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PREFACE TO THE FIRST EDITION

TuIs book is prepared with a view to be used as a text-book

for the B. A. and B. Sc, students of the Indian Universities.

We have tried to make the expositions of the fundamental

principles clear as well as concise without going into unne-

cessary details ; and at the same time an attempt has been

made to make the treatment as much rigorous and up-to-

date as possible within the scope of the elementary work.

Proofs of certain important fundamental results and

theorems which are assumed in the earlier chapters of the

book for the convenignce of thé beginners and average

students, have been given in the Appendix. A brief account

of the theory of infinite series, especially the power series

1s given in the Appendix in order to emphasise their

peculiarity in the application of the principles of Calculus.

Important formule of this book are given in the beginning

for ready reference. A good number of typical examples

have been worked out by way of illustrations. ° ,

Many varied types of examples have been given for

exercise, in order that the students might acquire a good

grasp of the applications of the principles of Calculus.

University questions of recent years have been added at

the end to give the students an idea of the standard of the

examination. Our thanks are due to the authorities and

the staff of the K. P. Basu Printing Works, Calcutta, who

in spite of their various preoccupations, had the kindness

to complete the printing so efficiently in a short period of

time. Any criticism, correction and suggestion towards the

improvement of the book from teachers and students will

be thankfully received.

CALCUTTA, \ B. GC. D.

June, 1949 B. N. M.



PREFACE TO‘THE EIGHTH EDITION

In this edition we have thoroughly revised the book

in accordance with the syllabus of the Three-Year Degree

Course for Differential Calculus (Pass Course). In some

places chapters have been re-arranged and a few well-chosen

examples have been added here and there to make the book

more useful. Differentiation of Determinants and a proof

of the converse of the Euler’s Theorem on Homogeneous

Functions have been added. We take this opportunity of

thanking Prof. Joyti Choudhuri, M.Sc. and Prdf. Tapen

Moulik, M.Sc. for their help in the revisidn of the text.

CALCUTTA, B. C. D..«

July, 1960 B. N. M.

PREFACE TO THE SIXTEENTH EDITION

This edition is practically a reprint of the fifteenth

edition with some minor additions and alterations.

Our thanks are due to Sr Balen Mukherjee B. A. and

Sm. Kalpana Sircar M. Sc. for helping us considerably in

bringing out this edition promptly.

Our. thaaks are also due to the authorities and staff of

Messrs K. P. Basu Printing Works for efficicnt and prompt

discharge of their duties in spite of their various pre-

occupations.

CALCUTTA, B. C.D.

March, 1970 B. N. M.

GREEK ALPHABETS USED IN THE BOOK

a (alpha) A (lambda) & (x1)

B (beta) “w (mu) n (&ta)
Y (gamma) » (nu) ¢ (zeta)

6 (delta) x (p) A (cap. delta)
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SYLLABUS FOR THREE-YEAR DEGREE COURSE

DIFFERENTIAL CALCULUS (B.A. & B.Sc. Pass)

Rational, irrational and real numbers Linear continuum (Rigorous

treatment is not required).

Functions of a single variable. Limits of functions. Continuity

of functions, Existence and attainment of bounds and of all inter-

mediate values in a closed interval (Examples to be given, but no Pyoof

required). Inverse functions.

Derivative. Its geometrical interpretation and the meaning of

its sign. Rules of differentiation. Rolle’s theorom. Mean Value Theo-

rems of Lagrange and Cauchy. Successive differentiation. Leibnitz’s

Theorem, Differential.

Taylor’s and Maclaurin’s theorems with Cauchy’s and Lagrange’s

form of the remainder. Taylor’s series for such functions as

e”, sin x, tos @ and for (1+2)*, log, (1+) when |x]<1. Maxima

and Minima. Indeterminate forms.

Functions of two or more variables. Geometric notion of their

continuity. Successive partial dorivatives. Statement of a set of

sufficient conditions (without proof) for the commutative property of

partial derivatives. Euler’s Theorem on homogeneous functions.

Acquaintance with the rule for differentiation of implicit functions.

Applications : Tangent, normal, rectilinear asymptote and curva-

ture of plane curves. Envelopes.



List of Important Formule

{. Important Limits.

. sin . .
(i) Li 7: 1, where zx is 1n radian measure.

L>

7 1

(ii) Let (1+ } =eor, Lt (1+a)? =e.
n> foo e ” a->0

eee 1 —_— a a” — 1 =
(iii) Li, . log (1 +a2)=1. (iv) Li. P 1.

(1+a@)"*+1_ , on”
(v) Lt <2 =n, wD) ent O

(vii) Lt w”=0(-1l<a2< 1).
yoo

iI. Standard Derivatives.

doves (Yona

ol (x)=1; a (./2)= ie

be (e") = 6° ; é (a”) =a” loge a.

i (log x)= , ; @ (log, 2) = . loga é.

d (sin 2) = cos 2 ; d (cos x)= —sin a.
dx da

a (tan 2)=sec*z ; i. (cot 2) = — cosec*z,

i (sec x) =sec @ tan x; i (cosec 2) = — cosec # oot a.

i (sin" “x)= Ace i (cos”*”)= — Ae a?’

i (tan”*a)= 1 fos ; a (cot~*z) = — at



viii DIFFERENTIAL COALCULUS

a -1,\.. ._1 a a ~1 -—— i...7 (sec” 72) > Fs =g a 3 da (cosec” *a) = a etn]

o (sinh x)= cosh 2 ; o (cosh z)= sinh «.

a _ 3 ad 2da (tanh 2) =sech?z ; da (coth x) = — cosech*g.

4, (seo 2)= —sechxtanhgz ; o (cosech 2) .e— cosech x coth 2.

o (sinh7*) = - Aree ; @ z (cosh * 2) = - Teer (2 > 1)

jo (tenh"*e) =; 3. sle<1); * (cothTM*2) = - a @ >).

@_(gech~*2) = —- = -—~;(@<1); £ (cosech”*z) =-_1...da: x Ji 1-2? ax xv /e%+1
Ill. Fundamental theorems on Differentiation.

6) 7 (y= 0. Gi) Ji feale)t = c8" (a)

(iii) COE: + 9(x)t = 4'(7) + y'(x).

(iv) 5 Y §6(c) x v(a)t = d(x)y’ (x) + v(2)d'(2).

Derivative of the product of two functions

=first function x derivative of the second

+ second function Xx derivative of the first.

(v) fi fobs (wlbs (2)... (2)

7 d1' (aida (x)ds @) b+ da’ (aids (xlsx): }

“-+an! (x)ibs (x)bo(a)---}.

d(x)| _ db’ (x)y(a) - y vate)
(i) Sa are Me) = 0.



LIST OF IMPORTANT FORMULA ix

Derivative of the quotient of two functions

_,(Deriv. of Num.) x Denom. -(Deriv. of Denom.) x Num |
(Denom.)?

(vii) If y=f(v), v=¢(a),

| dy _ dy do
dx dv dz

11) GY Ax _o dy _ /22 (G2 ana q oY )
(viii) de® dy 1, 2.¢., an 1 dy \dy dn * 0

e

(ix) Ii a=¢(t), y=v(¢),

dy _ dy /dx (ae
dx dt/ dt x 0}

IV. Meaning of the derivatives and differential.

wu =tan ¥, where ¥ 1s the angle which the tangent
at any point to the curve y=/(x2) makes with the z-axis.

dy
dx

dy = f' (w) da, if y=f (a)

V. The nth derivatives of some special functions.

=rate of change of y with respect to @.

D* (2% =n

D* (@TM) = Gn *) a”-" (m being a positive integer > 7)

D" (e) =a" e* - D” (e*) =e”.

n, 1l (-1)"n ; (7D @-)I
Dp" z+ a “ray } D" log (x + a) (2+a)"_

D” sin (ax + b) =a” sin (2 + an + b}:

D" cos (az +b}= a” cos ("2 +a2+2).
2



DIFFERENTIAL CALCULUS

. a) RT RID” sin ax =a” sin| a + ax) - D" cos av =a” cos * + an).

sin bx) =(a? + b2)F ¢ a® sin (ba + tan ~* b/a).

2 ee Sh.) = =(q" + b2)% 6 % cos (ba + tan *b/a).
1 _(- 1)* » le .oD (3 +a? ants n”*? @ gin (n +1)6,

where @=tan~* (a/z).

D” (tan~* x) =(-1)"71 (2-1)! sin"@ sin 70, .

° where @=cot 7 x.

Leibnitz’s Theorem.

(uv)n = Und +6, Un—1V1 + "Coline eVq tor + Un.

VI. (i) Mean Value Theorem.

f(ath)=f(a) +hf (et+on),0< 6 < 1.

(ii) Taylor's Series (finite form).

Flot h)= fe) + hf (a) +B fa)t -
prt 4

+G-D! f"-* (@) + Rn.

Remainder R,, =" f" (a@+ 6h), O< 6 <1 (Lagrange’s form)

_ n(1— 6)*-1

(n-1)!

Ff (x) =f (a) + (a - a) f(a)+ ee ay fl (a) terres

we yt f “(ays @=! a Ff” ta + Aa — a)
0<0< 1.

or, Ff" (2+6h) (Cauchy's form)

Remainder Ru= (a a)" a + O(a ~ a)t.



LIST OF IMPORTANT FORMUL 2

(iii) Maclaurin’s Series ( finste form ).

fe) =4(0) + af’ (0) +3 f” (0) +

+ nyt f"-2 (0) + - f” P< 1.

{iv) Taylor's Series ( extended to onfinity ).

fla +h) = fla) + hf (a) +h fia) to.

4v) Maclaurin’s Series ( evtended to wnfinty ).

S(x) = f(0) + xf’ (0) + z f" (O) Fevers to ©,

{vi) Expansions of some well-known functions in series.

2
x x
+{a) er=1+s, git yt

_ a _ gyn eet,

a? a* n 22”

{c) cos z=1—-5,+4 17 +(-1) (Qn) 777 ) values

8 5 2Q2n+1 of x

(d) sinh peate tet Ht eaayphe
ao? n* 22” |

{e) cosh x 1+G tat * (omy *
!

2 8 n

(f) log 1 +a)=a—", +7 meet (- art eee
3

for ~-l<¢2e<l.

(g) Ata)" =1-a2+2?—-7° +-:- for -l<e<l.

(l-w)*=ltaetat* +e? +: for -~-l<e«s l.

(l+a)-?=1-974+8a7-—427%+--- for -l<@a<l1.

_ —$_ 1 13,546,135 53...
(1-2) lt gato yetoyge t

for ~-l<¢@< 1.



xii DIFFERENTIAL CALCULUS

8 5 2-1

~1l, oo _ v & — 60 _— m-1 x ebe(h) tanTM*e=a-"s+ +(—1) on-1t

for -lqaxel.

8 5

(2) sin -*2=a2 + ; 3 ear eee for -1 @& wz & 1.

VIT. Maxima and Minima.

(i) If f(c)=0 and fc) is negative, thert

f(x) is a maximum for z=.

(i) If f(c)=0 and fc) is positive, then

f(x) is a minimum for z=.

(iii) If f'(c)=f"(c)=--- =f7* (c)=0 and Ff" (c) ¥ 0, then

(a) ifr is even, then f(x) is a maximum or a minimum

for x= c, according as f* (c) is negative or positeve :

(6) if r is odd, there 18 neither a maximum nor a mini-

mum for F(x) at =e.
e

Civ) Alternateve creterion for maxima and minima :

(a) f(x) is a maximum if f’ (@ +h) changes sign from

+to —, and

(b) f(x) is a mmimum if f/’ («@ +h) changes sign from

- to t+,

as h, being numerically infinitely small, changes from

— to +,

VIII. Indeterminate forms.

(a) Form .

dr) 7, ola) _ oa)
dit y(a) ae p(x) y'(x) ( L’ Hosmial’s Theorem )

; 03 de) 7, $(a),
Gi) Form 7 Lt a) “Et, ve)



LIST OF IMPORTANT FORMULA

{X. Partial Differentiation.

(i) If w=f(a, y), and if fys, fey exist and fya ( or fey )
é°u b°%

is continuous, then ~~~
Oxdy oy x

xili

(ii) If f(@, y) be a homogeneous function of degree n

in x, y, then a a 4 y y 7 fle, y). [ Huler’s Theorem |

wos of y of
ty eee = .; Similarly, z set Voy” bz nf(o, y, 2)

(iin) If fle, v)=0, Y= -722 (fy #0).

(iv) If w=f(a2, y) where x= 4(t), y= y(t),

du _dudx , du dy.

dt ‘dxdt dy dt

(v) If w=fla, y), du=fe dat+fy dy.

Similarly, du=fe de+fy dy +fz dz.

(vi) If w=f(r1, 22), where 71 =¢3, (2, y), to =o (2, 9),

6u _ bu bry 1 OU bao. 6u du dry , du 5%

6@ 6%, 60 6@%, 6a OY 6%, OY O@, Oy

t

X. Tangent and Normal.

. G) Equation of the tangent

Y-y= ov (X-«), or, (X-2) fe t(Y—-y) fy, =0.

(ii) Hquateon of the normal

Fx fy

(iin) Carteszan sub-tangent = y/y. ; sub-normal = yy4

Length of tangent =y /1+4y12/y1

Length of normal =y /1+y,2.

Y-y=-9 (x-2) or, X7#@ Yr,



xiv DIFFERENTIAL CALCULUS

(iv) Arc-differential (Cartesian)

an cos ¥, ay =gin ¥, a — tan yp

av)* _ (22)" (2v)’ _ (#)°
(ae) *| I; at F \ ay at

5 2 ds _ — (da\2

Seat * (av) "dy J/1 + (77
i = dx7 + dy”.

(v) Angle between tangent and radzus vector (¢)

_7d6. . ,_rdg. _ ar
tan ¢= dr > sin d ds > COS ds

yp=6+¢.

(vi) Are. aeferential (Polar)

. as rae\?= 2 =aSaal 1 + (3) ” dr r/ r+ (2
_ 3 ary* 1+ ("20)"~as ead + (@ d@; ds r/1+ dr dr

ds* = dr* +r? do”,

we dé aég 1
= 2 — —_ 3 =(vii Polar sub-tangent =r dr du where r

ar
Polar sub-normal 0

Perpendicular from pele on tangent (p)

param sight h(E) mats (B-
(viii) Pedal equations yf some well-known curves

(1) Circle x? +y? =a? (centre)---r=p

(2) Circle 2? + y? =a? (point on the

circumference):::r? = 2ap

(3) Parabola y? = 4ax (focus)---p? =



LIST OF IMPORTANT FORMULA xv

(4) Ellipse ” a? + : = 1 (focus):-- on -—1
272(5) Ellipse vtY= 1 (centre):- a +77 =? +5?

#2
a? oy? b?

(6) Hyperbola a2 b =] (focus)=+-2 p? = — +]

Ce 2

(7) Hyperbolg aa 2 1 (centre)--:

a*b® — 2% =g2—p?
Pp

(8) Rect. Hyperbola «? — y? =a? (centre):--pr=a?

(9) Parabola r= l an 6 (focus) --- p? =ar

(10) Cardioide + =a (1+cos 9) (pole)--:7* = 2ap?

(11) Lemniscate r? =a" cos 26

7? =a" gin 26

(12) r*=a”TM cos n@
r”TM =a” gin 16

wag =a*p

| (pole)--r* = ap,

XI. Curvature.

p= FL s=sv) ]

2\(1+ y, *) ty

a Yo =f(x)]3; ye # 0.

(1+2,%)%
Te

(a? +y 12\5
Porn rn (oF d(t), y= y(z) ].

cy ~y2

p= x= f(y) |] , Be ¥ 0.

(Fett fe _
= ” Saxfy” — Ofeufahy £ Soufe a [ fw, y)=0].



xvi DIFFERENTIAL CALCULUS

_ +n r =f (8) ].

2 +aM, tus * [ w =f (6) J.

d a®p= "iD [ p=f(r) 1}. pants [p=f(y) ].

2 
e

p= Lt By [ at the origin, x-axis (y =0) being tangent J.

2

p=It Oa { at the origin, y-axis (w= 0) being tangent |.

a” +y?
ag + by { at the origin,p= J/a?+b?. Lt

ax +by=0 being tangent J.

