

1ifz < 0,0if0 <z <1,4{z+1)ifz > 1; No; No.
(i) No, Yes, (ii) f'(x) =0 for all values of z except zero dnd

integral values, for which it does not exist.
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4°6. Differentiation of a Function of a Function.

Let y=/(v), where v=4¢ (z), and f(v) and ¢ (z) are con-
tinuous. Thus y is also a continuous function of z.*

Let f'(v) and ¢’ (z) exist, and be finite.

Assume v +Av=¢(z+ Azx) and y + Ay =1 (v+ 4dv).

It is evident that when 4z =0, 4v —> 0, and as dv—> 0,
A4y — 0.

e L J
4y _ 4y v,

Now, Ar Ao A [4v # 0]
a4y a4y Aav
=t <Lt =

Ar>0 AL Av>0 4V Az-0 AT

ve. Wody dy
T dx dv dx

If Av=0, then 4y=0. [ Otherwise Zg s.e., f(v) would

not be finite J. .. Ady/dz=0["." 42 #0]. .
dy _ Ay _ - do _
Hence, dz ZJst» o 22 0. Similarly, az 0.

Hence, the above relation is true in this case also.

Illus : Suppose y=sin z? ; then we can write
y=s8in v, where v=2°.

dy_dy d”—cos v.22=2z cos x2.

The above rule can easily be generalized.
Thus, if y=5(), where v=¢(w), and w=1v(z),

dy _dy dv dw,
then de = dv dw dz ° and so on

* g d._'g- ‘ g- d—xl i i
4°7. x> ay 1, e, Gx 1/ ay provided neither

derivative is zero.
* Proof depends on the corresponding limit theorem, see § 2'8 (iv).
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Suppose y=f(x), where f(x) is continuous. From this,
in most cases, we can treat x as a function of y.

Let y+dy=f(zx+ Ax).

It is evident that when Ay — 0, 4z — 0.
4y, Az AU /4,

Az Ay=1' T dx Ay

A4y { Aa:}
L Y =
A:;o Az ALyt-)O Ay

Wy |90, or, 9 de_
dzx

Now,

1 e., T, gp X v

4'8. Differential Coefficients of Inverse Circular
Functions.

(1) Let y=sin"z. [lz|<<1)*. ... z=siny.
Zy =cos y= J/1-siny= J/1-2%
_ dy _ da: 1
forz # 1,or —1, dic 1 Jl v

Thus, :—x (sin"’X)--,J—ll':;;- [-1<z<1]

(i) Let y=cos™x. [lz]<<1]¥ . x=cos Y.

Z‘;——smy— — J1=cos®y=— J1-z2.

forz # 1, or, — 1, dm 1/ Ji=z%
Thus, - (cos™'x)= - i_. [
' odx J1-x2

Note. This also follows immediately from the relation
cos~‘zr=gwr—sin-'z.

—l<e<1]

* The domain for which y exists.
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(ii) Let y=tan™z. .. z=tan y.
g—:’—sec“y-1+tanzy=1+x’.
o 1/ G Tae
1
- ——
Thus, (tan x) T2
(iv) Let y =cot 'z. ‘. x=cot ¥y.
dy =~ cosec®y = — (1 +cot®y)= — (1 +z2).
dy /
=1 1+.'z,'
1
— -1 - e ———— .
Thus, F- (cot™'x) i+x2
Note. This also follows at once from the relation
cot~'z=3%r—tan~'x.
V) Let y=sec™z. [lxz | > 1]1* . x=8ecy.
%“ sec ¥ tan y=sec ¥ v/soc®y— 1=z Jx%—1.
. _ . ay de _ 1
.. for @ #1, or, 1, 2.=1 dy o o =1
d -1 .
Thus, gz (see™'x)=r——=—- [lz| >1]
(vi) Let y=cosec™ 2. [ | 2| >11* .. £=cosec 9.
g—;- — cosec ¥ cot ¥

= —cosec ¥ Jcosec?y—1= —z /2% —1.

dy de _ 1

forwr‘l,or,—l,dfz=1 dy— "o JeF=1

* For which y exists.

6

81
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1

Thus, :'; (cosec™'x) = —;—T—— [le] >1]

x2 -1
Note. This also follows at once from the relation
coBeo™ g = Fr—sec—'z.

4'9. Derivatives of Hyperbolic Functions™.

x__ - @ —x
d—i (sinh x)-t—i‘i (9— —20— ) =e__-l_;__ = cosh x.
e“+e " I ef—e "

o )=

e .
— —=ginh ¥. .
smlim) _cosh®z — sinh®z
cosh cosh®z

(cosh x) = Zl% (

K
dx

a _d

= (tanh x) = o

- ;}(;S}Té—w =gech?x.

Similarly, dix (coth x) = — cosech®x.

‘ 4a -a
dx (sech x) = dx (

- c?:::f; = —gech x tanh x.

1 )_0Oxcoshx—sinh @
cosh 2 cosh®z

Similarly, d—.:r (cosech x) = — cosech x coth x.

Let y =smnh™*z. . z=smhy.
g—§=coshu= Ji+sinh = J1+2°
ince, W = /@z_._ L
Since, dz 1 dy = Jl+a?

i 3 -1 = 1— .
4 (inb™'2) Jirat

* For the definitions and properties of Hyperbolic Functions, see
Authors’ Higher Prigonometry, Chapter XII,
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Similarly, o (cosh' 1p)= :7;]5‘—-“ (z>1)

-1
d% (tanh™ 'z, "1—__1“;:_2' (z<1)
a ;a1
Im (coth™z) po By (z>1)
a -1,) = _ 1
e (c8sech™x) 2 JoFT1
b d 1
a “1yo L
s (sech™1z) 7 J1i e (z<1)

The derivatives of inverse hyperbolic functions can also
be obtained by differentiating their values viz.,

sinh 'z = log (@ + J/2z2%1) ; cosh™*z=1log (z+ z®*—1).

g Ly L¥2 g 1y 2t
tanh™ "z = 9 10{, 12’ coth™ =z 9 log z—1
1+ N/1 1+ Jl -z

cosech ™z = log ; sech™ 'z =log —

4°10. Logarithmic Differentiation.

If we have a function raised to a power which is also a
function, or i1f we have the product of a number of functions,
to differentiate such expressions 1t would be convenient first
to take logarithm of the expression and then differentiate.
Such a process 18 called the logarithmic dyfferentiation.

(@) Lot y={f)¥=); to fina I
Hero, log y=¢(z) . log f(x).

Differentiating both sides with respect to «,

5 Z;’= ¢(“)'f(;)' £ @) +¢'(x) . log flz).

=17 [4) L 5 0) . 10g 1))
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(ii) Let y=f,(x) X falx)......fa(x) ; to find g—:

Here, log y=10g f,(x)+10g f,(x)+ - +1log falx).
Differentiate each side with respeot to x.

.o Yady £, ), 4L @),
: y dz fx(z)+fa(m)+ +fn(a")
Now, multiplying left side by y and right side by f, (@), fa(@)-..

fa(z), we get .
g;’=f’. (@) .7:(2) . fo(@).. fal)+F 2(2) fi(2).Fa(@)eifula) e

Honce, differential coefficient of the' product of a finite number
of functions 18 found by multaplywng the drfferential coefficrent of each
Junctron taken separately by the product of all the remaining functions
and adding up the results thus formed, as already obtained otherwise.

[ See § 4 4, Theorem IV, Note ]

4°'11. Implicit Functions.

In mapy cases it may be inconvenient or even impos-
sible to solve a given equation of the form f(x, ¥)=0 for ¥ 1n
terms of . However, the cquation may define y as a
function of . In such cases, ¥ is said to be an implicit
function of . If y be a differentiable function of , then

g’—; may be obtained as follows :

Differentiate each term in the equation with respect to z,
regarding ¥ as an unknown function of # having a derivative
dy, and then solve the resulting equation fo: ;—;

dx
. s ay .. » 2 a =
Illus. : Find dz if z® —2y®+3y*+2=0.

Differentiating each term with respect to z,

3a:’+(— x.2y g‘—z—y" . 1)+6y g;l=0.
dy_y* =87

. - {i'!= 2_9n9 .
R (7] 2””)41:: y*—8z°. T Ao 6y—2ay
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4'12. Parametric Equations.

Sometimes in the equation of a curve, £ and y are
expressed in terms of a third variable known as a parameter.

In such cases, to find g—: 1t is not essential to eliminate the

parameter and express ¥ in terms of z. We may proceed
as follows : .

o et z=4(t), y=v(t).

Then ¢ may be regarded as a function of = and also y is
a function of ¢.

dy_dy dt_dy /dx (dz

Now, §x = at dz—at/ at dt"‘o)
[By§46and 477

For sllustration see § 4°13, Ex. 6.

4°13. Illustrative Examples.

Ex. 1. (a) Show that ;:lz: (") =nz"" ! when n 13 a posutive inleger,
by the product rule. [ Note, Theo. IV, Art. 44 ]
Let flz)=2"=z.x ..z (n factors).

s flle)=z ... to (n—1) factors+z.z .. to (n—1) factors
+g.x... to (n—1) factors
+oeeeee - to » terms
=nz""t.

(b) Assumang that ;w:c"=m"" when n 18 a positwe integer, .show

that the same result as true when n 18 a negatwe wnteger, or a rational
Sfraction, posstwve or negntive.

When = is a negative integer, suppose n= —m, when m is a posi-
tive integer.
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~d

Sl
8
&

_d 1 _0xag"—mag™x1 -
= dz z™ gm T TmaTTi=n

Next let us suppose » is a rational fraction positive or negative,
and let n=p/q, where q is a positive integer and p any integer positive
or negative.

Then,

y=g"=xPI?; let z=x''9, .. x+2? and y=2". Then,

ay_ay [de_ P pg_ . (P-0)|a oPla=1 = -
dz=dsf ds— g 2 m et I=na e

Assuming that dim {e¢(‘)}=e¢(’)¢'(a:) for all real values of =,

deduce that % (z") =nz"=* for all real values of =.

Let

Then,

Ex. 8.

y=a"=¢n10B %

dy_ad ( nlogzy_ mlogz, @
dm_dm(e )=¢ dz(nlogm)

1
o =g"n. z =nz"-?

Fand the dofferentral coefficrent of sn® (log sec ).

Let y={sin (log sec z)}*

=u? where »=sin (log sec ) =sin v, where v=1og sec =

=log w, where w=sec x.

dy_dy dudv du—,—ﬂu.cos v;lj-sec z tan x

* dx du dvdw d

Ex. 4.

=2 s1n (log sec z) cos (log sec ) . tan =

=sin (2 log sec x) tan x.

Dafferentrate (sec x)'*" *.

Let y=(sec z)**2%. .-, log y=tan z log sec x.
Differentiating both sides with respect to x,

1 d1/= -—-—1- . 3
y dz tan z ol sec ¢ tan x+sec®x log sec @

=tan’z+sec?s log sec x.
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. Z—Z=(sec 2)180 T Ltan? x4+ sec?x log sec zh.

Note. Writing the given function as ¢"®2%1088€ % o may pro-
ceed to differentiate it.

(=1)(z—2),
@—3)s—1)
Taking logarithm of both sides,

. log y=1% [log (x— 1)+ log (x —2) —log (x — 8) —log (x— 4)].

Ex. 5. Find ~- if y=

Differentiating both sides wit.!a respect to x,
ldy_1[ 1 1 1 1

yde 2le-1" -2 -3 -
_ m-iomenn
(x~1)(z—2)c—3)(x—4)

dy 2x* —10x+ 11

LTS AP TR T

Ex. 6. Fund gz’ of x=a(0— s 8), y=a(l+ cos 6).
dy_dy [fdr _ a s 8 2 s 46 cos 30 _

do~do/ ae” ~a{f=cos 9" T " 28m®3e = —cot 6.

1 N+ em 2)— N(1=sin 1),

NI Fsen a)+ N(I—smn z)

Ex. 7. Fund ay - af y=tan

On rationalizing the denominator,

2
l—cosx_ tan-t 2 sm’ 3z

== -1 P ]
y=tan “smnzx 2 sin §x cos §x

=tan-' tan §z=§x.

dy

3.

Note. Sometimes an algebraical or trigonometrical transformation
as shown in this example considerably shortens the work. The next
example also illustrates the same method.

aaltzi-1 dy

Ex. 8. If y=tan = find i



88 DIFFERENTIAL CALCULUS

tan 6, ~/1+a: —1_sec§—1_1-—ocos

Putting o= “tan @ sin6

2 8in® }8

=% am 30 cos 36 =tan 0.

Hence, y=tan-! tan §0=%0=3% tan~'x.
dy_ 1 1

T T3 1% e
L4
Ex. 9. Dsfferentrate sun x with respect to 2.
Let y=sinz, 2=22,

. dy_dydz_dy /ds_cosx,
‘" ds drdz dao/ dzT 2z

Note. This is an example of the differential coefficiont of a func-
tion of z with respect tn another function of .
Ex. 10. If sun y=2z sin (a+7), pove that
dy_sin? (a+1),

dx s a

o

From tho given relation, we have

siny
“gin (a+9) ) o @)

Hence z is a function of 7.

.*. differentiating both sides of (1) with respect to ¥,
dz_sin (a+y) cos u—sm y cos (a+y)
dy an? (a+y)

{sm {(n+vy)— W__ sma
gin® (@+y)  8ind (a+y)

Since by Art. 47, g—:-l / g:- the required result follows.

Ex. 11.  Fand the derwative of Alx), where

INGE i () ¢.(x) ¢,
fa (@) @al@) V2 ()
folo) ¢s(@) v¥.la)

and fi (@), fa (@), £« (@), ¢, (x) etc. are dafferent functions of .
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Furst Method :

A+B) - A= filz+h) ¢, &+h) ¢, (x+h) |
falw+n) ¢.(c+h) y,(e+hn)
fale+n) o5(x+7) Py(x+h)
fil@) ¢.(@) ¢, ()
fale) ¢.() ¥,()
filz) os(x) ¢, (@)

file+h)=fi(z) ¢.(zrh)—9.(z) ¥:(e+h)—y,(2)
Fale+n) $a(z+h) Yalo+1)
FACER #s(@+1) Valz+1)

+ | f.(@) #.(x) ¥ale)
falw+R)=fola) ¢ala+h)—¢,(x) Yalz+h)~y, ()
Salz+1) ¢ (z+7) Vs le+h) ,

+ | fil2) ENEC) ¥, (@)
fi(@) %, () ¥ () (1
file+R)—f, (@) b +i)—¢,(@) V.(@+h)—v,(2)

[ The right side on simplification can be easily shown to be equal
to left side. ]

Dividing (1) throughout by & and letting & — 0, we get
A=) @ ¥v.@|+ [fil©) ¢.@) ¢.(2)
fal@) ¢.(@) ¥.() fa@) ¢ Vi)
fil@) ¢.(@) Y.l fale) ¢s@) ¥.lo)
+ | file) oulx) ¥.(@)
| fa @) @a(@) yala)
L@ #.@) vl
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Second Method :
Clearly A (x)=3f, @}¢a(z) ¥4 (z) ~ ¢4 (@) ¥a()}-

O () =Zf, (@fpa (2) ¥u (@) — ¢, (2) Pala)}
+Zf, (@l (@) Y. (@)= 05" (@) ¥al@)}
+Z2f, (el (@) ¥,/ (2) — o, () ¥, (=)}

A@= | F@) 6@ ¥k |+ | k) #@ v.6@
Faa) 6.2 ¥.@) | fule) #.@) ¥.()
fa(@) ¢i() vl fsl@) ¢,(x) ¥s(@)

i) 9.6 ¥ |
f:(@) ¢a(2) Vale)!
£lE) $@ Vel |

Thus the derivativo of a third ordor determinant A(x) is equal to
the sum of the three determinants, each obtained by differentiating
one column of A(z) leaving the other columns unaltered. Similarly,
A’ (z) is the sum of throe determinants each obtained by differentiating
one row of A(:;:) leaving the other rows unaltered.

The similar result is true whatever be the order of the determinant.

Examples IV(B)
Find the differential coefficients of :

1. () {e@}". () (z*+95)". (iii) J(z®+a?).
(iv) 1/(az +b). (v) (€)°. () /log =.
(vii) sin"g. (vi) tan®z. (ix) sec®z.

(x) (sin™*x)®. (i) (tan™'z)?. (xi)) ().

2. (i) e¥™®, (11) &%, (1ii) gax3+ba+o

(iv) e=. (v) et =, (vi) en7'e,

(vii) eM®HL) — gnIm=1),



Ex. IV(B) ]
8. (i) a®=),

4. (i) log ().
(iv) log (z + a).
(vii) log (az? + bz + ).
(ix) 10'ssinz,

(xi) log (sec z +tan z).
« o (xiii) logs sin z.

(zv) logsin« & .

(xvii) log tan (3n + 3z).

DIFFERENTIATION
\/(i/i) 71+2z

. (#) log sin @.
(v) log (ax +b).

(iii) 108 ==,

(vi) log Jz.
(viii) log (log x).
(=) log tan™'w.
 (xii) loga a.
(xiv) loge (a +x).
- {xv1) logsin = (sec 2).

\
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(iii) log cos .

(xviii) log (& + Jz®+a®).

[C. P. 1936 ]

(xix) log (Jz—a+ Jz—b)
(xx) log,o (2z + /dzF+1).
(xxi) % log {(1+2)/(1- ).

6. (i) sin ¢(z).
(iv) cosec ¢ (z).
(vii) sin az.
(x) tan mez.
(xii) sin 2z cos .
(xiv) sin ° (degrees).

{xvi) ™ cos (bx +c).

(xviii) sin « sin 2z sin 3z.
(xx) sin™z cos™z.
(xxii) cot « coth =.
(xxiv) log tanh a.

8. (i) sin™*o(x).
(iii) sec™*¢(z).

(ii) cos ¢(z).
(v) see ¢(x).
(viii) cos (az+b).

(ix) cos’z.
(xi) cosec’z.

(xni) cos 2z cos 3.

(xv) ¢® sin be.

(xv11) tan 3z + cot 4z.
(xix) a tan?z +b cot*a.
(xxi) sin™x/cos™z.

(xxin) tanh z — % tanh®e.

(i) tan™*¢(z).

\/(ﬁ) sin~*z?,

(1ii) tan ¢(z).
(vi) cot ¢(z).
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(v) tan™* ( J/2). (vi) tan™* (2/a).
(vii) sin™?* (z/a). (viii) sec™? z®.
(ix) cos™t /(az +b). (®) cot™* (&%).

(xi) sec™?* (tan x). (xii) tan™? (sec ).

(xiii) tan™* (1 + =z +22).

(xiv) cos™! (8z* —8z2 +1).

(zv) sin™ (32 — 42°).

(xvi) sec (ban"*z) [C. P, 1940 ]

(xvi1) tan (sin™*z). (zvin) tan~?* (tanh 3z).
(xix) cot™* (cosec x + cot ).

(xx) tan~? (sec z + tan ).

(xxi) cot™ (J1+22—2).

i -1l -1l-2?
. (xxi1) cot 1T (xxiii) cos 150
. —satd . —1 2%
(xxiv) tan™* Z'—_—_ a:. (xxv) sin™?* 1+a2
2
- -1z +1 : -1 _2z |
y fxxvi) sec o (xxvi1) tan T

(xxviii) tan~* W:I:IQ’TI)' {C. P. 1943 ]

1

(xxix) tan~ [C. P. 1938 ]

—-_r .

J(1-z*)

-1 flzmaY | s -1 3z—z®

. Axxx) 2 tan '\/(b— a:) Axxxi) tan 1=8%
(xxxii) sech™ & — cosech™*z.

(xxx1ii) tanh™* (tan 3z).
(zxxiv) tanh™* {(z® — 1)/(z=® + 1}.

7. (i) COSs { J(l +Zg)}. (ii) cvm. [ 0. P. 1943 ]
(iif) ecosec? Ve, . (iv) gsm™30)?
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(v) gvU+a+a?) (vi) log tan 3.
> (v{i) «/(log sin ). (vii1) (log sin z)2.
(ix) cos {2 sin~?* (cos z)}. (x) sin® (log =?®).

(zi) log sec (ax+b)®. [ C. P.1941]
(xn) log {2z + 4+ /(42> + 16z — 12}
(x1i1) /(1 +1log o, log sin x). [ C. P. 1944 )
Aziv) tan log sin (e*7).
T () Azt Jo?- "4 Ba— ot T

8. Find the differential coefficients of :

@\) 2*. () (1 + =z (ni) xlos =,
(iv) gl+e+=? (v) a9’ (vi) e®”.
(vii) e**. (vaii) z*”. (ix) (sin z)ten =,

(x) z°°*7*=, [ C. P. 1944

. (xi) (sin z)'°8= [ C. P. 7943 ]
(xi1) z=°. [C. P. 1937 ]
(xiii) (sin #)°°® %+ (cos z)*™ =,

L (xiv) (tan z)°* =+ (cot z)>n=.
9. Find the differential coefficients of :
i) (1 - 2)1 - 2z)(1 - 3z)(1 - 4x).
() Y+ DT a). () o/ (E22)-

o EE) el )

2
vé) z° ./2,—}3- [ C. P. 1941]
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(vii) ﬂ’\/ﬂ)‘ ~ &:‘2 for z=4.

(viii) (1 ;—ﬁ)”' [C. P. 1985 ]

_ (4x+1)* 1)
(2 +8)% 62— 1) .

1 1
b+ = + +b\o~
( —°)" . z%:'i)'; 'i—a)‘ *

)

10. Find gz in the following cases :

(i) 8z*—2%y+2y®=0. [C.P.1941]
_AD) st +a®y* +y*=0. [C. P.1939]
(iil) z® +y® +4z%y—25=0.
AY) 2° +9® =3Bazy. (v) a:*+ yg—a*.
(vi) az? + 2hay + by® + gz + 2fy +c=0.
(vil) z=y log (zy). (viii) 2Py?=(z+y)**%
. Aix) y=a¥. [C. P.1940]
L@ a¥=y" [C.P.1945]
(x1) 2¥v®=1. [C.P.19431 (xii) (cos @)V =(sin ¥)".
(xiii) ™ — 4xy =2.
(xiv) log (zy)=2%+y%. [C. P.1943]
11. Find gz when
\/é) T=g cos ¢, ¥y=>b sin .
(i) =a 00s8®0, y=a s8in>0.

(iii) z=at?, y=2at.
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(iv) x=sin?%0, y=tan 6. [ C. P. 1948 ]

(v) #=a sec?0, y=a tan®0. [ C. P. 1942 ]

(vi) z=a (cos ¢t +log tan 3t), y=a sin ¢.

(vii) c=a (cos t +¢ sin ), ¥ =a (sin ¢t — £ cos ?).
(viii]) #=a (2 cos t +cos 2t), y=a (2 sin ¢ - sin 2).
(ix) @ =2a sin?¢ cos 2¢, ¥y =2a sin’¢ sin 2t.

(=) w=3at/(1+t’) y=38at?/(1+¢®). [O.P.1941]

LMtany- t’ sin o=

12. If y=¢"27'® gnd z=9"°"%""%, then dy/dz is indepen-
dent of .

lf‘t,- [ C. P. 1944 ]

18. Differentiate the left-side functions with respect to
the right side ones :

(i) 2® w.r.t. z*. (i) sec z w.r.t. tan .
(iii) log,o w.r.t. &2, (iv) tan™'a w.r.t. 3.

122
1-g?

—
(v) cos™* i +:,— w.r.t, tan™

?)
(vi) tan™? A +a?)-1 w.r.t. tan” a,

(vii) z827'% w.r.b. sin"*z. [C. P 1938]
14. Find the differential coefficients of :
1 1 N S
W Ja+at vi-o @ Jerar Jerd

i ltztz e im:t_l.
(i) {l a:+a:} (iv) lo -z+1

A tog Nf(HEEREL i 1og «/{l:zz: =}
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(vii) tan™? ,\/ I +w)

(viii) tan~? I%:_m [ C. P. 1942, '44 ]

- -1 1-cosr). -3 cos x—sin x
(ix) tan "/ (f +cos a:) (x) tan cos z+sm
(xi) sin™*z +sin~* /(1 — z2).
(xii) sin™* {2az J(1 - a22).

.. -1 A+t - S - 7?)
(eih) tan™ n S T T L9

(xiv) sin {2 tan~?* ~/ (i _'_z)}

(xv) M)+ JA=a)
Ja+a) - Ja=a)
Ja®+a)+ Ja® -a

) Y i Y o

o
(zvii) log (i E::) — % tan"ta.

. acos ¢—bsin 7|
(xviri) log '\/ (a, cos £+ b sin w)

(xix) log %- [C. P. 1942]

(xx) tan™?* {"/(a,+b) tan }

(xxi) sin™* atbcos T (xxii) cos~* 8+5 cos z,
b+acosz 5+3cos

(xxiii) log {:ﬁ:;”f:}
. Nitz+ J1-z\, 1
I £ = R
w+;—
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Find :Z in the following cases (Ez. 15-23) :

156.
16.
17.
18.

19.°

20.

21.

22.

23.

24.

25.

y=1%z® tan"*z— 3% + % log (1 +22).

y =3z /(a® - z*) +%a® sin™? (z/a).

y=1log (z + Jz®—a?) +sec™* (z/a).

y=zJ(z®+a?)+a® log (z+ J:i”+a2).
J@? —y?

= a_,2 a®—y?)
z= J(a V)"’ 1084_,_ J(@? _yz)

1+2, 1 ]+:r+a: -1 a:J3
—Iog1 '|'210g1 x+w2+J3tan 1-2
_ 1 1+ /2422, 1 ot sz
V=4 val T Jat e Tay e R g

y=1z(z® + 1% - da(2® + 1)?" —% log (zx+ /22 +1).

yv= = . —m + —}v —n
1+g" ™ +a% 1+2™ " +2%

———-_-1 —_—

1+ Pf " P

+

1t fla)= (“ P » show that

a+b+2x

b+a:)
b -a? (a

(0 =

r© (Zlogb " b

Ma+bz)~ Jla-bz),

If f(z)=1og Ja+bvz)+ Jla-bz)

find for what values of #, 1/f'(x)=0.