Chord of curvature through the pole =2p sin ¢.

parallel to z-axis = Zp sin y
Chor a of curvature { parallel to y-axis = 2p cos »
Centre of curvature

- +4,7) = +y,?B= y+(1 Va *), y= mye Ya C y=f (2)
Yo Ya

~ 1+,” ~ vo (lt+m,?

gaat tt, Gay EFM) eazy]
2 Ze

c=2—p sin y, y=ytp cos ¥.

. g

Radius of curvature of the evolute oot



DIFFERENTIAL CALCULUS

INTRODUCTION

NUMBERS

°- @1. Numbers.

The earliest concept 6f numbers originated from count-

ing, and the first set of numbers which was known to men

was the set of posztrve anteyers The arithmetical process of

subtraction needed an extension to negative integers, and

zero was included as a number. The process of division

required a further extension to rational mwmbers, which are

defined to be numbers of the form TM where m and n are

integers, ultimately prime to each other, being positive

and not equal to zero. It may be noted that terminating

decimals, as also recurring decimals, which are expressible

in the form m/7 fall under this category.

0°2. Geometrical representation of rational numbers ;

rational points.

x’ Pp 0 A P x

Take an indefinite line X’OX for reference, and a suit-
able point O on it as origin. A suitable length OA on it

being chosen as unit, 1f we divide OA geometrically into

» equal parts, and take a length OP (or OP’) equal to m such
parts (towards the mght of O if m he positive, and towards

the lett if » be negative), the length OP (or OP’), or the
point P (or P’, as the case may be) represents the rational

number m/n. The point P, representing a rational number,
is called a ratzonal point.
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0°3. Properties of rational numbers.

(i) Rational numbers are well-ordered. This means that

of two unequal rational numbers a and 3b, either a > b or

a<b, also if a>b and b> c, thena>c, etc. In other

words, rational numbers are well-arranged in respect of their

magnitudes, points representing higher numbers always

falling to the right of those representing smaller ones, and

vice versa, in their geometrical representation.
e

(ii) Rational numbers are overywhere dense; in other

words, between any two rational numbers however close,-

or within any interval on the AXIS representing rational

numbers, however small, there is an infinite number of

rational numbers or points.

This mav he easily seen from the fact that however

close the two rational numbers a and b may be, #(a+b) is
a rational number lying between them. Simularly, between

a and $(a+5b), as also between (a+b) and b we can insert
rational numbers, and so on. ‘Thus there 1s an infinite

number of rational numbers between a and b.

0°4. Irrational numbers.

Whereas all rational numbers are represented by points

on the axis, and though 1n any interval however small there

is an infinite number of rational points, still the converse,

that every point on the axis must represent some rational

number, is not true ;

eg, OP = J/2 ws not
B ratronal.

“1% OA being unity, if AB be
o ‘, taken at right angles to OA

y \ and equal to it, OB is joined,
‘ and on OX, OP he cut off
1 equal to OB, OP represents

O A P 4% _ gnumber equal to /9, which
is not rational.

Proof : For if. J3 = m/n, where m, n are integers prime
to each other, m*=2n", showing that m? and so m is an
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even integer (for the square of an odd integer is evidently
odd). Let m=2m’, where m’ is an integer. Then we get
n* =2m’" and so 7 18 also an even integer. Thus m and n,
which have a common factor 2, cannot be prime to one

another, thus leading to a contradiction.

Similarly, equations hke 2* =7, 4r* +8=21 etc. cannot

be solved in terms of rational numbers alone. Besides

radicals, *there are other types of number like e, z,... (called

transcendental numbers) which are not rational.

elbere are therefore numbers other than _ rational

numbers, which are called irrational numbers, thus leading

to a further extension of numbers.

0°5. Relations of irrational numbers to rational

numbers ; representation of numbers (rational as well as

irrational) as sections of rational numbers.

Consider the number ./2 There is no rational number
whose square 1s 2. The system of rational numbers there-

fore can be divided into two classes, say J and J?, such that

all numbers of the L-class have their squares less than 2, and

those of the A-class have squares greater than 2. Hence,

every number of the R-class > every number of the Z-class.

Thus, 1, 1°4, 1°41, 1.414, 1.4142 ... belong to L-class

and 2, 1°5, 1°42, 1°415, 1°4143 .... belong to R-class.

The differences of the corresponding numbers of the two

classes are respectively,

1, ‘1, 01, ‘001, ‘0001......

Proceeding in this manner (by expressing ./2 in a decimal
form, which will lead to an endless decimals not recurring,

and choosing the rational numbers of the two classes by

stopping at any stage) we can find a member of the ZL-class
and a member of the A-class which differ from one another

by as little as we please. Our common-sense notion there-

fore demands the existence of a number 2, and a corres-

ponding point P on the axis, such that P divides the

class Z from the class &#.
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But this number z is not rational and belongs to neither

of the two classes. Further, 2? is neither > 2, nor < 2.

For if 7” > 2, lei v7 =2+¢e. Then however small ¢ may
be, we can get rational numbers of the R-class whose

squares being => 2 will differ from 2 by less than ¢«. Such

rational numbers of the -class will le to the left of z, and

so the assumption that x 1s the poimt dividing the two

classes 1s untenable. Similarly 2? + 2. ‘

. 2 =2 or x= ./9, and being not rational as proved
before, it belongs neither to class DZ, nor to class R. The
point P 1s thus only a point of section of the two classes of

rational numbers ZL and F# defined Sefore, not belonging to

either class, and representing the irrational number 4/2.

This leads to a new idea of defining numbers as sections

of rational numbers, as follows :

“If by some means or other we divide all rational
numbers into two classes J and A, such that each class

contains at least one rational number, every rational numher

helongs to either 77 or R, and each number belonging to

B-class‘> every number of the Z-class, then we obtain
a section of rational numbers which defines a number, ratio-

nal, or irrational, the particular mode of division defines

a particular number by its section.”

Three cases may arise: (i) The Z-class has a greatest
number, but the A-class has no least , eg., Let all rational

numbers > 5 belong to R-class, and the number 5, as also

all rational numbers < 5 belong to L-class. The section in

this case represents the rational number 5, which belongs

here to one of the two classes, namely the JZ class. (11) The
i-class bas no greatest number, but tle f-class has a least

one; ég., All rational numbers <-—35 belong to JL-class

and — 3'5 with all rational numbers greater than this helongs

to R-class Here the section represents the rational

number — 3°5, and the number itself belongs to A-class.

(iii) The Z-class has no greatest number and the R-class
has no least number, eg., All rational numbers whose

cubes are <7 helong to Z-class, and those whose cubes

are > 7 belong to R-class; there is no rational number,
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as can be shown, whose cube is equal to.7. The section

in this case represents the irrational number 32/7, and

belongs to none of tho classes L and & which consist of

rational numbers only.

If may be noted that the case in which the Z-class has
a greatest nurnber and #-class has a least number simul-

taneously is not possible, for otherwise, hetween these two

rational numbers there would be an infinite number of

rational numbers ae proved before, and they would belong

to none of the two classes.
@ e@ 

.
This extension of our conception of numbers as sections

of rational numbers gives us a more satisfactory basis of

defining all numbers in a uniform way. We no longer think

of numbers as isolated members, but as an aggregate of

rational numbers divided into sections.

0°6. Real numbers.

All kinds of numbers, rational as well as irrational,
positive or negative, including zero, constitute what are

called real numbers. °* .

Jt may he thought that just as from rational numbers,
by dividing them imto two classes by sections, we get in
addition to rational numbers, a new type of numbers,

namely irrational numbers, similarly by sections of real
numbers again, we may expect a further extension of

numbers. But this 1s not true. Inthis connection we state
the following theorem .

Dedekind’s theorem (on sections of real numbers)

If real numbers be divided anto two classes L and Rin

such way that

(i) every real number belongs to one class or the other,

(ii) each class contasns at least one number,

and (iii) any number of the L-class 1s less than every number

of the &-class,
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then there exzsts a 1eal mimber a which effects th s section,

2.€., Which has the property that all nwmbers less than a belong

to i-class, and all numbers greater than a belong to R-class,

the number a itself may belong to erther class.

[ or proof, see Hardy's Pure Mathematics ]

Thus as sections of real numbers we get real numbers

alone (unlike that in case of rational numbers), and not any
other new type of numbers.

Thus no further extension of numbers is possible ; ends

the aggregate of real numbers is. complete. The corres-

pondence (one to one) between all the points on the line

X’OX without exception (called the linear continuum)
and the system of all real numbers rational and irrational

(constituting what is called the arithmetical continuum)
1s now perfect.

0°7. Properties of real numbers.

(i) All fundamental laws of algebra which hold for

rationél numbers (including index laws etc.) remain true for
irrational numbers as well.

[ For proof, sce Bromwich's Infinite Series, Appendix I |

(ii) Between any two real numbers however close, there
exists an infinite number of rational numbers, as also an

infinite number of irrational numbers.

One special case of this 18 Art. 0°3(ii).

0°8. Complex numbers.

In order to fill up the gaps and bring about a uniformity

in the theory of equations, as also in all other theories of

higher mathematics, it has been found necessary to intro-

duce a class of numbers, called complex numbers. A complex

mumber has been defined by modern mathematicians as an
ordered couple of real numbers, 1.e., a pair of real numbers

united symbolically in a particular order for the purpose of

technical convenience. Thus a complex number is, strictly
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speaking, not a single number at all, but a pair of real
numbers with a proper order I{ the order 1s reversed,

we get a different complex number A complex number

may be expressed in the form [a, b], where a and b are two
real numbers. It is also represented, for convenience, in

the form a+2b, where the symbol 2 has no meaning by

itself , 16 merely indicates the order in which the real

numbers a and b are considered. In defining all ordinary

algebraic@l operations with regard to complex numbers 16

has been found convenient to associate the symbol 2 with

the property 27=-—1, in which case all operations con-

*sistent with the algebra of real numbers may he applied

to the case of complex numbers.

For geometrical representation and further introduction

into the algebra of complex numbers seo Chapter VI, Das

and Mukherjees’ Higher Trigonometry.



OHAPTER I

FUNCTIONS

1°1. In higher mathematics and various branches of

Science very often we have to deal with changeable quan-

tatees Which are tnter-related to one another, and in many

such cases we have occasions to investigate how one of
these quantities changes with a gradual‘change in the other.

For example, in a given amount of gas enclosed in a cyligder,

with a movable piston, and kept at a constant temperature,

the volume and pressure are interdependent, and a change

in One produces a corresponding change in the other ; or

again, for a falling particle, the height from the ground

depends on the time, and changes with it, the area of

a circle changes with its radius ete.

In Differential Calculus we deal with the way in which

one quantity varies with another when the change in the

latter is ultimately very small, or more properly, with the

rate of change of one quantity with another, as also other

allied problems.”

In these investigutions we shall be dealing with the

relations between pure numbers which represent the magni-

tudes (with proper signs) of the quantities, and not with
the concrete quantities themselves, so that the result

will be general in nature, applicable to anv pair of inter-

dependent quantities under similar mathematical conditions.

In the following discussions we shall be concerned

with the system of real numbers only, meaning by real

numbers, zero, integers, rational and irrational numbers,

positive or negative.

* While investigating problems of this type, Newton (in England)

and Leibnitz (in Germany) were independently lod ot the investigation

of tho principles of Caloulus, towards the close of the seventeenth

century. The principles of Calculus, in some form, were also known

to the Hindus in India much earlier.
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1°2. Preliminary Definitions and Notations.

Aggregate or Set: A system of real numbers defined

in any way whatever is called an ‘aggregate’ or ‘set’ of
numbers.

Illustratszon* The aggregate of positive integers ; the aggregate of

all negative rational numbers ; tho aggregate of all real numbers positivo

or nogative; the aggregato ofall rational numbors from —3 to +7 ;

. 1 12°21 ~=21~«2
the aggregate of numbers 1° =2' 3’ —4’ 5’ -6 etc.

* Variable: Let x be asymbol used during any mathe-

matical investigation, tg which may be assigned any numer!-

cal value out of a given set of real numbers. Then = is

called a ‘variable’ or a ‘real variable’, and the totality of
the values of # constitutes what is called the domain of rr.

Illus. In the expression a !, 2 may be considered a real variable

whose domain is tho aggregite of positive integers.

Note. Variables are usually denoted by latter lotters of the alpha-

pet, such a8 a, ¥, 2, u, Vv, wW, £, 7, §, ete.

Continuous Variable: If « assumes successively every

numerical value of an aggregate of all real numbers from

@ given number ‘a’ to another given number ‘b’, then a is
called a ‘continuous real variable’.

The domain or interval (as it will be sometimes called )

of x in this case 1s denoted by (a, }) or ax x <b.

If a@ be omitted from the domain, it is indicated as

axzeas b.

In the last case the domain is said to he open at the left

end, whereas the domain a <— 2 < b is said to be closed.

The interval a < #« < b is open at both ends, a and 4 being

both excluded from the domain of possible values of 2.

Iltus.: In tho expression ,/(5—2)(1+8), 2 18 & continuous real

variable whose domain is —8 < # < 5; again, in ./z+2/,/7—2, the

real variable 2 has the interval -2 < a< 7. Insin@'g, the interval

offis -l<ar<l.
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The domain of the variable x in any expression contain-
ing #,as in the above cases, consists of those values of x

for which the expression has a definite real value.

The interval (a, b) is very often graphically represented

on the v-axis hy means of the length bounded by the two

points A (s=a) and B(r=b). The length of the onterval

| - (a, b) is obviously AB

o A B xX =OB- 0O“=b-a.
e

Constant : A symbol which retains the same numerical

value throughout a set of mathematical operations is calked

a constant.

Note. Constants (other than numerical constants like 2, —3, ¢, 7

etc.) are usually donoted by the earlier letters of the alphabet, such as

a, b, a, B, ote,

Absolute value: By absolute value of a quantity 7,

as distinguished from its algebraical value, we mean 118

magnitude or numerical value, taken with a positive sign.

It is represented by the notation |e | whichis =z, 0 or —2

according as £ >= or < 0,

From the very definition the following results are

apparent, v22.,

GQ) }atb| <]al + |b] or more generally,

lJatbtcts | clal +b] 4+ fe] pe seeeee

Gi)|atb| >lal~|bl,2e,] Jal -|b] |

Iltus.: | -2| =2, [6] =G6, | -2+6]| < 2+6, | —-2-6] =24+6

| -G-2| > 6~2,|2-6| =6~2, eto.

Note. Meaning of the symbol |e—al| < 8

Ifm@ >a, w-a<6, we, a2<até. If 2 <a,anm-nz < 6, 1x.,

a-& <a. Hence, combining the two, we see that | z—a|< & means

a-8<a<a+6. Similarly, |z-a|] <6 means a-5 <a < até.

Symbol 0 < |a—a| < dmeansa-58 <a < ard, bute € a.

Thus, | z| < 5 means —35 < @ < 8.
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Functions: By a function of x defined for a given

domain, is understood, a quanitty which has a single and

definite value for every value of x in its domain

[ See note I |

In other words, “Jf x and y be two real varsables, so

related, that corresponding to every value of x within a defined

domain we get a defintite value of y, then y rs sard to be

a function of x defined rn tts domain”

*In this case, the variable 2, to which we may arbitrarily

assign different valuegin the given domain, is referred to

as the independent variable (or, argument), and y is called
the dependent variable (or, functzon). [ See note 2 |

We shall generally denote functions of x by such symbols

as f(x), p(x), F(x), d(x) etc., where the mathematical forms
of these functions may or may not be obtainable.

Note 1. When an expression or equation which definos a function

gives two or more valuos of the function for each value of x, we call

the function mulitple-valued. The definition given above rofers to

a single-valued function with which we are mainly concerned in

all mathematical investigations, A multiple-valued function, with

proper limitations imposed on its value to be used in any particular

investigation, can 10 general be treated as defining two or more different

single-valucd functions of 2, ¢.g., y=sin7?z(—1< 2 < 1) can be

broken up into y=sin7'g, where (1) —$r < y < $2, (un) 9a < y < fr,

(iii) Bor < y < Gr etc. ; again, y?=a2 can be broken up into y= + a/z

and y= — a/x, and so on.

More generally (without restricting to single-valued functions

only) a function of z may be defined as follows -—

If two quantiives x and y ae so related, that corresponding to

values of x, there are values of y, then y vs sand to be a function of x.

Note 2. If y be a function of the variable a, it will generally be

open to us also to regard x as a function of y by virtue of the functional

relation between x andy, the proper domain of y being taken into

account in this case, because it may so happen that the domain in

which y is defined is notthe domain in which 2 is defined. For
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example y= ./x can be writton as r=y?, the domain of zg in the former

relation being x= 0, and that of y in the latter is the aggregate of

all real numbers, positive or negative.

In the laiter case y will be the independent variable, « the depen-

dent one

Note 38 A function may be undefined (ue., may not have a definite

value) for some partecular value or values of © wm a guven enterval.

In this connection we may mako the following remarks :
€

Division by zero (symbols a/0, 0/0) meaningless.

The quotient of two finite numbers a and b (112, a/b) is defined as*

the definite finito number gz such that awbz. Now, obviously, in the

division, zero value of b 1s excluded , for if b=0, then a (=br)=0,

and x can be any number IT[ence, the ahove definition rules ont division

by zero. Therefore, forms a/0, 0/0 arc moaningless.

The following simple illustration shows how dwviston by zero leads

to fallacious results.

Suppose, x=y, (1 ¥ 0, y x 0), .*. w2=axy.

. a*—y? =ny—y", or, (v+y)(z— y) = (x — 9).
a

Hence, dividing out by x—-y, r-+y=y,7¢, 2y= 4, or, 2=1.

The fallacy is due to the fact that we dividel by w—y which is

equal to zero,

Similarly, the assumption 0/0 = 1, on the basis that anything divided

by itself 1s 1, lexds to fallacious results, as shown balow.

0 _3x0_0 _
O O QO 1. ae 3=1,3x 5 =8x1=8, again 3X

From the above remarks, 1t will be apparent that

on? —25
the function f(x) = z—-5 #8 noi defined for x=5 ;

the function f(z) =sin (1/x) 18 not defined for x=0; ete.

Note 4. If f(x) denotes a certain function of x, then in case f(x)

is given by a mathematical cxpression involving a, f(a), ue., the value

of the function for z=a may in goncral (but not always, as explained

in note 3 above, and also in (iv) Art. 1'4) be obtained by putting a

for x in the expression for f(z).
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Thus, if f(z) =sin a, f(0)=sin 0O=0;

if f(z) =a2? —52+1, f(1)= —3, f(-—1=7;

vf f(x) =2?, f(eth) =(at+h)? =x72+ Wht h? ; ete.

whereas, if f(z)=« cos (1/zx), f(0) 18 undefined.

1°38. Graphical representation of functions.

Taking the straight line X’OX, with origin O on it as
usual, to represent the real variable w, the value of the

function, y or f(r), may he represented parallel to the line
YOY’ drawn at right angles to X’OX, as in ordinary graphs.

eCorresponding to every value of 2 (in the assigned domain)
the point is plotted whose ordinate gives the corresponding

value of the function. he assemblage of the points, which

may or may not form a continuous line, represents the graph

of the function.

In drawing the graph it 1s not necessary to know the

exact mathematical relation between & and y (which may

or may not be obtainable) It will be sufficient if we know
the definite value of y corresponding to every value (at least

a large number of values) of x 1n the defined domain.

The graph at once presents to the eye the way in which

the function is related to, and changes with the argument.

1°4. Some remarks on functions.

From the very definition the following points should

be clear :

(i) It 1s not essental for a function to be expressible by
a mathematical form always. For example, suppose x hours

after noon on a certain day, the temperature of a patient

is ZT degrees. Now to each value of 2 (up to a certain
number, depending on our contemplated period of observa-

tion), there corresponds a definite value of 7. Hence, TJ 1s

a function of x by definition. But JT cannot he expressed
analytically by a mathematical expression in terms of &.

Nevertheless, we can draw a graph which is the tempera-
ture chart of the patient, giving an idea how T changes

with the time z. For other examples, see (vii) of the next
article.
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(ii) In some cases a@ function may have different mathe-
matical forms for defferent ranges of tts domain of existence ;

for illustration, see (v) of the next article.

Gij) A function may be undefined for some value or
values of the argument, as has already been remarked and

illustrated in note 3, Art. 1°2. Also, every function cannot

be defined 1n every interval , thus, sin-*x# cannot be defined

in the interval (2, 3) for sin~* 2 has no meaning, thére being
no angle whose sine is 2. °

(iv) A fonction may be defined arhitrarily. For instarfeo, °

we may define a function as °

f(x) =a? when x < 0,

f(0) = 3,

f(x)=4-—a2 when x > 0.

The function is thus definitely defined for all real values

of x.

. x? — 95
(v) The function gap ond +5 are different func-

tions. The former is undefined at x=5, and so 1ts domain

of existence is the aggregate of all real numbers excepting

5 for the argument xz. The latter exists for all real values

of xz. Hence, though for other values of 2 the two functions

are equal, there is a point of distinction at «= 5.

. : _ a? _ 25
A third function might be defined as f(z) = 2-5

g # 5, and f(5)=20 Then the function is again different

from either of the first two. It exists for all real values

of x including r=5, but at 2=5 its value is different from

that of the second function 7+ 5.

when

If we define a fourth function by saying that /(a)

2 — 25

-5

identical with the function «+ 5.

when x * 5, and /(5)=10, then this function is



FUNCTIONS 15

1°56. Examples of functions.

Below is given a number of examples of functions of

a variety of types, with their graphs in certain cases which

will help to torm a clear notion about functions and will

further elucidate the remarks of the previous article.

20° +7
2° +9

generally, polynomials an x of the type f(z)=a2e" + a2"
Ho asecceees +dn-10+an (where 2 1s a positive integer), or

vational algebrare functions of the type P(x) / Q(x), where
P(x) and Q(x) are polynemuials.

(i) Ayalytical functions like x”, etc., or more

1

The domain of these are generally the set of all real

numbers ; in the last case the zeroes of the denominator

are excluded, for the function is not defined at these

points.

Gi) f(x)=-2r when x > 0
B Y A

=0 when x = O ;

=-©£ when 2 < 0.

The graph, as shown, consists x o x

of two lines OA and OB which

bisect the 2° XOY, X’OY res- ,

pectively. Y¥

This is also the graph of the function f(z) = Ja].

(iii) f@)= Ja Y

F(x) is defined for «=0, and

all positive values of 2; graph

is a continuous curve (para- x’..--- x

bola) in the first quadrant. o}

(iv) f(a) =a ! tv"
= 1 1 1

Or, f(x)=sum of first 2 terms of j@toatgatec
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The functions ‘are defined only for positive integral values

of x.

The graph in each case consists of a series of isolated

points.

(v) The height y from the ground, at a time a, of

a perfectly elastic ball originally dropped from a height h.

Y

x "OL ania 3 /2h/g 5 J/2h/g

Here y is defined for all positive values of x, but express-

ed by different mathematical terms for different ranges ot

the values of a.

Thus, denoting the time of fall (from start to first impact),
2.€., »/(2h/g) by a1.

y =h— kgx*?, when 0 < a2 <a, (2.e., before first impact)

y=(a@—2,1) /2qh—4g (@—-— 2), when a1 << @ < 3a
(1.e., hetween first and second impact)

y =(2 — 32,)./8qh— 49 (2 — 32,)", when 327, <2 < 5x,
(1.e., between second and third impact) etc.

The graph, as shown, consists of a series of parabolic
arcs, on the positive side of the r-axis.

2
. uv

= -_ Y(vi) y z A

For 2 +0, y=2,

for x=0, y is not known x’
x

(undefined). oO

The graph is that of the

straight line y=2, with the B ,
Y

origin left out.
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(vii) y=[a2], where [a] denotes the greatest integer
not exceeding 2x. "

Y

—
;

x = = oO 1 28 x

io
i!

y

For O<er<ly=0; leax<ay=l1;

2<aeae<3ag,y=2;3; -lerx<O0y=-1;

-O9ger<x -Iil,y= —2 ete.

Thus, the graph consists of parallel segments of line in

which the rnght-hand end-points are left out.

(viii) y= sin (1/2).

Here y is not defined for x=0. Thus, the domain of x

is the aggregate of all real numbers except 0.

Geet - eo Bw te BS & we ww Oo
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The graph is shown here, which is continuous every-

where excepting at x=0, where a point is missing on the
graph. Near O, on either side, the graph has an infinite

number of oscillations with gradually diminishing amplitude.

The graph 1s comprised between the lines y=z and y= —zZ.

Qax) Functions like e”, log z, sin z, cos “a, etc., which

are not algebraic functions are called Zi anscendental func-

tzons. For graphs of first two, see § 169.

1°6. Bounded functions and their Bounds.

Let f(x) be a function defined in the interval (a, dy. If
a finite number K can be found such that f(r) < K for every
value of x in the interval, then f(x) is said to be bounded
above in the interval.

Similarly, 1f a finite number k exists such that f(7) > & for
every @ 1n the interval, then f(x) 1s said to be bounded below.

If f(r) is both bounded above and below in the interval,
then 16 18 said to be simply bownded.

If f(2) is bounded above, then it easily follows from

Dedexind’s Theorem that there exists a definite finite
number M such that M > f(x) for every value of «x in the
interval, but ¢ being any pre-assigned positive quantity,

however small, there is at least one value of a in the interval

for which f(z) > M-e. This number M15 called the upper
bound of the function in the interval.

In @ similar way, if f(7) be bounded below, then there
exists a definite finite number m such that m < f(x) for every
vin the interval, but given any pre-assigned positive number
e, however small, there is at least one value of x for which

F(a) << mte. This number m is called the lower bound of

f(z) in the interval.

We know, sin 2, cos # are bounded functions in the inter-

val (— x, 2), the upper bounds of both being 1 and their lower
bounds being ~— 1.

For sin 7, M=1; now, taking e=4, we can find at least

one value, say 5! of z, such that sin 5 >1-4=4. Other
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values of 2 can be obtained from the tables, for which

sin z > 4%. The function defined in Ex.'(v), § 15 is
a bounded function in the interval (0, -), the upper bound
being 4 and the lower bound being zero.

For the interval O <a <TM> tana has the lower bound
2,

zero, but no upper bound. For the interval — gar 0,

tan z has no lower bdéund, but 1ts upper bound is zero. In

the ifiterval (- ; <r< *), tan 2 has neither lower bound

nor upper bound. Thus we see that a function may have

different upper and lower bounds in different intervals.

The function 2? +3a”+5 in the interval 1 < a < 2 lies

between 9 and 19; so its upper bound 1s 15 and lower

bound is 9.

The function f(x) = V5 (5— “\e- 3) is not bounded above

in the interval 3 < a < 5, in which it is defined. “ °

Let x=3+¢, where ¢ is a small positive number.

Bre > f+ J 5fia) = J ott (Q-ee> o6 > Oe which can be
made greater than any positive quantity by taking ¢ smaller

and smaller. Hence f(x) has no upper hound.

1°7. Monotone Function.

Let #1, %_ be any two points such that 71 < g#, in the

interval of definition of a function f(x). Then f(x) is said to
be monotonically increasing if f(a.) < flag) and monotonr-
cally decreasing if f(@,) > f(x,). Thus in (0, $x), sin xz is

a monotonically increasing and cos 2 is a monotonically

decreasing function.

Sometimes the following definition is used. If for

2, <5, f(a1) < f(g), then f(x) is said to be strectly mono-
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tonrcally increasing, and if f(a) > f(aq), then f(x) is said to

be strictly monotonically decreasing.

In the interval 0 & # <. ©, the function e” is a strictly

increasing function, since eTM: < e”? when 71 < aq.

3r+5

2Qe+1

is a strictly decreasing function, for f(#1) > f(v,) when

1 < Lg.

In the interval 0 < 2 < ©, the function f(z) =

e

The example (vii) of § 1°5 is an example of a function
defined in the interval (0, 3), which is monotonic increasing

but not strictly increasing. ;

Examples I

1. If y=6 for every value of z, can y be regarded as

a function of x ?

2. If y=the number of windows in the house number 2

on ®& particular road, is ¥ a function of x ?

3. Given f(x) =a? —10x+ 8, find f(0) and f(— 2).

4. Tf f(x)=sec x+ cos 2, then f(x) =f(- a).

5. It f(2)= BS " + ane °. then f(a) +7(b) =fla + d).

6. If f(x)=27— 382+7, show that

{fle+h)—flalh = 22-3 +h.

%7 Show that

(i) 1-tan x

cos @©— sin &
is not defined for x= iz.

(ii) /2?—52+6 is not defined for 2 < 2 < 3.

(iii) r*-5e+6
WW 9? — Ba +12

f(-— 5) and f(6) in this case.

is not defined for 2 = 2 ; also find
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8. Draw the graphs of the following functions :

(i) y=1 when x > 0,

=() when x=0,

=-—1 when z < 0.

(ii) y=a" for x ¥ 1,

=2 forzv=1.

(iii) f(z) =1 when 2 19 an integer,
* =0 when @# is not an integer.

(iv) y=cos (1/2). ° (v) y=2 cos (1/2).

(vi) y=a—[2], where [a] denotes the greatest integer
not greater than 2.

(vi) f(z) = /-(2-2)*. (vii) f(a) =

(ix) f(a)=1- —— a

(x) (x)= ./x?, where the positive sign of the square
root is to be taken.

(xi) f(x)=0O when |x] > 1,

=l1+zwhen -l<xr<0,

=1-—e when O<2< 1.

9. (i) Show that f(xz)=sec x in the interval 0 <2 < 4n,
has the lower bound 1, and no upper bound.

(ii) Show that f(z)=222+497+6 in the interval
0 < «2 < 1, has the lower bound 6 and the upper bound 12.

nn

(ui) Show that f(x) = -(+=2) when 0<0<(1 and

-1<2< 1, and 7 a positive integer, is bounded.

10. (i) Show that f(a) =F is monotone ascending,
+1

c> 0.
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74 = i AL eee _i., |(ii) Show that fla)=— 4+ eat +n s>0

is monotone descending.

xz

(iii) Show that fla) = (1+ ~} * g > 0 is monotone

ascending.

11. Given the relation y* —-6y-—#+7=0, which of the
following statements is true ?

(i) The equation defines z as a function of y for all
values of ¥. °

(ii) The equation defines y as a function of x for all
values of x.

12. <A taxi company charges one rupee for one mile

or less from start, and at a rate of (i) 50 paise per mile,
(ii) 50 paise per mile or any fraction thereof, for additional

distance. Express analytically the fare F' (in rupees) as
a function of the distance d (in miles), and draw the graph
of the function.

ANSWERS

1. Yes. 2 Yes. 8. 3; 97. 7. (in) +: does not exist.

11. (i) True, (ii) Not true ; true only for values of 2 > —2.

12. () { F=1,for0<d<1

° F=1+4(d-—1), ford >1

(ii) { F=i,forO<d<il

F=il+dm, form <d< m+1 where mis a positive integer.



CHAPTER II

LIMIT

2°1. The whole structure of Differential Calculus is

based upon a concept of most outstanding importance,

az, lamit. We give below some fundamental definitions

and theorems regarding limits.
a

2°2. By the expressions ‘the variable z approaches the

éonstant number a’ or simply ‘x tends to the value a’, we

mean that x assumes successively values whose numerical

difference from a, 2e,|2—a|, 18 gradually less and less,
and can ultimately be taken to be less than any small quan-

tity we can name or imagine (2 ¢, less than any pre-assigned
positive quantity, however small), and we denote this by

the symbol x > a.

Here the successive values of ~ may be greater than, as well as

loss than a.

If the variable z, remaining always greater than a,

approaches a, such that ultimately z— a is less than any pre-
assigned positive quantity, however small, (but «a actually)

then we say that x approaches or tends to ‘a’ from the roght,
and denote it by the symbol x—~a+0 or simply by gat.

Similarly, when 2 is less than a always, and a-@ is

ultimately less than any pre-assigned positive quantity,

however small, we say 2 tends to ‘a’ from the left, and

denote it by xa-— 0, or simply by z>a-.

Illus: When the successive values of @ are 1°9, 1°99, 1°999,...

we say «2-0, and when the successive values of a are 2°1, 2°01,

2°001,..., We say #>2+0. If the successive values of « are 2+1, 2—4,

Q+4, 2-4, 2+4, .. we say 2 2.

2°3. Limit of a function.