26.

If sin z sin (—’—‘ +m) sin (2"+ w)
” n

. [r—1 smna:
...... n|\—=a+ =
8i ( L x gn=1

97

atbd
-5) - [c. P. 1946]
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show that

cot w+cot(" +w)+cot (2’-'+a:)
n n

+ereeve +cob (n-T:—ln+a:) =gn cot nw.
[C.P. 1945}
27. (i) From the relation (where 7 is odd)
2"~ cos 6 cos (0 + 21) cos (6 + é7—”) ------ o
n n

...CO8 {0 + 2-(7"—5—1)-7}}=cos n6,

deduce that
tan 6 + tan (0 +2;) + tan (0+ 4:) Foeenens

+ tan {0 + 2_(7!' ;mlh}= n tan né.
(ii) From the identity
cos 2 cos & cos yereeee cos 2 = sin@ __,
2.7 92 a8 2™ 2" sn (6/2%)

show that
%tang+g—‘,tta.ng—z+ ------ +2—1,,ta.n28,,
=§‘l'7. cot Ee,;—cot. 0.

28. Find f'(z) in the following cases and determine if 16
is continuous for 2=0.
(i) f(@)=0 or 2% cos (1/x) according as z is or is not
zero.
(i) f(x)=0 or z® cos (1/x) according as z is or is not
zero. :
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29. If(1+x)"=co+ecix+cym?+-eeees + cpx™, then
(i) c1+2cq +38cg+ oo+ +nep=n.2""1.
(ii) co+2cy +8cqy+ oot +(n+ 1oy =(n +2)2" 2.
30. Ify=1+-"1— 4 ——%T
y=1 z—a, (@T—a.)z—as)
* + — ‘aﬁqm_ﬁ o ,
- ® (97—01)(50"013)(:17-(13)
show that 4

ay _ z/{ a1, @s _a_a,_},
dr zlay—2z az—x az—=x

*81. If Al@=|(z—a)* (x—a)® 1|, show that
(z-0)* (x-0)® 1
(z—0c)* (x—0?® 1
AN@)=3| (z—a)* (@®—-a)® 1
x-b)* (z-0b)?* 1
1

(z-* (z—c)?

*32., If A(x)=| sin cosx singz
cosxz —sinxz cosz
T 1 1
show that A'(z)=1.

%83, I flx=l1 1 1 1
1 =z 1 1 J
1 1 = 1 ’
1 1 1 exi

prove that f'(z) = 3(z— 1)°.
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*84. If the determinant of the 4th order

@z a a a
a xz a a
a a x a

e a a =z
be denoted by A,, show that A’y =4/,

ANSWERS

L () nlpl" (@) ) 140 @+5)°%  (in) of S(z?+a?)."
(v) —al(azc+0)*. ") 39> (vi) 1/2z Nlog x.
(vii) n s1n™~'x cos x. (vin) 5 tan*z sec®z.
(ix) 8 sec®z tan . (x) %(:;;- I:)’ (x1) 2—t§'P -—:” .
(xii) ;t/f:() ) 2. (1) e208). (). (1i) ae®=.
(m) (Qaz+1b) e== +b=+e, (1v) 4z%**.  (v) sec’z ' 2,

pNTHL oNT-1

¥) 27 @) 5 51 2 W1

8. (i) (log. a. a®@), @' (z). (i1) 2(x+1)log 7. 7343z
(iii) log, 10.10'°€ #° (1 4+ log ). Ul) & (2)le(x) (i) cot .
(ii1) —tan z. (iv) 1/(z+a)- (v) allaz+b). (vi) 1/2z.
(i) (Qaz+b)/(az?+bz+c). (vi1) 1)z log .

(1x) 1010680 T 105 10, cob 2. (x) 1/(1+a?) tantz. (x1) sce z.

x cobt . Jlogr—1log sin ¢
@ (log x)?

{x1i) —log alz (log z)*. (x1ii)

« log #—(a+ =) log (a+x)_ (xv) log 8in z—= cot  log z,
« (a +a)(log x)* «(log s1n x)3?

(x:-v)

(xvi) tan z log 81n = + cot x log co8 =,

(log sin z)* (zwii) sec 2.

2log.o e

1
{xviii) ../" e (x3) et (xx) Az 1
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) ; 1 @) cos ¢(z).¢' (). (1) —sin ¢(@).9 (@)-
(ii1) sec?¢(z) ¢’ (z). (iv) —cosec ¢(z) cot ¢(x). ¢’ ().

(v) sec ¢(x) tan ¢(r).¢' (x). (v1) —cosec?d(x).¢’ (x). (vii) a cos az.
(viii) —a sin (ax+0d) (1x) —sin 2z. (x) m sec?mz.
(x1) —3 cosec®z cot x. (x1i) 3(3 cos 8z+cos ).

(xiii) —32 (5 sin 5z+simx) (x1v) 118'0 cos z° (degrees).

X9 e** (a sin br+b cos bx). (xvi) e**{a cos (bz+c)—b sin (bx+c)}.
(xvii) 3 scc?3x—4 cosec?dr Jxwiii) % (cos 27+ 2 cos 4z— 3 co8 Gx).
(xix) 2(n tan « sec?z—b cot « cosec®x).

(xx) s1n™- 'z cos®™ 'z (m coslz—mn sin’g).

gin™ 'z .
(m cos?z+n sin3x).

(=x1) neiy

(xxii) —cosec?x coth z—cot x cosech ?x.

(xxin) sech*x. (xx1v) 2 cosech 2x.

&(r) () | s ()

80 iy W ey W) S e @ =1

2 1
() 32 ©) 21+0) va' o) ga g
(vii) 'J;il_;j' (vin) z N/':“

a e
() = Nl-—(rw:+b) 2 Naz+b (=) 1467
1 8

(=D g 81 = Wein2z— cos’z (i) 1+]:): z
(xiii) =~ iF (11:5:2:-:0‘)‘ (xiv-) - ~/14—?‘ < (xv) :/.‘I.-—'m"
D) % o (xvii) 1=z}, (xviiy) & sech .
(xix) 3. . (xx) 3. (xxi) %]—.'-:—z—" (xxii) -——1—_'_1;,-
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(xxiii) T-‘O-%:c;‘. (xxiv) 1. _%-—,- (xxv) i _3 pocl
- 2 .
(xxvi) et (xxvi1) — i +a: (xxvin) —5_:/?1"}—1'
1 1
bexix) 57 o Cxx) o =a)
s 3 . 1 1 1
fexxi) 3 [ o e =2 [t - Gkl
‘
(xxxii1) & sec z. (xxxiv) 1/z.
€ e
Neot z
7 —g sin ( ;J1+a:’) 5 o —eNerE
@ — R (1) ‘2sn’m. Acot z
53§) —cose0” Nz _ COBNT sy 28Ity osinTiz)?
(iii) —¢ o 8in® Nz (iv) N s

(1+22) log 3 g y1+2+27)
2 V14 o+ :

=)
(vii) # (log sin 2) 3 cot .

(ix) 2 ;n 22.

(xi) 3a (ax+0b)? tan (az+0)°.
i) -t-1 prepy (i)
(xiv) sec? (10,; sin ¢*”) cot (¢*”) e*”.2a.

=v) ——=— d == (A(w+ JeEP=1)*—Blz— Jz

8. (1) z* (log z+1).

(1) (1+a)* { log (1+z)+

(vi) cosec z.

(vin1) 2 cot « log sin =

(x) 22-* sin (4 log z).

log sin ¢+ cot x log =

92 nJ(1+1og z log s z)°

_‘it"ijn}_

T }.
1+=z

(ii1) 2 log z.x
() a°”.a* (log a)*.

(vii1) 2*".¢® (z~* +1log ).

_logz
Nai-z*

(x) 08~ 1z {

(log z-1)_

(v) @+=+=? {(2z+1) log z+2~ +1+z}.
(vi) e*".e=. “.2 (log z+1).
(ix) (ein )%™ % {soc®s log (sin z)+1}.

cos"a:}

(vi1) e

x

%)

(xi)_ (sin 2)19F ® {z=3 log sin x+log @ cot z}.
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(xii) 2=°.z® {log  (log z+1) + 1/x}.
(xiii) (sin )°®° % {cos @ cot z—sin = log sin o}

+(cos )™ T {cos & log cos T—8M & tan .
(xiv) (tan ac)"“ % {oosec?z (1—log tan )}

+ (oot )37 % {sec?z (log cot z—1)}.
_S8z?+6z+2 |

9. (i) 960* — 150z + Tz — 10 (i) Haler 1) @2
S (o 09 e
@I el
e et e e S A
0 () o= ) -EET ) e
T Rt
i 2T ) U () g = 1og o)

v (x log u—1), _y*{1=log x),
) 2 yloga—a) &) Tai(1-log)

I R F
11. (i) —(b/a) cot ¢. (1) —tan 6. (i) 1/t.
(av) & sec®@ cosec 0. (v) 3 tan 6. (v1) tan ¢
(vii) tan ¢. (vin) —tan 3¢. (1x) tan 3t.
(x) t2—t%)(1—2t%). (x1) 1
18. (i) g=°. (ii) sin . (1ii) % x~* log,o 6.
(v) 1/2z (1+27). (v) 1. (n) 3.

(via) g®in”'® {log o+ sin"w-_’t/.]:i‘l:i}.
P
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14.0) gla-at -+t @ 5ok, [7:+;‘ =)
. 1—-0? 2(1—2?)

) iv) ;7T
(i (1+w+m2)§(1_m+mu)£‘ (iv) 1+ z*+x

(v) sec a.

(vi) cosec z (wi) ﬁi—m“ (viii) —3. (ix) &.
_ . s ___ﬂ_ sy T
(x) —1. (xi) O. (xii) Ti—ain’ (xi1i) Ji=29
i) — T N L1
(xiv) :J(l z7) . (xv) z? (1=27) a:"..
(xvi) - {1+ ’Ja . ‘] . (xvii) :—li’x"
—ab
a? cos®z—b? sin’g

(xx) W (d -b ’)

2(a+b cos )’

2ab
a* cosz—b® sin’z
- NJb2—a?) os 4
b+a cos x (xxii) 543 cos @

-1 ot + 2 +2
(xxiii) d1+ o (xxiv) TN Py (xxv) 1— (@ F22)7 "

(xviii) - (xix) -

(xx1)

16. »? tan='z. 18 J(a®—1z?) 1 J’*“

4 Y .
18 2@ +a). 190 . l—m“

1
2 g i 22. z°® J(z®+1) 23. 0.  25. O, £(a/b).

28. (1) f'(x)=0 or sin (1/x)+2x cns (1/7) according as x is or 18 not
zoro ; f (z) is discontinuous for z=0.

(ii) f' (@) =0 or 32* cos (1/r) +a sin (1/x) according as « 18 or 18 not
gzero; f’(x) is continuous for z=0.

4'14. Significance of derivative and its sign.

A very important aspect of a derivative, following from
its definition, is as a rate-measurer. This will be clear
from the following examples.

Let s denote the length of the path covered by a moving
particle in any time f. Clearly, as the particle moves
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continuously, s has a definite value for every value of ¢,
and accordingly by definition, s is a function of ¢, If s+ 4s
be the value of s corresponding to the value ¢+ A4t of &,
then as As denotes the distance moved over by the particle

in time 4¢, the ratio 4s in the limit, when 4¢{ becomes

s
4t
infinitely small, repr'eseuts the ratio at which the particle is
describing its path per unit of time at the moment. But,

on the other hand, f{to%; is by definition (since As and A4t

denotie corresponding changes in s and t), the derivative of
s with respect to {. Thus the derivative Z; respresents the
rate of change of s with respect to ¢, 1.e., the speed of the
moving parbicle.

More generally, if ¥ be a function of the variable z,

changing continuously with z, then A4y being the change
in ¢ corresponding to a change Ax of =z, the derivative

ay Ay

— =TI

iz Lo Az represents the rate of change of y with respect
to x.

Thus » being the velocity of a moving particle at time ¢,

vv represents the time-rate of change of velocity, .e., its

dt

acceleration ; again, if ¥V be the volume of a quantity of
gas enclosed in a flexible vessel at a constant temperature,
when its pressure is » which we can change at pleasure,

gp represents the rate of change of volume with pressure ;
and so on.

Next we may note, that ¥y changing with , +f ¥ increases
when x is increased and diminishes when T is diminished,
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the corresponding changes Ay and Az are of the same sign,

and accordingly the ratio g: is positive. Hence, g: (when

it exists and 18 # 0) s positzve. Similarly, if y decreases
when x 15 increased, or wncreases when x 15 diminished,

3: 18 negative.
.

Conversely, a positive sign of flz at a pownt ¢ indic.a.tgs

that in the neighbourhood of the point, ¥ increases or
decreases with @, ¢.6., both ¥ and z increase or decrease

together. On the other hand, a negative sign of dy  eans

that y decreases when 2 1ncreases and vice versa near
the point.

A formal proof of the above 1esulf 1s given helow.

A theorem on the sign of f'(x).

If f(a) >0, prove that f(x) < fla) for all values of
< a but sufficeently near to a, and f(z) > fla) for all
values of * > a but sufficiently near to a.

Since fll@>0

It f(amtl_') - f:(g’)
h=>0+0

Lt f ((Iz h) f (a)

h->0+0

> 0, and

for all sufficicntly small values of k, we have
f(a h) < fla) < fla+h).
In other words, there existse some mneighbourhood
(a—38, a +6) of a in which
f(z) > fla) for x > a, flz) < fla) for z < a,
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i.e., f (@) > f(a) for z > a but sufficiently near to a
f(x) < f(a)for # < a but sufficiently near to a.

When the function y=f(x) is represented graphically,

a geometrical interpretation of the derivative g—z corres-

ponding to any value of z may be given as follows :

Let P be a point (z, ) on the curve, and @ a neigh-
bouring point (z + Az, ¥ + Ay) which may be taken on either
side of P, so that Az may have any sign. The equation to
the line PQ is (X, Y denoting current co-ordinates),

=Y TAu—y =Y (x_
Y-y= T g =g X 0=, (X-a).

If 8 be the inclination of this line PQ to the z-axis, the

slope of the line, ve, tan 6--4Y -~ ()
Az

Now let @ approach P along fthe curve indefinitely
closely, so that Ax —> 0. If the straight line PQ tends
to a definite Iimiting position TPR as @ approaches P from
either side, then TPR is called the tangent to the curve
at P. In this case, if ¥ be the inclination of TPR to
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the z-axis, then as PQ tends to TPR, 6 = v. Also, as

Ay _dy - .
Az — 0, f/t o 25~ dz from definition. Thus (i) leads to
-4y,
tan ¥ dx

Hence, the derivative %’3 for any value of x, when it

exists, s the trigomometrical tangent of the inclination

L J
(otherwise known as slope or gradient) of the tamgent line
at the corresponding pownt P on the curve y =f(z).

Also, if gz (=tan v) be positive, v is acute (as at P) in

the figure below, and at that point y increases with . If

Zfé i.e., tan ¥ be negative, ¥ is negative (as at @), or is

obtuse (asat B), and y diminishes when z increases, or vice
versa.

At a pomnt where gg-o, the tangent line is parallel to

the z-axis (as at F), and at a point when % — =, {.e.,
g—: — 0, the tangent line is parallel to the y-axis (as at G).
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4°15. Differentials.

If f(z) is the derivative of f(z), and Az is an increment
of @, then the differential of f(z), denoted by the symbol
df (z), is defined by the relation

df(z) =1 (z) Az. e @)

If f@)==, then f’'(z)=1, and (1) reduces to dz=dz.
Thus, when z 1s the independent variable, the differential
of x4 =dx) is 1dentical with Ar THence, if y=f(x), the
relation (i) becomes N

dy =t (x) dx . ()
2.e., the differential of a function s equal to 1ts derivative
multiplied by the diffeiential of the independent variable.

Thus, if y =tan z, dy =sec?z dz.

From the definition of the differential of a function, the
{ollowing formulwe for finding differentials are obvious :

d (¢) =0, where c 18 a constant
d(u+v—w)=du+dv—dw ;

LY

dwv)=udv+ov du; (Z(Z’)=2—d'zﬁ;—u@9-

Differentials are especially useful in applications of
integral calculus.

Note 1. The students should note carefully that although for the
independent variable x, increment Az and differential dz are equal,
this is generally not the case with the dependent variable y, s.e.,
Ay # dy generally.

Note 2. The relation (n) can be wrnitten as dy/dz=f (x); thus
the quotient of the differentials of ¥ and « 18 equal to the derivative
of y with respect to z.

Probably on account of the position that f'(z) occupies in equation
(ii) above, f (x) is called the dufferentsal coefficient.
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4°16. Approximate Calculations and Small Errors.
4y
az
=f'(z) Az for small values of 4z. Thus dy and A4y may be
taken as approximately equal, when A4z (=dx) is small.
Hence, when only an approzimate value of the change of
a function is desired, 1t 18 usually conwenient to calculate the
value of the corresponding differential and use this va.lu.e.-

If y=f(z), since Ath‘DO =f'(z), Ay is approzimately

Small errors arising in the value of a function due to an
assumed small error in the independent variable may also
be calculated on the same principle.

As an illustration let us consider the following cases :

The radius of a sphere is found by measurement to be 7 inches ;
if an error of Ol inch 1s made 1n measuring the radius, find the error
made in calculating the surface-area of sphere.

If S be the surface-area of the sphere of radius r,

S=dwr?.
. dS=8wr dr.
Here r=T and dr="01.
.*. approximate error in the calculation of the surface-area

=dS=8x32xTx'01=1'76 sq. in.

Note 1. The actual error is 4 {(7°01)*—72} which is very nearly
equal to 1'76.

Note 2. If dw is the error in =z, then the ratios (i) ":—:3 and

(if) 100-‘? are called respectively the relatwe error (i.e., error per

unit ) and the percentage error. They may be easily obtained by
logarithmic differentiation,
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4'17. Illustrative Examples.

Ex. 1. If the area of a cwrele increases at a wniform rate, show
that the rate of wncrease of the pervmeter varies snversely as the radvus.
[C.P.1930}

At any time ¢, let 4 be the area, P the perimeter and r the radius
of the circle Then A=wr?; P=2rr. .'. P'=drd.

.*. differentiating both sides with respect to £, we have,

dP d4 dP_2r dd_ 1 dd,
- P Tt G T @G &
. dd . . dP
Since ar is constant, . dt >

Ex. 2. 4 ladder AB, 25 ft. long, leans agawnst a vertical wall.
If the lower end A, which 18 at a distance of T feet from the bottom of
the wall, us beang moved away on the ground from the wall at the rate
of 2 ft per second, find how fast 1s the top B descending on the wall.

Let the distance of 4 and B from O, the bottom of the wall, at
time ¢ be z and y. Then the velocities of 4 and B are - dx u.nd _y H

hence, as given here, gf =9,

Now, «?*+y*=25%

Differontiating with respect to £, 2z 'f;+ ﬂy d” =0,
dy_ _xdz, .
dt y dt o ()

When =7, y?=252-72=576=242% ... y=24.

Hence when z="17, y=24, ‘Z’;= 2;

.'. from (1), == —-g4x 2= —172 ft. per sec.= —7 inches per sec.

.*. the cnd B is moving at the rate of 7 inches per second éowards O
(°.* dyldt is negative ) 4 e., B is descending at that rate.

Ex. 8. The adwbatic law for the expanswon of air is PV*'*=F,
where k 18 a constant. If at a gwen tume the volume s observed to
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be 20 cu. ft. and the pressure 1s 50 lbs. per square wnch, at what rate
is the pressure changing of the volume s decreaswng at the rate of
2 cu. ft. per sec. ?

PV 4=k,

Taking logarithm of both sides and differentiating with respect
to ¢,
1dP 14V

PaTtva~™ .
When V=20, P=50x 144 lbs, per sq. ft., and ‘37= —2 then ;@ w»
. 1 dP 1
S EOX 144 dt+14x (- 2) 0
oo Po14x50x 144 s, sg. .

=°14X% 50, 4.c., 71bs. per sq inch per sec.

Ex. 4, If y=2z—tan~‘z—log (x+ o/1+2?), show that y conis-
wnually encreases as x changes from zero to positiwe nfinaly.

. [C. P 1942 ]
dy 1 1 { 2
Weog—~ . [ ey DV S
Hero 127271440 z+ N1+a? 1 2,,/1+m*}
g1 __1_.
1+2* f1+2?

Bince 1+2? and ~/ 1+x* are each greator than 1,
g
v 1.&2'1 and J1—~ , are each less than 1.

dy . .
o d: is positive ; also =0, when =0,

.*. for positivo values of @, ¥ must be positive and continually
increases as z increases from O to co.

Ex. 5. Fund approxymately the value of tan 46°, gwen 1°='01745
radwans.
Let y=tan z. .. dy=sec’s dz.

Thus taking z=45° (=), dr=1°="01745, we have
dy =2 X *01745 = "03490.
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Hence, for an increment of 1° in the angle, the increment in the
value of tan 45° is '03490.

.. tan 46°=tan 45°+ 03490 =1°08490 approximately.

Ex. 8. If in a triangle the side ¢ and angle C remain constant,
while the remaimng elements are changed slightly, show that

da db

cos 4 " cos B=o'
2

. a _ b _ _c .
g any triangle, o= = o B=w ©

Bince ¢ and C are constant, ®.". c¢/sin C=constant= K suppose.

. - a — b 1
‘' smAd sin B_K'

.. a=Ksin 4, and .'. da=Kcos 4 d4.
‘Also b=K s1in B, .. db=K cos B dB.

da , db _
cos 4 cosB"K'(dA""dB)_K‘d(A"'B)

=EK.d(r—C)
=EKx0=0, (°.* C is constant)

Examples IV(C)

1. A point moves on the parabola 3y=22% in such
& way that when =3, the abscissa is increasing at the rate
of 8 ft. per second. At what rate is the ordinate increasing
at that point ?

2. A toy spherical balloon being inflated, the radius is
increasing at the rate of ¥if inch per second. At what rate
would the volume be increasing at the instant when
r=3% inches ?

8. A circular plate of metal expands by heat so that its
radius increases at the rate of °25 inches per second. Find
the rate at which the surface-area is increasing when the
radius is 7 inches.
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4. The candle-power of an incandescent lamp and its

6
voltage V are connected by the equation C= %—)Zﬁ

Find the rate at which the candle-power increases with
the voltage when ¥ =200.

6. If Q units be the heat required to raise the tempera-
ture of 1 gramme of water from 0°C to t°C, then it is
known that @=¢+107%.2t2+1077.3{®>. Find the specific
heat at 50°C, the specific heat being the rate of incregse of
heat per unit degree rise of temperature.

6. A man 5 ft. tall walks away from a lamp-post 12% ft.
high at the rate of 3 miles per hour.

(i) How fast is the farther end of his shadow moving
on the pavement ?

(ii) How fast is his shadow lengthening ?

7. If a particle moves according to the law x o 2,
when z is the distance (measured from a fixed point)
travelled in time ¢, show that the velocity will be pro-
portional to time and the rate of change of velocity will be
constant.

8. Water is poured info an inverted conical vessel of
which the radius of the base is 6 ft. and height 12 ft., at the
rate of 5% cu. inches per minute. At what rate 1s the water-
level rising at the instant when the depth is 3% inches ?

9. If the side of an equilateral triangle increases at
the rate of /3 ft. per second and its area at the rate of
12 sq. ft. per second, find the side of the triangle.

10. If in the rectilinear motion of a particle s =wt+ %f12,
when % and f are constant, prove that the velocity at time
¢ is u + St and acceleration is f.

11. A man is walking at the rate of 5 miles per hour
towards the foot of a building 40 ft. high. At what rate
is he approaching the top when he is 30 ft. from the foot
of the building ?
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*12. A circular ink-blot grows at the rate of 2 sq. inches
per second. Find the rate at which the radius is increasing
after 2% seconds.

*18. The volume of a right circular cone remains
constant. If the radius of the base 1s increasing at the rate
of 3 inches per second, how fast 1s the altitude changing
when the altitude 1s 8 inches and radius 6 inches ?

*14. Sand is being poured on the ground and forms
a pile which has always the shape of a right circular cone
wheme height is equal to the radius of the base. If the
sand is falling at the rate,of 7'7 cu. ft. per sec., how fast
is the height of the pile increasing when the height 1s
3’51t ?

*15. The marginal cost of a commodity being the rate of

change in cost for change in the output, 1f f(w)-=-aa:-i—’$%+ d

(b > c) be the total cost of an output z show that the
marginal cost falls continuously as the output increases.

16. (i) An aeroplane is flying horizontally at a height of
# mile with a velocity of 15 miles an hour. Find the rate
at which 1t is receding from a fixed point on the ground
which 1t passed over 2 minutes ago.

(11) A kite is 800 ft. high and there are 500 ft. of cord
out. If the wind moves the kite horizontally at the rate
of 5 miles per hour directly away from the person who 1s
flying it, how fast is the cord being paid ?

17. If ¢(@)=(z—1) e*+1, show that ¢(x) is positive for
all positive values of z. [C. P. 1943 ]

18. If f(z)=cos x + cos’x + x sin x, then f(zr) continually
diminishes as z increases from O to ¥n.

19. Show that for 0 < 8 <3n,

@) s“; 8 continually diminishes as 6 continually

increases.
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(ii) 4 gin B
2+ cos 6
*20. (i) Prove that if 0 < z < 4=,

~ 0 increases with 6.

_1 . 1 e, 1 .