Lt f(x): When & approaches a constant quantity a
x-pa .

from either side (but # a), if there exists a definite finite
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number J towards which f(z) approaches*, such that the
numerical difference of f(z) and 1 can be made as small as

we please (z.¢., less than any pre-assigned positive quantity,
however small) hy taking w sufficiently close to a, then
l is defined as the limit of f(z) as x tends to a. This is
symbolically written as Lt f(a)=1.

waa

Mathematically speaking Lt (x) =1, provided? given any
x>a s

pre-assigned positive quantity &, however small, we can deter-

mine another positeve quantity 56 (depending on « ) such that

| (x) -—1] < ¢ for all values of x satisfying 0 <| r-al < 4,

4.€., Whenever a- 6d ax <= atd, but zc ¥ a.

2

Ex, (i) Di ” =9 = 6. For 1f x=3+6,, whether 8, be positive or
2738 a—3

2 _

negative, oe _ Bie 9) F.6+ Pgs, and by taking 6,
a

2

numerically small enough, the difference of a and 6 can be made

a8 smal as we like. It may be noted here that however small 6, may

be, since 8, ~ 0, we can cancel the factor r—3 1¢, 95, between tho

*—-9
numerator and denominator in this case. Hence, L¢ “-"=6, But

x>8 2-3

2

when 2=8, the function *_—? is non-existent or undefined, for we
3

cannot cancel the factor 2-8, which is equal to zero, in that case.

x*-—9 .
iti = —~— -— Lit =Thus, writing f(z) po8 ts f(z)=6, whereas f(8) does not exist

or is undefined.

Ex. (ii) D¢ x sin 1 _0. For sin i, whatever small value z may
w->0 x x

have provided it is not exactly equal to sero, is a finite quantity lying

between +1 and—1, and so by taking 2 numerically small enough

(t.e., sufficiently near to zero), we oan make x sin numerically as

*As a particular case f(z) may remain always equal to 1 when

« is sufficiently close to a.
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small as we like, +.e., a sin . — 0!is less than any assignable quan-

tity. Hence the limit is zero.

Here also the value of x sin . when ais exactly equal to zero is

non-existent.

2

Ex. (ili) Zé oT -—3. For writing x= —-1+5, we can show
z>-1 2$3

2 —

. that the numerical difference of z—1 and —3 can be made as small

a3 we like by taking 3 small enough.

oo? — 7

a+3

avallablo, and that is also cqual to —3.

In this case the value of when a is oxactly —1 is also

Lt f(x): The limit of a function f(z) as x approaches
x>at+0

the value a from the right (i.e., from bigger values), is

that quantity 11, (if one such exists), towards which /(zx)
approaches, and from which the numerical difference of f(x)
can be made as small as we please by making 2 approach
@ sufficiently closely, all the time keeping it greater than a.

It is called the Right-hand limit of f(x) as 2 tends to a,
and is written as Li f(x)=1,.

xr>a+0

Mathematically, Li f(x)=1,, provided, given any pre-
x>at+0

assigned positive quantity &, however small, we can determine

@ postive quantity 6, such that | flz)-—1i, | < e whenever

O<@r-acétwe,axa2gate.

Lt 0 j(x) is sometimes denoted by the symbol f(a +0).
seat

Ex. (iv) Zé 1-- A 1 \=0, as can be shown by writing s=2+65,
w>2+0 B+ “-3

é

where 6 is positive, and then making 6 arbitrarily small when the

denominator becomes arbitrarily large.
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Similarly, Lis f(x)=—1); because when x remaining less than

zero, becomes arbitrarily near to 0, f(z) always remains equal to —1.

Sinco, Et 40 f(z) lt f(z),

Lt 9 f(z) does not exist ; but by definition, f(0)=0 here,

(11) fla) and Lt f(x) both exrst but are unequal.
c>a

Let f(z)=0, fora +0
=1 for x=0.

As in (1i), it can be easily shown here that

Lit T(x) =O0= Lt I (z).
x2 >0+0 x>0-0

“. Lt f(z)=0. But by definition, f(0)=1.
x->0

(ov) f(a) and Lt f(x) both exrst and are equal.
ea,

This is illustrated by Ex. (iif) of Art. 2°3.

(v) Negiher fla) nor Lt f(x) exssts.
ta Pa

Let f(x) =cos (1/2).

Here, Lt oo (1/z) does not exist [See Ha. 1, Art. 210] and
>

f(0) does not exist, as it would involve division by zero, and is other-

wise undefined.

2°5. Symbols +e and —©,

If a variable 2, assuming positive values only, increases

without limit (2.¢., ultimately becomes and remains greater
than any pre-assigned positive number, however large), we
say that x tends to wnfinity, and write it as K—>°.

Similarly, if a variable 2, assuming negative values only,

increases numerically without limit (2.2, —2# ultimately
becomes and remains greater than any pre-assigned positive

number, however large), we say that x tends to minus infinity

and write it as X—7>— ©.
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Note. It should be borne in mind that there is no number such

as co or —co towards which w approachos. The symbols are used only

to indicate that the numerical value of 2 increases without limit.

2°6. Function tending to infinity: Lt f(x)=+°¢.
xa

As x approaches a either from the right or left, if f(a)

tends to infinity with the same sign in both cases, then we

say that as a2 tends toa, f(r) tends to infinity,’ (or loosely,

. the limit of f(x) is infinite), positive or negative as the case

may be, and write it as, Li f(x)=- or — ©,
ra

If however, as x approaches a from both sides, f(a)

tends to infinity with different signs, we say, ‘f(x) does not

possess any limit as x tends to a’.

The formal definitions are as follows :

If corresponding to any pre-assigned posrizve quantity N,

however large, we can determine a positeve quantaty d, such

that f(x) > N whenever 0 <|x—al < 6, we say

Lit fir)=—,
a> 1

If an the above circumstances, ~-J(x) > N whenever

0<|r-al<é6, wesay Li f(xsd=- ©.
“a

Similarly, we may define the cases,

Lit f(r)=@, Lt f(xj)=TM,
r>a +0 a>a-0

Lt fa=-@, Lt f(xr)=—- @,
x>at0 s>a-0

*According to some modern writers, this is described as ‘f(x)

becoming infinitely large’, and infinite limit is not recognised as

a limit,
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1 1 1
: Lt — Lt — = oe E -- = .

Lt 1 =oo, Lt i. —co, ,', Lt does not exist.
a204+0 z2>0-0 x a>0 x

In cither caso however /(0) does not exist.

2°7. Limit of a function as the variable tends to
infinity : Lt f(x). .

As 2, remaining positive, becomes larger and larger, if

there exists a definite finite number 7 towards which f(z)
continually approaches, such that tke numerical difference

of f(z) and 1 can be made as small as we please by taking

g large enough, we say Lit f(x)=1.
2-00

Mathematically, Lt f(x)=/1, provided, qeven any pie-
x CO

assigned positive quantity &, however small, we can deter-

mine @ positive quantety M, such that |f(a)-1I|<e for all
values of x => M.

Similarly, Lt = f(x) = 2’ provided, given any pre-assigned
X-> — 00

positive quantity «, however small, we can determine a

positive quantity M, such that | f(z)-l’/]}<e whenever
~x> M.

In a similar way, we may define the cases,

Tt fa@j=-, Lt f@j=-o, Lt flr)=@, ete.
x00 L-> — 0TOO

Illus: Lt 1 =0, Lt + 9,
roo % xt>-—00 D

1

Li ex=i, Lt wv" =0o, atc.
“woo ra? —oco

2°8. Fundamental Theorems on Limit.

We give below some fundamental theorems on limit

which are of frequent use.
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If Lt f(x)—/,and Lt @(x)=1’, where J and I’ are finite
x>a x>a

quantities, then

(i) Lt {f(x)+ d(x)P=s41'.
xa

(ii) Lt {8(x) x D(x)} = 10’.

wes f(iii) Lt {4} - 4 provided Ll’ ~ 0.

; Gy) Lt Fit(x)} = FILt tGo}, 2.€., = F(Z), where F(u) is

a function of « which is zontinuous* for w=l.- |
f

_&) If oa) < f(z) < yz) in @ certain neighbourhood

of the point ‘a’ and Lt ¢(x)=l and Li y(x)=1, then Lt f(x)
cL ?>a x ?a

exists and is equal to l.

In particular, if | f(7)]< | o(z)|, ie, f(z) lies between

— g(x) and g(x), and if Lt g(x)=0, then Lt f(x)=0.
cra “>a

For proofs of these, sce Appendix

Note. The first two theoroms may be extended to any finite

number of functions. In language, the first three theorems may be

stated as follows :

(t) The lamit of a sum or difference of any finite number of func-

tions is equal to the sum or dtfference of the lanuts of the functions

taken sevarately.

(+) The lamat of the product of a finite number of functrons rvs equal

to the product of theur lamets taken separately,

(un) The lamet of the quotient of two functions rs equal to the

quotient of their lomats, provided the lmat of the denomanator is not

sero.

“See next chapter.
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As examples of (iv), we get

Lt log f(x)=log {Lt f(x)}=log 1, provided 1 > 0.
xa za

Lt f(x)

Lt fP=etr2 =e',
Za

Lt tAa)}" = {Lt f(a)}" =1", ete.

2°9. Some Important Limits. -

; sin x . . ;
(i) Lt x 1, where x is expressed in radan.

x->
“

measure.

From elementary trigonometry*, we know that if

be the radian measure of any positive acute angle 27 é.,

0 <a < 4a,

then sin x << a« < tan 2, or, cosxz < ae <i. (1)

0o< y-< 1-—cos m, 2.€., < 2 sin? $e.

But 9 sin? 4a << O(ba)? < $e”.

Hence, o<1- cone < ter’.

Now, since 2” > 0 as x — O+0, we get

re (1-4) 0, vo, Te Ba,
a2 >0+0 © 2—20+0 x

Alternatively,, noting that cos z > 1asa”—> 0, we can

conclude directly from (1) that Li (sin «/xr)=1.

When — ix <2 < 0, putting z= —z, we get 0 <2 < 42.

sin «_sin(-2z)_ sin zAlso,

*Sea Das and Mukherjees’ Intermediate Trigonometry.
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sin £ B51n 2
Hence, Lt ~= Lt —— =],

220-0 @& 2204+0 2

Hence the result.

n

(1i) (a) Lt (1+ + =e, (n—- through positive inte-

gral values).
. 1\"

(6) Lt (14-4) =@.
VV X—» +00 x

for a complete proof, see Appendix.

/ 1 :
Por. Lt (1+x)* =e.

X—>@

Hor a complete proof, see Appendix

ah 1
Gu Lt = log (1+x)=1.

Proof. We have

i
x

1
Lit ~ + = Lt 5 + ‘ }Li log (1 +2) Lit. log (1 + x)

i

log {Lt (1+2)*} { by § 2°8 (00) |=1og e= 1.
2>

[ by (22) above |

e*-1

fy) it x =1.
Proof. Put e*=1+2z.

Then, z=log (1+ 2), and as 7-0, 2-0.

ae 2

eu og (+2)
1Lt {1/3 log (1 +2)}

; 1

1/Es, {7 tow +2}
=$=1. [by (a2) ]

om

Thus, Lt ~ -
xc—>0



84 DIFFERENTIAL CALCULUS

a
WH) Lt

x>xa X=

for ST rational values of n, provided a 1s positeve.
CASEI. When 1s a postizve wnteger.

By actual division, we have

xn” — qa” n—-1 n-2 n-8 2 2-2—-——--- =F” +f atx a a +a .

va

rr

reqd. limit = Lt (@”7* +a" "7at--+a""*)=na"",
oa

since, the limit of each of the 2 terms as 7—>a, is a”~*, and

the limit of the sum of a finite number of terms is equal to

the sum of their hmits (Art. 2°8)

CaAsE II. When n 78 a nevative integer.

where m 18 a positive integer andSuppose, »=— mm,

a x0.

a” _ a” _ gn TM -aTM _ 1 om — gq’

La ca ca” x£-a

Now, as «~—a, limiting value of — = y= i
xa aa a

ym — gm

and a8 2a, limiting value of a - =maTM-* by Case I.

117
r —a” 1 _Li A = — — maTM -1 — ma~TM-1 =ngTM 1

zea to a”
-

Case III. When 118 a rational fraction.

Suppose, »=p/g, when g 18 4 positive integer and » any

integer, positive or negative. Let us Put gi it@=yand at = b.

oe” — a” ~f en P—b? _ (y? — b)Mly—b).xu— a 2-a pe ~ (y@ — 6%)/(y — b)
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Now, a8 2 > a, 77? /2@q"'", «. yb. Again,as y 73,

the limiting value of the numerator of the right side = pb? *

(by Cases I and JI) and that of the denominaton= got *

(by Case I).

ott —_— h?- ) D

Li x” — a" —_ P = ?pp-a— P g-1 cyt}.

apa @—O - eye g? ge oa
When »=0, the limit 1s Lt = 0.

z7a Ga
e

. (i+x)"=1
Lt ————-= nr.Gy x>0 xX

Proof, We have

(l+ar)"-1_ (tan —2 1, log G+),

Di x ot log (1 + 2)
(J+2)"-1 «Lt log (1+ 2).

z>olog(1+z2z) x0 x

Now, put (l+a2)"=1+z. Then nm log (1+2)=dog (1 +2).

Hence, as x — 0, log u +z)—O and so z— 0.

(1 +a)" — =JTt -. TM

olog (1+ 2) 20 log (1 +2)
1

- Lit +Lit n | , log (1 + 2)

_ 1=n/ tt {3 log (1 +2) }

= i =n [ by (222) ].

Thus, Lat

Also, Lt - log (+ e) 4 [ by (222) J
a->0 x

Hence, Li, G+ ta)"— =nmx1l=n,

This result also follows by replacing .x by +1 and aby 1 in (vy)

above.
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6. Condition for the existence of a limit. (Cauchy)
The necessary and sufficient condition that the lemet

Lt fix) exists and is finite, 1s that corresponding to any
cra

pre-assigned posttive number & however small (but not equal

to zero), we can find a posrtive number 6, such that x1 and

%q being any two quantities satisfying O<lae-al< dp

|f(r1) — flare) |< «.

For proof see Appendix.

Note. In some cases even if we may not know the value of

a limit beforehand, we can determine by the above test whether a limit

exists or not. Illustrations of this are given below.

Ex.1. Show that Dt cos 1 does not canst.
a> wc

In order that the limit may exist, it mtust ba possible to find

& positive number 5, such that x, and x, satisfying 0 <|a|< é

1 1
cos -~--—cos — <¢,

Ly Zo

where ¢ 18 any pre-assigned positive quantity.

Now, whatever 5 we may choose, if wo take v,*1/2nr and

v_=1/(2n+1) 7, by taking » « sufficiently large positive integer, both

x, and 2, will satisfy0 < | a| < 6.

But in this caso, | cos 1/z,—cos 1/x,|=| cos 2nw—cos (2n+1)r|

=9, a finite quantity, and is not less than any chosen e.

Thus, the necessary condition is not satisfied, and so the required

limit does not exist.

Here, the right-hand limit as also the left-hand limit are both

non-existent.

does not extst.
1Lt —~—
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Here, taking 2,=—1/n, 2,=1/n, whatever 8 we may choose, by

taking » @ sufficiently large positive integer we can make 2, and @,

both satisfy O < |a2|< 5. But im this case,

—1 — 1 ! 1. 1

Q+etl*1 Ate'l*s Qt+te-" +e"

- 2... 1 2.1 21
O+e-*” O+e" * F+e-2 Bre

which is a Snite quantity and so cannot be less than any chosen e

however small. -

Thus, the necessary condition being not satisfied, the limit in

question does not exist.

Here, the right-hand limit exists and =0, and the left-hand limit
exists and =4.

2°11. Illustrative Examples.

Ex. 1. Fond the value of Lt «a.
a>?

By taking successive values of g which always remaining less

than 2, tend to 2, 12,@=1°9, 199, 1°999,.. we see thafa? has the

values 3°61, 3°9601, 3°996001,... which tend to 4, and we can make the

difference between 4 and a2? smaller than any positive number however

small by taking x sufficiently near to 2. Hence, the left-hand limit

is 4.

Similarly, by taking values of v, which always remaining greater

than 2, approach 2, v1z., e=2'l, 2°01, 2°001,... we see that x? has the

values 4 41, 4°0401, 4°004001, .. which continually approach 4. Hence,

a6 before, the right-hand limit is 4.

Hence, value of the required limit is 4.

Note. Exactly in the same way wo can show that Lt «*=aq",
za

where n is an integer or a rational fraction (except when a=0 and

n is negative).

Ex. 2. Show that () Lt sen o=0; (wu) Lt cos @=1.
6-—->0 60

(oe) Li sinB=sna; (w) Lt cos 0=cos a.
>a b>a
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(i) Since, from the definition of sine of a real angle @ in trigono-

metry, with the help of a figure, it may be easily seen that |sin @—O]

4.c., |sin @] can be made less than any positive number e however

small by making {6| arbitrarily small, 1t follows that Lt sin 6=0.
>

(ii) Zé (1—cos #)=Zt 2sin? 49=2x Lt (sin $@x sin $6)
é>0 40 6-0

=2x0 [ by () J=0.

oe Lt cos @=1.
6-0 *

(iii) sin 9-—sin a=2 sin $(0— a) cos $(0+2).

As @— 4a, 4(0—a)—0, oe i sin 4(0—a)=0.
“ra

Also |cos $(@+a)| < 1, ". i (sin @—sin a)=0,
7a

¢.¢e., Lt sin 6=sin a.
6>a

(iv) Since, cos @—cos a=2 sin $(a—6) sin $(@+4a), 1t follows as

in (iii) that Lé (cos @—cos a)=0, 1.¢, Lt cos @=cos a.
6>a 6>a

8. , Apply (6, e) defination of lamit to allustrate that

Li (Q2—2)=6.
zd

Let us choose e= ‘O01.

Then, |(2a—2)—6| < ‘01 if |2a—8] < ‘01, a¢., 1f |a—4] < °005,

+6, 5=°005. Similarly, if e=°001, 6="0005 ; and so on.

Thus, 8 depends upon ¢, 2.¢., the nearer (22 —2) is to 6, the nearer =

is to 4. Wo have,

| (2a—2)~6] < ‘O1 if O <|x—4| < °005

| (2a —2)—6] < "001 if 0 <[x—4|< ‘0005

and generally, |(2z—2)-6|<e if 0 <|a2—4| < de.

Hence, 6 is the limit of 22—2 a8 7 —> 4,

Ex. 4. Draw the graph of sen (1/z) and show that nerther the

right-hand lemet nor the left-hand lymit exists as x tends to zero.

When z=0, sinij/x is meaningless and hence, its value is not

known.



LIMIT 3d

For all other values of z, sin (1/z) exists and may take any value

from -1 to 1. Thus, the graph is a continuous curve with a break

at 2=0O and is comprised between the lines z=1 and a= —1.

Y

As x->0+0 by passing successively through values 2/n7r where

n is % positive integer which can be made as large as we like, sin (1/2)

passes through values 0, —1, O, 1, etc. taking intermediate values at
intermediate points. Now it is evident that these values are taken

more frequently as 2 comes nearer to O and so sin (1/z) does not

approach any fixed value as ¢—0+0, but oscillates through all values

between —1 and +11.¢., the function has no right-hand limit. Since,

when z is negative, sin (1/z)= —sin (1/2), where (= —2) 18 positive,

the function behaves exactly in the same way when 20-0. Hence,

the left-hand limit also does not exist for the function.

Note. Hence, it follows that Lt sin (1/2) also does not exist.
c->

Ex. 5. Gwe an example to rllustrate the followong lemat-enequalaty :

If Lt x)=A and Lt Y(x)=B and of O(z) < (x) wm a certasn
xzu-ra cra

newhbourhood of a except a, then A < B.*

Suppose, Ax)=5+a?; p(x) =5+38e".

Lit de)=5= Lt ita). But d(x) < ¥(x) if w x0.
“> o>

*For proof of this important theorem see Appendix.
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Thus, the limits of the two functions are equal, even though

f(x) < (zx) for all values of « on which the limits depend.

If however, $(7)=5+2", ¥(7)=74+82?,

then of course, Li ¢(a) < Li (x).
x20 x20

x. 6 Evraluate Li 2 {M(1+2)— (1 —=)}.

As it stands, theorem (iii) of Art. 2°8 is not applicable, since the

denominator 2 is zoro as 70. But it can fe easily transformed into

a form in which the theorem is applicable. °

Multiplying numerator and denominator by s/(1+2)+ ./(1—2), the
4

i it= Lt 8 ___required limit a3 AA +a)+ J —2)}

ali - 2 BL
z>0 f(lt+a)+ (1-2) 2

since Lt M1l+x2)=Lt Jy=1( puttrng l+2=y7),
xz->0 vol

1,

and similarly Di J/(1-a2)=1.
az->0

Ex.?7. H—-1<‘*x <1, then Lt x"=0. (118 4a positive enteger )
‘ n~>co

Let us first consider the case when 0 < z < 1.

Put c=1-—p, so that 0 < p <1. Since, (l—p)(l+p)=1—p?, which

is less than 1, we havel—p < 1/(1+>)).

a nn —_ nm a 1 _1 1 e
“. a= (1—p)" < (1+ p)* < 1+ np < np
.. @” can be made less than any given positive number ¢ by taking

m large enough (1.e, taking 1 > l/ep); but 2” is positivo.

Lt 2" =0 when noo.

Bince, (—2)"=(—1)"s" the result also holds for -1 <« < 0,

when 2=0, z"=0 for every positive value of n.

Hence, Lt 2" =0 when noo.

Note. When «> 1, putting « for 1+p in the inequality

(1+p)" >1+np > np, it can be shown that 2" > k, where k is any

positive number however large, for all n > k/p.

Hence, it follows that forx > 1, Lt x®=co,
n= oo
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Ex. 8 Prove that (n being a postive integer)

(i) Lt nx"=<0 when |x| < 1.
i->>oo

n

(ii) Lf = =0 when |x| < 1

=co when x > 1.

o

(iii) Lt =< =0 for all values of 2.
poco ni

For proof seo Appendix.
°

Examples II

Sa Evaluate the followin oe limits :

ov? + Wr — 2. 8), w= 3a +2

GL ae Qn + 2 Li) Lit eo? —4r+8
— 2_ 2(sy Li % va; = Gy ht J/14 +2 = —_i— Ba — 82.

2 >a x20

* Find the value of

Tt %% "+ aye” +e tan

bt boa” + bye” t+ + thn ( bn * 0).

OO Do the following limits exist? If so, find their
values :

Sd

1 ‘ . sin &
i —"- Lit me(i) Lt az 2 f (ui) apr tu X

~* Find the values of :

tan ©. - sin (9°)
Lt —_ % Lt 7a 8

Ay () re A a->0 x

2“ 2
. 1-—cos2 1 —cos &

i ORE, iy Lt 8
we Gii) Li, } a->0 vc
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J 2ogi .

Ky (v) Lt a” sin (1/2). 9 (yi) Lt, cosec &— cot @.
, ced sin x SS z

- 0 

-

(vii) Lt Binz (viii) Lt sin Tr
v a2>0 x o> oe

. tan *2 sin 2
Li Li =(ix) lt & tt iB

_sin x “ at+l1

eo aro + cos # (xii) Lite ott
1

(xiii) De x->0 (a 2 ara)
5. A function f(x) is defined as follows :

f(z)=2 when 2>0

=Q when z = 0

=—g when x« < 0.

Find the value of Lt, F(a).

gO A function ¢(x) is defined as follows :

d(x) = 2” when 7 < 1

= 2'5 when z = 1

=g7+92 wheng>1.

Does Lt d(x) exist ?

_ 1, Do the following limits exist ?

4 (i) Lit, [2], where [z] denotes the integral part of a.
xs

(ii) Lt {2° + /e- ih.

gtan Cu J

(iii) it etn Co 1
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Given f(7)=ax? +ba+c, show that

(e+h)—fla)\ _Lit, {i — ~fsel =Ia2 +b.

J: Given f(z) = |x|, show that

Lit {f(h) —f(0)}/h does not exist.

16. If (x) ={(a + 2)? — 4/2, then

Lt d(x) = 4, although ¢(0) does not exist.

Qne —

Show that 7 2a =8 = 8,
9 £-Y%“=>

Applying (6, ¢) definition, find 6 if « ="1.

2 2 2. 23

12. (i) Ist -—-Lt *%. =Lt * ~% 9
nea ©C- A zwrat-A wr~a CO

(ii) Is Zt (@* -a”) x Lt ea = Lt {(a* —@")x 1 | 9
a>a a >a —-Q xa ,v—-a

13. Evaluate
“MY

. 1 2 3 n \
—_—— -f- —_—_——_ —_—_— eee -— ai) it ie n* tat + n*nn

2. 2 . 2
(ii) Lt 17 + 2° +3" os tn .

noo

dA. Does Lt f(x) exist when

(i) f(@) ={2* ” + 2° + 1/2" ?

(ii) f(a) = {ein © +2 sin > +2? sin >} ?

15. Evaluate

e n oe we” .
(i) Lt «”. (ii) Lt +i [C. H. 1957]

n~>oo
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7 ‘

(iii) Lt er Lg) * gle). [ 0. H. 1966 ]

(iv) Lt a" —1
ree a aL

16. Find the value of Lt = arc tan 72.

17. Evaluate

Gi) Bt sin naz. ;
M00

(a) Le —-— ,—. [C. H. 1957)
n->0o 1+7n sin?nz

18. (i) Prove that

Li tan” (a/x*)= — 4x, O or $n according as

ais negative, zero or positive.

(ii) Draw the graph of the function f(z), where

f(x) = Li | (2 t tanTM* 2).

19. If f(e)-Lt | xan’ show that f(z)=1, 4 or 0
n Poo x

according as |jz|<, =, or > 1. [ C. H. 1950 }

Draw the graph of f(x) in this case.

20. Given the function y=f(x) defined as follows:

f(2)=0 when 2? > 1, f(r)=1 when 2? <1, f(x)=4 when

o7=1),

Using the idea of a limit, show that the above function

can be represented by

f(a)= Lt its -sx' for all values of x. [O. P. 1949 }
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ANSWERS .

1, (1) d. (ii) 4. (iii) 1/8a. (iv) §. 2. Gul dn.

8. (i) Doos not exist. (11) 1. 4. (i) 1. (ii) 0.

(ni) 0. (1v) 4. (v) 0 (vi) 3. (vii) 180°

(viii) 1. (ix) 1. (x) 0. (x1) 0. (xii) 0.

(xin) 0. 5 0: | 6. Does not exist. 7. (1) Does not exist.
(11) Does not oxist (211) Does not oxist,

° 1. °05. 12. (1) No. (i1) No. 13. (1) 4. (ii) 4.

14. (i) No. (11) Ng.

15. (i) too whenz2 > 1, Owhen -l<2<1, Ilwhengz=1,

no limit exists when « < —1

(41)0 when —1 < 2 <1;4 when z=1;1whone < —lor>1.

not defined when z= —1.

(iii) fla) whon |x| > 1; g(x) when| ao] <1; $[ f(a)+g(a) 1]
when v=1; undefined when r= —1.

(iv) -1 when -1 < ¢ < 1; 0 when a=1;1 when| «| > 1.

16. 1 when z > 0; 0 when r=0; —1 whens < 0.

17, (i) O when z is an integer ; no limit exists if x is not an integer.

(11) 0.



CHAPTER III

CONTINUITY

3°1. We have a common-sense idea of what a conti-

nuous curve is. For instance, in Art. 1°5, the curves of

examples (ii), (iii), (v) are continuous, while those of (vi)
and (vii) are discontinuous, the curve in (vi) having a point
of discontinuity at the omgin O. A function f(r) is
commonly said to be continuous provided its graph is

a continuous curve, and if there‘is any discontinuity or

break at any point on the curve, the function is said to be

discontinuous for the corresponding value of x. The general

notions of continuity of a function f(r) for any value of
the variable x require that the function should be finite at

the point, and for a very small change in 2, the change in

the value of f(z) should also he small, or in other words,
as we approach the particular value of 2 from either side,

the function should also approach the corresponding value

of f(x), and ultimately coincide with it at the point. If
f(x) be non-existent at a point, so that the corresponding
point on the graph is missing, or else, if the value of f(z)
suddenly jumps as # passes from one side to the other of

the particular value, or f(x) becomes infinitely large at
a point, then the function is discontinuous there.

We proceed helow to give a formal mathematical defini-

tion of continuity.

3°2. Continuity.

A function f(x) 1s sard to be continuous for c=a provided

Lt flr) ewists, is finite, and 2s equal to f(a).

In other words, for f(z) to be continuous at 2 =a,

Lt fla)=Lt — fla)=f(a)
0 a>a-0rat

or briefly, f(a+0)= f(a — 0) = f(a).
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This may also be written in the form Lt t(a+h) = (a).
>

If f(z) be continuous for every value of x in the interval

(a, b), it is said to be contenuous throughout the enterval.

A function which 1s not continuous at a point is said

to have a discontinurty at that point.

Ex. (i) f(z) =a? is continuous for any value a of a,

for Lt w*=a?.
xa7a

1. . ° 1
= - f ox ince Lt(if) f(x) = cos 7; 18 discontinuous at = 0, since ee

docs not exist. [ Sec Fix. 1, § 2°10]

1 1
i = i ise f = Lit \(iii) f(x) 2? 8 discontinuous at «=O, for ey ();)

18 not finite.

(iv) If f(z)=a sin when x £0, and f(0)=0, then f(z) is

continuous at z=0, for Lt gsin 1 = (0,
a0 ©

{ See Ha. (12), § 2°3 ]

(v) It fla) = 55-5. pacar when 232 and /(2)=%, then f(z) is

discontinuous at «=2, since Lt f(x) 4 Lt f(x) hore,
g>2+0) a >2~-0

so that Lt f(x) does not oxist.
m->2

(vi) f(z)=e7*-*"*? is discontinuous at w=a, mnce though

Lt T(x) = Le f(z)=0, ve, Lt f(a) exists and <0,
+0 r>a~0 2aCra

f(a) is undofined.

Corresponding to the analytical definition of limit, we

have the following analytical definition of continuity of

a function at a point :

The function fl2) 28 continuous at x=a, provided fia)

exists and given any pre-assigned positive quantity &,
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however small, wecan determmne a positeve quantity 64,

such that | f(x)—f(a)| <«€ for all values of x satisfyrng

a-éd<xanqate.

3°83. Different classes of Discontinuity.

(A) If f(at+0) + fla—0), then f(z) is said to have an

ordinary dascontenuty at x=a. In this case, f(a) may or

may not exist, or if it exists, it may be equal to one of

f(a +0) and fla-0), or may be equal to neither.

To these is to be added the case where only one of

f(a +0) and f(a—0) 1s existent, and f(a) exists, but is not

equal to that.

1\-1L

Illus : fle)= (04%) has an ordinary discontinuity at 2=O0,
for Dt f(z) =0, and Li f(x) =.

xz>0+0 220-0

Note. Continuity on one side.

In case where f(x) is undefined on one side of a (say for x < a),

if f(a+0) exists and is cqual to f(a) (which also exists and is finite)

we Say, 85 a spocial] case, that f(x) is continuous at a=a.

(B) If flat+0)=f(a—0) ¥ f(a), or fla) is not defined

then f(x) is said to have a removable discontanusty at v= a.

Illus: f(a) = (x? —a*)/(e—a) has a removable discontinuity at

a=a, for f(a) is undefined here, though It f(x) oxists, and =2a.
2 >a

Again, if f(z)=1 when w=a, and f(xz)=e-*-?"" when zx ¥ a,

f(z) has a removable discontinuity at a, for Li f(x)=0, whereas
xa

f(a) =1 as defined.

It may be noted that a function which has a removable

discontinuity at a point can be made continuous there by

suitably defining the function at the particular point only.

The two classes of discontinuity (A) and (B) are termed
sumple drscontinurtzes.
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(C) If one or both of f(a+0) and f(a- 0) tend to + ©

or — ©, then f(z) is said to have an infinite discontinuity

ata. Here, f(a) may or may not exist.

_ 1

Ilius: f(z)=e ** has an infinite discontinuity at «=a, since,

fla-0)>~, Ff (= ys has an infinite discontinuity at #=2.

(D) Any point_of discontinuity which is not a point of

simple discontinuity, nor an infinity, is called a point of

* oscillatory discontanusty. At such a point the function may

oscillate finitely or osciilate anfinztely, and does not tend to

a limit or to + © or — ©.