(@) 1 518 <cosz<1 ¥k +4!m.

_1 s ; _1 s, 1

) = 31% <s1nw<w“3!a: +5 2
(i1) Show that if = > 0, —

(@ > log 1+2) > r-— 322
() 322 +2x+3 > (3—2) &

21. Given y=¢:—:—i1£“;:’ Ig—:g:'g’ prove that
() if a=1,b=2, ¢=38, d=4, then y decreases for all
values of z ;
and (i} f a=2,b=1, c=38, d=4, then y increases for all
values of z.

22. Find the range of values of z for which each of
the functions,

(i) «® — 822 — 242+ 30, (ii) z° - 9z?% + 24z — 16,
increases with .
(iii) 2z°®—-92® +1922- 3, (iv) z* - 42® + 422 + 40,

decreases as x increases.

23. Show that the function z®—38z%+6z—8 increases
with .

24. Find the approximate values of the following by the
method of differentials :

(i) loge 101, given log. 10 =2°308.
(i) log.o 10°1, given log,o e="4348.
(iii) /688, given /625=25.
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(iv) sec246°, given 1°="0175 radian.
(v) sin 62°, given sin 60°="86603.

25. What is the approximate change in sin 6 per minute
change in 6 when 6=60° ? ( given 1'='00029 radian. )

*26. Find approximately the values of :
(i) «®+ 422+ 22+ 2, when z=2"00012.
(i) 2* +42°+1, when z=1'997.

*Z7. .Find approximately the difference in areas of two
circles of radii 7" and 7'01'e

*28. What error in the common logarithm of a number
will be produced by an error of 1% ih the number ?

l [ logyo e="4343 ]

i 29. Tind the relative error (s.e., error per unit area) in
calculating the area of a triangle two of whose sides are
5 and 6 inches, when the included angle is taken as 45°
ingtead of 456° 2'. .

,30. Show that the relative error in computmg the
volume of a sphere, due to an error in measuring the mdlus,
is approximately equal to three times the relative error in
the radius.

J 31. The angle of elevation of the top of a tower as
observed from a distance of 100 ft. from the foot of the
tower is found to be 60° ; if the angle of elevation was really
60° 1/, obtain approximately the error in the ocalculated
height. [ 1’='00029 radian. ]

J32. The pressure ? a.nd the volume v of a gas are connect-

ed by the relation pv''* =%, where % is a constant. If there
be an increase of ‘7 per cent. in the pressure, show that
there is a decrease of 5 per cent. in the volume.

/ 88. Anelectric current C as measured by a galvanometer

\/15 glven by the relation C « tan 6. Find the percentage
error in the current corresponding to an error of ‘7 per cent.
in the measurement of 6, when 6= 45°.
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~/

*84, The time T of a complete oscillation of & simple
pendulum of length ! is given by the relation 7' =95 ./(1/g),
where g is a constant. Find approximately the percentage
error in the calculated value of 7' corresponding to an error
of 1 per cent. in the value of I.

*85. (i) In a triangle if the sides and angles receive small
variations, but a and B are constants, show that

tan 4 db=05 dC. .

(1i) In a triangle if the sides a, b be constant and the
base angles 4 and B vary, show that

<

__,dA C—— = - —TJ-ﬂB-,—,—,-T-.
NJa?-b?sin®4  Jb*—a® sin’B
*86. If a triangle 4ABC inscribed in & fixed circle be

slightly varied in such a way as to have its vertices always
on the circle, then

da_, db de

cos A cos B cos G=0'
ANSWERS
1. 6 ft. per sec. 2, 14 cu. inches per sec.
8. 11 sq. in. per second. 4. 96. b. 1:00425.
6. (i) 5 miles per hour. (1) 2 miles per hour or 2'98 ft./sec.
# ins. per minute. 9. 8ift. 11. 3 muiles per hour.
12. 25 inches per second. 18. Decreasing 8 ins. per sec.
14. "2 ft. per sec.
16. (i) 9 miles per hour. {i1) 4 miles per hour.
22, (i) z>4o0r < —2. (i) z>4o0r<2 (i) 1<z <2
(ivye<Oandl<z<2 24 (i) 2813 (1) 10043,
(tii) 2'516. (v) 207, (v) '8835.  25. "00015.
26. (i) 30°0036. (i1) 82856 * 27, "44sq. inches.

28. *0043. 29. °00058. 81. 116 ft. 88. 1'1. 84, ‘5



CHAPTER V
SUCCESSIVE DIFFERENTIATION

5'1. Definitions and Notations.

We have seen that the derivative of a function of z say
f(®), 18 in general a function of z. This new function
(i.e., the derivative) may have a derivative, which is called
the second derivative (or sesvnd differential coefficient) of f(z),
the original derivative being called the first derwative
(or first dafferential coefiicient). Similarly, the derivative of
the second derivative 1s called the third derivative ; and so
on for the nth derivative.

s, W_g, .

Thus, if y=2~, dz

. a (dy - a 2)_
Again, i ( dw) o (8z2)=6z.

a d_'u‘, dly,
Now, dw( i) denoted by dz?

3
d;z,’ (4., the second derivative of ¥ with respect to )

in this case is 6z.

2
. d
Again, j& gj{) = dz (6z)=6.
1 (d%y\ . d®
Now, éz (;ﬁg) 18 denoted by —d}fé-

8
%;g (v.., the third derivative of y with respect to )

is 6 here.
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Similarly, the nth derivative of ¥ with respect to z is

aty
generally denoted by "

If y=Fx), the successive derivatives are also denoted

by Vi Yas Yaseeoceoseonne YUn
or, ¥, v, Y e, ("
or, 1, ¥, 5 ST
or, f'(z), =), £ (a:) ............ M)
or, Df(z), D*(@), , D°f(@)............ D"f(a:)

D standing for the symbol -‘%: .

5'2. The nth derivatives® of some special functions.
(i) y=x", where n 1s a positve integer.
yi=nz""r;y,=nln-1)2""%; yg=nln-1xr-2) 2" ;
and procgeding in a similar manner,
yr=nn—-1)n-2)..5n=(-D" " <n)
yn=nln—1)n-2)..8.21=n1
2.e., D"(x")=nl.
r. Since ya=n !, which is a constant, #niys Ynigeseesenes oto. are
all zeroes in this case.
(ii) y =(ax+b)™, where m s any number.
yi=ma (az+d)™ *; y,=m(m—1a* (az + )™ ?
ys=mlm ~1)m — 2)a® (az+b5)™ 2 ; and proceeding
similarly,
n=m{m = 1)m — 2)...(m — n + 1) a”™ (az + b)™™,
e D"(ax+b)" =m(m=-1)(m=-2)...(m-n+ 1)a"(ax+b)'*"

* Btrictly speaking, in these cases, the nth denva-tlves are to be
established generally by the method of Induction.




SUCCESSIVE DIFFERENTIATION 121

If m be a positive integer greater than n,
. m !
since m(m—1)m —2)...(m —n+1) I —n) 1
. m ! - m LI 4
KA D’(ax-l-b)'“-(m__n)! a" (ax+b)m-n, - P,, o (ang)
m being a positive wnteger greater than n.
\)lote. If m be a postwve wnteger less than n, D (az+b)™ =0,
When m=mn, D" (ax+1)"=a" n !
- (iil) ¥y =e8%,
Yi=ae™; y,<a%e; yo,=a%"®; ..yn=a"
oo D" (e2x) = ganetx,
Cor. (i) D" (e*)=e*.
Cor. (ii) y=a"=¢*18%, -, D"(a%)= (loge a)"a®.
1
Gv) y= = Y .
yi=-1(z+a)"?; yo=(-1)(- 2z +a)"®
=(-1)2.2!(z +a)"3.
Similarly, ys=(—1)° 3! (z+a)™* etc

1\_(=1)"n!
x+al  x+apt

o o

R 1 (=1)"a® (m+n—-1)1!
Cor. Proceeding as above, DM o= S T ax +oym+n

(v) y=log (x+a).

Y= m—}_—- Hence as in (iv) above,

D" {log (x+a)} = (1—'%%(%)7.-1'!—!

1 (a=1)1 an

Cor. DA {log (ax+b)y= =D L
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(vi) y=sin (ax+Db).
¥, =a cos (ax +b)=a sin (§x +azx+b).
¥s =02 cos (3n+azx+b)=a? sin (2.3n+azx+b).
ys=0a® cos (2.3x +azx +b)=a® sin (3.3 + ax + b) ete.

~ Dr {sin (ax+b)}=a" sin (%'+ax+b )

Similarly, D" {cos (ax+b)} =a" cos (n?x +ax+ b) .

As particular cases when b=0,

D" (sin ax)=a" sin (Ez’—’+ax) ;

D" (cos ax) = a® cos (n?n +ax )

5'S. The nth derivatives of rational algebraic
functions.

The nth derivative of a fraction whose numerator and
denominator are both rational integral algebraic functions
may be conveniently obtained by resolving the fraction into
partial fractions. This is shown in Ex. 4, Art. 54, The
rules for decomposing a fraction into partial fractions are
given in the Appendix.

Even when the denominator of a given algebraic fraction
cannot be broken up into 7real linear factors, the above
method of decomposition can be used by resolving the deno-
minator into imaginary linear factors. In this case De
Moivre's theorem is conveniently applied to put the final
result in the real form. This is illustrated in Ex. 5, Art. 5'4.
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5°4. Illustrative Examples.
Ex. 1. If y=swm’z, find yn.

sin 8z=3 sin £~ 4 sin®z.
.. y=sin*z=3% [8 sin z—sin 3z].
yn=1% [3 sin (z+3nm)—3" sin (3z+Fn7)].
Ex. 2. If y=swn 3z cas 2z, find Yn.
¥ =%.2 sin 3z cos 2r=3% (sin 5z-+sin ).
Yn=% [5" sin (Fnr+ 51:)-.|-s1n (BFnmr+z)].

Ex. 8, Ify=e" sin bz, find Y.
Yy, =e%*.a.51n bx+ e .cos bzx b

=¢% (g sin bz +b cos bzx).
Let a=7cos ¢, b=r sin ¢, s0 that

r=(a"+b")&, ¢=tan"? (b/a).
e Yy=7e* sin (bz+¢).

Similarly, y, =7 [a sin (bx+¢)+b cos (bz + ¢)]

=172 sin (bz+2¢), as before.
In a similar way, ¥, =r%¢" sin (bx +3¢), etc., and generally,
Ya=17"¢* gin (bx+ne),
i.e., D" (e®* sin bx)=(a'+b’)’}"e“ sin (bx+n tan-'b/a).
Note. Similarly,
D" (e®* cos bx)=(a°+b’)i"e“ cos (bx+n tan-'b/a).
Again, if y=¢°® sin (bz+0c),

Yn= (a.‘+b’)‘*l e sin (bz+c+n tan-? bla)
and if y=e ocos (bz+c),

n
yn=(a?+b%)7 ¢ cos (bz+c+n tan~! bla).
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? +:f 1 'ﬁﬂd Yne

©® +2® —6x=x(c?+x— 6) =x(x+3)(x—2).

2’ +r—-1 A B C
Let siei—6z— = To+3 T 2-2

Multiplying both s:des by z(x+ 3)(x —2), we get
2?+x—1=A(z+8)(x—2)+ Bz (z—2)+ Cz (z+3).
Putting =0, —8, 2 successively on bo¢h sides, we get
A=3%, B=}, C=4.
1 1 1

. -11— -8 —
Y=g a;+3 a;+3+

Ex. 4. If y=

L
%®—2

[SIE

. 101 .1 1 1 1
e 1/!!=(_':|-)"""'l [E * ;ﬁﬁ’" 3 '(m_'_s st 2 '(E_Q)'H-l]'
1
Ex, 5. Ify=w—,+—a,rﬁndy,..
= je—— 1 =-—1 L—--l_ .
Y (w+w)z—1) ~ 2wle—1a z+1a

.. (=1)"n! 1
e = A‘zm_n_ [(a:—m)";_‘—(m+w)"“]

_(= 1) 'n | [z —1a)~*"+1) = (z +ia)-"+1)],
Put z=7rcos 0, a=rsin 6,

so that r= (w"+a’)i, §=tan-* alz.

Now (x—ia) "+ =7-1"+1) (cog § — ¢ sin 6)-t*+1)
=y~"+2) {608 (n+1) 94 8in (n+1)6}.

(z+12a) ="t V) =7=t"+1) (cog 6+ ¢ sin §) 1" +D?
=y~"+1) foog (n+1) §—4 sin (n+1)6}.

-1\
e yn--(-—%a—ﬁ—'-r""*". 2¢ 8in (n+1) 0.
Since r=a/sin 8, r~ "t =g MV [gin=(n+1) g=ginn+1 ggntl,

s D0 (i‘??‘) Q'—:,,):—-'” sin"*1 g sin (n41) 6,

where 8 =tan~* 2 =cop=2 7.
= a
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1
' Note. If y= mm;'
Yn =(—1)—"—' 8in"*10 sin (n+1)9,
where 6=tan-* {a/(b+ z)}=cot~* {(b+z)/a}.
Cor. If y=tan-!g, y,=1~_'_1—z; ; hence,
D" (tan-'x)="(=1)""1 (n—1) ! s1n"0 sin no,
!here f=tan-"' (1/x)=cot"'x.
" Examples V(A)

1. Find yn in the /ollow' g cases :
(1)’ y=(- bw)’-';f/ =1/(az+ b)””.\'@/l) y=1/(a —z)
\(yJ y=log (az + b)” (v) y=1og {la—2)/(a +z)}.
(W) y= a. 1 (\p‘l)/ y=1/ Jo. v\ yjd) v=(3-32)"
Jyx’) y=1log (az +232), y=10%"2%, (zi) y=g/(a +bx).
i) ¥ =(a - 2)/(a +2)X(xiii) y =2™/(z - 1)\6‘}”7 y=sin"z.

xy) y=cos 2 cos Z. '(\yi) y=cos’z.
({717’ y=sin®z cos T (xy"h) ¥ =sin 2 sin 2 sin 32.

(xix) y=e" cos z. (xx) y=¢® sin z sin 2.,
(xxi) y=6°% gin 4z. (xxii) y=¢" sin’z.
2. Find v, if
S y=2? log . (ii) y=e"n =,
(iii) y=e/, (iv) y=sin"*z.
3. Find the nth /deriva,tives of the following functions :
0 grpen ) g (i) tan™2 2.

(iv) "w_nﬁ—a_ﬁ' (v)m -a' (“)a: e
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1 1
O GriaerTey O mrreTs
y ozt z2+1 .
(ix) (z-1)z—2) \(;)/ (z— 1)z —2)z - 3)
(xi) @+ "E; Z+9) (xii) "‘T"wz—_— .
z+1)%(x +2) (z—alz—-2)
(xiii) tan™* i—'{-—z (xiv) *sin~2 i—-%mz—z

T2 —
—11+2? -1 &vi) cot™? %, .

(xv) tan .

4. If y=2%", where # is a positive integer, show that
yp=2"{1.8.5...(2n— D} =™

B. If w=sin ax + cos ax, show that
=g" {1 +(-1)" sin 2aa:}%.
6. If az® + 2hay +by® =1, show that

d’ h®—ab
= (hx + by)®

7. Find y,, if
(i) sin @+ cos y=1. (ii) y=tan (z + ).
(iii) 2®+y® - 3axry=0.

. . d%y . .
8. Find gz2 In the following cases :

(i) If r=a cos 6, y=> sin 6.
(ii) If z=a (0 +sin 6), y=a (1 — cos 6).

M z=1(t), y=&(t), then prove thok
d®y _.1Ys = YaLs,
dz? .8
where suffixes denote differentiation with respect to ¢.
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10. If zsin6 + ycos® =a and «cos6—ysin 6=0,
prove that
a®z d% _ d% d®y
6% 369~ 40% do® is constant.

af_1 71_ (=1)"n!
11. ShOW tha.t d.'l:n [mz ¥ 1] (ﬁ + 1)n+1 ~

[+ 0= (73 T) e (7 e = ]

12. If y=sin mz, show that

-

Yy Y1 Ya |
Ys Ys VUs
Ye Y7 Ys

where the suffixes of ¥ denote the order of differentiations
of ¥ with respect to .

ANSWERS

1. (1) (=1)"m (m—1)(m—2) ++ -«(m—n+1) b" (a — bx)™".

) (=1)"m (m+1)(m+2)---(m+n—1) a”
. (ax+b)™+"

(=1)""tpatn—1) 1
az+b)"

@ -t { e GO ) (cye 225 En9),

(a—a)" " (2+a)" g =3

(if) (‘{in;;iﬁ' (1v)

\) (-1)"-152%;(?"{3- (viii) (-1)"8"n 1

(i®) (=1 (n— 1)1{ (x M),} (x) 10°-2%_ (—g)".(log, 10)".

) (SATnl gy 2L SR

(xiv) —2"-* cos (Jnar+2z).
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(zv) 3{8" cos (§nr+ 3x)+cos (nwr+a)}.
(xvi) 148 cos (nwr+x)+8" cos (Fnr-+Sz)}. .
(xvii) —22"-2 cos (dnmw+ 4x).
(xviii) 2{4" sin (dnw+ 4x)+2" sin (nr+ 2z) —6" sin (nr+6z)}.
(xix) 28" ¢* cos (z+2nm).
(xx) 3¢ {2‘" cos (z+3nw)— 104" cos (8z+mn tan—? 8)}.
(xxi) 5" e*“ sin (4x+n tan=? ¢
(xxii) ge® {1—5%" cos (2z+n tan~12)} -
2. (i) 2/z. (i) — ™% cos z.8in 2.(sin 2+3).
14 6z+62%)e 1 1+2
(iff) — L“‘_w_;o‘?“)g'— (iv) a= ma:;:n "

(=1)"n!

1 1
8. () 2a {(m— a)" " o+ ﬂ')"“}.

@) (=1)"n! sin™*'0 sin (n+ 1)0‘ where 0 = tan=1 :

4ﬂ+2
(iii) (z1"2 (- 13' ! sin”6 sin n0, where 6=tan-12.
(iv) = 1,-)+;n ! sin™t1g cos (n+1)8, where f=tan-*%.

n! [ 1
®—ay** (@+a)**

@ G

s 8in™10 sin (n+1) o]-

where z=a cot 0.
— 1) o”+
(~(137§)2;‘—;,2‘#' sin "*'0 sin (n++1)6,
where 0=tan-!{A/3/(2z+1)}.

(wit) (- _}-)._bl:_l mn"“Bbmn (n+1)0 _ sin"“tp sm (n+ )¢]

where xz=b cot @ =a oot P.
(viii) (—1)"n !  sin"*10 sin (n+1)0, where cot 8 =x-+41.

(vi)

(ix) (-1)"n! {(x—:}g“—‘—(;%)-;ﬁ}’ when n > 2.

- 1 5 5
(x) (—1)*n! {(x_l)l‘i-x —(m_g)nu."'(;':g.;)_n;T}'
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R 2 +1 3 4
. (xi) (—1)"n! {(m— :1)n+a"(‘;;1)_iﬁ+;;‘_r2)n+i}’
N G i 2 b?
i) CE5 e et

(xiii) (~1)"* (n—1)! sin"0 sin 16, where cot 0 =1.
(xiv) 2(—1)"-* (n—1) ! sin"8 sin nd, where cot §=z.

(xv) 3(—1)""* (n—1) ! 510"9 sin nf, where cot 6 =z.

1\ (o ®. .
(xvi) =2 (= 1————)4',.51-1] 0 8in n8, G here 0=cot~* ‘_a; .
-
_sin’zr+cos y, s 2(1497) s 2atmy
2.() sin’y (ii)e y® (iri) (y*—ax)®
_b s ) 1 sectl.
8. (1) g2 cosec®d. (1d) 4a 503

5°6. Leibnitz’s Theorem™. (nth derivative of the
product of two functions)

If 4 and v are two functions of 2, then the nth deriva-
tive of their product z.e.,
(uv)p=upv+ "¢ Up V,+"Collp_ Vot ----- *4"Cp Up_pVs
+ -t uvy,
where the suffixes in % and v denote the order of differen-
tiations of # and v with respect to .

Let y=wun.

By actual differentiation, we have
Y1 =%y +uvy
Yo =gV + 2410y + UVg =¥+ ZCiuvy Fuv,
Yg=1usV+ Bugzv, +3u,v, +uv,
=ugv +2¢ %501 + 2cau vy +uv,.

*Leibnitz (1646-1716), was a German mathematician, who invented
Caloulus in Germany, as Newton did 1n England.

9
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The theorem is thus seen to be true when #n =2 and 3.

.

Let us assume therefore that

Un=1UnV +"C4 Un—1 V1 + "Calin_gvy + - + "Crtin—rvy

where » has any particular value.
.". differentiating,
Ynt1=Unt10 + ("1 + Dunvy + ("cy + ™) Un_1 v+ -+

+("cr+"Cr .y ) Un—yp Uy F oo + UVnt 1.
. n,
Since, "¢y + "Cr—1="*2c, and "¢, +1=""1¢,, (1= "Cs)

Yn+1 = Un+1V + n+10111;ﬂ,'l)1 + "+1cztu,n_ 1Vg [

e Sl T T S SR PP + UVng1.

Thus, if the theorem holds for n differentiations, 1t
also holés for n+1. But 1t was proved to hold for 2 and 3
differentiations ; hence it holds for four, and so on, and
thus the theorem is true for every positive integral value

of n.

5°6. Important results of symbolic operation.
If F(D) be any rational integral algebraic function
of D or d‘:ic (the symbolic operator), i.e., if
F(D)=AwD"+ An_1 D" *+- -+ 4, D+ 4,
=XA4,D", where A, is independent of D, then

(i) F(D) e?®*=F(a) **.
(ii) F(D) e®* V=e®* F(D+a)V, V being a function of .

in (ax+b)) 2) [ sin (ax+b)
(iii) F@D®) {:o': (ax.;.b)aF(—' ) { :o: (::-I-b)-
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Proof :
“* (i) Since D7e%* = gTe"™*,
Je F(D)™® =3A4,D" (%) =X 4,0 e = (S4,a") ™
= F(a) *®.
(ii) Let ¥ =€V ; since D"e®® =g,
by Leibnitz’s Theorem, we have
]

Yn=6% (@"V +"c,a" ' DV +"c,a” 2D*V + -+ +D"7)
which by analogy with the Binomial theorem may be
written as .

D" (e**V)=e¢™ (D+a)"V.
F(D)e™*V =(S4,D") ™V
=XA,D" &V
=¢" 34, (D+a)V
=¢%® F(D+a)V.
(1ii) We have D sin (az +b) =a cos (az +b), agd so
D?® gin (ax+b)=(—a?) sin (ax+b) ;
D?*7 gin (az +b)=(—a®)" sin (azx + b).
Hence, as in (1) and (1), it follows that
F(D?®) sin (az + b)= F(—a?®) sin (az +b).

Similarly, F(D?) cos (az + b) = F(— a?) cos (az + b).

5°7. Illustrative Examples.

Ex. 1. If y=c*"z®, find n.

Let u=¢c%", v=x3. Now, uy=a"e*.
by Leibnitz’s Theorem,

'E_(_”‘ -1 =209 G

Yn=0a"e"* * +n.a""* **.8z% + 51

+ n (‘(L__‘;)l(n —4?_) a™® e%* 6

=229 {a32® +8na%2?+3n (rn—1) ax+n(n—1){(n—2)}
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Ex. 2. Ify=a cos (log x)+b sin (log x), show that
a2y, +ay, +y=0.
Differentiating, .

y,= —a sin (log z). = +b cos ( log a:)

.. oy, = —a sin (log z)+b cos (log z).

Differentiating again,
zy,+ Yy, = —a cos (log m).i —b.sm (log ). i—

.. z%y,+xy,= —(a cos log «+b sin log )= —y.

ce z?ya+ay,+y=0. -
Note. This 1s called the differentiwal equation formed from the

above equation.
Ex. 8. IDufferentiate m tvmes the equation
(1+2%) y,+(2z—1) y,=0.

By Le‘ibmtz's Theorem,

('re -1)

dw,. 9o (L+22)=Ynea (L+27) +10yns, 20+ Yn-2

;g—n; {1] N (21: - 1)}= UYn+ (2:5 - 1) +17 Yn.2

.*. adding,
(14+22) Ve +42 (+1) 2—1} Yoy +n(n+1) yn=0.
Ex. 4. Fund the value of ya for ©=0, when y=e® """,
From the value of y, when =0, y=1.
Here y,=¢®5"7'% af J(1—2?) e (1)
=ay/ N(1-2?).

ceoy (1 —z?)=ay?.
Differentiating, 2,7, (1—2%)+7,? (—2z)=2ayy,,

or, (1—z") ¥o—ay,—a’y=0. e (2)

Differentiating this n timcs by Leibnitz's Theorem as mn Ex. 3, we
easily get (1'—9)2) Ynea— (2”+1) zylvl-l.—('"""'a',) yl"'o'
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Putting =0, (ya+s)o=(n"+a") (ya)o. = (3)
T .".Replacing n by n—2, we get similarly
(yn)o=4(n—2)*+a?} (ya-3)o
={{(n—2)" +a’H(n—4)* +a®} (ya-4)o =etc.
Also from (1) and (2), (¥.)o=a, (y2)o=a®.
Thus, (ya)o={n—2)*+aK(n—4)°+a?}-- --
®  (42+4a?) (22+a?) a?, if n is even
and, ={n—2)%+a*K(n—4)*+a} -----

. (3* +a%)(1* +a?)a, if n is odd.

Note. The value of 7, for =0 is shortly denoted by (yn)o.

Examples V(B)

1. TFind y, in the following cases :

‘h\/ () y=2%". V) y=2° sin z.
(1ii) y=22 log . Gv) y=2° tan"'z.
(v) y=e% cos bz. (vi) y=log (az+ x%).
(vi) y=2" (1-2)". (vin) y=2"/(1 + ).

2. If y=A4 sin mz + B cos mz, then y, +mZy=0.
3. If y=A4e™ + Be™™*, then y, — mZy=0.
4. TIf y=¢° sin bz, then y, — 2ay, +(a® +52) y=0.
5. If y=log (x + J/a®*+22), then (a*+z%) y, +2y,=0.
6. If y=(x+ J/1+z%)™, then
(1+2%)y, +zy. —m®y=0.
7. If y=tan 'z, then
VO Q+a®)y,=1
and (i) L+ 22 ¥nps +202yn +n(n—1) yp_ 1 =0.
Find also the value of (¥n)o.
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n
*2B. Show that ;ﬂ-}; (e7® g"ta)

nta (

- -2 . -
nle®x '_0( (n 'r)! a> — 1.

®

*28. If f(z)=tan z, prove that
P (0)="ca f*°2 (0) +™co f®* (0)— -+ =sin Inn.
*27.  Show that the n'* differential coofficient of

1+a:+1z iy e 18 (- 1)"11.! gin "*1p [sm(n+1)0

—cos (mn+1) 0+ (sin 6 +cos )~ ],
where 6 =cot™z.

ANSWERS
1. (i) e*® a™? {a’z?*+2naz+n (n—1)}
(1) & sin (Anw+x)+3nz? sin f(n—L)r+a}+3n(n—1)z
xsin {&(n—2)r+a}+n(n—1)(n—2) sin {#(n—8)r+x}.
(iii) (—=1)". 6(n—4) lz"-2.
@iv) (—1)"* (n—3) 1 8in™~?8 {(n—1)(n—2) sin n8 cos?d

—2n (n—2) sin (n—1)0 cos §+n(n—1) s (n—2)6},
where cot 0=z,

(v) €°* (a™ cos bz +"c, a™ ' b cos (bx-+ir)
+"c, a™?b% cos (bx+2. W)+ -+ +b" cos (bx+n . 3w)}.
o) (=22 n=0) 1 | G+ gasiag |
(vii) n! {(1-2)"=("c,)® . (1-2)"" .o+ (") (1—2)" . 2% =k
(viii) n 1/(1+2)"*+*.
7. 0, or (—1)¥"=D (1) | according as n is even or odd.

8. 0, or {1, 8, 5...(n —2)}* according as = is even or odd.



CHAPTER VI
EXPANSION OF FUNCTIONS

61. Rolle’s Theorem.
If (1) f(=) 1s continyous 1n the closed interval a < & < b,
(22) f'() exssts wn the open interval a < x < b,
and  (w1) f(@)=5(),

1]
then there exists at least one value of x (say §) between a and
blue,a<&E<b], such that f'(€)=0.

Since f(a)=f(b), if f(x) be constant throughout the
interval (a, b), being equal to f(a) or f(b), then evidently
f'(x)=0 at every point in the interval.

If f(x) be not constant throughout, then it must have
values either greater than or less than f(a) or both, in the
interval. Suppose f(x) has values greater than f(a). Now,
since f(z) is continuous 1n the interval, it must be bounded
and M being its upper bound [ which is > f(a) in this case ],
there must be a value & of z in the interval a < 2 < b for
which f(§) = M.

f(&+n)—f(&) <0, for positive as well as negative
values of k.
fiéff—-’%—-'—ﬁg) < 0 1f I be positive, and >0 if & be

negative.

Hence Lt e+ h}i A < 0, and f—fo.f_ﬁ—( + h}:_'f(g) S0

h->0+
provided the limits exist.
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Now since f/(z) exists for every value of zina < x < b,
f'(§) also exists, and so the above two limits must both exist
and be equal, and the only equal value they can have is
zero. Hence f'(§)=0.

If f(x) has values less than f(a) in the interval, we can
similarly show that f'(§) =0, where f(£) =m, the lower bound
of f(z) in the interval. 4

T
6°2. Mean Value Theorem. [ Lagrange’s form ]

If (2) f(z) 25 continuons wn the closed interval a < =z < b,
and  (22) f'(x) exssts in the open interval a < z < b,
then there 1s at least one value of x (say £) belween a and b
[ie,a<<&<<b], such that

f(b) - f(a) = (b — a)f (¢).
Consider the function w(x) defined in (a, b) by

v(x) =f )~ flz) - {f (®) - f(ak

Here y(x) is continuous mm a < z < b, since f(z) and
b~z are so.

1) (b) f (a)

exists 1 a< 2 < b,

v (x)= —f'(x) +—
since f'(z) exists ma < z < b.
Also, v(a)=0, v(b)=0. C vla)=v().

Hence, by Rolle’s Theorem, '(x) vanishes for at least
one value of z (say & between a and b, v.e., v'(§)=0,

ve, 0=-7( +ﬂbz){?“;(a’)’
Whence, j(b) _f(a) = (b - a) f’<E)r [ a < é <bd ].
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Cor. Since £ lies between « and b, £ can be written ag a+0 (b- a)
“Waero 0 < § < 1. Putting b=a+h, we get another form of the
Mean Value Theorem

fla+h)=f(a)+nf (a+060), where 0 < 9 <1
or, f(x+h)=1(x) +h!’ (x+ 6h), whore0 < 6 < 1.

Note. The value of 8 usually depends upon both = and %, but there
are cases where 1t 18 not s¢ dependent. [ See Fz. 2 and 13, Ezamples
VI(4)1. Also6 may have more than one value 1n a given range in
some cases [ See E.c. 12, Framples VI(4) ]

6°3. Geometrical Interpretation of Mean Value
Theorem.

Let ABC be the graph of f(x) in the interval (a, b) and
let a, &, b be the ahsciss® of the pomts 4, C, B on the curve
y=f(z), such that the relation f(b)—f(a)={b-a) f(£) is
satisfied.

Draw AL, BM perpendiculars on OX, and AN perpen-
dicular on BM. Then AL=f(a), BM=f(}). T.et CT be
the tangent at C.

f(b) f(a) BM-AL _BN _
Tar AN e Z/ BAN.

Then,
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Since, f'(§)=tan ZCTX (as explained wn § 4'14), b,
follows from the Mean Value Theorem, that tan ZBAN
=tan /CTX, ie., LBAN=/CTX, i.e., ABis parallel to
CT.

Hence, we have the following geometrical interpretation
of the Mean Value Theorem :

If the graph ACB of f(z) 1s a continuous curve having
everywhere a tangent then there must be at least one powni C
wntermediate between A and B at whach the tangent is parallel
to the chord AB.

6'4. Taylor’s Series in finite form. (Generalized
Mean Value Theorem).

If f(x) possesses differential coefficients of the first (n—1)
orders for .svery value of x in the closed interval (a, b) and
the nth derivative of f(x) erists in the open wnterval (a, b)
[se., if " (x) 1s continuous m a<c<b and f*(x)
exists ma < x < b, then

1®)=5@)+®-a) £ @)+ ESL iy

* (ZZJ-"’S}U"'WM 6= g,
where a < § < b « (A)
and if b=a + I, so that b —a = h, then
fla+n)=F(a) + hf'(a) + ggl @)+ eeee
+ (nl;—il)‘i o)+ S,;Jf(a +6h)
where 0 < 6 < 1, -~ (B)
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or writing « for a,
, ™ h2 hn-1
f(x+h)=1(x)+h? (x)+§T 27.(x) +-eeee +(n_-3$T -1 (x)
+M i (x+6h)
n! ’
where 0 < 0 < 1. .. (C)

Consider the functjon v (z) defined in (a, b), by

¥@)=o(e) - =2 4(a), )
where ’
$@) =)~ @)~ 6-=) £ @) -3 (@)
(b(n a')l)' fn—1 (a:) (2)

Then, evidently v(a)=0, and v(3)=0.
[ since ¢(b) =90 1dentically ]

Now, ¢'(x) = = f'(z) +{f'(x) — (b — x) (=}

+Ho-27@- 5 rr @) e
(b_ )n—z -1 (b ) ”n
+{ (n —9‘2) 1 S () - _(;%l]_.) 1 f ( )}

- - (?n“_‘”{;—!l ().

Hence, from (1),

V@)= -0 e+ "o 40 - @)

Since (a) =v(b), and ¥'(2) exists in (a, b),
by Rolle’s Theorem, ¥'(¢§) =0, where a < § < b.
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.. substituting & for = in (8), and cancelling the
common factor (b— &)™ 1, we get ultimately,

la) = ® ;7')1“ ™ (€), and since from (2),

—_ n—1
#@)=f®) - fla)-(b—a) fla)—---" =57 (a),
the required result follows by transpos'itlon.

Since, a < £ < b, we can write £ =a +(b~a)6,
i.e., §=a + 10, where O .,< 8 <1, and b—a.=h,.
and hence the form (B) follows.
Note 1. Tho series (A), (B), or (C)1s called Taylor's series with
the remainder in Lagrange’s form, the remainder (after n terms) being

{(Che “) (), or, ’f" (v +6n), or, ';l" (x4+6h), O<6 <1

which is genemlly dcnoted by Ra.

Note 2. Putting n=1 in Taylor's series, we got
fla+n)=f(a)+hf (a+01),0 <0 <1
which is the Mean Value Theorem.
So, Taylor's theorem 1s sometimes called Mean Value Theorem
of the nth order. Putting n=2 10 Taylor's theorem, we:get

2
fla+h)=f(a)+hf (a)+21f" (a+6R),0<6 <1
which is often called the Mean Value Theorem of the seccond order,

and 8o on.

Note 8. Yet another form of Taylor's series which 18 found some-
times useful 18 obtainoed by putting = for b i1n (A). Thus,

f@=f@)+=a) £ @+E 70 (@) 4 e

O o @+ raro-ap o <0<,

and the function f(z) s sasd to be e:cprmded about or wn the neighbour-
hood of x=a.
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6°6. Maclaurin’s series in finite form.

) Putting =0, h=z in Taylor’s series 1n finite form (C),
we get

l(x)=l(0)+xl’(0)+g-:‘ 1) 4+ -ooor (n" 3 (o)+— 1 (ox),
0<fd<1,

the corresponding form of the remainder Ry being
:—'; n (9x).

The above is known as Maclaurin’s series for f(x), and
f(:'c) is said to be expanded 1n the newyhbourhood of x=0.

Note. Putting n=1, 2, we get Maclaurin’s series of the first and
second orders viz.,

f(@)=£(0)+af (6x) and f(x) = f(0)+a:f’(0)+;: f7(62),0 < 8 < 1.

6°6. Cauchy’s form of Remainder R,.

In Art. 6’4, 1f we take »(z)= d>(w)-— — ¢(a) the other

conditions remaining the same, and carry out the investi-
gation as in that Art, we get
- 1
M) = — \ ) _ -+
v'(x) n—1)1 f"(w) t5_ @ (4)
Since w{(a)=v(b) and ¥'(z) exists in (a, ), by Rolle’s
theorem, we have ¥'(§)=0,a < £ < b.
substituting & for z 1n (4), we get
(b-alb-8" "
d>(a) (n 1) ' fn(g) (5)
Writing £=a + (b —a)6, where 0 < 6 < 1,
we have, b—&=b—a—0b0 +ab=(1-06)b—a).
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. (b - s)n—:l =(1 - o)n-:l. (b —- a)n-l _(1 - o)n—:. hn—l,
since b—a=h.

. from (5), we get
h’b(l _ o)n—l
¢(a) =1 /" (aton).

Now replacing a by =, the required expression for the
remainder R, would come out as
hr(1-g)-1

(n=-1)!

This is known as Cawuchy’s form of remawnder in Taylor's
expansion,

Rn f"(x+6h), 0<6<I1.

The corresponding form in Maclaurin’s expansion is

x" (1 -— 9)n-1

R ==aoD1

f (6x), 0<o<l.

This form of remainder is sometimes more useful than
that of Lagrange. It should be noted that the value of 6
in the two forms of the remainder for the same function
need not be the same.

8'7. Illustrative Examples.
Ex. 1. (2) If f (2)=0 for all values of * wm an wnterval, then f(x)

s econstant wn that wnterval.

(w) If ¢ @)=y (x) m an wnterval, then ¢ (z) and ¥ (x) duffer by
a constant an that interval.
(i) Suppose, f'(x) =0 at overy point in (a, b).
Let us take any two points z,, z, in (a, b), such that z, > z,.
By Mean Value Theorem,
fl@a) —fl@,)=(z,—2,) f (c), where z, < ¢ < 2,

=0, since f' (c) =0 by hypothesis.
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o f(®a)=f(x,).
Bince z,, z, aro any two points in (a,d), it follows that f(r) must
be constant throughout (a, b).

(i) Lot f(x) =9 (z) —¢ ().

R f' (@) =¢'(x) — ¢ (x) =0, everywhere in (a, b).

AN f (@) =constant=F say, by (i).

@ (x) — ¢ (x) =F.

Note. The result (11) is fundamental 1n the theory of integration.

]

Ex. 2. If f(h)=f(0)+hf (0) +,;’1f" (6R), 0 < 8 <1, find 0, when h=1
and f (x)=(1 — =)k, [ C.P.1944]

We have, f (h)=(1—h)&. since, f (a:)=(1—z)'f.

oo rm=—ta - rm=sea-nt
co f0)=1,f(0)=—4,
.*. from the given rolation,
—Fo1— 8RN 15 i ad
(1-n)*=1 2h,+2l . (1-6n)2.

Putting =1, 0=1—§+238(1— 0)&, whence (1— 0)a =4,

ce 1-8=18 L 0=y,

Ex. 8. Prove that the Lagrange’s remawnder after m terms wn the
ezpansion of e°* cos bx wn powers of x s

2 237
(’—l—-%l—;—)——- ™ e20% cos (baw + n tan~?! g)- 0<f<l1.
[C.P.1942 ]
Lagrange’s remainder after n terms in the ecxpansion of f (z) is

:ﬁf‘(o‘”)’ 0<6<1. (bydrt.65) (1)

Here, sinco f(r) =¢** cos bz,
o f"(a:)=(a,’+b")§n 6°* cos {ba:+n ta.n"( 2)} - (9)
[Bee Bx.8 § 654

10
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.*. writing 6z for z in (2), we get f*(x), and substituting this
value of f* (6z) in (1), the required remainder is obtained.

Ex. 4. Prove that the Cauchy’s remawnder after n lerms sn the

expansion of (L+z)™, (m besng a negatwe wnteger or fraction) s powers
of ¢ is

m(m-a.:(l?l—n+1)m.(1+ o)1 1“9) 0<6 <1
Cauchy's remainder after n terms in the expansion of f(z) is
”—%,Tal)), ), 0<6<1. (bydrt.66) - (1)
Here, f(z)=(1+2)".
(@) =m (m—1)(m—2) - (m = m+ 1) (L +2)™"

So, the expression (1) is equivalent to

m(m —_1)_(7'1:_%-.; (m=n+1) yn(1— g)-2 (1+62)™-"

which is the required remainder.

Ex. 5. Show that the Cauchy's remawnder after n terms sn the
expansion of log (1+x) wn powers of © 18

(=12 2" 1_0)--1' 0<0 <1

146z\1+6z
(=)™ n—=1)!
Here, f(r)=1log (1+x). s M) = e
Hence, z (1 10))’ - M (0z)=(—1)*"* 2"(1- 6)™ (1—_'_%;)...

which 18 the requlred remainder in Cauchy’s form.

Ex.6. If (1) f(zx)emstswma <z < b () fla)=a, f/(D)=8,a 78,
and (1) v hes between a and B, then the're exusts a value £ of @ between
o and B such that f () =7. [ Darboux’s Theorem }

Suppose, ¢ < v < 8 and let ¢ (z)=f(2) —v(x—a).
¢ (@) =f(z)—.

Since, ¢’ (z) exists in (a, b), ¢ () is continuous in (a, b) and therefore
attains its lower bound at some point £ in the 1nterval [ § 8°4 (vei) 1.
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Now this point eannot be a or b, since ¢ (a)=f(a)—y=a~+v which
is negative and ¢'(b)=f'(b)—y=8—+ which is positive. Hence, the
point £ is between @ and b, and ¢’ (§)=0. .*. f(§)—v=0. .. f(E)=v
fora < £ < b.

Ex. 7. (a) If (+) ¢(z) and y(x) are both continuous m a < @ < b,
(n) ¢'(2) and ¥ (z) exsst ina <z < b,
and (vi) ¥ () # 0 anywhere mna < 2 < b,
then there is a value £ of x between a and b for which
o(b)—¢(a) _o (£) .
V(o) -y (a) v (© [ Cauchy’'s Mean Value Theorem ]

(0) If further ¢ (a) =y (a) =0 and ¥ (x) # O wn the neghbourhood
of a,

then L‘a ;{3 f-tm : %:c)), of the latter lumat ezasts.

[ L’ Hospital's Theorem ]
(a) Oonsider the function f(z) defined by the equation,

a6 — (PO =B (@) (o
@) =40) =9 @)= Z7 =5 o) - Vol

Now, f(a)=f(b), sinco each =0 identically.

- g e2D=00)

Since  f(z) satisfies all the conditions of Rolle’s theorem,
s f (€)=0, for some £, wherea < £ < b,
whence the required result follows.
Note 1. The condition ¢ (z) # 0, anywhere in (a, b) ensures that

Y (a) # ¢¥(b) ; for if ¢ (a)=v (b), then ¥(x) satisfying all the conditions
of Rolle’s theorem, ¢’ (z) would vanish at some point z in (a, b).

Note 2. Putting b—a=h, we get
¢lat+n)—¢ (a)_ ¢ (a+6R),
Wa+n)—y(a)~ ¥ (a+6n)

Hz+ 1) —¢(z) _ o (2+67)

or, writing = for a, Vet —yla) v (z+0h)'o <@ <l

Note 8. Mean Value Theorem can be deduced from this theorem

by putting ¥ (x)==.

0<#<]1,
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() Wehave fora < x < b,

\ﬁ:—g ‘t((:)) $£:3 since ¢(a) = y¥(a) =0 here,

_# (8
¥V E)
Taking limits, and noting that {—>a as z —> a,

It ¢ (v) _ _It o _ 7, ¢ (),
wo got z>at0 Y (7)) Era+0¥ (£) z-ﬁ¢+0 ¥ (@)

1ra < £ < z, by Cauchy’s theorem.

Agam, when b, < 2 < a, [ assuming b, sufficiently close to a,
such that ¢'(x) and ¢ (z) exist at overy point in the interval, and
¥ (z) 7 0 1n it ], we may similarly write

¢ (z) _o(a)—9 (x) _o (£))
Y@ v@-v@ ¥E)

by Cauchy’s Theorem, and making = —> a, we get

;o) _ $E)_1p  #l2)
p u—O'P(z) fx"a. 050(51) z-ﬁa—olﬁ (w)

Combining the two cases, L'Hospital’s Theorem follows.

»wherez < £, <a,

Examples VI(A)

1. TFind the value of £ in the Mean Value Theorem
J@®) - fla)=(0®-a) (&
7() if fla)=2% a=1,b=2, . -
/Gi) if fle)= /2, a=4,0=9, '\
/(in) if flx)=2(z—1)(z—2),a=0, b=3%,.°
(iv) if f(x)=Az® + Bz + C in (a, b).
r2. In the Mean Value Theorem
. flx+n)=f(x)+ Lf'(x+06h),
show that if f(z) = Az®* + Bz +C, 4 # 0, then 6= .

Give a geometrical interpretation of the result.
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8./In the Mean Value Theorem
Sfla+n)=r(a)+ hf (a+6h),
ifa=1, h=38, and f(z)= /o, find 6.

4. (i) In the Mean Value Theorem
FR)=r0)+hf' (on), 0 <0< 1,

show that the limiting yalue of 6 as h —> 0+ is é or ‘}-3

according as f(x) = cos z or sin .

(ii) In the Mean Valug Theorem
fle+n)=f(x)+hf (x+6n), 0<0<1,

show that the limiting value of 6 as h —> 0 + is é whether
f(z) is sin z or cos z.
V. If £(B)=£(0)+hf (0)+ g’, F"(6h), 0<6<1,
find 6 when 2 =7 and f(z) =1/(1 + ).
S 6. From the relation .
F@)=5(0) +af (0)+4 " (62), 0 <6 <1,
show that log (1 +z) > =z —3z2, ifz >0,
and cosz>1-32% f0<z<in

7. Show that sinz > z— 122, if 0 < z < %a.

8. If f(x)=tan #, then f(0)=0 and f(z)=0.

Is Rolle’s theorem applicable to f(z) in (0, =) ?

9. Is Mean Value Theorem sapplicable to the functions
(i) and (ii) in the intervals (— 1, 1) and (5, 7) respectively ?

() flo)== cos (1/z) for z # 0
=0 for z=0.

@) f@)=4-(6—-a).
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10. If f'(x) exists and > 0 everywhere in (a, b), then
f(z) is an increasing function in (a, 3); if ' (x) < O every-
where in (a, b), then f(z) is a decreasing function in (a, b).

11. Show that 2z®+ 2z% — 10z + 6 is positive if z > 1.
JZ. (1) In the Mean Value Theorem
fla+n)—fla)=hf' (a+6r), 0 <0 <1,
if fl@) =32 — 32% + 2z, and a=0, h=3,
show that 6 has got two values, and find them.
(i1) In the Mean Value Theorem
fO)—fla)=@-a)f (§), a <§<p,
find §, if flx)=2®—-8z—-1, a= —11/7, 5=13/7 and give
a geometrical interpretation of the result.

13. (i) Find the value of 6 in the Mean Value Theorem
flz+1) Ff(z) + hf' (z + 6h), ’

.\,Q e ;
where, (a) f()= ;+ V) @)= <", (0) @) =Yg .

(i) If flz)=a + bz + cm®,
show that 6 is independent of z.
14. Show that

8.1n* 1

(x+h)%=w%+§m%h+ e e E e 0<< o< ],
2 222! J(z+06h)

Find 6 when 2=0.

15. Expand in a finite series in powers of h, and find
the remainder in each case :

@) log (x+n). (i) sin (z+h). @ii) (z+B)™

16. (i) Apply Taylor's Theorem to obtain the Binomial
expansion of (@ + k)", where #» is a positive integer.
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(i1) If f(z) is a polynomial of degree , show that
2 r
Fa+ 1) =@+ 1f @)+ s £ @)+ oo+ B ),
(iii) Expand 5z2 + 7z + 8 in powers of (z — 2).

17. Expand the following functions in a finite series in
powers of z, with the remainder in Lagrange's form in
each case : :

(i) €~ (ii) o®. (iii) sin 2.
(iv) cos =. (v)*log (1 +x). (vi) log (1 - ).
(vii) (1 +z)™. (viii) tan™ ‘e, (ix) 6® cos z.

(x) ¢°* sin bex.
18. Find the value of 8 in the Lagrange’s form of the
remainder R, for the expansion of 1—_1ja; in powers of x.
19. Expand the following funections in the !.Jeighbour-

hood of =0 to three terms plus remainder (in Lagrange’s
form)

(i) sin®z. (ii) cos®z. (iii) e~=".

20. Expand the following functions in a finite series in
powers of £, with the remainder in Cauchy’s form in each
cage :

(i) e~ (11) cos z. Gil) A -=)"*.

21. () Prove that Lt (a+ h)ghf (@) =f'(a)

provided f' (x) is continuous.

(ii) Prove that .,ll'z_ﬁ o’f—("'—thl) = g%"’):i.(———“ —h)_ 7" ()

provided f" () is continuous.
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22. (i) If f'(z) is continuous in the interval (a, a + %) and
f"(a) # 0, prove that ]i':to 6=14%,
—

where 0 is given by
fla+h)=fla)+hf (@+6h), 0 <<6<1.
(i) Show that the limit when A —> 0 of 8 which

n
occurs in Lagrange’s form of remalnder lef"’ (z+6n) in

the expansion of f(z+ 1), is provided f™** (z) is conti-

1_.._
nt+1e
nuous and # 0.

23. In Cauchy’'s Mean Value Theorem, (i) if &(=)
=gin = and y(z) =cos z, or (i1) if $(x) =e® and v(z)=¢%, or
(iii) if p(@)=a2+ 2+ 1 and y(x)=22® + 3z + 4, show that 6 is
independent of both z and 4, and is equal to .

24. If f(x) =22 ¢(r)=2 then find a value of £ in terms
of a and b in Cauchy’s Mean Value Theorem.

25. If f(x) and ¢(z) are continuous in a <z < b and
differentiable in a < & << % and f’ (z) and ¢ (z) never vanish
for the same value of z, then,

1©)-16) _1'©
40~ 9l " 5@ Thre e <E<P

268. If v'(z) # 0 for a < x << b, then

#(0) = (@)= (b—a)p'(a) _+"(8),
w0 = v(a)— (b—a)'(a) ~v"(f) Where s < £<b.