Illus : fone oscillaics finitely at z=0

S(t) =, —~— gin re oscillates infinitely atz=a Lit a2(#= —1)

oscillates “fuitely, and Lt x"(¢ < —1) oscillates infinitely as noo.
3°4. Some properties of continuous functions.

(2) The sum or difference of two continuous functions is

a continuous function ;

2.e., if f(x) and d(x) are both continuous at «=a, then

F(x) +¢(xz) is continuous at «=a.

For in this case, by definition of continuity, Lt f(x) exists,
sa

and = fla), as also Lt o(r) =¢(a).
xa

Hence, Lt {f(x)+ d(x)} = Lt f(a) + Lt da),
x>a iva ra

= f(a) + (a), [See § 2°8(4) ]
whence, by definition, f(x) + ¢(z) is continuous at 7 =a.

Note 1. The result may be extended to the case of any finite

number of functions.

Note 2. If f(x) be continuous at z=a, and ¢(z) is not, then

J(z) + o(a) is discontinuous at x=a, and behaves like (z).
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(ti) Product of two continuous functions is a continuous

function ;

ée., f(z) and d(x) being continuous at z=a, f(x) x d(a)

is continuous there.

Proof is exactly similar to that in the above case, depend-

ing on the corresponding limit theorem [ § 2°8(iz) ].

Note. This result may also be extended td any finite number of

functions.
¥ e

(122) Quoteent of two contenuous functions 1s a continuous

function, provided the denominator 1s not zero anywhere for

the range of values considered ;

ae, if f(x) and ¢(z) be both continuous at r=a, and

¢(2)~0, then f(x)/¢(z) is continuous there.

Proof depends on the corresponding limit theorem

[ § 2°8(222) J.

(ev) ‘Uf f(x) be continuous at z=a, and f(a) ¥ 0, then an
the nerghbourhood of x=a, f(x) has the same szgn as that of

f(a), 2.2, we can get a posttive quantity 6 such that f(x)

preserves the same sign as that of f(a) for every value of x in

the nterval a-d <a < ate.

Let f(z)= sinz, a=3n; then f(a)=1 and hence ~ 0

and poszizve Let us take 5=3n. Then in the interval

tn-—in <a < dntinie, dn < 2 < jn, f(z) is always

positive.

(v) If f(x) be continuous throughout the onterval (a, 3),

and uf f(a) and f(b) be of opposite signs, then there 1s at least

one value, say £, of x within the anterval for which f(€) =0.

Let f(x)=cos z, a=0,b=x. Then f(a)=1, f(o)= —- 1.

Now cos z=0 if 2=42, which obviously lies in the interval
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(0, n), and so here £=4x. Similarly, if we take a=0, b= 3x,
we get another value of &, vez , $x, besides $n.

(vt) If f(x) be continuous throughout the interval (a, 6)

and uf fla) X f(b), then f(x) assumes every value between f(a)

and f(b) at least once in the wnterval.

Let f(x) =2?, a=0, b=1; then /(a)=0, f(B)=1. Let

c be any number between O and 1. Then /(2)=2?=c, if

g +°,/c, which evidently lies in (0, 1).

e oF

Let f(z)=sin 2, a=0,b => ; then f(a)=0, f(6)= 1, 50

f(a) ¥ f(b). Let c be any number lying in (0,1). Then

sin g=c, ifx=nz+(—1)" sin7*c, n=0, +1, +2.... Now, for

). That is, whenOn

7 9
— -1 _ -1 —1©=sinTM*c, or 2—sinTM*c, or 2n+sin~*c, we have /f(r)=c.

Thus /(z) assumes the value c at least once (here °3 times

and in the previous example, once only).

nm=0, 1, 2, only, x lies in the interval (0

(v1.2) A function which 18 continuous throughout a closed

enterval 1s bounded therein.

The function f(z) = sin 2, is continuous in the closed

interval 0 < x < a, and has the upper bound at w=4n and

lower bound at x =O or 2, and hence it is bounded.

(v22z) A continuous functcon im an interval actually

atiains 1ts wpper and lower bounds, at least once each, am the

enterval.

The function /(z)=sin z, is continuous in the interval

O<ax<an. Its upper bound 1 18 attained at the point

«=%4z and lower bound O is attained at the points z=0 and

s=n. Thus, /(x) attains its upper and lower bounds at
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least once each (here the upper bound is attained once,

whereas the lower bound is attained twice).

(22) A function f(x), continuous an a closed unterval (a, b),

attains every intermediate value between wis upper and lower

bounds a the anterval, at least once.

Let fix)=27, a=—-1, b=2, then the upper bound of

f(x) is 4 and its lower bound is 0. Let c be any number in

(0, 4). Now, if O<c <1, then f(r)=z2?=c if w= ./e,

which lie in (—1, 2); andifl<c < 4, then f(x)=2"? =c,

if = + ./c, of which only + ./c hes in the interval (-1, 2).

Thus f(x) attains the value c at least once.

{ For formal proofs of (iv)-(12) see Appendiz |]

3°5. Continuity of some Elementary Functions.

(2) Function 2", where n is any rational number.

We know that Dt 2” =a”, for all values of n, except
qg-~a

when a=0 and 7 is negative [ See Note, Ha. 1, § 211 J.

Hence, x” is continuous for all values of « when ” is

positive, and continuous for all values of 7 except 0 when

nm is negative.

When 7 is negative and = —m say, where m is positive,

gr®=_o7°TM=1/2TM which either does not tend to a hmit or > ©

as 2-0.

(iz) Polynomials.

Since the polynomial apr” +a,2" *+°:': +an is the sum

of a finite number of positive integral powers of x (each

multiplied by a constant) each of which is continuous for all

values of z, the polynomial itself [ by § 3°4(2)], is continuous

for all values of 2.
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(ti¢) Rational Algebrarc Functions.

Aor” "toss" ft tan
Rational algebraic functions like boewTM +b 0 2 ++ + Dm

being the quotient of two polynomials which are continuous

for all values of 2, are continuous for all values of x except

those which make the denominator zero [ by § 3°4(222) J.

(ev) Trigonometric Functions.

Since, the hmiting values of sin 2 and cos 2 when 2x-a,

wherg a has any value, are sina and cosa [ See Eg, 2,

§ 2°11}, it follows that sin 2 and cos x are continuous for

all values of @. °
Since, tan x=sin z/cos z, tan x is continuous for all

values of x except those which make cos 2 zero, 1.é , except

for c=(Q2n+1)$x. Similarly, seca is continuous for all

values of x except for =(2n+1)$x and cot a and cosec x

are continuous for all values of z, except when z=O or any

multiple of x when sin «=0.

(v) Inverse Circular Functions.

Inverse circular functions being many-valued, we make

a convention of defining their domain in such a way as to

make them single-valued. Throughout the book we shall

suppose (unless otherwise stated) that sin~*z, tan”*z, cot ~*

cosec *# lie between — 4x and $x (both values inclusive)

and cos *z, sec *z lie between O and x (both values

inclusive), which are the principal values of these inverse

functions. It should be noted however that sin-*g@ and

cos *@ have no existence outszde the closed interval (— 1, 1)

of #, and cosec *2 and sec” *# have no existence inside the

open interval (-— 1,1). All the inverse circular functions are

continuous for all values for which they exist ; this follows

immediately from the continuity of the corresponding

circular functions.
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(vi) Functzon e”.

Corresponding to the positive number e, however small, we can

choose n sufficiently large such that (1+e)" > e, [°.° (l+e)" > 1+ne,”
a

and e is finite J. Thus, e"—-l<e. Hence, if O<g¢ < 1)n,

L

ev—-1 < e" -1<e, and .*. Lt (e*—-1)=0, or, Zt e*=1. If a be
c->0 + x>0+

negative, putting e=—y, Dé e*=Lt IlfevY=1. Hence, Lt e*=1.
2>0— y>0+ a->0

.. Lt e*°=1,26e, DE e =e. .°. e718 continuous at any point z=Cc.
=o xc

¢ c

(vie) Function log x, 2 > O.

It should be noted that log a is defined only for values of a > 0.

Let log x=y and log (a@th)=yt+k. Then eY=x and et+*=g+h ;

A=e'¥tk—eY, Ag e”¥ 1s a continuous function of y, e’t+*¥—>e", +2.e.,

h>Oask-~-0O. Thus, {log (c+h)—log 2} >0as k > 0, ue., a8 hb —> O.

Hence, log x 1s continuous

3°6. .INustrative Examples.

Ex. 1. A function rs defined as follows

(x) =a” when x > O, f(0)=0, f(z) = —a when a < 0.

Prove that the function us contenuous at #=0.

Hero, Li f(x) = Lt z=O and Lt f(z) = Lit (—az)=0.
x 7>0+0 x>0+0 0 a2>0-0z>0-

Thus, Li f(e)= Lt f(x) =f(0) =0 here.
x>0+0 a->0-0

Hence, f(x) 1s continuous at a =0.,

For its graph, sec figure of § 1°5 (i).

Ex. 2. A function f(x) 1s defined as follows :

fla) =< sin for x #0

=0 for «=0.

Show that f(z) vs conteunuous at x= 0.

*See Appendi.
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Since, | sin (1/x) | <1, by making | z| <e

we can make | x sin (1/z) | <e,

where ¢ is any pre-assigned positive quantity, however small.

Hence, Lt sin i =0, Also, /(0)=0, as defined.
xz>0 x

Thus, Lt | f(x)=f(0). .". f(x) is continuous at r=0.
s->

For its graph, see Agure of § 1°5 (viii).

Note. It should be noted that the function zg sin (1/z) is conti-

nuous for all values of x, except for w=0; because when 2=0,

x sin (1/r) is meaningless. *In the above example, the discontinuity of

x sin (1/z) at =O has been removed by defination of f(0).

Ex. 3. A function f(x) 1s defined as follows

f(m)=4-2 whenO<a2 <i

=$ when w=

=$-gwhent <a <1.

Show that f(x) os duscontenuous at x =4

Here, Lt > fla= Li i 2 =a 3-0.

wo Tit oe =a dal.
cat

Since, Lt yt does not exist, hence f(x) is discontinuous at «=4.
coy

Ex. 4. A function f(x) 1s defined in (0, 3) on the followsng way :

flaj=2"7 whenO<a2 <1

=7 whenl<au<2

=de5 when2< a < 8.

Show that f(x) is contenuaus at z=l and «=2. { C. P. 1941 ]

When v=1, f(x)=a. .*. F(I)=1.

a= Lt oe ; also, ttf =Lt 4 c=,ity a>l—
Hence, Lt f(x) = Lt f(x) = f(1) here.

o>1-0 x>1+0

.. f(x) is continuous at c=].
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Similarly, it can’ be shown (from the definition of the function in

the relevant ranges), that Lt S(x)= Lt — f(x) = f(2)=2.
x22=-0 a >2+0

Hence, f(z) is continuous at 2=2.

Examples III

-¥. A function f(x) is defined as follows :

f(x) =a" when & # 1, f(z)=2 when #=1,

Ts f(z) continuous at =1 ?

-~2. Are the following functions continuous at the origin 2°
(i) f(z) = sin (1/2) when x ¥ 0, 7(0)=0.

(ii) f(x) =a cos (1/z) when « ¥ 0, f(0) =0.

(iii) f(z) =a cos (1/2) when x ¥ 0, f(0)=1.

sin 1
(iv) f(c) = i =~ when « * 0

fr

=] when 2=0.

(v) f(a)=sin x cos when x ¥ 0

= () when r=0.

73. A function d(x) is defined as follows °

d(a) =a" when « <1

= 2°5 when z = 1

=? +2 when z > 1.

Is d(x) continuous at x=1 ?

4 /’ & function f(x) is defined in the following way :
S f(@)=-c whenze<0

= 7 when 0<2<1

=2-2 whengz 2 1.

Show that it is continuous at z=0 and z=1.

[c. P. 1942]
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5. A function f(x) is defined as follows: °

f(r) =1, 0 or —1 according as x > = or < 0.

Show that it is discontinuous at z=0.
2

LSE The function f(x) =~— 6 is undefined at r= 4.
r-4

What value must be assigned to f (4), if f (2) is to be conti-
nuous at r=4 ? .

; 7. Determine whether the following functions are

continuous at 2 =0.

(i) f (x) =(2* +o? + 29*)/sin x, f (0) =0.

(in) f(x) =(a2* + 4° + 2x)/sin a, f (0) =0.

_&%. Find the points of discontinuity of the following

functions :

y 08+ Ort+5 wy + Or +5

(i a? — 89 +12. (ii) a? - 82 +16
9. A function f (2) is defined as follows :

f(x)= 384+2r for -$<2<0

3-22 for Oca<¥§

=-—38-—92r7 for a2TM §.

Show that f(x) is continuous at x=0 and discontinuous
at 2 = §.

< Given the function y=f(xr) defined as follows:
f(z)=0 when 2? > 1, f(x)=2 when w? <1, f(z)=4 when
o*=1. Draw a diagram of the function and discuss from
the diagram that, except at points r=1 and x= -1, the

function is continuous. JDiuscuss also why the function is

discontinuous at these fwo points although it has a value

4

for every value of x. [C. P. 1949 }

ANSWERS

1. No. 2. (1) No. (i1) Yes. (iii) No. (iv) No.

(v) Yes. 8. No. 6. 8. %. (i) Continuous.

(ii) Discontinuous. 8. (i) 6, 2. (ii) 4.



CHAPTER IV

DIFFERENTIATION

4°1. Increment.

The increment of a variable in changing from one value

to another 1s the difference obtained by subtracting the first

value from the second. An increment of x is denoted by Ax

(read as delta x) or hk. Evidently; increment may be positive

or negative according as the variable in changing, increases

or decreases.

_ Ifin y=f (a), the independent variable 2 takes an incre-

ment Ag (or h), then Ay (or k) denotes the corresponding

increment of y, i.e., of f(x), and we have

4 ytAy=f (r+ Ar), 2.6, Ay=f (2+ Az) —-f (2)

or, ytkh=f(ath), we, k=f(eth)—f (2).

Illustration : Let y=".

Suppose, 2 increases from 2t02°1, +¢, Azv='1;

then 4/ increases from 4 to 4°41, «¢, MOy=‘41.

Suppose, « decreases from 2to1'9, «e., Axv=—'l;

then y decreasos from 4 to 3°61, «¢., Ay=—'89.

Increments are always reckoned from the arbitrarily fixed initial

value of the independent variable x.

If y decreases as @ increases, or the reverse, then Ag and Ay will

have opposite signs.

- Brom a fixed initial value 2 of aw, if a increases successively to 2°1,

2°01, 2'001, etc., then although the corresponding increment Aw (=°1,

"01, ‘001...) and Ay (=°41, ‘0401, °004001,...) are getting smaller, their

ratio, +.¢., Ay/Oa being 41, 4°01, 4°001, ... is approaching a definite

number 4, thus, illustrating the fact that the ratio can be brought
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as near to 4 as we please by making Az approach zero. Thus, the ratio

of the increments Ay/Az has a definite finite limit 4as Azv70, and

consequently, Ay>O0.

4°2. Differential Coefficient ( or Derivative ).

Let y =f (a) be a finite and single-valued function defined

in any interval of x, and assume 2 to have any particular

value in the interval. Let Az (or h) be the increment of z,

eanad let Ay (or k)=f (2 +Ax)-f (2) be the corresponding

increment of y. If the ratio Ay/Az of these increments

tends to a definite finite limit as Az tends to zero, then this

limit is called the dofferentral coefficient (or derzvative) of f (x)

‘cr y) for the particular value of x, and is denoted by /’ (2),

du. it Sy SY oF ohe2 sp (a), MH or, DIF@ Me Mw ME

Thus, symbolically, the differential coefficient of y [=f (x)]

with respect to x (for any particular value of x) 1s *

f' (x) or qy rt Ay = Lt f(a + Ax) — f(a)
dx Ar>0 AZ Az>0 Ax

or, = Lt. eth) = 1) ’ provided this lamit exists.

If, as 42-0, Ay/Ar—>+o or — ©, then also we say

that the derivative exists, and = + © or — ©,

Note 1. The process of finding the differential coefficient is called

defferontvation, and wo are said to differentiate f(x) and sometimes

dafferentrate f(x) with respect to x, to emphasise that a is the indepen-

dent variable.