27. If f(x) and g (z) are differentiable in the interval
(a, b), then there 18 & number §, a < & < b such that

fl@) £ . fl@) £ ©
aQ,
gla) g(®) gla) 4'©®
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28. (i) If f(x), ¢(z), v(x) are continuous in a < = < b and
differentiable in a < & < b, then

fla) é(a) v(a) i
O O () { =0.
O SO vEO

L
(ii) If F(z), G(z), H(x) are continuousin a < z < b
and differentiable in a << £ << b, then

|1 F@Y-Fla F(©
1 Q) - Gla) G ¢ |=0.
1 HB)-H@ H@
29. If fz)= sm=z sin a sin B
cos z cosa cosf O0<a<p<in,

Jtanx tana tang

show that f’ (£) =0, where « < £ < B.
[C. H. 19551

30. Deduce Taylor's Theorem from Cauchy's Mean
Value Theorem.

[C. H. 1961]
[ Assumo $(e)=/(0)=f(e) = G =2) ' (@) = -~ ODT -t (o) ama

y(@)=0b-2)"1

81. If f(a)=f(c)=Ff()=0 where a < ¢ < b, and if f' (x)
satisfies the conditions of Rolle’s Theorem in (a, b), prove
that there exists at least one number & such that a < § < b,
f@=o.
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32. Given that

sy = 2= 1)+ = dloma) 1)

=8 01
where a < ¢ < b and f” (z) exists at all points in (a, b).
Prove by considering the function ¢ (z), that there exists
a number ¢, ¢ < £ < b, such that
(a— i)(g P) + (b—}cc)((blz a) (c ﬁggt): =3 ©.
88. Given that
$@=|flz) =2* =z 1|
|
|
|

7(®) b? b 1
fla) a® a 1

@ 2a 1 0
and f" (z) exists at all points in (@, b), deduce
fO)=fla)+®-a) f (@) +3@-0a)’ f" . a <& <b.
84. If f” (x) exists for all points in (a, b) and
19 =1@) _£6)= 100,
c—a b—c

where a < ¢ <<b, then there is a number § such that
a<&<bandf (H=0.

36. Given that

¢@):  fla) () flz)

g(a) g(® g(z)
h(a) h(b) h(z)

and Flr)=4(z)~ %—%%—% #(c),
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where a < ¢ < band f’ (z), ¢" (z), " (x) exist throughout the
interval (a, b), show that by considering the function F(x)

dle)=%(c—a)c—0) ¢" (§),a < ¢ <d.
86. It s’ (z)exists at all points in (a, b) and if f(a)=s()=0

and if f(c) > O where a << ¢ << b, prove that there is at least
one value £ such that FfFO<0,a<é<hn.

ANSWERS
1.() 15 (i) 625 () 1— W3- (1v) 3(a+0).

2. The tangent at the middle point of a parabolic arc is parallel to
the chord of the arc.
3. 1% 5. . 8. No. 9. (1) No. (ii) No.

12. (i) 6=3%(3+ A/3). (ii) £= +1; the tangents at these two
points are parallel to the line joining the points a, f(a) and b, f(b) which
is parallel to z-axis in this case. !

. JeP+rh—z S
13. () (a) MEETh=2, ®) 508>,
1 z
© 1og (1+7te) " 3" "%
. non? — 15 .
15. (i) log w4 1= gpat oo H (=1 e
h3 . e . nw
(1) smz+hcosz g18ine—g  cos g+ -e- + ~ sin (a;+0h+ —2—)-
(in) =™+ ma "h+’£-??—1—) ol A Rt

+rlm=m=2)-m=nt1) 4o 0y o amean
nl ‘

16. (i) a”+ "¢, a™ *h+"c,a" 2R3+ o+ " a™ TN+ o+ BT,
(ii) 87+27(x~2)+5(x—2)2.
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In the following series 1n every case 0 < 6 < 1.

17, (i) 1+2+7 + + +” 0z

21 !

(i1) 1+ log n,+ (log a)? 4 ereee + (log a)"af=.

. z® | x° z" nmr
() =g+ e “Fal "‘“(2"’0”)'
(1v) 1_‘”_’.+m‘— ...... +:1:_" cos (’!“r+9w)'°
21 4| n! 2
z? (1"~ 2"
(V) m="g +og— e R iy 7= )
() —z=% e LT,
2 n (1—08x)"
(vii) 1+ma;+’"("gl Dgagn
m(m—l)(m n2|) (m—m+1) 2z (1+ 0z)™".
x® =8
(viii) =— gt s5— "
N1
‘ 1) s:n" (cot—'8x) s1n n(cot=* Ox).
(ix) 1+ './2 cos( ) g (W2)? cos( 4)+ -----
ﬂ n,0x nwy,
+nl ( N2)"e?% cos (0m+ 4)
2 ”
(x) % 7 gin ¢+§' r? 81N 2+ -eevee +:—, 2" e*9% qin (b0 + ne),

where r= ,/a*+b? and ¢=tan"* (b/a).

18, g 1m(Lmm

o
19. (i) o2 ——3— +2:5 §%5 z7 sin 20z.

m9+1

(i) 1- 8 @t =<l g8 (81 sin 30z +sin 6z).
2 8 160

(iii) 1-m’+§ z‘—llf,xﬂ e=0" 52 (465 x5 —200°z"® + 156z).
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20. (i) 1+:“+ + l+...... __(_n___lﬂ_e
(ii) 1_§l+ l ...... +w"((:5%)|:°° (@21'+0w)-
(ifi) 1+e+at+oe +E::f—(16;3?‘?;:1' 2. 36+a).

6°8. Expansion .of functions in infinite power series.
Taylor’s series (extended to infinity).

If f(=z), f'(z), f'(@),...... f"(z) exist finitely however large
n may be, 1n any interval (z — 48, £ + ) enclosing the point
and 1if in addition, Ry tends to zero as n tends to infinity,
then Taylor’'s series extended to infimty is valid, and we
have

f(x+h)-f(x)+hf’(x)+ f”(x)+ <to o, [|n]< 6]

Denoting the first = terms of the expansion of f(z + k)
by S» and the remainder by R,, we have by Art. 64,

fle+n)=S8u+ Rn, v.e., flz+h)— Bp=_8n.

Now, let n =< ; then if R, — 0, we have
o+ i) =Lt Sa=f@+hf @)+ o £)+ - to .
Again, since f(z +h)— Sp= Ry, if (z+h)= f:jm Sn,
then, Lt R,=0.

n-»>00
Thus, Lt R, =0 is both a necessary and sufficient condi-
n-»00

tion that f(z + k) can be expanded 1n an infinite geries.

Cor. Another form of Taylor's series which is found often useful
is obtained by putting x—a for & 1n the form (B), Art. 64.

Thus, f(z)=f(a)+(z~a) f{a)+{(x-a)?/2 1} f"(a)+ - to oo.
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Maclaurin’s series (extended to intinity).

If f(e), f' (@), f"(@)...... (&) exist finstely however large n
may be in any interval (-4, 8), and if By fends to zero as »
tends to infinity, then Maclaurin's series extended to infinity
is valid, and we have

f(x)-!(0)+xl’(0)+ t"(0)+------ to =, where |z] < 4.

Ex. Ezpand the followwng fumctions wm powers of x= wn wnfinite
series stating wm each case the conditions under which the expansion

s valid.
(i) sinz, (i1) cosx, (i1i) e (iv) log (1+=), (v) (1+2)™

(i) Let f(zx)=sin z.

.. f™(z)=sin (3nr+zx), so that f(z) possesses derivatives of every
order for every value of z. Also, f"(0)=sin (nw) which is O or +1
according as n is even or odd.

.. f"(o:c)s - sin (0z+%’r)-

'R""’li’;-:l l“'n(9m+n%)!é = |

since | sin (0z+&nw) | < 1.

]
Ra—> 0, a8 n —» o0, since %T—» 0 as n —> o for_all values of @.
[Bz.8.§211]

Thus the conditions for Maclaurin's infinite expansion are satisfied,

- et et e’
" 8in m=a;—3—l+5' 7! e+ to oo, for all values of z.

(ii) Let f(x)=cos z.
. f*(z)=cos (Fnr+az). .'. f"(0)=cos (n.dr), which isOor £ 1
according as n is odd or even.

R,-?;if"(om)=% cos (9m+'§)-
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Now proceeding as in the case of sin z, we can show that
Ra=> 0 as n—> oo, for all values of «.

z&

= to oo for all values of z.

!
oosm=1— +

(iii) Let f(x) =e¢>.
s ffe)=e®. ... f"(0)=1, thus f" (0) exists and is finite, how-
ever large n may be.

=»-f"(0m)——e .
Now since ¢°% < ¢l ! (a finite quantity for a given x)

xﬂ
and nl—»Oasn»w, R,=>0asn—>oc0.

e =1+m+ +3  SEECEEEY to oo, for all values of x.

21 1

(iv) Let  f(z)=1log (1+x).

(=1)"* (n—1)1

ff ()= Aoy which exists for every value

of nforx > —1.
MO =(-1)"* (n—1)!

If R, denotes Lagrange’s form of remainder, we have

lf'(a‘”) - 1)"‘1“(1-::03:)“'

< z \*
(i) Let 0 < o < 1, so that (1_’:93) ~>0asn—> oo,

since i—+- oz is positive and less than 1.

Also ; —>0asn—>oo. .. By=>0asn—> oo,

may not be numerically

(if) Let —1 < & < 0; in this case 7.5~

n
less than unity and hence (I:_O:E) may not tend to O as n ~» co,
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Thus, we fail to draw any definite conclusion from Lagrange's form
of remainder. Using Cauchy’s form of remainder, we have

_z (1-o)r-t = (-2 ()
Bo=" 7 M2 = (=15 (1+0m )
Now, 19 iq positive and less than 1; hence ;1—0)"‘ =0
' 146z ’ 1+62
a8 n—> oo,

Also, 2" >0, a8 n —> oo, since —1 <z <0 is bounded.

.t
140z
o R,—>0as n—> oo,

. =TT
. log (1+z)=¢ 2+3

is valid for -1 < o < 1.

Prooeeding similarly we can show that

= e —a"-—m —sesene
log (1-a)=-2 273

isvalid for 1 < 2 < 1.

(v) Let f(z)=(1+=x)™, where m s any real number
[ Binomsal expanswon 1.

(i) When m 45 a positive snteger, f* (x) =0, when n > m, for every
value of . Hence the expansion stops after the (m+ 1)th torm and the
binomial expansion being a finite series, is valid for all values of z.

(ii) When m is a negatsive inleger or a fraction,
I e)y=m (m—1)-(m—n+1)(1+z)™-", for ¢ > —1.
Hence Oauchy’s form of remainder R, is

—1) (m—m+1) moy {10\
== L n D) a gy (L20)

Let —-1<z<lue,|]o]<1l;ali00<6<1
e 0<1-08 < 1+0z.
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1-— ] . 1—-0 A=l
°<1+0a=<1 o 0<(1_—+0m <1
( n being a positive integer > 1)

- ne1
(i]:+”0%) — 0as n—>o0, Also (1+60x)™ ' is finite whether

(m—1) is positive or negative.

mim—1) -(m=n-+1) 2 = 0,

Again if |z] < 1, =11

[ See Art. 2'11, Ezx. 8(1v) ]
.. when |z] <1, R,—>0asn—> oo,

for |z| < 1, Maclaurin’s mfinite expansion for (1+)™ is valid,
m being a negative integer or a fraction.

6'9. Determination of the coefficients in the expan-
sion of £(x) and f(x+h). (Alternative method)

(1) Assuming that f(x) admits of expansion in a conver-
gent power series 1n « for all values of 2 within a certain
range, and that the expansion can be differentiated term by
term any number of times within this range, we can easily
get the coefficients of the different powers of z as follows :

Let fl@)=ao+aix+a,z®+azz®+----- . < (D)
where a, a;, @g,... are constants.

‘We have by successive differentiations,

f, (w)=a1+2a,za:+3a3z”+4a‘w3 PN (2)
f'(@=2.1as +3.2a3z +4.3a,2% +-- - (8)
' a)=8.2.1ag +4.3.2a,0+ - )
etc. etc. ete.
Putting £=0 in (1), (2), (3), (4),...... , we get

7@ =00, 70 =01, f(0)=2"! az,7"(0)=31 as...
Hence, f (z) =£ (0) +2f'(0) + ;31 o+ ;-’f; £ (0) 4 eaeees

11
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(ii) Let f(z+h) be a function of & (x being independent
of A), and let us assume that it can be expanded in powers
of h, and that the expansion can be differentiated with
respect to h term by term any number of times within
a certain range of values of #. We can easily obtain the
coefficients of the various powers of % as follows :

Let flzx+h)=ao+ah+ah® +agh®+ - 1)
where ao, a1, @s,...... are functions of z, and independent
of h.

Since, c%bf(w+ h)=‘%f(z)gi [ where z=z+h ]

=f'(z)=f"(z+h),
differentiating (i) successively with respect to h, we get
Fl@+h)=a,+2a,h+8ah? +4ach® + - (@
[@+n)=21.a;+3.8ash+4.3.a,h% + o )
" (@+h)=38.21.as +4.8.2.a.h+ (4)
etc. efc. ete.

Putting h=0 in (1), (2), (3), (4),... we have
f@=ao, f@=as, f"@=21a, f"(@)=31as,...

fl@+n)=F@)+n (m)+g—2,f'(z)+g:f"’ (@) +-+

Note. Although the forms of the series obtained above for f{z-+h)
and f(z) are identical with the Taylor’s and Maclaurin’s infinite series
for the expansions of these two functions, the above method of proof,
if used, for establishing these two sories, is considered as defective
in as much as it does not enable us to determine exactly the values of
« for which the infinite series obtained from each of the functions con-
verges to the value of the function. In fact, Taylor's and Maclaurin’s
expansions in infinite series do not converge to the functions from
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which they are developed unless Ra >0 as #—>co, even though
the function might possess finite differential occefficients of all order,

and the infinite series may be convergent ; e.g., f{x)=e *'** (x # 0),
sf)=0.

Here, f7(0) =0 for every value of . But Maclaurin’s infinite series
for this function, though convergent for all values of x, is not equal

to f ().

6°10. Other methods of Expansion.

The use of Maclaurin’g (as also of Taylor's) theorem
in expanding a given function in infinite power series is
limited in applications because of the unwieldy form of
the remainder (z.e., of the nth derivative of the function)
in many cases. So we employ other methods for expan-
sion. Now, in this connection it should be noted that the
operations of algebra like addition, subtraction, multipli-
cation, division and operations of calculus like *term by
term limit and term by term differentiation, though appli-
cable to the sum of a finite number of functions, are not
applicable without further examination to the case when
the number of terms is infinite, and hence to the infinite
power series Sanz”. If a power series in & converges
(i.e., has finite sum) for value of = lying within a certain range
(called the wnterval of convergemce)*, then for values of x
within that range, operations of algebra and calculus referred
to above are applicable, as in the case of polynomials, and
the series obtained by such operations would represent the
function for which it stands only for those values of
which lie within the interval of convergence. We illustrate
below some of these methods.

* See Appendur.
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A. Algebraical Method.

Ex. 1. Ezpand tan x wn powers of x as far as x°.

z® ot
Since, tan z= sina:_z 3!+5—l-‘m
’ cos & 1_a‘_"+z:_.'.

21 41

we may by actual division, show that

tan X=X+ 3x% 4 Ax 40

Ex. 2. Ezpand -1—091(—_1‘_:”) wn powers of = as far as xz*.
Multiplying the two scries, [
log (1+2)=c—3x2+ 32 —32*+.- (-1 <z <1)
and (1+z)t=1-z+z’—z+a*—- (~1<z<1l)
and oollecting together the coefficients of like powers of z, we have
108 U42) o (14102 + (14§ +Ho® — L+ 3+ D+ s o for

|| < 1, (the common interval of convergence).

.

B. Method of Undetermined Coetficients.
Ex. 8. Ezpand log (1+a) wn ascending powers of .
Let log (l+x)=ao+a,x+ar?+a,z®+ - e (1)

.*. differentiating with respect to z,

liz=a.+2a,z+3a,m"+--- - (2)
. (1+x)(n, +20,2+Ba,z2+-oeee )=1. e (3)
Equating coefficients of 2" on both sides,

nan+ (n+1Dans, =0. e (4)

Putting =0 in (1) and (2), ao=1log 1=0, a,=1.
Putting n=1, 2, 3, ..... in (4), we get @, =—3%, as =%, a. = —1, etec.
log (1+z)=z—dx?+3z® ~--- -ee (B)
Alternatively ’

For || <1, (1+0) =1—a+x2 =g+ e
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Hence, comparing coefficients of like powers of « on both sides
of (2), we obtain a, =1, a,= —3%, a, =3, ete.

Note. We shall have now to find for which values of z the series
is convergent, and hence represents the function.

It can be shown that the series is convergent for -1 < =z < 1,

Ex. 4. Show that
10°,132°,13527

~lp— frallive LR g S . P,
sm” 'z z+23+2.45+2_4.67+ [C.P.1947]
Let y=sin"'m=aq+a,x+a,o>+ - +anx"™ + - (1)
Since y=sin~'z, .°. differentiating, y,* Jiez (2)
. —(1-g) 2= a3 13 135 o .
e R P w Laka 3)

for —1 < z < 1 by Binomial expansion.
Also, ¥, =a, +2a,x+8a,02+ roere FNaApE "L A re0ren (4)
Ience, comparing the coefficients of (3) and (4), wo get

.
1 1.3
a,=1,a,=0,a, =53 a,=0, as =§.4—5' etc.
Also, putting =0 1n (1), ao=sin"* 0=0.
Hence, the result.

C. Method of formation of Ditferential equation.

Ex. 5. Ezpand (sin-*x)? an a series of ascendwng powers of -
Let y=(sin-x)2. e (1)
Differentiatirg, ¥, =~ 2:7}“_-«;: .. (2)
or, y¥,2(1—=x?)=4(s1n"'z)?=4y.

Differentiating again, and dividing by 2v%,,

(1-2?) y,—zy, —2=0. e (8)
Differentiating this » times by Leibnitz theorem, we get

(1~2%) Ynts = 2ZYnsr = (0 —1) Yn—TYnsr — nYa=0,

or, (1—2?) Ynys— (2n+1) 2Yus, —n’yYa=0. e (8
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From (1), (2) and (8), we get ¥o=0, (¥,)o =0, (¥3)o=2,
and from (4), putting =0, we get
(U)o =n(yn)o. e SN ()]
.*. putting n=1, 8, 5,.......in (5), we get
Wa)o=Ws)o=(y:)o=+---=0
and putting n=2, 4, 6,...... in (5), we have
(¥4)o=2(¥2)o =22
(7e)o=4(ys)o=4%.2%.2, .
Similarly, (y,)o =62.42.22.2, etc.

Assuming that a Maclaurin's series exists for this funection, the
coefficients are the values of 7, ¥,, ;y,,:....., Ynyeeer-s When =0,

Hence,

a1 227, 24__ 0, 204767
(sin-'z) g2+ 2t + T g2 a8l

Note. It can be shown that this series converges for z? < 1.

iy A SETPIS

D. Differentiation of known series.

Ex. 6., Adssuming ewpanswn of sin z, prove that
- zt _2°

cosx=1— + l 3 l+

z® 27

From the series sin z=x— +5l ;”.|- ..... .

which converges for all va.lues of z, we get the required result by
differentiation.

Ex. 7. Show that sec’z=1+22+%z* +----

Since, tan x=a+3z®+ %o+ -
we get the required result by differentiation.

Examples VI(B)

1. Expand in infinite series in powers of 4 :
(i) €°*h, (ii) cos (z + k). (iii) o™ sin (z + h).
2. Expand the following functions in powers of z in
infinite series, stating in each case the condition under
which the expansion is valid :
(i) a®. (ii) sinh 2. (iii) cosh z.
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(iv) tan™'z. () cot™z. (vi) €*® gin bz.
(vii) €® cos bx.  (viii) ¢ sin =. (ix) e* cos 2.

1 . 1
® 14 &) 3

8. Show that
tan~*(z + h) =ta.n“.a: +(h sin 6).sin 6 — % (h sin 6)® gin 26
+3(h sin 6)® sin 36 + -+, where 6 =cot ™ z.
4. Find approximately the value of sin 60° 34’ 23"
to 4 places of decimals fron? the expansion of sin (zr + %) in
& geries of ascending powers of % by putting
2=13%n(=60°) and h=1x35 of a radian (=384’ 23" nearly).
B. Show that
() logz=(z—1)—¥z-1)?+¥=z-1)>—---
istrue for 0 < z < 2.

@1=1 -5 -2+ -2

2
istruefor 0 < 2z < 4.
6. Expand ¢ in powers of (z—1).
Verify the following series (Ez. 7-19) :

7. secz=1+}x% + 5zt + -
8

1he_, BT
8. log(1+2) T+ gt
2 4
- 9o —gpaloy 28,2 L
9. log(1-z+z?% a:+2+3a: +3

8
10. “sinz=z +x’+%-

z? 20  9z°
21t 3 1t

[o.P. 1933 ]

11. e®log Q+x)=zx+
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z _,_1 1_ 1
e-1- 17 3%+ 52" “7gg

18. zcot z=1-32? — Jyrt +-

8

. S A
14. log (1+sinz)= w-2+6

12. ot +-

_z 22:
15. log secz= 2! 4!+1661

16. " F=1+g+4z® — {2t —-- [o. P. 1940 ]
EI
tan-1z T L
17, ¢tanTis 1+a:+2 6+

2 —m_ 1z :_1_3”_'_
18. log {z+ J(z®+1)}=2 0 s Y548
-1

1
19. (1+2)*=e[l -3z Fi}2® - foa® +
20. (i) By differentiating the identity
Q-z)*=1+z+22+2®+-, le|<1,
show that

34 ,_'_345 2%+ -

(1-z)°8 —1+3w+ 198

(i) Differentiating the expansion for log (1 + sin ),
obtain the expansion for sec z — tan .

5 W
21. (i) Show that «/z, and z®, cannot be expanded in
Maclaurin's infinite series.

(i) Given F(x)=o¥ show that for this function the
expansion of f(x+ %) fails when =0, but that there exists
a proper fraction 6 such that i

flz+h)=Ff(x)+ hf' (x)+ 3h3F" (2 + 64) holds when z=0.
Find 6. [C.P. 1949 ]
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22. If y=1Q+a)"=ao,+ax+azz®+---
show that (1 +2) ¥, =ny
and hence obtain the expansion of (1 + )"

28. If y=e?® "' =g  +g,2 +ae2® +ag2® + -
prove that (i) (1 —z?%) ¥y, =2y, +a’y,
() (n+1)(n+2) antg =(n®+a?) an,

and hence obtain the expansion of e #in~<,
[C.P. 19451

Deduce from the expar'xsion of e*®n”'z  the expansion
of sin™*z.
24, If y=emto le=g, +a,0 +a,a%+ -
show that (i) (1 +2?) y, =my,
(i1) B +1) @ner +(n— 1) @n-1=man,
and hence obtain the expansion of e™ tan~1=,
26. If y=sin (m sin™'x), show that
(1= 2%) Ynta — (@n +1) 2Ynes + (m* —n®) yo=0,

and hence obtain the expansion of sin (m sin™*x).
[cC.P. 1938

28. If y=¢%" cos br, prove that
Ys — 2ay, +(a® +5%) y=0,
and he?ce obtain the expansion of ¢*® cos bz.
Deduce the expansion of ¢** and cos bz. [ C. P. 1937 ]

ANSWERS
1. (i) ¢ {1+h+ +3l+ ...... }
(ii) cos z~h sina:—éﬂ cos m+31 sin x4 -

(iii) sin z+ &/2h sin (m+ ) (»._/2]_1) (n;+2:)+...
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(i) 1+= loga+2' (loga)’+——— (log a)® ++-+

(i) ,,,.,.8 ,+“+... for all values of z.

(i) 1+ + '+...

(vi) ® 1 sin ¢+ r sin 2¢+ -+ where r= aa®+31)
and ¢=tan-*(b/a)

(vii) 1+1 roos¢+ r 08 2pp+ oo

!
(viii) = v2 sm( ) +5 ! ( A2)? sin ( )+---+%2§ sin (%)+---
(ix) 1+2 Jﬂcos( ) 2i (A/2)2 cos (2%)4-

n
+§_2§ cos (ﬁ.) Feee
nl 4

Ex. (vi)-(1x) are valid for all values of z.

4.

20.

28.

(x) 1—z+z*—a>+--- le] <1.

(xi) 1—z?+o*—a®+ .- -l<z<l,

. (z—1)2 (2—1)

8700. 6. o[ 1+@-n+Eg o, ]
(i) 1—2+3z?— 3>+ -- 21. (ii) «%.
1+nz+”(” D oy

a’z? a(m’-l-l’) a,“ (a2+22) o
1+a:::+——~2l + 31 i1

a(a®+1%)(a+3%)
51

+ f- 2 T

2,82
lem 5 eee
sin~!g w+3l+ 2
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2 mim*-9) , m?(m*—8)
24, 1+m:c+2l +— T i+ T

%5, mz - m('m,’l 1")m,+m(m ~1%)(m*-3%) 20—
3

Al

51
3 _12 2_ 2
26 1+az+2 b_w,_’_a_(_a‘ ?i—)m'+---

21 31!

‘z —— aepene

=1+az+% 3 s
2,32 4mé
oosbz=1—b AL A

21 41
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CHAPTER VII
MAXIMA AND MINIMA

( Function of a Single Variable )

7'1. By the maximum value of a function f(z) in
Calculus we do not necessarily mean the absolutely greatest
value attainable by the function. A function f(z) is said
to be maximum for a value c¢ of #, provided f(c) is greater
than every other value assumed by f(z) in the immediate
neighbourhood of z=c¢. Similarly, a minimum value of
f(z) is defined to be the value which 18 less than other values
in the immediate neighbourhood. A formal definition is
as follows :

A function f(x) is said to have a mazimum value for
z=¢, pronded we can get a positive quantity 6 such that
for all values of ¢ wn the imnterval c—6 <z <c+4, (z # ¢)

o) > fla) ;
6., if flc+h)—f(c) <0, for | h | sufficiently small.

Similarly, the fumction f(x) has a minimum value for
z=d, provided we can get an interval d—8' <z < d+¢§
wathan whach f(d) < f(z) (x # d) ;

v.e., if f(d+h)—f(d) > 0, for | h | sufficiently small.

Y Py
:
- Pl
PN
1 Q'l ] :
, Liiky ’Svh:Mz
X 0 C; C,D;
YI

Thus, in the above figure which represents graphically
the function f(zx) (a continuous function here), the function
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has s maximum value at P,, as also at Py, P,, P, etc.
and has minimum values at @i, Qa, @35, @, ebc. At P,,
for instance, corresponding to £=0C, (=c, say), the value
of the function, namely, the ordinate P,C, is not neces-
sarily bigger than the value Q,D, at = 0D,, but we can
get a range say L,C;:L, 1n the neighbourhood of C; on
ether mde of it, (z.e., we can find & =L,C,=C,L, say)
such that for every value of z within L,C,L, (except
at C,), the value of the function (represented by the corres-
ponding ordinate) is ®less than P,C, (the value at C,).
Hence, by definition, the function 1s mazimum at z=00C,.
Similarly, we can find out an interval M,D,M, (M,D,
=D, M, =4 say) in the neighbourhood of D, within which
for every other value of  the function is greater than that
at D,. FHence, the function at D, (represented by Q.D.)
18 & minimum,

From the figure the following features regarding maxima
and minima of a continuous tunction will be apparent :

(i) that the function may have several maxima and
minima 1 an interval , (ii) that & maximum valpe of the
function at some point may be less than a minimum value
of it at another pomnt (C,P, < D,Q,), (1i1) maximum and
minimum values of the function occur alternately, z.e.,
between any two consecutive maximum values there is
a minimum value, and vice versa.

7'2. A necessary condition for maximum and
minimum.

If f(z) be a maximum, or a mimimum at x=c, and if
f (c) exasts, then ¥ (¢)=0.

By definition, f(x) is & maximum at z=c¢, provided we
can find a positive number §, such that

fle+n)—f(c) < 0 whenever —8 < I < 8, (h # 0),

fle +J-2 =/ << 0 if h be positive and sufficiently

small, and > O if % be negative and numerically sufficiently
small,
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Thus, Lt f“"i——%’ 1) < 0, [See Ez. 5, § 2111

and similarly, Lt _ flet ’;Z =1 5 o,

Now, if f(c) exists, the above two limits, which repre-
sent the right-hand and left-hand derivatives respectively
of f(x) at £=c, must be equal. Hepce, the only common
value bf the limit is zero. Thus, f'(c)=0.

Exactly similar is the proof v‘vhen f(c) is a minimum.

Note. In case f (c) does not exist, flc) may be a mazvmum or
a minimum, as is apparent from the figure for points Q, and P,. At
the former point f(z) is & minimum, and at the latter it 15 & maximum.,
f'(z) is however not zero at these points, for f'(x) does not exist at all
at these points.

7°8. , Determination of Maxima and Minima.

(A) If c be a pownt wn the interval wn which the function
fx) is defined, and of ¥ (c)=0, and 1"(c)#0, then t(c) is
(i) a maximum if 1" (c) is negative and (ii) a minimum if
£”(c) is positive.

Proof: Buppose f'(c)=0, and f”(c) exists, and # 0.

By the Mean Value Theorem®,

fle+n)—f(e)=nf (c+6n),0<6 <1,
- ,_fic_+_0h)—jt(c)_
on on

Since 0 < 0 < 1, 6,0 as h—>0, and writing 6h=Fk, the coefficient
of 672 on the right side - fﬁ 0 Ll k,‘): £ _ F"(c). Accordingly, since

0n® is positive, f(c+h)—f(c) has the same sign as that of f"(c) when
| & | is sufficiently small.

* Binoe, 1 (c) exists, f’ (z) also exists 1n the neighbourhood of c.
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.. it f(c) is positive, f(c+ h)—f(c) is positive, whether h is positive

or pegative, provided | 4| is small. Hence f(c¢) is & minimum, by
definition.

Similarly, if f” (c) is negative, f (c+ 1) — f(c) is negative, whether & is
positive or negative, when | % | is small, and so f(c) is & mazimum.

{\ AB) Let c be an interior point of the interval of definition
of the functwn f(z), nmd let

,i (c)=1" (c)= ccmfn=1(c) =0, and 1° (c)>0 ;

then (1) if n be even, f(¢c) is o maximum or a minimum
according as I" (¢) :s negative or positive,

and (i) if n be odd, f(c) :s neither a minimum, nor
a maximum.

Proof: By the Mean Value Theorem of Higher order, *here
(c+ h)—f(c)-(;"—:;; (7t (c+0R), 0 <0 <1,

O el ( (c+0h)— "),
(n - 1) 1

Since 0 < 0 < 1, as h—>0, 04—>0 and the coefficient of 01" [(n—1) 1,
on the right side—> ™ (c).

Now, suppose n is even ; then, 65."/(n—1) | is positive.

*. flc+h)—f(c) has the same sign as of f"(c), whether % is positive,
or negative, provided | & | is sufficiently small. Hence, ¢f f™(c) be
posstwe, flc+h)—f(c) is positive for either sign of h, when | A | is
small, and 80 f(c) s @ mansmum. Bimilarly, of f*(c) 13 negatwe, f(c) is
a mazymum.

Next suppose n s odd ; then 0h"/(n—1)1 is positive or negative
according as % 18 positive or negative. Hence, f(c+h)—f(c) changes in
sign with the change of % whatever the sign of f*(c) may be, and so
f(c) cannot be either & maximum or a minimum at x=c.

Hence to determine maxima and minima of f(z), we
proceed with the following working rule : i -
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Equate f'(z) to zero, and let the roots be ci, cg, Cs,...
Now work out the value of /" (c,). If it is negative, then
#=c; makes f(#) a maximum. If f"(c,) be positive, then
f(cy) is a minimum of f(z). Similarly test the sign of f' (z)
for the other values ¢g4, ¢s... of & for which f(z) is zero,
and determine whether f(x) is a maximum or a minimum
at these points.

If in any case above, f’ (¢,) =0, use criterion (B).

Note 1. The above criterion for Jetermining maxima and minima
of f(z) fails at a point where f'(x) is non-existent, even though f(x) may
be continuous there.

In such a case we should bear in mind that if f(x) be » maximum
at a point, immediately to the left of 1t the value of f(x) is less, and
gradually increases towards the value at the point and so f’(x) [which
represents the rate of increase of f(x)] 18 positive. Immediately to the
right, the, value of f (z) 1s again less, and so f(x) decreases with « in-
creasing and therefore f’(z) 1s negative to tho right. Thus f' (z) changes
sign from positaive on the left to negative towards the right of the
point. [ See point P, wn the figure of Art. 7'1]

Similarly, if f(x) be a minimum at any point, f(z) is larger on the
left, and diminishes to the value at the point, and again becomes larger
on the right, .., f(r) increases to the right. Thus f’ (z) changes sign
here, being negative on the left, and positive on the right of the point.

Thus we have the following alternative criterion for maxima and
minima : A4t a pownt where f(z) 15 a mazvmum or a mwnimum, ¥ ()
changes sign, from positive on the left to negative on the right
if 1 (x) be a maximum, and from negative on the left to positive on
the right it £ (x) be a minimum.

If f'(x) exists at such & point, its change of sign from one side to
another takes place through the zero value of f’(x), so that f' (z) =0 at
the point. If f(z) be non-existent at the point, the left-hand and
right-hand derivatives are of opposite signs at the point.
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Even in the case where the successive derivatives exist, instead of
proceeding to calculate their values at a point to apply the usual
oriteria for maxima and minima of f(z) at the point, we may apply
effectively in many cases, this simple cniterion of changing of sign
of f'(e+1) a8 b is changed from negative to positive values, being
numerically small. [ For ¢llustration see Ex. 4, § 7°5 ]

Note 2. At points where f(x) 18 & maximum or a minimum, f'(z) =0
when it exists, and accordingly at these points the tangent line to the
graph of f(x) will be parallel to the z-axis (a8 at P,, @,, Pa, Qa, Pss Qs
etc. in figure of § 7°1). At points where f(x) is & maximum or a mini-
mum, but j'(r) does not exist {e.g., at @, and P,), the tangent line
to the curve changes 1ts direction abruptly while passing through the
point. A special case is where the tangent is parallel to the y-axis, the
change in the sign of f’ (x) taking place through an infinite value.

Note 8. A maximum or minmimum is often called an ‘extremum’
(extremal) or ‘turning walue’. Tho values of z for which f'(x) or
1/f’(x) =0 are often called ‘critical values’ or, critical points of f(x).

Note 4. The use of the following principles greatly mmpllﬁes
the solution of problems in maxima and minima.

(i) Since, f(z) and log f(x) increase and decrease together, log f(x)
is maximum or minimum for any value of z for which f(x) is maximum
or minimum,

(i) When f(x) increases, since 1/f(z) decreases, any value of w
which renders f(z) a maximum or minimum renders its resiprocal
1/f(x) & minimum or a maximum.

(iii) Any value of @ which renders f(x) positive and & maximum
or a minimum, renders {f(z)}" a maximum or a minimum, n being
a positive integer.

For examples on maxima and minima of functions of
two variables connected by a relation, see Ex. 7 and Ex. 12
of Art. 7°5.

12
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.7°4. Elementary methods (Algebraical and Tri-
gonomeirical).

Certain types of problems in maximas and minima can
be molved very simply by elementary algebra or trigono-
metry*. The discussion of the maxima and minima of the
quadratic funections or the quotient of two quadratic funece
tions, will be found in any text book on algebra. T

In solving simpler problems of mexima and minima of
functions of more than one variable, the following elemen-
tary results are of great use :

() zy=1{3=z+ v} -z -}
() (z+y)* =day + (- 9)*.
(iii) z® +y® =%z +y)* + 3z —v)°.

When the sum of two positive quaniities is givem, it
follows from (i) that their product is greatest, and from
(iii) that the sum of their squares is least, when they are
equal. When the product of two quaniities is given, from
(i) their sum is least when they are equal.

The above theorems may easily be extended to the cases
of more than two quantities.

Thus, when the sum of any number of positive quantities
is given, their product is greaiest when they are all equal,
and so on.

For illustrative examples see Art, 7°5, Ex. 9 to 11.

Note. In algebraical or trigonometrical examples, by maximum
or & minimum value of a function we usually mean the greatest or
the least value attainable by the function out of all its possible values.
In Oaloulus however, as has already been remarked, a maximum or
a minimum value indicates a local (or relative) maximum or minimum.

* Bee Das & Mukherjees’ Hrgher Trigonometry, Chap. XV, Sec. B.
1 Bee Ganguly & Mukherjees’ Intermediate Algebra, Chap. VIII,
Ari. 61, . -
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7°6. Ilustrative Examples.
Ex. 1. Find for what values of =, the followwng expression is

mavimum and i 7687 Y i
22? ~212%+ 36z — 20.
Find also the max and values of the expression.

[C. P. 1986 ]
Let  f(z)=2z*—212*+ 862 —20.
o f (2) =657 — 422436, which exists for all values of .
Now, when f(z) is a maximum or a minimum, f’ (z)=0.
.*« we should have 622 —423+436=0, v.e., z? ~Tx+6=0,
or, (z—1)(z—6)=0; .'. x=1lor6.
Again, f* (r)=12z—42=6(2z—17).
Now, when z=1, f’(z) = —30 which is negative,
when =86, f’ (z) =30, which is posifrve.

Hence, the given expression is mazvmum for x=1, and mnwmum
for z=6.

The maximum and minimum values of the given expri!ssion are
respectively f(1), é.e., — 3, and f(6), s.e., —128.

Ex. 2. Investigate for what values of =,

S (x) =52 — 18x°% + 15z* — 10

sa i or m

Here, [’ (x)=80 (z*—3z*+2z°).

Putting f (x)=0, we have z*® (x? —3x+2) =0,

s.e., x* (x—1)(x—2)=0, whence, z=0, 1 or 2.

Again, ' (x) =80 (5z* — 122 +62?).

When z=1,f” (z) is megative, and hence f(v) is & mazimum for
gm=],

When z=2, f (z) is posifwve, and hence f(z) is a minwmum for
o=32
When =0, f”(x)=0; so the test fails, and we have to examine
higher order derivatives.
I (x)=120 (50® — 922 + 32). .. f7(0)=0,
) 1% () =360 (50 —62+1). o I (0) is positive.
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Since even order derivative is positive for x=0,
for =0, f(x) is & minimum.

Ex. 8. Show that f(z)=x®—6x%+24z+4 has neither a mazimum
nOT A MANAMUM.

Here, f (x)=38(x?—4z+8)=3{(z—2)?+4}
which is always positive and can never be zero.

. J (z) has neither & maximum nor a minimum,

Ex. 4. Emammef(x)=a:’—9x’+24w—;.2for maxi or mini
values.

Here, f (x) =8(z® — 6+ 8) =8{x—2) (x—4).

Putting f (x)=0, we find z=2 or 4.

Now, fe-n=3(-n(-2-n=+,

and I (2+n)=3(h)(h—2) = —, since, h is positive and small.

.*. by § 7'3, Note 1, for z=2, f(x) has a mazsmum value, and this
is £ (2)=8.
Again,  f (4—h)=8.(2—R)(—#)= —, since } is positive and small,
[ (4+n)=8.2+n)(1)=+.
by § 7'3, Note 1, for z=4, f () has a menumum value, and this
is f(4)=4.

Note In this case we could have easily applied rule of Art. 7°3.

Ex. 5. Fand the a and of
1+2 sun 2+ 38 cos®x. (0L z L dr).

Let f (@) =1+2 sin 0+3 cos?z.
Then f (x)=2 cosxz—6 cos z sin .
f' (x) =0 when 2 cos z(1—38 sin «) =0, .., when cos z=0,
and also when sin z=4%.
f’(x)= —2 8in —6 (cos®’z—sin’z).
‘When cos =0, z=3=. .. sin =1, .*. f’ (2) = —2+6=4 (positwe).
.*. for cos x=0, f(z) is a menwmum, and the minimum value is 3.

When sinz=3,
J’ (@) =—2sin a~6(1—2 sin%z) = ~§ —6(1—2) (negatwve).
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Therefore, for sin =3, f(z) is a maximum and the maximum
value is 1+2.3+3.(1~3) =4%.

1
Ex. 6. Ezamine whether x* 1 a m or a
and determane the same. [ C. P. 1941, '45 ]
1
Let y=x* .. log y= ]1 log z.
. 1dy_ _]:_. --. e (1
K ydz i prlog e (1—-1og ). (1)

.*. when cim=°' 1-log =0, .'. logzx=1=loge. .'. z=e.

Again, differentiating (1) with 1bspect to @,
1 (dy\*, 1d'_a*(=1la)—(1-logz)2r_—3+2loga
y?* \de y dz? z* x®

I

.. when z=e¢, 2—3-3 c. ”3+-2= - ; » which is negatwe.

( for x=e, Zx=0. )

.. for x=e, the function is a maxvmum, and the maximum

1
value 18 ¢ °.

Ex. 7 Fund the and values of u where

u= é—+‘—""—‘i and z+y=2.
Ty
Eliminating y between the two given relations
~4, 86, . du__ &, 36 _16(@s +z—1)

vz +2—a: tdx +(2 —z)*T gt @2-a)*
du d’u__ 8 72
iz 0, gives z=% or —1. Also, ) mi+(§—_:cT‘

d’uw_ 8 72 s g s
When ¢=§, E«i=("&j—.+@)—i which is positive.
. for x=%, u is & mnemum.
. 4, 86

e muvamum value of u= 3 +2——_—§=32.

When z= -1, da;" - 8+2?- which is negatwve.

.. for o= —1, u is & macimum.

s mazvmum value of u=— 36

: 12+18
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Ex. 8. Ezamine the fumction f(:::)=4--£”(:r;--2)§ for maxima and
minsma at x=2.

Here, f (z)= — ~2ﬁ—*-
(z-2)

For z=2, f'(z) does not exist, the left-hand derivative being + oo
and the right-hand derivative —co ; but.1/f'(z) is zero for @=2. Bo
the test of Art. 7'2 fails. Let us apply the criterion of § 7°3, Note 1.
Now, f'(2—h) is positive and f' (2+h) is negatwwe. Henoce, the function
has a mazvmum value for =9, and the maximum value is f(2) i.e., 4.

Ex. 9. A comcal tent of given capacity has to be consiructed.
Find the ratio of the hesght to the radwus of the base for the munimum
mt of the s required for the tent.

Let » be the radius of the base, % the hoight, V the volume, and
8 the surface-area of the conical tent.

Then, V=3mr2h---(1) and S=mrJrt+id, - (2)
Here, V is given as constant,
. S2=r’r? (12 +R)=7p? (r=+;9,v:.) [from (1) ]

’,’r'l rl +9Vﬁ,_r]+‘.

Now, if S is a max. or min., S? is so and hence for max. or min,

of S, g—r (87)=0, i.e., g; ( i +9‘I7"-;1,) =0,

P $

we., 41r’r’—187’-’%=0. r’=9é;r—,- r-(_.—_s—JV,) .
Now. 2 (8*)=1272r2+ 54V 1 Ghich is posstwe for 1--( BV)i-

'dr? 7 » N3

.*. for menimum amount of canvas,

i 20473
r=(25)" oo ro= = ¥R L from (1)1 W,

we., ri=3K%. .. rPiR’=1:20rr:h=1: A2
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Ex. 10. Show that for a given perimeter, the area of a triangle is
mazymum when it 1s equilateral.

The area A of a triangle 4BC= \/s(s—a)(s=b)(s—0).

Let s—~a=x, s—b=yg, s—c=z. s o+yte=8s—(a+b+c)
=8g—2s=s=const. Now, A= \/szyz. Since s is constant, A will be
maximum when «yz will be maximum subject to the condition a+y+2
=const. s..,, when z=y=3, [See § 7°4]

i.6.,, when s—a=s-b=s—¢, s.e., a=b=c.

Ex. 11, Show that the mdximum triangle which can be inscribed
€n a circle 1s equelateral.
Area A of a triangle 4BC inscribed in a circle of radius R
=3bc sin A=3.2R sin B.2R s1n C.sin 4
=2R? sin 4 sin Bsin C
=R? {cos (4—B)—cos (4+ B)} sin C.

Let us suppose C remains constant, while 4 and B ;ary. Sinoce,
R is constant, the above expression will be maximum when 4 =B,

Hence, 8o long as any two of the angles, 4, B, C are unequal, the
expression 2R? sin 4 sin B sin C is not a maximum, that is, it is
maximum when 4=B=_C.

Thus, A will be maximum when 4=B=C.

Ex. 12. Fwnd the and values of
a swm x+b cos x.

Let a=+»co8 @, b=rsin 0,
go that r2=a?+b? and tan 8=>5/a.
Thus, a s z+b cos =7 (sin z cos §+cos z sin §) =7 sin (2+6)
= ,Ja*+b® sin {z+tan-b/a}.
Since the greatest and least values of sine of an angle are 1 and

~1, the required maximum and minimum values of the given expres-
slon are ,/a7+b* and — A/a® +b°.
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Ex. 13. Assuming Fermat's theorem that a ray of light in passing
from a point 4 wn one mediwm to a point B wn another medsum takes
the path for which the time of description is a minimum, prove the law
of refraction.

Let AOB be & possible path

A i of the ray of light, O being the
g\\\(g point where it meets the surface

i ' . of separgtion MON of the two

‘. M- :'_":’ media, and let POQ be the normal
-g- to the common surface MN at O,

e and 4M, BN the perpendiculars
from A4 and B on MN. Let
L AOP=9, L BOQ=¢, and let v
and v be velocities of light in the two media. If AM=a, BN=b, then
AO=a sec , BO=b sec ¢. The time taken by the ray of light to travel
the path 4A0B is

T_a_,_glejo;a_'_b_s?_aﬁ <« (i), and by Fermat’s theorem this is to be

& minimum:

Again, since 4 and B are fixed points, a tan 8+b tan ¢=MO+ON
= MN=constant --- (i1), so that 6 and ¢ are not independent, and we
can thus consider ¢ as a function of §, which is then the only inde-
pendent variable.

For T' to be minimum, g%' =0, giving

ad_o.

a b
;seoatnn0+!-)-;seo¢ta.n¢d—o

Also, from (ii),
2 d¢

a 8ec’ @+ b sec?¢ ﬁ-o.

d¢

df

oln §_sing . sinf_v
v v 'or'sinnﬁ ‘v,-wp(say)

which is the law of refraction, satisfied for the actual path of the ray
of light.

From these two, eliminating -, » we easily get
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Examples VII

1. Find for which values of z the following functions
are maximum and minimum :

(i) 2®=92%+152-3. (i) 4z®-15z% +12z - 2.
8 _ 2
(i) 228 [0.p. 1989]) () HEETL

(v) z* - 82°® +22z°% — 24z + 5.

2. Find the maximum apd minimum values of (iii), (iv)
and (v) of Ex. 1.

8. (i) Show that the maximum value of z+ :—; is less

than its minimum value.

(2z—1)(z—-8)

(ii) Show that the minimum value of [y Py

is greater than its maximum value.

4. Show that z® — 622+ 122 — 3 is neither a maximum
nor a minimum when z=2.

5. Show that the following functions possess neither a
maximum nor & minimum :
() z®-32*+6z+3. (i) 2®—-32*+9z-1.
(iii) sin (z + a)/sin (z + ). (iv) (az +b)/(cz +d).

6. Show that #° — 52* +52° —1 is a mazimum when
z=1, & minimum when =3 ; neither when 2=0.

7. Examine for maxima and minima of the following
functions :
() sin 2. (i) cosz. (iii) =5,
(iv) =°. (v) $2° ~ 12*. (vi) €®. sin z.
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8. Test the following functions for maxima and
minima at 2=0 :

N z° _2° " »?  z*
(i) sin z 2+~ 5 (i) cosz—£+§7-4!

9. Show that
(i) o/8 sin £+ 8 cos = is & maximum for z=%=.

(ii) sin z (1 + cos 2) is & maximum for z=4x.
[C. P. 1942, '47 ]

(iii) sin®z cos z is a maximum when z = 3x.
(iv) 22 + sin £+ 4 cos z is & maximum for 2=0.

(v) sec x+1log cos®z is & maximum for z=0 and
& minimum for z=4%n.

(vi) 2—0——-5-19-22 (6 > 0) is maximum when 0= }=.

10. If y is defined as a function of # by the equations
y=a(l—cos 6), z=a (8 —sin 6),

show that ¥ is & maximum when 6 ==,

11, Show that
(i) the maximum value of (1/x)* is e*/
(ii) the minimum value of z/(log z) is e.

(iii) the minimum value of 4¢2% + 96~ 2% is 19,

12. (i) Show that 4% — 8z log, 2 is & minimum when #=1.

(ii) Show that 12 (log z+1)+2%— 10z +3 is a maxi-
mum when 2 =2 and a minimum when x=3.

(iii) Show that z® log (1/z) is & maximum for z=1/ Je.
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18. If f(x)=(z—a)®™ (2 —1)®"**, when m and = are
positive integers, show that £ =a gives neither a maximum
nor & minimum value of f(z), but => gives a minimum.

14. Find the maxima and minima, if any, of

e*/(z - 1)z - 3)°.

156. If u=(?_:a%—(’i 12_4—) has & turning value at (2, - 1),
find @ and b and show that the turning value is & maximum.

16. Prove that = (z—a,)? is & mimmum when z is the
arithmetic mean of a1, ¢4, as,... an.

17. (i) Given z/2 +y/8 =1, find the maximum value of 2y
and minimum value of 22 +y?.
(ii) Given ay=4, find the maximum and minimum
values of 4z + 9y.

18. (i) If f(x)=1- J/(2®), when the square root is to
be taken positive, show that z =0 gives a maximum for f(z).

Gi) I f@)=a+(z - b)§+(m - a,)e, show that f(z) is
a minimum for z =b.

(iii) Show that (z-— a)§(2m— a,)§ is a maximum for
z=3%a, a minimum for £ =g and neither for z=a. [a > 0]
(iv) If f(@)= |z |, show that f(0) is a minimum
although f’ (0) does not exist.
19. Show that

(i) the largest rectangle with a given perimeter is
a square.

(ii) the maximum rectangle inscribable in & circle is
& square, [C. P.1936]
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20. Find the point on the parabola 2y=gz% which is
nearest to the point (0, 3).

21. P is any point on the curve y =f(x) and C is a fixed
point not on the curve. If the length PO is either a
maximum or & minimum, the lhine PC is perpendicular to
the tangent at P.

22. Find the length of the perpenditular from the point
(0, 2) upon the line 3z +4y +2=0, showing that it is the
shortest distance of the point from the line. Find also the
foot of the perpendicular. .

23. A cylindrical tin can, closed at the both ends, of a
given capacity, has to be constructed. Show that the amount
of the tin required will be a minimum when the height is
equal to the diameter.

24. By the Post Office regulations, the combined length
and girth of a parcel must not exceed 6 feet. Find the
volume of fihe biggest cylindrical (right circular) packet that
can be sent by the parcel post

25. A line drawn through the point P (1, 8) cuts the
positive sides of the axes OX and OY at 4 and B. Find the
intercepts of this line on the axes so that

(i) the area of the triangle OAB is & minimum ;
(ii) the length of the line 4B is a minimum.

Find also in the above cases the area of the friangle
and the length of the line respectively.

28. P is a point on an ellipse whose centre is C, and N
is the foot of the perpendicular from C upon the tangent to
the ellipse at P ; find the maximum value of PN.

[C.P. 1945)

27. The height of a particle projected with velocity « at
an angle e with the horizontal, is « sin a.t— 3¢¢t® at any
time ¢. Find the greatest height attained and the time of
reaching it.
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28. The total waste per mile in an electric conductor
is given by W=C%R + K®/R, where C is the current, R the
resistance, and K a constant. What resistance will make
the waste & minimum if the current C is kept constant ?

29. The force F exerted by a circular electric current
of radius @ on a magnet whose axis coincides with the axis
of the coil is given by

F < gla® +a:”)_%,

where z is the distance of the magnet from the centre of
the circle. Show that F is greatest when = %a.