Note 2. wy stands here for the symbol 4 (y), @ limiting process

and hence must not be regarded as a funotion dy <-dz, although for
convenience of printing, it may sometimes be written as dy/da.
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Note 8. The differential coefficient of f(z) for any particular

value a of a, is often denoted by f(a). Thus, from definition,

f(a)= = Lt a eth) )— fla), provided this limit exists.

Note 4. If f'(a) is finate, f(x) must be continuous at x= a.

“q)=Lt fa+h)—fla),
f= ro h

We can write fla+ h) —S(a) =flatn— fle) xh

(a+h)—fla)Lt farn)—flay= Lt (Mar! ne xn}
Lt fe+n) = fla) x Dt h

“p20

= f'ta) x0
=0, since f(a) is finite.

Lt flat+h)=f(a).
h>0

.". from the definition of continuity, it follows that f(z) is conti-

nuous ab c= ¢.

Hence, for the differential coefficrent of f(x) to exist finately for any

value of xv, the function f(x) must be contenuous at the port.

The converse however os not always true, 4.e., if a function be

continuous at any point, it is not necessarily true that a finite deriva-

tive of the function for that value of x should exist. For illustration,

see § 4°5.

Again, a function f(x), though discontinuous at a point, may have

an wnfinete derwatiwe ata point. [See Hx. 7(u), Examples IV(A) J

Note 5. The right-hand limit L? fle+ h) ~flz) for any parti-
h->0+0 h

cular value of z, when it exists, is called the reght-hand derwatwe of

F(z) at that point and is denoted by Rf(r). Similarly, the left-hand

imit Lt fe +h) — fl) Li fan) - fla)limit 0-0 h OT, ens a when it exists,

is called the left-hand derwatwe of fz) at x, denoted by Zf'(z). When

these two derivatives both exist, and are equal, it is then only that the
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derivative of f(z) exists at 2 When however the.left-hand and right-

hand derivatives of f(z) at a are unequal, or one or both are non-

existent, then f(z) 18 said'to have no proper derivative at x.

Thus, though f'(r) may not exist at a point, one or both of the

right-hand and left-hand derivatives may exist (the two being unequal

in the latter case).

For illustration, see § 4°5, Ex. 4.

4°3. Differential coefficient in some standard cases.

» e(31) Differential coefficient of x".

Let t (x) =", °

t (xr + a _ ao”
Then from definition, f (2)= Dt q .

Now, writing X for et+h, so that h= X—~ @, and noting

that when h—0, X—z, we get

=i “.——"* = n~1tf (x) Lt Yuog ~ 72 ~ for all rational values of n.

[ See § 2°9(v) ]

Thus, £ (x")=nx"~1, for all rational values of x.

Otherwise
nr n n

Lt | (c+ ho" nt grr (l+hizy—1f(x) = he noo TM hx
[ supposing a >f 0]

="! Li os
2~»()

= yz" -', "| See § 2 914) J
The result can also be derived for any rational value of n [ #0)

from the well-known inequahty *

nX"-)'(X—a2) 2 X"-—a2"2 na") (X—72),

[ upper sign ifn > lor < 0

and lower1f O<n<il

[ putting z=h/z ]

_ xA”"—g”
whence nX""' 2 “¥op ZS nz"!

“See any text-book on Higher Algebra (e.g., Soe § 10, Chap. XIV,
Barnard & Child).
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Now putting X+x2+h, and letting h — 0, we get

be @th) 2" _ rR i e .

n>0 h na [ by § 2°8(v) }, since both extremes

tend to the same limit nz"~'.

When n w a positive wnieger, the result can also be proved as

follows :

’ Lr) =e Lt (x + h)* — a" .

f (z) h->0 h e
=p writnaTM*h+hn (n—1) 2-2 he +e th} —a”
h>0 h e e

( By Bonomeal Theorem }

=Lt {ne"-+4n (n—-1) a hte Fh}
h>0

Nel

a=nz

When ns not a posiiwe unteger, for an alternative proof, see Ex, 1,

§ 4°18. See also Ex. 2, § 4°13 for the case whon n has any real value,

not necessarily rational.

d d 1 a(t nCr Wat Fas (3)*-a

Note. It is to be noted that in the above formula we tacitly

assumo those values of « as do not make zg” or o"~* meaningless ;

e.g., of n be a fraction of even denomenator, zero and negatwe values of a

are excluded and «f n—1 be negatwe, zero value for x vs excluded.

Following the definition it may be seen 1n particular, that if

f(z)=a", f'(0)=0 when n > 1, f’(0)=1 when n=1, and f’ (0) is non-

existent ifn <1.

(ii) Differential coefficient of e*.

Let f(a)=e”. Then from definition,

, _ et th _ oe _ 2 et—]

f(a) Li h Lt, ¢ h “9
since, Lit (e” —1)//n=1. [ See § 2°9 (iv)

Thus, 2. (e*) = e*,
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(iii) Differential coefficient of a*.

Let F (x) = a.

gzth _ at

Then, /’ (x)= Lt -<--* = gTM- Lt
h>O0 h

—1 =-Lt et log a —

h n>0 bh log a
Now, Lt a

A>0

= Lt eval, log a [ where h’=h 1 }
h/>0 h’ S O86 &

= log a,» - Lt eva =],
h’/>0 ip!

[ See § 2°9 (iv) ]

tS’ (2) =a” log a.

d
Thus, dx (a*)=a* loge a.

(iv) Differential coefficient of log x.

Let F (x) =log a.

Then, (x)= = Lt, log. (a: + hs —logma =Zt 1 log” +h

n>0 hh _ &

1 & hLt x etag(te!
= a Liog (1+2),| where z= "|

Lzr0 Z x

_ 1

x
[ See § 2°9 (222) J

d 1
Thus, dx (log x)= x"

or Proceeding exactly as above it can be easily shown that

1
ix (log, x) = = log, ©.
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(v) Differential coefficient of sin x.

Let f(2)=sin a.

_ sin (¢+h)— sin &
Then, f (x) Lt 5

=Dt -2 sin th cos (a + $h)
h-70 yp

sin sh
= Lt th -cos (x + $h)=cos 2,
n>0

because as 2 0, cos z being 1 continuous function of 2,

cos (1+ 3h) > cos 2, also by § 2°9(1), Li (sin $h/th) =1.

Thus, = (sin x)= cos x.

(vi) Differential coefficient of cos x.

Let f(r)=—cos 2.

— 7, 008 (a+ h)— con xThen, f’ (x) Lt. ;

—2 sin $h sin (2+ $h)
= [1Lt, h

; sin 3h
Lt, sin (2 + $h) bh

= —sin x [asin (v) J.

d .
Thus, ax (cos x)= —sin x.

Note. It should be noted that in finding the above differential

coefficients of sin z and cos a, we tacitly assume that a ¢s on radsean

measure, because we make use of the hmit sin 4h/sh=1 as h—O,

which is true when / is in radian, Hence, the above results require

modification when a is given in any other measure.
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(vii) Differential coefficient of tan x.

Let f(2)=tan zx.

Then, f(x) = Lt tan (x +h) — tan
h->0 h

_ 1 {sin (a+h)_ sin =\

n>0 AW lcos (a@+h) cosa

_ _ sin (vw +h— a)
n>o fb cos (2 +h) cos x

az Jf sin h- - one 1 - oe
n>o hb cos (ath) cosa

= ~ ty [ aX 4(2n 4+1)2 ]

Lt (sin h/h)=1, and Lt cos (x + h)= cos 2.
h->0 h>0

Thus, = (tan x)TMsec?x. [ 7¥3(2n+1)n]

(vii) Exactly in a similar way, we can get

2 (cot x)= —cosec*x. [ 2#nzx |

{ix) Differential coefficient of sec x.

da _ 7, 8ec(xth)—sec &
aw (seo a) = Lt, h

wr i{ 1) 14
n>o Alcos(a@+h) cosa

cos x — cos (21 +h)

n>0 heos(a@+h) cos x

= Zt 280 Sh sin (2+ th)
n>0 & cos (x+h) cos &
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1

cos (x +h) cos &
= Lt, sig 2. sin (a + $h)-

=1.sin 2: —l, =tan x sec @,
cos*z

since Lt (sin ¢h/$h)=1, Lt sin (2 + $h)=sin x
h>0 h-»0

and Dt cos (x1 +h)=cos x.
h7>0

°Thus, < (sec x)=sec x tanx. [2+3(2n4+1)2] ©

(x) Proceeding exactly in a similar way, we get

a
dx

Note. For an alternative method of diffcrontiating tan x, cot x,

sec @ and cosec a from a knowledge of the derivatives of sin z and

coos 7, see § 4°4, Theorem V.

(cosec x)= —cosec x cot x. [xvx#nn |

4°4. Fundamental Theorems on Differentiation.

In the following theorems we assume that d(x) and y(zx)

are continuous, and ¢(xz) and »'(«) exist.

Theorem Il. The differential coefficient of a constant 18

zero,

1.8., a (c)=0, where c is a constant.
dx

Let f(x)=c for every value of z.

Then, f' (x)= Lt, fet Wh) fa)
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Theorem II. The differentral coefficient of the product

of a constant and a function 18 the product of the constant

and the differential coefficient of the function,

2.8, = fed(x)}= oe ¢(x), where c is a constant.

a. 7, cha +h) - cd(a)For, 3. {cd (xf Lit, i

=c. Lt ola + h)— ofa) = ch (x)
h->0 h

Theorem III. The dz fferentral coefficient of the sum or
difference of two functions 1s the sum or dtfference of ther

derivatives,

ne, 2 {olx) + P(x} = a(x) + PR).

Let F(x) = (x) + y(a).

Then, f(a +h) = (a +h) + v(x +h).

Now, fila) = Lt f eth) f(a)

= Jit {pla + h) + yle + h)} — {h(x) + v(x)
h>0 h

=Tt [ve +h)- $x) , vlet+h)- ey)
h-~>0 h h

rp StH =e), 7p, ve +h)- ve)
h->0 h h>0 h

= (x) + y'(2).

Similarly, if f(a) = d(x) — w(x), then f(x) =¢'(z) — v'(a).

Note. The above result can be easily generalized to the case of

the swum or difference of any finite number of functions.

Illus: If f(x) =e"—4 sin 2+2°+65, then f(z) =e" —4 cos w+ 2a.
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- i,(3) If f(x)=cosec x= sin &

O.sin e-cos v1 _ _ 698 &_
then f(x) = ——_——__- -——“- =—cosec x cot x.

sin’2z ~ gin?

4°65. Illustrative Examples.

Ex.1. Fond from first pronciples the derwatwe of Ja, (a > 0).

Let f(xz)= Jz.

oe f(a)= Lt Het hy ve, [ by definition J

(xn+h)—« 1 ;

ee hd Iath)+ Jz} = Tt) Neth) + v/a ~ 2 Ja

Ex. 2. Fund from first pronceples the differential coefficrent of

tan-*2.

Let tan-“!w=y and tan7' (e+h)=y+h.

Then, as h-> 0,k—20. Alsoxv=tan y, e+h=tan (yt+h).

oe h=(e+h)—-a2=tan (y+k)—tan y.

~1g) = Lt tno’ (eth) —tan"*e
h>0

a (tan hee ax

=Lt —..__
k>0 tan (y+k)—tan y

alt —*
k>0 sin i

- cos (y+) cos y

i 11

cos*y= sec?y 1+tan? y ~I+g7

Note. In a similar way we can work out the derivatives of the

other inverse ciroular functions from first principles.

These have however been worked out by a different method in § 4°8,

Ex. 8. Fund from definition the differentral coefficrent of log cos x.

[ C. P. 1983 ]

Let us put cos e=4u, cos (w7+h) =ut+k.

k= cos (~+h)—cos a and so, when 2-0, &—> 0.
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log cos (#-+h) —log cos x

0

a = Ltaa (log cos 2) I ;.
>

—rt log (utk)—log uk
k hh>0

—bt Joe (itklu) 1k,

h>0 klu m h

As k—0,k/u—->O0. .°. limit of 1st factor=1. [See § 2°9 (222) J

i 008 (x-#h)—cos a _ _ sin (v+3gh).sin gh.

h
Again, h his

ask—>0O.2.e., 420, k/lh—->—sin gz. Also, uw=cos x.
9

a _—~smr_
dz (log cos r)= o tan 7%.

Note. Differentiation from ‘first principles’ or ‘definition’ means

that wo are to find out the derivative without assuming any of the rulos

of differentiation, or the derivative of any standard function, but we are

permitted to use fundamental rules of limiting operations ( § 2°8 ) and

the standard limit results ( § 2°9 ).

Ex, 4. A function os defined i the following way :

f(x) =a], 2.¢., f(z)=a, 0, or, —x, acconding asx > =or < 0;

show that f’(0) does not exsst.

“Moya Lt SOR -f0)_ 72 f(r),
f'O)= 74 nh HO h

pt 0 60 et
Now, n20+0 bh ho0t0 h 1,

ce | OSM re OP
and h>0-0 Ah h>0-0 h 1,

Since the right-hand derivative 1s not equal 10 the left-hand deni-

vative, the derivative at z=0O does not exist.

Ex. 5. <A function os defined wn the followmg way :

F(a) =a an = for x x 0, f(0) =0.

Show that f (0) does not east.
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_ Hon) = —f(0) _ h sin (1/n)

f (0) = ee oft. h
=D[t sin aim, which doos not exist.

h->0

[ See § 2°11, Er. 4]
f' (0) does not exist.

Note. In both the examples 4 and 5, f(x) is continuous at r=0

(See § 8°6, Ex.1 and Ex. 2) but f(x) doas not possess derivative

at c=0. ’

Ex. 6. If f(z)=2? sin (1/x) when a x 0, and f(0)=0, find f’(0 ).

0) = Lt fO+mM—f00) Lt 1 }f'(0)= 10 alt = {ne sin +) 0

= Lt ( *. =50 h sin 7, 0.

{°.° when / is not exactly zero, sin , is finite, not excecding 1

numerically. ]

Ex. 7. Fand from first pranceples the derwateve of x7, (a > 0).

Let f(x)=a2* =e" loga

(x+h) log (r+h)_ x2 log xz

Fa) = et ° h °
=Lt g2loe = eft +h) log (e+h)—z log «4

h->0 h

n>0 g “h

where 2=(z+hA) log (cn +h)—a@ log x

and hence z-> 0, as 2 > 0.

= Lt, ~-lirnt oer Dt %, «+ Be “TI,
f(a)= a" & Z Ard h © n+>0 h’ "gO ok 1.

Now, Lt 2% abt tiog +h) —log x}+h log (x th)
" 2n20 2) 7230 h

abt 5 ; log (1+ are log (w+h)

== Lt50 i - log (1+%) +log c=1+log z,

where k being h/x2 > 0, as h > O.

oe I (zw) =a" (1+ og a).
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Examples IV(A)

Find from first principles the derivatives of (Hx. 1-5):

1.42? +20. (ii) a* +6. ¥ (iii) Ife (a ¥ 0).
(iv) 1f /e(x2>0). (v) S/n. (vi) J/x?+a?.

(vii) a+ Je? +1.

2. if en®, (in) e@? *, (au) 2°". (iv) e@/a.

8. (i) logiox. [C. P. 1941] (ii) & log a.
* *(iii) log sin (#/a). [C. P. 1930] (iv) log sec a.

4.) asin (v/a). [ O.°*P. 1937 ] (ii) sin?z.

(iii) sin x”. (iv) sin7*2. (v) /tan a.

(vi) (sin x)/z. (vi) a? tan a.

5. (i) a * at e=0. (1) log cos # at 7 =0.

6. (i) f(x) =m? cos (1/2) for ¥ 0, f(0) =0.

Find (0).

(ii) f@)=2forO<a<t; fla)=1-2 for <2 <1.

Does f’ (4) exist ?

7. (i) flv7)=3 +22 for -$§<r< 0

=3-%for O<a<¢

Show that f(z) 1s continuous at z=0 but f’(0) does

not exist. [ C. P. 1943 ]

Gi) f@)=0 whenOxx< 3; f(4)=1; fe)=2 when

$<27<1.

Prove that although f(x) is discontinuous at x=,

f'(%) exists and its value 1s infinite.

8. f(x) =1 fora <0

=l+sin gz forO0 < a < tn

=O+(e-—43n)*? fortn<ae;

show that f’(x) exists at «= 32 but does not exist at e=0.
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9. f(x)=5r2@-4 forO<ar<l

=4977-32 forl<2#< 2

=3r7+4 fora > 2.