*80. Assuming that the intensity of light at & point on an
illuminated surface varies directly as the sine of the angle
at which the ray of light strikes the surface, and inversely
as the square of the distance of the source from the point,
find how high should a light be placed directly over the
centre of a circular field of radius 30 ./2 ft. in order to
have & maximum illumination on the boundary.

81. (i) Find the altitude of the right cone of maximum
volume that can be inscribed 1n a sphere of radius a.

(ii) Find the altitude of the right circular cylinder of
maximum volume that can be inseribed in a given right
circular cone of height h.

82. (i) For a given curved surface of a right circular
cone when the volume is maximum, show that the semi-
vertical angle 18 sin~*(1/ A/8).

(ii) For a given volume of a right cone, show that when
the curved surface is minimum, the semi-vertical angle
is sin~2(1/ +/8).

83. An open tank of a given volume consists of a square
base with vertical sides. Show that the expense of lining
the tank with lead will be least if the height of the tank is
half the width.
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34. If POP’ and QOQ' be any two conjugate diameters
of an ellipse, and from P and @ are drawn two perpendi-
culars to the major axis cutting it at M and N respectively,
show that PM+ QN is & maximum when POP’ and QOQ’
are equi-canjugate diameters.

86. A window is in the form of a rectangle surmounted
by a semi-circle. If the total perimeter be 25 ft., find the
dimensions so that the greatest poss1ble a,mount of light
may be admitted.

86. A particle is moving in a straight line. Its distance
o« ft. from a fixed point O at any time ¢ secs. is given by

the relation
z=1t*—10¢% + 24¢% + 36¢ + 12.

‘When is it moving most slowly ?

87. In enclosing a rectangular lawn that has one side
along a neighbour’s plot, & person has to pay for the fence
for the three sides on his own ground and for half of that
along the dividing line. What dimensions would give him
the least cost if the lawn is to contain 4800 sq. ft. ?

38. A gardemer having 120 ft. of fencing wishes to
enclose a rectangular plot of land and also to erect a fence
across the land parallel to two of the sides. What is the
meaximum area he can enclose ?

39. A shot is fired with a velocity » at a vertical wall
whose distance from the point of projection is . Find
the greatest height above the level of the point of projec-
tion at which the bullet can hit the wall.

40. PFrom the fixed point 4 on the circumference of
a cirole of radius ¢ the perpendicular AY is let fall on the
ta.ngent at P. Show that the maximum area of AAPY
is §¢2 /3. [C. P.1950]

41. The intensity of light varies inversely as the square
of the distance from the source. If two lights are 150 ft.
apart and one light is 8 times as strong as the obther, where
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should an object be placed between the lights to have the
least illumination ?

*42. The boundary wall of a house is 97 £t. high, and is
at a distance 8 ft. from the house. Show that & ladder, one
end of which rests on the ground outside the wall, and
which passes over the wall, must at least be 13 ./13 ft.
long in order to reach the house.

*43. A man in a boab % +/8 miles from the bank wishes
to reach a village that is 5% miles distant along the bank
from the point nearest to him. He can walk 4 miles per
hour and row 2 miles per hour. Where should he land in
order to reach the village in‘ﬁm least time ? Find also the
time.,

*44, If for a steamer the consumption of coal varies as
the cube of its speed, show that the most economical rate
of steaming against a current will be a speed equal to
1% times that of the current.

*45. For a train the cost of fuel varies as the square of
its speed (in miles per hour), and the cost is Rs. 24 per
hour when the speed is 12 m.p.h. If other expenses tolal
Rs. 96 per hour, find the most economical speed and the
cost for a journey of 100 miles.

*46. Assuming Fermat’s law, that a ray of light in pass-
ing from a point 4 to a point B in the same medium after
meeting a reflecting surface takes the path for which the
time is & minimum, prove the law of reflexion.

*47. Assuming the law of refraction, if a ray of light
passes through a prism in a plane perpendicular to its edge,
prove that the deviation in its direction is minimum when
the angle of incidence is equal to the angle of emergence.

ANSWERS
1, (i) ®=1 (max.), =5 (min.). (ii) z=3 (max.), z=2 (min.).
(iii) ¢=4 (max.), z=16 (min). (iv) £=1 (max.), 2 = —1 (min.).

(v) #=1 (min.), z=2 (max.), z=8 (min.).
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2. Max, value=1, min, value=25 for (iii). Max. value=3, min, valus
=3 for (iv), Max, value= —8, and min. value= —4 in both cases
for (v).
7. (i) 2=(2n+4)7 (max.) ; £=(2n~3)r (min.).
(ii) x=2nr (max.), z=(2n+1)r (min.).
(iii) Neither max. nor min. (iv) z=0 gives minimum.
(v) =0 (max.), z=1 (m‘in ).

.

(vi) z=2nw+§r (max.), 2=2n7—3r (min.).

8. (i) Neither max. nor min. (ii) Max. for x=0.

14, Minp, for £=0, max. for x=§. “15. a=1,5=0. 17 (1) §, §§.
(i1) Max. value= —24 ; min. value=24. 20. (+2, 2).

22. 2 units; (—4§, 3). 24. 2% cu. ft. 25. (1) 2, 16.
(ii) 5, 10. Area of the tmangle 1in (1)=16 sq. units ; length of the

line in (i1)=5 A/5 units. 26. a—b. 27. (u® sin%a)/2g; (wsin a)lg.

28, (X/C) units, 80. 30 ft, 81. (1) %a. (ii) 3h.

35. Height of the rectangle =radius of the semi-cirele.

86. At the end of ¢ secs. 37. 80 ft. X 60 ft. 38. 600 sq. ft.

89. (u*—g°z)/2u’g. 41, 100 ft. from the stronger light.

48. & mile from the point nearest to him ; 1% hours.
45. 24 m.p.h. ; Rs, 800.



OHAPTER VIII
INDETERMINATE FORMS
( Evaluation of certain limats )

8'1. The limit of ¢(z)/v(x) as £ —> a is in general equal
to the quotient of the limiting values of the numerator and
denominator [ See Rule,(ii1) of Art. 2°7 ], but when these
two limits are both zero, that rule is no longer applicable,
since the quotient takes the form 0/0 which is meaningless.
We shall consider in the predent chapter how to obtain the
limiting values of the quotient in such cases, and also the
limiting values in other cases of meaningless forms, appar-
ently arising out of the indiscriminate use of the rules of
Art. 2'7. The name ‘indeterminate forms’ as applied to
these cases, is rather misleading and vague.

8°2. Formg (L' Hospital's theorem).
If ¢(z), v(z), as also their derwatives ¢'(x), v'(x) are
continuous at x=a, and if $(a)=v@)=0 [se., Lt ¢(@)
x=>a
=Lt v(z)=0], then
zra

Lt 2@ ¢ ¢@_¢@,
x>a ¥ (&) x>a ¥ &) \?{B

provided ¥'(a) # O. . .
Since, $(a)=0 and v(a)=0, we have
. 9@)=4@) - (), and v(z)=v(2) - v(a).
Now, by the Mean Value Theorem,

d@)—d@)=(x—a)'{a+06,(z—a)}, 0 <0, <1
v(@)-v(@)=(@—a'{a+6,(z-a), 0 <0, <1.

13
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. (@) _o@—dl)_¢a+6.(z—al
T o) v@) - v(a) via+o,(z—ak

. o(x) _¢'(a) _ &' (z),
t f’-fa (@) v(a) a:L-fa Vi)

provided v'(a) # 0.

Generalization :

In oase ¢'(a) and ¥'(a) are both zero, applying the above
theorem again, we get
@ (z b (a “(z) _¢" (@),
a:.L-bta v (av;_ L v "(a)
provided ¢"(z) and ¥"(z) are continuous at x=a, and
v"(a) # 0. If however ¢"(a)=v"(a)=0, then we agamn
apply the above theorem, and obtain the limiting value as
¢" (a)/v'"(a), and so on.

[ For illustratwon, sec Ex. 1, Art. 88.]

Noté1. The above result can also be established by Cauchy's
Mean Value Theorem. [ See Ex. ?(a), Art. 6'7.]

Note 2. In the theorem of this article if « tends to oo instead
of a, then the substitution 1/¢ for 2 would reduce it to the above form
when ¢ tends to zero.

o
8'8. Form =

If Lt d;(a:)— « and Lt v(x)= o, then if Lt ¢,g ))femsts,

then .Z;':_E %%)) will also exist, and its value is equal o the
a

Sormer lumit.

Let Lt ¢'Ew; . Then we can determine a positive

number d, such that in the interval a-6 <z < a+34
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{e»al, %; is a8 near to ! as we please. Also, since the

limit exists, it follows that for = sufficiently olose to a
[ but # al, ¢'(z) and ¥'(x) must both exist, and #'(z) » 0
there.

Now first consider the interval a <o < a+46, and let
o be any particular value therein, and take another value @,
such that a < & < z,.

Then by Cauchy’s Mean Value Theorem [ See § 67,
Ez. 7(a) ],
(o) — @) ¢'(£)
v(@o)—v(2) ¥ ()’
wherez < § < zoandsoa < §<a+i,

s@{4e -1} _d®,
Hence, 7 .
ey
o) w1 e
o(2)_ v ~ 14 i
SRR ) @
¢z

Now keeping x, fixed, if we make z —> a, v(z) —> = and

v(zo) $(zo) _ 0-1.
¢ (z) >, and so »(x) —1}/{3(1_37 1}—)0_1 n.e., —> 1,

!
Also ;—f}—(%) is as near to I as we like, by a proper choice

of 8.
()

Hence, from (i), é~( ) is arbitrarily close to l, as ¢ = a+0.

&(x)
Thus Lt m
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Similarly, considering the interval a—8 < z < g, and
proceeding exactly as before, we get Lit () =],
x>a-0 V"ﬁ)

Hence, Lt qs—@)—Lt i’—:@—)
w>a ¥(@) zea ¥(2)

‘We can also prove a modified forra of the above theorem
as follows :

If Lt ¢(@) and Lt v(x) ars both infinite, then
] =ra

’

(x) )
L (when it exists)= .
Lt ) (vhen ttexteta =it g
o@_,, vl _,, @
Lt @™ L, s~ L, o =Y
[ where f(z) = 1/v(z) and g(z)=1/¢(=) ]
which being of the form 0/0, [ See 4rt. 82, above ]

e L@, ¥ @Nv@l® v (2) [$(x)*].
f'-fa g'(z) f’-fa - ¢'(@/e @} g'a qb’(:c){v(x)}]

..

¢@_,., v, B(@N?,
ﬁu v(z) wL-fa ¢ (x) Lta w(w)} S

Now, let Lt ¢(x)/v(z)=1. - (2)
w>ra

Three cases arise :

CASE I. 1 is neither zero, nor infinitely large:

Dividirg both sides of (1) by 12, we obtain

1., ¥@. . . g, sy, 86
= g e I T, v
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Case II. I=0.
Adding 1 to each side of (2),
—r, o@+v@_ .. ¢ @+y (@)
AT f’-fa v (@)

, [ by case (I)]
-zt £@ 4
z>a 'P’ (?) :

d(@) 7, ¢ @)
v(x) f-fa v ()
CASE III. When ! is ifinitely large,
1
Lt {a@)/vla)} ~ Lt

z=>a x>a

1, t.e., Lt
z>a

viz) . ¥ ()
é@) "Lt ¢ ()
[ by case (II) ]
@) _ ¢ (@),
Lt )" Lt v
Hence the theorem is proved in all cases.
For sllustration sce Ex. 8, Art. 8'8.

Note 1. The theorem is evidently true also when one or both the
limits tends to — oo,

Note 2. By substituting =1/, it can be shown that theorem
is also true when z tends to oo instead of a.

8°4. Form 0 X co,

Such forms arise when we want to find the limiting
value of ¢(z).v(z) as = —> a, where ¢(z) = 0 and v(z) —> =
as & —> a.

‘We can write

e ¥@
qS(w).lﬁ(ﬂ?)—m or, 1/¢w(=c)

which being of the form 0/0 and </, ag £ —> a, can be
evaluated by the methods of Arts. 8'2 and 8°8.
[ Bee Illustratwe Example 4, Art. 88. ] .
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. 8'6. Form o = oo,
Such forms arise when we want to find the limiting
value of ¢(z) — v(z) as ¢ —> a, where ¢(x) —> o and y(z) ~> =
a8 £ —> a.

‘We can write

1/v(x)— 1/ (x)

(@)~ v(e)= 1/¢(x)v (£
which being of the form 0/0 can be evaluated by the method
Of Art. 8'2. o

[ Bee Tllustrative Example 5, Art. 88. ]

8'6. Forms 0°, =°, 1+,
These forms ococur when we want to evaluate the limits
of functions of the form {¢(@}¥® as = —> a,
when (i) both ¢(z) and v(z) >0 as 2 —> a.
"(3i) ¢(x)—> =.and y(x) >0as z—>a.
(iii) ¢(@) > 1 and v(@) > + = asz —>a.

If ¢(z) > 0, let y={p(@}¥@. .. log y=v(2) log ().
Lt log y reduces to the form discussed in Art. 84,
and hence can be evaluated.
Since, Lt log y=1log Lt y, the required limit Lt y can be
obtained.
[ Bee llustrativ- Example 6, Art. 88.]

8'7. Use of power series.

In evaluating limits of certain expressions, it is some-
times found convenient to use the expansions of known
funotions in the expressions in power series in a finite
form, and then to take the limit.

[ Bee Ilustrative Example 7, Art. 886.]
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8°8. Illustrative Examples.

Ex. 1 If ¢(a), & (a), & (@)se-.... 8 (a) and ¥(a), ¥ (@), ¥ (a)see
Y"1 (a) are all sero, and Y" (a) 5 O, then

¢lo) . #(a),
Lt ¥@)~Lt v

Put x=a+h, so that when 2 —=>a, > 0.

L]
Now, by Taylor’s theorem,

$la+n)=0(a)+he' (a)+§:-’, @)+
+ (nh:-;)_l ¢ (a)+-;'~';:i " (a+0,)

n
=’7—:—l ¢"(a+0,h), where 0 < 6, < 1.

Similarly, ¢(a+ h)=1:“l ¥"(a+0,h) where 0 < 8, < 1.

o) platn)_ . w'¢(at0,h)
Lt y@™ It ¥a¥n) Ly BV a¥0,h)
#(@) _9"a),

=Lt &
g V'@ ¥'(a)
provided ¢"(x) and ¥" (z) are continuous at r=a.

" —e " —2

Ex. 2. Evaluate I e sm @

x>0
The reqd. limit as 1t stands, being of the form 0/0, [ See § 8'2 ]

oy CEeTc2 [ torm 2]

= ——- [ form 9]
Lt 4 0

since, Lt (®+e")m1+1=2,and Li sec=1,
>0 ( ) . =0 eo
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4

Ex. 8. Evaluate Iz 9;,-
g0 €

The given limit, as it stands, being of the form z' can - be

written [ by § 8'8 ] as

dx® 127
=It -;,—(form%:)—z,t ef(tormg)

x>0 @->c0
24 N

=1t ef}(form ;:;)-Lg -2—§=0.
a->00 Z~>»00

Ex. 4. Evaluate Lt (1—sin ) tan z.
g L

The given limit, as it stands, being of the form Oxco, can be
written as

l1-sing [ 0]
=7 - form -
b cotz o
—cos
=£~Ei1r ;Oésec‘wno'

.

sinoce, cos =0 and cosec x=1 as z—>&r.

1 2
Ex. 5. Bvaluate fil [E;r—_l o 1}.

The given limit, as it stands, being of the form oo —oo, can be

written as
z?—1 0
-Ltﬁ" i [form 0]
1 1
-f_tnac’ +1" g°
Ex. 6. Bualuate It (cos z)°°"=. [ Patna, 1933
x->0

The given limit as it stands is of the form 1°°,
Let  y=/(cos z)°°t*%,

. a _lo_goosm
.*« log y=cot?x log cos x tonds

“
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L
. Lt logecoscx 0
Now fio log y ey tan'z [form 0]

— (sin ¢/cos 1) _ a
-ﬂo 2 tan @ sec‘w -Lto (=% cos’)

=—3 ('.".:t_,)toooa’w=1 )

BSince Lt log y=log Lt %, .".logLt y=-—%.
z->0 x>0 x>0 »
3
Lt y=e'§ .*.  the reqd. limit=¢"3, x
x>0
gosmo_ 1 [C.P.1982]

L TSN T -,
Ex. 7. Show that Lty =ws P

Writing down the expansion of sinz in a fimte power series,

we have
. . {br
z—8in m==a:—{ §T+5_l sin (2 +0w)}' 0<od<l1.

z® =z B
3] 5lsxn( +0:c)

_afl (5 )} .
£ {3! 5!sm + 0z

. m—singe 1 2? . L

R T T (a*"“)‘

. o—sinz_ 1 2 57 )} 1_1,

oLt g f‘_{o{ax 515“‘( y +02 )1=51= &' .

2
since, %l gin (5;+0.v)-> 0,asz—>0, l sin (5;+ ﬂ:c) l being < 1
Note. This being of the form 0/0 can also be obtained by the
method of Art. 8°2.

N(a® +az+2%) = (a2 —azt+z?),
Ex. 8. FEwaluate f’io Nia+z)— Jin—2)

Rationalizing both the numerator and denominator, the required
limit

_ 2az {{Jat+ )+ Ja—a)}
Lt oz {a*+az+z°)+ W(a* —az+o?)}

x>0
a{Ja+2)+ Ha—x)}

"Lt {Jla™+az+a)+ W@ stz

v x>0
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Now, the limit of the numerator=a.2\a a.z.ld' Lh‘t of ' the
denominator =2a.

.. the reqd. limit= Ja.
Note. An algebraical or trigonmometrical transformation often

enables us to obtain the limiting values without using calculus, as
shown above, which case belongs to the form 0/0.

Ex. 9. If fio Mﬂﬂ:.aim‘p be fimte, find the value of ‘a’ and
the limit. [O.P. 1981]
The given limit being of the form 0/C
2 cos 22+-a cos
=£l-t)0 —.—.__.W—S_O_E. (by § 83 )

When 2->0, the denominator 8z%=0; hence, in order that the
limiting value of the expression may be finite, the numerator
{2 cos 2z+a cos x) should bezero as £ —>0. .'. 2+a=0, we., a=—9;

when a= —2, the given limit becomes

I

sin 2z —2 sin & 0]
-z, s [ ]
2 co8 22 —2 cos z 0
=Lt 20203002 [ rorm 3]
—4 8in 2x+2 810 2 [s]
-2z, tenigraens [om 0
=Lt ~—8cos2+2cosx_ _ 6
x>0 6
=1,
H
Ex 10. Evaluate Lt (t_@w) ; [ C. P. 1947 ]
z=->0 @x
1
*©
T.eb “_(tan m) 8
©
. 1 tan ) _ tan z
o logu-mlog(w)log(w)/.

tan ¢
®

Lt =1, Lt 9,
Since 0 1, 290 log  is of the form

0
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.'.' L‘ o (o8 u)-Lt log (ta.nw)/z .

o wm’m—ta.nw
_Lt {t_m_l—m /1 (by§829)

=Lt 2z —sin 2¢ =it 2—2 cos 2z
o0 Z8in 2z o0 sin 22+ 27 cos 2z
Lt 4 sin 2¢

040032:» iz fin 2z

Since Lt (log u)=log (Lt u), .. log (Lt u)=0.

o Lt u=e®=1, ie., the reqd limit=1.
x>0

Otherwise : Writing the finite form of the expansion of tan « by

Maclaurin’s theorem,
tan w=w+§-m’a where ¢ =sec 6z (1+2 tan®0z), 0 < § < 1,

3
o log u= log ta.n £ ;ilog ‘P.L".i?..‘i", .’% log (1+}a;’a.)

=jaia log (1+i:.'c’a ) Ira= il—’ log (1+9) . 3za,
where v=za.
When 2->0, v—0, also Lt 1 log (1+v)=1. [ Art. 291
y>0 v
1
Lt =Lt . Lt
Hence, = (log u) oo v (1+v) gt (3za).

o Lt (log u)=0. Hence, etc.
x>0

Ex. 11. Ewvalua
Given limit=Z¢ [£ 1. (tge_a;) ]
e>0 L ]
=Lt £=1, {1-,,; tan m}"

x>0 z=0 @

o Lt (&°=1) tan’z
x>0 z?

Now, ft 0—’;—— ( being of the form 5 )=Lt °: =e=1,

Ao, It t""“°=-1 .. thereqd. limit=1x17=1,
x

Note. Suoh forms are sometimes called Compound Indeterminate
forms. In evaluating limits of such forms, the use of the theorems on
limit ( 4ré 2'8 ) is of great help,
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# Examples VITI
Evaluate the following limitf :
T - smwcosw/ tan z -z
1. G) Lt —wr—— (1) Lt

z>0Z — 81N &
e?®—1 . . a" —~a"
6 3, e ) 2

z® -—2a: +22—4 d
®) Lt e .

- _ T _ 1%
(i) Lt & +e 2cos (vii) It % v

z sin z0 &
sy g € Fsinz—-1 z=-sin”'z,
(i) L-fo log (1 +2) (ix) z»0 sin’z
) Lt & -a’“‘f. &) L ¢ tan nz —n tan z,
02 —sin x ,-)on sin z — sin ne
»/21- J6—z 2 sin # —sin 22,
(xii) L o 3r— 9 19 5a (xiii) Lt tan®s

sin log (1 +2)
(xiv) Lto log (1 +sin )

- i 2 -
(xv) Lt [(EEM_Z_?%!._@.-’? slp__nz) 4 1—cos %1
x>0 COS @ —CO8" X COS 2 SIn

. (3z— ) log sin cos %
(v It [t Tilog (i to—3) T 23

tan bz, '{) log (z7) ’
2. () Lt;" tanz ii) Lt olog (cot®x)

(iii) Lt E; (n berng positive).y

tan Smr log £~ cob nay,
«f ) .L-Ei sec ne ) L-£0+ cot n
2? + 30

(vi) Lt 108¢gn3, (b0 *22). (vii) Lt Lt =g
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/
8. (i) Lt =® log (®). (ii) It cosec (ax) log @.
x>0 >l
(iii) Lt « log sin®s. ‘iv) Lt sec z (z sin & — &),
=>0 , z>§T B
(v) Lt sinz.log z®«~/(vi) Lt sec 5z cos Tw.~
ao-»0 x>

(vii) Lt . z™ (log )", m and n being positive.
V4
. _ Cree -1 _
4. (i) ﬂ“ (sec z — tan m)\/ (i1) fffo (z cot ).
11 !
(iii) f:fo[ T ’a;]' (iv) Lt [—1

x® sin z>1le— log zl

(vi) go[}t - ;,— log (1 +a:)]'
(vii) Lt _(z— Jz*=9). (viii) Lt (Jz*+2z ).

b. (1) f_ﬁo 2%, \/“ (ii) go g2emna ~/
(i) Lt (sin z)2teme, (iv) Lt (cos z)°°t*=,
x>0 0 .
1
3 tan : b
$7] rE)ti,r(em;u )ten e, (vi) ﬂl z \,
(vi)) Lt (cot®@)==.  (viii) Lt (1/z?)ten=, -
=0 x>0 \:

(x) It (1—a®)1°8 (-9 (x) Lt (log /=18 =)
x>l- NS ze )
@) It (1+ A Gz (B2

tan m\V=* (sm 2\ Vw2
(xiii) Efo (*——z ) (xiv) Lfl p )
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ao2" +a.2" " +aga"? +---tan
6. a;L-feo box™ +b1w"‘ 14 bex =g ot bm

(ao # 0,b, » 0), according as n > = or < m
( » and m being positive integers ).

7. Lt (ao&™ +a, 2™ *+ -+ +am)**®, m being a positive
o

integer (ao # 0).

8. Lt 2% sin 5, % @®0) [C. P. 1946

g _ 7

9. () Lt Trose (n) [ -1+ e@-1¥
wwoo Z+1 el (p2 —1)%—z+1

10. If Ltasmz—smga_:

x>0 tan®z
and the limit.

11. éd]ust the constants @ and b in order thab
£ 0l+acosf)=bsmo _
60 [}

is finite, find the value of a,

12. Determine the values of a, b, ¢ so that
@) ae”—b cos = +ce f_>2 as z = 0.
 sin =

R + - i
) (a+b cos :;)‘z ¢ sin z

—>lasz—>0.

(i) a sin ¢~ bz +cx? + 2
22° log (1 +2) — 2z° + &

limit as z —> 0, and determine this limit.
Evaluate the following [ Ex. 13-19 ] :

T
13. () I 2 TI0E (L4 o)

+ may tend to a finite

(ii) Lt {~ ——log (1+a:)}
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(ifi) Lt ©-°08 z—log (1+a)
>0 z?

: tan . tan”"*z — o2
(IV) ,'zzfo z°
14. Li -6 " +2sinr—4zx
© a0 z®
15. ¢ cosz—log(] (1 +2)+sine—-1,

x>0 & —(1+2)

2 —s1n © n— 2z
o, ot [Jf{itestemmng (x-gs
16 o> 2z sin 2z - x cos . 2 sin 2z

207

)1

17, Z.'_:)t“_o[ Ja? - 22). cot{ '\/(a,+w}].

z®—4
PN CE VT
19. Lt \/ - '\/a"" '\/(a?"a).

z>a+d J(®—a*®)

Show that [ Ex. 20-26 ] :

18.

20. Lt o* sinfw=00rb

@»o0

according as 0 < a<<1l,ora > 1.

o 2ot on 1))

I log (1+m+a:”)+lo;;(1—m+m’)=1_
z—0 sec £ — cos

*22.

x5, =1 (3sino— sir_n_'_S@)‘ -1

Z30 Z* 81n 7\ cos z — cos 3z

%04 I 108 sinte (cos &)
" 20 10g sinsge (008 32)

25. ﬁo g!'_j%;q = e i‘.
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1I¢+ llz+..- 1 /x\ ne
*26. (Lt 31 Tay tan ) =q103...0n.
x> 00 n

x _: T
*27. Evaluate Lt +2 bz - b% sin ar,
a»b tan bz —tan az

*28., If ¢ (x)=«?sin (1/2), and v (z)=tan z, show that

¢ (2) : 6@ . -
although ﬂo v @) does not exist, zL-fw @ exists, and =0.

ANSWERS
1. (i) & (ii) 2. (in) 2. , (V) na™. (v) ~6.
(vi) 2. (vn) log (afb). (viii) 2. (ix) —3.
(x) 1. (xi) 2. (x1i) (xiii) 1. (x1v) 1.

(xv) 168. (xvi) &.
2 (i) 3. (i) —1. (i) 0. (iv) 3. (v) =2 (vi) L (vii) -3,
8. (i) 0.‘11) (=1/m). (hi) 0. () —=1. (v) 0. (v1) —Z. (wii) O.
4 () 0, /(i) 0. (i) —3 (%) & () —3 (m) & (vii) O. (viti) 1.
B L ()1 ()1 (el (1L () e (vil) 1.
(vill) 1. (x) e. (@) Ve () 1 (xit) 1. (xizi) 5. (xiv) 6°8,
6. oo or, —oo {corresponding to ao/b, being positive or negative),
aolbo, 0 according as n > = or < m.

7.1 8. a. 9. (i) 1. i) -4. 10. ¢=2; limit=1,
11. a= -—‘., b=-1 12. (i) a=1,b=2, ¢=1 (li) a=120, b=60, ¢c=180.

(iif) =6, b=6, ¢=0; limit=3%.
18. (i) 2. (ai) 3. (iii) &. (iv) 3. 14. 5. 15. 0.
16. 3. 17. dafm. 18. -8. 19. 1/ \2a.

27. b*-* (b cos bx—sin bx) cos®ba.



CHAPTER IX
PARTIAL DIFFERENTIATION

( Function of two or more variables )

9°1. Definition.

If three variables*w, z, ¥y are so related that for every
pair of values of 2 and y within the defined domain say,
a<cs<band c<Ly <.d, % has a single definite value,
u is said to be a function of the two independent variables
#z and y, and this is denoted by u=F£(z, v).

More generally (i.e., without restricting to single-valued
functions only), if the three variables u, z, ¥ are so related
that % is determined when z and v are known, % s sa:d to
be a function of the two independent variables x a.sd y.

Ll
Tllus: Since the area of a triangle is determined when its base
and altitude are given, area of a triangle is a function of its base and
altitude.

Similarly, the volume of a gas is a function of its pressure and
temperaturo.

In a similar way, a function of three or more indepen-
dent variables can be defined.

Thus, the volume of a parallelopiped is a function of three vari-
ables, its length, breadth and height.

Note 1. If to each pair of values of z and 7, » has a single definite
walue, u is called a single-valued function (to which the definition refers,
and with which we are mainly concerned in all mathematical investi-
gations), and if to each set of values of x and y, » has more than one
definite value, u is called a mulfvple-valued function. A multiple-valued
function with proper limitations imposed on its value can in general be
treated as defining two or more single-valued functions.

14
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Note 2. Geometrical representatson of s=f(z, ).

When & single-valued function z=f(z, y) is given, for each pair of
values of z and y, there corresponds™a point Q in the plane OXY, and
if & perpendicular QP is then:erected of length equal to the value of 2
obtained from the given relation, the points like P describe what is
called a surface in three-dimensional space. Thus to a functional rela-
tion between three variables =, y, 2, therefore corresponds a surface
referred to axes OX, OY, OZ 1n space.

Note 3. Continuity.

The function f(z, y) is said to be continuous at the point (a, b), if
corresponding to & pre-assigned positive number ¢, however small, there
exists & positive number 8, such that

1Az, 9)—fla b)) | < o
whenever 0 < [z—a | <3 and 0L |y-b] < 8.

9°2. Partial Derivatives.

The result of differentiating w=f(z, y), with respect
to «, treating v as a constant, is called the partzal derivative
of w with respect to x, and is denoted by one of the symbols

gz' g' So(@, y) [ or briefly, fs ], us, ete.

. of _y, Sla+dz, yv)—flz, y)
énmlytxcally, o i.';t_) 0 ™
when this limit exists.
The partial derwvative of w=f(x, y) with respect to y
is similarly defined and is denoted by bu, é[ fulz, v

oy
[ or simply fy 1, y, ete.

Thus, . Lt fla, y +A”)_"L-"’:7/)

6y Ay
provided this limit exists.
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If u=f(z, v, 2), then the partial derivative of % with
respect to  is the derivative of u with respect to & when
both ¥ and z are regarded as constants.

f -z fEtlr oy, 2)-fl y, 2)

Az->0 Az

31, of.
oy oz

Thus,

Similarly for

L]
Tllustrations :

Tiet u=z%+zy+y?; then
ou S Bu_g L e
iz 2z+Y; 6y—2y+w.

Let wu=yz+z2x+zy; then

Bu 8u du
—-y+z, 6—y—-s+:c, 52 =z+Y.

Note. The curl § is generally used to denote the symbol of partial
derivative, in order to distingwsh it from the symbol d of ordinary

derivative.

9°8. Successive Partial Derivatives.

Since each of the partial derivatives g— ’ g;’ is in general
o function of z and y, each may possess partial derivatives
with respect to these two independent variables, and these
are called the second order partial derivatives of w. The
usual notations for these second order partial derivatives are

2
8 (5‘14), i.e., 37’: or fz« etc.

o

S (suw\ . 6%

6y (5!! z.e., P or fyy ete.
6“) .e. 8%u_ or f,

ox \oy " 6w oy o

S [ou 6’2
8y éw)' ”'wam or fya.
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Although for most of the fumctions that occur in appli-
cations we have,
é%u _ é%u
0xdy dyox

i.e., the partial derivative has the same value whether we
differentiate partially first with respect to « and then with
respect to y or the reverse, 1t must nmot be supposed that
the above relation holds good for all functions ; because, the
equality implies that the two Limiting operations involved
therein should be commutative, which may not be true
always. Ex. 8, Art. 94 will elucidate the point. We can

prove in particular that if the functions o % an Su
oy 6% oz by
both exist for a particular set of values of «, ¥, and one

of them is continuous there, the equality will hold good#*

We have similar definitions and notations for partial
derivatives of order higher than two.

If z=f(z, y), partial derivatives of z are very often
denoted by the following notations :

8z 52 8%z 8%z _ 8%z a"

oz P oy L oo bmoy odyox O oy =t 1

Tllustrations :
u=x®+x2y?+y°
”’»‘=3m'+2zy= ; 5 U=6otay :y—— =dzy.
du 9 2 2.
a3yt 1/. =6y+2z” ; m,ﬁm.
* See Appendwr.

t These notations were first introduced by Monge.



PARTIAL DIFFERENTIATION 213

9°4. Ilustrative Examples.

Ex. 1. If o=7cos 8, y=7 sun 0, so that r= Jz*+y?),
0 =tan~*(y/x), show that

”#1/2 and }% #1/

dx L0 m  _rcosf_

Here, 3 cos 8 ; 8 o w?+77) , cos 8.
%_ _ L ging; ¥ ¥ ___78ind_ _sing
39 RO T Tyt ri r

Hence, the required result follows.

Note. If y is a function of a single variable z, then we have seen
that under certain circumstances ( See § 4°7), g——z= 1 / g; A similar

property 1s not true, as seen above, when y 13 a functon of more than
one varwable.

Ex, 2. If u.=f(:; )' show that a; +y8~ =0,

u=f(z), say, where g=y/x.

du__ du 8z
ﬁ 555(0 f()' =—’ f’(’)

Similarly, f (a)-22 W= L #(a)

m‘;—:ﬂ““ -2 1@+ ra)=o.

Ex. 8. Show that

Vtrs e =LY

Lt Lt
y>0 z->0 m-Fy

x>0 y-»0 w+y

Left side=r4 %"Lt 1=1,

z->0 x>0

Rightside=7; -F=71; (-1)=-1
y->0 Y y->0

Hence, the result.,
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Examples IX(A)
1. Find fe, fy for the following functions f(z, ¥) ;
() az® + 2noy +by®. ~ (ii) tan™*(y/z).\
(i) 1/ J(&? +y3). (iv) log (z® +y*a
(v) #*/a® +y*/b* = 1.\
2. Find fzx, fou» Suz fw for the following functions
Fe, v) :
() =® +32%y+8zy® +y°. " » (i) e ravivd N
(iii)  cos y+y cos . -~/ (iv) log (z%y + 2y?).
8. () If V=2+y® + 22, show that 2V, +yVy +ZV'=22{,
(i) If w=2a%y +y%z+ 2%z, show that
Uy tuy tu,=@+y+2)°=
(@ii) If w=f(2yz), show that
TUg = YUy = ZU. ~,

: _v,z
(v If » z+a;+

o F

5' prove that
6u éu & _
Ly —+y sy +z 0.

4.0) I u=sin'1: +tan™* ¥ show that 2 3 +yg“ 0.

z(1— y’)+71(1 —-z?)

. _xty , -
(i) It U— 2y and V= ErOET
prove that UzVy = UyVe.

6 u 6 %

6 o 2
() w=1log (z® + u’). (ii) w=tan™*(y/z).
(ifi) w=¢" (z cos y—y sin y).

2
() Tt V=2 tan™* ¥+ then - 4

5. (@) Show that =0, if

2
827 4 87 .

+6 82°
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6. () It flz,y,2)= | 2° y® 2® 1
|

z Y z
1 1 1
show that fat+fy+fe=
*Gi) Mfu=]1 1 1 1
z "y 2 w
2 2 2 2
F. v z w
xa 1]8 28 ws

show that %y +uy+ u;+ uy=0.
7. I V=ax®+2hay + by?, show that
Vo2 Vyy — 2V VyVay + Vy? Vo = 8lab - h’)V
8. If u=log (z®+y®+2®—3xyz), show that

() au 6u du_ 3 . .
6:0 61/ 6z z+y+z
6 u 5%, 8%u 3
(11) 61/ st GTytan [C.U. 1946 ]

9. If V= J(x?+y%+22), then Vig+ Vyy+ Vo =2/ V.
10. It V=1/ J/(z® +y® +27), then Vaa+ Viy + Ve =0.
11. If u =¥, prove that

- 2% =(1 + 3zyz +x’y%2%) ™%, \Lﬂ./U. 1947

ox 6y 6z
12. () If V=(az+by)? — (x® + y?), where a® + 5% =2,
show that Ve + Vyy=0.
(i) If u=3(az +by + cz)® — (x® +y? + 2%) and

2419 = Q_y éu s*
a? +b% +c%=1, find the value of , '521 +6z$\

[C. U 1934]
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(iii) If w=ax?+by®+c2®+2fyz+2g92x+ 2hzy, and
2
3—{;%-0, show that a+b+c¢=0.

18. Show that if u (z, ¥, 2) satisfy the equation
6%u , 6%u , 6%u
ozt T agE T 50

o 0u Su ou st
then (i) il satisfy it,

and also (ii) = g: du, 0

[
14. Tf w=1log (x% + y2 +22), then

6% _yé“u — g 8%

6y 6z 8z 8x o 8y

+y—+ 2z

ot %8s satisfles it.

15. If u=1log r and r* =22 +y® + 22, prove that
'af6%% | 6%u 6214)
afQ B 07U, 07U

(az” sy?  8z*

168. If y=Ff(z +ct) + $(x — ct), show that

8y _ 287y,
ot éx?
17. If u=f(az® + 2hay+by?), v=4¢ (az® + 2hay + by*®),
o, 0v) _6( 6v)
show that dy(u sz) = sz\® 6y)

1.

[C. H. 1934}
*18. (i) If U=2+y+z V=22 +y® +22,
We=2g®+y®+2%—3zyz.
(i) If O=g+y+ez, V=a+y®+2%, W= yz+za)%:/tl,
show that in each case | Uy Uy U, |=0.
Ve Vy Ve
We Wy W,
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*19. If a, B, ¥ be the roots of the cubic z* + pz?® + gz +7=0,
show that

op aq ér
da da da

|p da &
i o8 op [:J:]
p “eg o
&Y 8y oY
vanishes when any two of ths three roots are equal.

*20. Show that

. __‘_53_. J1 () fa(fl') fa(w)
0z 8y 8z | ¢, () ba (1) bs () Ly (1) o’ (1) 65" (W) |
v1 (2) v5 (2) v (2) v, '{2) va' (2) vs'(2) |
where dashes denote differentiations w. r. t. the variables
concerned. '

'f1 () fz (w) fs (z) l

ANSWERS

1. (1) 2az+hy); 2(ha+by). () ";T;’f?’s?{?'
o _i;a-:,ga)a}' () oo
) zw 2:/ 2. (i) 6(e+1y), 6(z+1), 6(z+1), 6(z+y).

(i) 2{(2z+y)?+2}, £{(2z+y)z+29)+ 1},

#{(2z 4 y)x+ 29) + 1}, 2{(x+2y)* +2},
where z=¢*t¥+7,

(iii) —y cos x, —(sin w+sin y), —(sin o+sin ), —x cos 7.
1 1 1 1o, (i, 1 1.
) -Pegipl e e e

12, (i) 0.
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9'5. Homogeneous Functions.

A function f(z, y) is said to be homogeneous of degree n
in the variables  and y if it can be expressed in the form

"¢ (ﬁ-)' or in the form y"¢ (:)
If V be a homogeneous function of degree = in z, v, z,

8V, 8V, 8V .

! .
oz 8y oz is a homogeneous function of

then each of
degree (n—1).
¢ 2
Since, ax?+ 2hay+by® =a? {a+2h£ +b ( g ) }-a:"«#( z)-
ax? +2hzy +by? is a homogeneous function of degree 2 in x, y.
Similarly, y/z, @ tan=?(y/z), ©° log (y/x) are homogeneous functions
of degree 0, 1 and 2 respectively.
Note 1. An alternatwe test for a function f(x, y) to be homoge-

neous of degree n, 1s that f(ix, ty)=t" f(x, y) for all values of ¢, where
t is independent of & and y.

Note 2. The test that a ratwonal entegral algebrasc fumction of z
and y should be homogeneous of degree n is that the sum of the indices
of & and y in every term must be n.

Note 8. Similarly, a function f(z, y, ¢) is said to be homogeneous
of degree n in the varables z, 7, 2, if it can be put in the form
af ( s = )- or if f(tr, ty, te)=1t"f (x, ¥, £) ; and so on, for any number

of variables,
Thus, f(x, ¥, 2)= NZ+ N§+ Nz is a homogencous function of
degree #, since
Az, ty, ta)= Jiz+ i + Na= flz, v, o).
9'6. Euler’s Theorem on Homogeneous Functions.

If f(x, y) be a homogeneous function of x and ¥ of degree

n, then

df
=ty g;, =nt (x, y).
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Sinee f(z, v) is a homogeneous function of degree #,
let £(z, v)=2"$(y/z)

= g"¢, (v), where v =y/z.

6,[_ n— n g’ v
okt 1 ¢(v)+2"¢ (v) oz

=nz""1¢ (v) +z" ¢’ (v)- ;gz.

8 1BV m .1,
oo qs(v)dy a:"qb(v)m

z ZJ; +y %{, =na"p (v) =nf (z, y).

9°7. Differentiation of Implicit Functions.

Let the equation f(z, ¥)=0 v e (D)
define y as a differentiable function of z, and let f and fy
be continuous.

dy . of ,of .
Then, we can find dg 1B terms of dz dy as follows :

We have, f(x + Az, y + Ay)=0.
fle+ Az, y + Ay) — f(=, y)=0. - (2)

Now, by the Mean Value Theorem, [ See § 6'2 ]
fle+ Az, y + 4y) — f(=z, v + 4y)

=Aw6%f(w+614w,y+4u). [0<6, <1l
Sz, y+ay)—f(z, v)
-——Au%f(w.y+09Av) [0<6,<1]
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Adding these two and using relation (2), and dividing
by 4z, we get

4y 8

f(z+014w. v+ 4y) + e 5y

flw, y+06,4y)=0. ... (8)

Since, ¥ is a differentiable function of @, when 4z —> 0,
4y —> 0, end since, fr and f, are contmuous, we get by
making 4z —> 0 in (8),

of , dy of =0.
da: dx 8y .
of
. 4y _6_ -
oo dx of or f, (fy ?5 0). (4)
6y

9°8. Total Differential coefficient.
Lot #=f(z, y), where z=¢ (t), y=v(t).

Then, usually % is a function of ¢ in this case.

To obtain the value of :%;

Let us suppose that fr, f, as also ¢ (), ¥'(t) are
continuous. When ¢ changes to ¢+ 4¢, let # and y change
to z + Az, y + 4y.

Now, u=r{p(t), v(t)}} = F(¢) say.
du_ ;. Flt+a)-F@)

i A0 at
ezs Sfle(t+an), v(t+ a0t - Ae(), v}
At->0 at

—rs Ltz y+ay)—f(e v)
At>0 a4t
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=Lt [f_(a_v_+._4 w, y+ 4y) - flz, y + 4y) Az
At>0 4z at

+f @ v+ a9) ~ flz, y) 4v],
4y a

But by the Mean Value Theorem, [ See § 6'2 ]
flo+ Az, y + 4y) — f(@, y + 4y) = Az fo(x + 04z, y + AY)

and  flz, y+ 4y 12, )= Ay.fy(e, v +6' 4y),
where 6 and 0’ each lie between 0 and 1.

When 4t — 0, Az —> 0 and 4y — 0 and 4z/4t — ¢’ ({#),
Ay/At = ' (B).

Also  fo(z+0 4z, y+4y) = fo(z, ) ;
Sy (@, y+ 6" 4y) = fy (z, v),

. du_ . dz dy,

.. dt fm dt +f1l dt (1)
du_dudx  dudy,

ve, Gi~axdt 'y at @

Note 1. As a particular case, if w=f(z, ) where y is a function
of x,

du_3u

da_8u_ Sudy
dx 3x

+5-;dx

% is called the fotal differential coefficrent of u, to distinguish it from

its partial differential coefficient.

Note 2. The above result can easily be extended to the case when
u is & function of three or more variables,

Thus, if u=f(z, ¥, 8), where z, ¥, & are all functions of ¢,

du_dude , dudy duds

@ "twat Toydi ez at
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9°9. Differentials.

‘We have already defined the differential of a function
of a single independent variable; we now give the corres-
ponding definition of the differential of a function of two
independent variables #, y. Thus, if u=f(z, y), we define
du by the relation

du=fz Az +fy Ay.
Putting ¥ =2 and %=y in turn, we obtain
de=A4z, dy=4y* = (1)
o that du=1f, dx+1, dy. © e (9)

Multiplying both sides of the relation (1) of Art. 9'8
by dt, and noting that since, z, ¥ are each function of ¢,

—du _d= -
fiu—dt dt, dz dt dt, dy at dt

we get, du=f, dz+ fy dy

which is same in form as (2) above. But , ¥ here are not
independent, but each is a function of Z.

Hence, the formula du=fys dz+fy dy is true whether the
variables x and y are independent or not.

This remark is of great importance in applications.

Similarly, if u=f(z, v, 2),
du=t, dx+%, dy+1; dz,

whether «, ¥, z are independent or not.

Note. It should be noted that the relations (1) above are true only
when 2 and g are independent variables. If ¢ and y are not indepen-
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dent but funotions of a third independent variable £, say z=¢(¢),
y=v(), then de=¢'(f) dt and dy=vy (¢) df, where di= Af.

9°10. Exact (or Perfect) differential.

The expression
¢z, v) de +v(z, y) dy . )

[ ]
is called an exact (or perfect) differential if a function w
of &, y exists such that 1ts differential

du,ze, e dw+ d - (2

is equal to (1) for all values of dz and dy.

Hence, comparing (1) and (2), we see that if (1) be an
exact differential, 1t is necessary that

éq"qb(w y) and = —w(w v) .

Differentiating these relations with respect to y and z
respectively, we have
_69 and - 8%u _ oy
61/ éx ay aa:by oz
. 8%u _ 8%,
Since, 1n all ordinary cases, 302 oz oz 6y bence in all
ordinary cases, in order that (1) may be an exact differ-
ential, it is necessary that,

9% _Jdy,
6y ox

It can be easily shown that this condition is in general
also sufficient.
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9°11.
Functions.
I w=f(z,, ),

where ¢, =¢, (z, ¥), v, =
wariables then,

Partial Derivatives of a Function of two

¢a (z, ¥), and z, y are independent

du du dx4y oxy Ou dx,
éx dx, 0x ' O0xa Ox
du Ou dx4 , du Oxp
dy 6x1 6y 6xg oy

We have

du= d +——dw, e (1)
[oJi29

oz, by “'2 + 6973
dry ol de + oy dy, dr, = dx dy.

Whean values of 2,, z, in terms of , ¥ are substituted
« becomes a function of z, ¥ ; hence

8t s+ 5% .
du = o dx + by dy. 6]

Now, substituting the values of dz,, dzs in (1), we get

o = ou oy, Ou @@:_,)d +(6u oz, | Ou 6w,)d
oz, 0z Oz, Oz

oz, 6y b?v: _&/
Comparing this with (2), since, dz, dy are independent,
the required relations follow.

Note. The above result admits of easy generalization to the cases
of more than two variables. Thus, if u=f (,, x,, ©,), Wwhere &, =
«p, (2, U, 8), Ta=¢3 (%, 9 2), s =9, (@ ¥, 8) and =z, y, 8 are independent
-variables, then

du_ 3u Ox.+8u 8%, 3u 3x,
E 3x @ 0% OXx ' 8x, Gx
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3u__ 8u 3x, 3u 3x du 3x,
§y™ox, By Jx.i-y! Bx.Ty'
3u_ du 3x, ., du 8x, du 3x
5=0x, %2 Yhx, % Vhx, Bz
9°12. Euler’s Theorem on Homogeneous Functions
(generalization).
If flx, v, 2) be a ho'rzmgoneous Sunction m =z, y, z of
degree n, having continuous partial derivatives,

f+y6f+zaf—nf

then 2o +ys tz,,7

Proof : Since f(z, ¥, 2) is a homogeneous function,
fz, ty, tz)=1"f(z, y, 2) - (1)
for all values of .
Putting tx=wu, ty=wv, tz=w,
differentiating both sides of (1) with respect to ¢, we have,
of ou  Of ov  Of Sw_ .- '
bu'st Tav st owa —m S@ v, )

§u+ ygf+ za‘;=nt”-1 flz, v, 2). - (9)

Putting ¢=1 in (2),

Lyt Yy

Note 1. The above method of proof is applicable to a funotion of
any number of independent variables.

Note 2. The above result can also be established as in the case
of two independent variables 1.e., by writing

Sz, v, :)=:c"f(g , i)=w“f(u, v), where u= ?é, v-é and then
g[ sf af -

obtaining

15
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9°18. Converse of Euler’s Theorem.
If f(z, v, 2) admits of continuous partial derivatives and
satisfies the relation

‘”a{c*' yé£+ 25, =nf(z, v, 2),

where n is a positive integer, prove that f(z, v, z) 18 @ homo-
geneous function of degree n. [C.H. 1960

Proof : Put 5-5’ f)=§'€=2:

then z=§¢, y=n¢, z=¢. Suppose when expressed in terms

f 9 n’ (l
of ¢ f(a:, v, 2)=v(£, 1, {).

avag ovon 31)3(

Then, ” 2\ogoz * anaw 3(3.1:
_ (001 v
(ag + 0+ )
-s £-
of _ Ov

Similarly ya - 'laﬂ
3f (3'03& + dvdn , 903

and 252~ \ogoz T Ondz T a0z
- vz vy a'v
’( 38 "t 1)
o _ Ov, Do
36 Tont (o

Hence, the given relation reduces to

fg—z-m, or, gz ;"

whenoe, log v=n log ¢ +a constant,
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where the constant is independent of {, but may depend
on £ and 7 ; let this constant be denoted by log ¢ (&, n).

Then, ”=£”¢ (5, ﬂ)l
i.e., f(z, v, 2)=2" ¢(—’ —)

z
which, aceording to the definition of a homogeneous
function, shows that f(g, v, 2) is a homogeneous function of
degree n.

Note. If m be any rational number, the proof and the result
remain unchanged.

9°14. Illustrative Examples.

ety

Ex 1. Ifu=tan z—y ' show that

& Su
6.n+1l 5y=sm. 2u.

From the given relation, we got

._j" Pty ot {1+ ()} L, (
wn U=y T -y ¢(w)

.. tan % 18 a homogenecous function of degree 2.

Let v=tan % ; .'. by Euler's Theorem,

60 v
4 'H/Gy 20,
. 2, a 6
e T 8e0tu o +1/sec %, y=2ta.nu-
. 5“+;u8u 2 tan u =2 gin % cos u=sin 2u.
sec’u

Ex. 2. If A be the area of a triangle ABO, show that
dA =R(cos A da+cos B db+cos C dc),
where R 13 the corcum-radwus of the triangle.
From trigonometry, we have
A=y (20%c?+2c%a%+ 2220 —at —b* —¢*).
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Thus, A is a function of the three independent variables, g, b, c.
Hence, taking differential of both sides,

2AAA =y {4a (b +c?—a?) da+4b(c?+a?—b?) db
+4c (a®+b*—c?) dc)

=y (4a . 2bc cos 4 da+4b . 2ca cos B db+4c . 2ab cos O do)
=#abe (cos 4 da-+cos8 B db+cos C de).

. dAEZl}AE (cos 4 da+cos B db+cos C dc)
=R (cos 4 da+cos B db+cos C dc).

Ex. 8. If P de+Q dy+ R de can be made a perfect dufferemtral of
some function of &, ¥, & on multiplwcatio