Discuss the continuity of f(z) for z=1 and 2, and the

existence of f’(x) for these values.

10. (i) f@) =a forO<2<1

=2-2 forl<r<2 |
=a—4x" for 2 > 2

Is f(z) continuous at r=1 and 2? Does f' (x) exist for
these values ?

(ii) (a) = 3 (6? — a”), Oc<aca

=$b7-—tn?-4 (a? /zr)a<acb

= 4(b° —a*)/x x>b;

show that ¢’ (x2) is continuous for every positive value of 2.

[ C. P. 1944 ]

Find the differential coefficients of the following with

respect to x (Ha. 11-18) -

411. (i) 32° + 7x* — 2x? —2 +6. (13) (a? — 3)8.

oe ; 2Git 1ta+ 2 + a4 (iv) (2 + 2)(2+1)?.

(v) (82° + 497 — 2)/x°. (vi) (1 +a)?/a.

(vii) 6x7? — 897? +4. (viii) 40? + 6x? +2,

4 e_,-142, 3;(ix) 22% +527 -—4 > + ats

(x) Ja +2 J (x?) +3 J(u?) +4 /(a*) +5 JM(a°).

(xi) 2 Je+o° Jat fr. Jar.
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(xiii) 2 sin x—-# "t log : 2 — te>—6 tan 2-7 cosec @.
(xiv) logg x +log «% + e!°% = + log e* +e

(ini) x? log a”.12. G) «xe.

(iv) e® sin a.

(vi) cos?a.

Gi) w? log a.

(v) 2” sin a@.

(x) (Ba — 7)(3 — 7x)

(xiii) cosec®a.

(xv) ./x.e” sec x.

(xvii) w(1 —2)(1 — 2”).

s

(vi) sec x tan a.

1+a

(vi) 107.2*°

(xx) (2? +1) sin 2.

(xi) (2? + 7)(v* +10).
®

(xii) (sin 2 +sec 2 +tan 2)(cosec z + cos x + cot @).

(xiv) x tan a log x.

(xvi) (L+a@)(1 + Qx)(1 + 32).

(xix) x cot x log (#”).e”.

(xx) cot x x log xx 10" /z.

sin 2 1 ..) SIND,

13. (i) cos £ (ii) cos (ini) x
cot x

(:v) sin & [c. P. 1940 ] (v) oe

(wi) 2 -. (vii) | (viii) LS.
log x 1-

_\ l+a? 1+ ih . 1+sin 2
(ix) 1-2? ( x» y - J/@ (xi) 1—sin &
(xii) LOO 2 (ii sin + cosa (xiy) COB @— cos 2m

ivvee /1+sin 2x2 1—cos &
ete? mn oe e”

ht e+e * (xvi) “log (3):
... Sin rtcos ... cot #+cosec 2

(xvii) (xviii) cot # — cosec 2s1n ©-— COS &

(xvi) @ sec x log (ae”).
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1+e+a? -2+a7*
mins eke (xx) ® ot _g-t

(x xi) —-—-~+@” log x. (xxij) BAZ SOs 12 oe
sin z+cos x

14. Ify= ae zt+4 = 4, find SY for 2=2.
_ Qm2 _

8a_+ 130-6, find the values of # for
x

15. If f(@)- Ta Tig +10
which f’ (x) =0.

Is there any value of x for which f/’ (x) is non-existent ?

16. From the relation

1- —a”
ltataertte ta"=

1-@&

deduce the sum of the serics

L+927+3727+ -+n2%1,

and hence, show that

1+ 27+3n7?+--- to ~ =(1-27)77,0< /|a/|<1.

17. If f(e)=1lt+ez forz <0

=1 forO gc acl

=97%2+47+5 forge > 1,

find f’ (x) for all values of 2 for which it exists

Does Li, f’ (x) exist ? Does f’ (x) exist ?
T=

18. (i) If f(a) = — $2? for x <= 0

and f(%)=2" sin (1/x) fora > 0,

find whether /’ (0) exists for 7=1 and 2.

(ii) If f (z}=[a#] where [x] denotes the greatest integer

not exceeding 2, find f’ (x) and draw its graph.
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ANSWERS

1. (i) 3827+2. (ii) 4a°. (11) —1/z?. (iv) —ho7,

(v) 4078, (vi) Te? +a) (via) {et a

2. (i) eN*/2 Ya. (i) 8! © cos a. (i11) 2%°. log, 2.20.

(iv) (we” —e*)/x’. 8. (1) v7! log. e. (11) 1+log x.

(11) a7* cot (x/a). (1v) tan w 4. (1) cos (x/a).

¢ ii) sin 2m. (11i) Qa cos x”. (iv) 1/ J(1—2?).

(vy tee ai (v3) more Bsn an, (vii) Qa tan 2+2? sec2z.

5. (1) 0. (i1) 0. 6. (i) O. (11) No.

9. Oontinuous for r=1 and 2, but f’(r) exists for s=1 and does not

exist for 7 =2. 10. (i) Continuous at z=1 and 2; f’(z) does not exist

for <=1, but exists at 7=2.

AL. Gi) 15a4+2805—4da-1. (un) 6x° —36275+54e2. (1) l+a+— oe 3°

(iv) 38a°9+82+5. (v) 9n7— 4-24-6274. (v1) —v7?7+3422.

~+ —_
(vii) —1207° +3277. (viu1) —3a° *4- 3a z,

. ‘ - 1 9 aot at.3 -2 3_O7-!(ix) 87°+10r+2 4x 9xn7-*. (x) aJat2* 9 a 480+"? a

tle38 - 2 8 —4 2 ot

(x1) foP 4 fot bat —do Fhe? (xn) 1808 +0 345077 ot,

(xi) 2 cos w—}34a7!—4e"—6 sec’a2+7 cosec x cot z.

(xiv) 27! loga etan7*'+2+e'+”,

42. (1) (w"+2"-") e”. (1) +m log x.

(1i1) 2(a-+ 2x log a). (iv) e7 (cos 2+sin a).

(v) 27 (cos x+sin x. log 2). (v1) 107 (102°+ a?° log 10),

(vii) —sin 2a. (vin) sec x (seo*x+ tan?z).

(ix) (w?+1) cos +2 sin a. (x) —42¢+58.
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(xi) 52* — 2127+ 20r. (xii) —(sin 2+sec 2-+tan x)

X (cosec 2 cot 2 + sin 2 + cosec? x) + (coseca + cosa + cota) x

(cos x-+sec 2 tan 2+ sec7z). (xiii) —3 cosec*z cot x.

13.

14.

16.

17.

18.

(xiv) tan x log w+2 log x sec?a+tan a.

(xv) e* sec a (1+22+22 tan x)/2/e. (xvi) 182?74+227+6.

(xvii) 42°—82?-—2a9+1,. (xvii) sec x {1+2+(1+2 tan x)(2+ log z)}.

(xix) e* {x cot 2 (1+2 log «+2 log x)—2” cosec*a log 2}.
e

(xx) 107 cot x [(—2 Jz cosec 22+ »/x log 10-+3272) log eta],
a

(i) sec?a. (11) sec a tan a. « (in) (x cos e—sin 2) /x?.

(iv) 2* (4 sin 2—z cos x)/sin?a.

(v) —e-* (cosec*x-+cot 2). (vi) w~* (x log x—1)/(log x)?.

wi) (Wii) Pos (ix) Q aye

2 cos « ws 2 sin 2

© ase i) Graney? i) ego a)
(xiii) O. , (xiv) —2 sin 2. (xv) e277 (1+ 2x).

(xvi) —x27* tan 2+(1—Jlog x) sec?a. (xvii) inn 3 zt

2 onsec & 9(1—27)
(xviii) (cot @ —cosec a) 2 ° (xix) (1—z+27)2
(xx) 2(a+1—a27-?—278).

x

(xxi) nS {ae sec?x+(2—1) tan x} log e+tan = J.

acy oe [207 — (w? + 2x) cos 2x

(xxii) ¢ [7 (sin 2+ cos ¢)? _ }:
28. 15. 4,16; non-existent at 1, 10.

1— (n+ 1)a"+na"t?

(1—a)?

life < 0,0if0 < g < 1, 4(~+1) ifaw > 1; No; No.

(i) No, Yes, (ii) f’ (x) =0 for all values of x except zero and

integral values, for which it does not exist.
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4°6. Differentiation of a Function of a Function.

Let y=f(v), where v=¢ (x), and f(v) and ¢ (z) are con-

finuous. Thus y is also a continuous function of #.*

Let /’(v) and ¢’ (x) exist, and be finite.

Assume v+ Av=d(2+ Az) and y+ Ay=f (v + Av).

It is evident that when 42-0, 4v 0, and as dv > 0,

Ay — 0.

e e

Ay _ Ay Av,Now, a Av Ae [Av # 0]

Acoo Ar rr ~Lt 4) Av Ax->0 Ax
dy _ dy dy.

“Su dx dv dx”

. ay ,
{ Otherwise 2.e., f'(v) wouldIf Av=0, then Ay=0. dz

not be finite |. ... dy/Ar=O[*. Ar X¥O]. ,

dy _ Ay dv _
Hence, dx it a de =(0. Similarly, dx 0.

Hence, the above relation is true in this case also.

Illus: Suppose y=sin 2? ; then we can write

y=sin v, where v=”.

dy = 24, dU _ oon vw. 2n=27 cos 2?
dz dv dz

The above rule can easily be generalized.

Thus, if y=f(v), where v=¢(w), and w=y(e),

dy oy. dv dw
then dae dv dw dx > and so on

4°72. wz xa dv :7 1, 1.€., “v - 1/ oe provided neither

derivative: is zero.
* Proof depends on the corresponding limit theorem, see § 28 (iv).
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Suppose y=f(a), where f(x) is continuous. From this,

in most cases, we can treat x as a function of y.

Let ytAy=f (z+ Az).

It is evident that when Ay —> 0, da > 0.

Ay | Ax . AY /2
2 ol = os —_aeNow, Aw” Ay 1. Ac 1 Ay

ane. b/hAz 70 AZ Ay>0 Ay

dy_y/de, . du, de_0 é, dx 1/9. or dit dy
4°8. Differential Coefficients of Inverse Circular

Functions.

(i) Let y=sin-*z. []lz]<1]*. .. w=sin y.

J ng ee
i cos y= /1—sin?y= /1—2?.

_ dy _ cE = 1
for x ¥ 1, or —1, dv 1 — Tire =i

Thus, ¢ (sin-*x) =$ [-l<2#<1]

(ii) Let y=costa. [la] <1 ]* . £=Ccos y¥.

dy _ dx _ __1_,

da dy wJ1l-2?

a 1 = = 1 . —Thus, dx (cos” 'x) VWiex [-l<@a<1]

for z # 1, or, —1

Note. This also follows immediately from the relation

cos" 'x = gr—sin~'a.

“The domain for which y exists.
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(iii) Let y=tanTM*z2. .°. x=tan y.

of a 2,, — 2
ay sec°y=l1+tan“y=1t+z2".

ds aa" 1/ a9" tre
1

— —-1 ee

(iv) Let y =cot7 "2. ‘. w=cot y.

an c= — cosec*y = — (1+ cot?y)= —(1+ 2”).

dy_, fie
dx dy 1+?

d —15ya—-_ 1.Thus, dx (cotTM*x) i+x2

Note. This also follows at once from the relation

cot7?a=4g7 — tana.

(v) Let y=sec*a. [la] S1]* ~. e=sec y.

dae =sec y tan y=sec y ./soe*y—1=2 /x?-1.

dy _, /#— 1

" da dy wv r/x*—-1

1Thus, a (sec— "TT [lal >1]

for « 1, or, —1

(vi) Let y=cosee*a. [| a] 21)* .. w=cosec y.

. e — cosec y cot ¥

= —cosec y ./cosec2y—1= —2 vee

_ 1 we /@-
for x x 1, or, 1, dx =1 - 21

* For which y exists.

6
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da = 14) -—L__.Thus, dx (cosecTM 'x) x Jx2 = [le] >i1]

Note. This also follows at once from the relation

cosecTM a = dr — secm'z.

4°9. Derivatives of Hyperbolic FunctionsTM.

d2 (sinh x) =~ (= 3) = ote” = cosh x.

~ (cosh x) = £. (* Ye ~2 9 =ginh ¥. .

fi tamn of (nae) ere
= osh@x sech*x.

Similarly, & (coth x)= — cosech?x.

4 ( 1 \a0Xeosh = sinh &
dz \cosh x cosh?

_ a * = —sgech x tanh x.

‘ a _ax (sech x)=

Similarly, 2 (cosech x)= —cosech x coth x.

Let y =sinh7*2, “. g=sinh y.

a cosh y= ./1+sinh?y = /1+2?.

Since, 4 “Ya v1 /@— "vives

i ah-te)e —- kb .ds (sinh~ 72) “4 7?

* For the definitions and properties of Hyperbolic Functions, see

Authors’ Higher Prigonometry, Chapter XII.
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Similarly a (cosh *z) = ee (e<>1)
* da Ja? —l

_ 1a (tanh *a) = Ta (27<1)

1#- (coth” *@) = — a 7’ (2 >1)

d ~1,)— _ 1
dec (c8sechTM 12) 2/241

» ® d 1

— s ~2 j= - — <da (sechTM 7a) 2 Jina (#<1)

The derivatives of inverse hyperbolic functions can also

be obtained by differentiating their values v7z.,

sinh” *2= log (a2 + /x? +1) ; cosh7*x=log (a+ Vx?-1).

~1,_1, lta 1,1, ,%#1,tanh z= log sa.! coth “2 me

Tt

1+ Vita? sechTM le = log = + V1- acosechTM *z = log

4°10. Logarithmic Differentiation.

If we have a function raised to a power which is also a

function, or 1f we have the product of a number of functions,

to differentiate such expressions 1t would be convenient first

to take logarithm of the expression and then differentiate.

Such a process is called the logarithmic differentratrzon.

(i) Let y={f(2)}*@): to find ay,

Here, log y= (x) . log f(z).

Differentiating both sides with respect to a,

Y sen bla): 7 y f'(@) +92) « log fla).

Bae) [ 9(a)-L 2) 4-4 (a) «10g ste)
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(ii) Let y=f.(e) xfa(@).-.-.fa(a) 5 to fina @.

Here, log y=log f, (x) +log f,(x)+---+log fa(x).

Differentiate each side with respect to a.

L dy S's) fale), 4f'a(0),
ydu fy, («)* Fa Fala) Fa (a)

Now, multiplying left side by y and right side by f, (x), fa (a)...

fn(x), we get ‘

aves’, (a) -f2(x) -F(x).. fn (x) +f’ (x) f(x) fs (x)...fn(a)+e°° e

Honce, differential coeficrent of the’ product of a finite number

of functions 1s found by multiplying the differentsal coefficrent of each

Junction taken separately by the product of all the remaining functions

and addung up the results thus formed, as already obtained otherwise.

{ See § 44, Theorem IV, Note ]

4°11. Implicit Functions.

In many cases if may be inconvenient or even impos-

sible to solve a given equation of the form f(x, y)=0 for y in
terms of x2. However, the equation may define y as a

function of x In such cases, y is said to be an imphicit

function of a. If y be «a differentiable function of a, then

a may be obtained as follows :

Differentiate each term in the equation with respect to z,

regarding y a8 an unknown function of # having a derivative

dy ay
de’ and then solve the resulting equation for dx

Illus. : Fina a if 2* —ay? +3y2+2=0,

Differentiating each term with respect to z,

dy 1) dy4 _ _Sa +(—2.2y dx! * + 6y ae Ot

dy _y" — 82x?
dz ay Qagy”ee (6y— 2ey) 3 ae = y? —Sa’, e's
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4‘12. Parametric Equations.

Sometimes in the equation of a curve, 2 and y are

expressed in terms of a third variable known as a parameter.

In such cases, to find ay it is not essential to eliminate the

parameter and express y 1n terms of x. We may proceed

a8 follows : °

e det x=d(t), y=v(E).

Then ¢ may be regarded as a function of x and also y is

a function of f.

dy _dy dt _dy /dx (“2

Now, ax di da dt / dt \at” ©
[By § 46 and 47 J

For allustration seo § 4°13, Ex. 6.

4°13. Illustrative Examples.

te (x")=nz"-' when n 18 @ positive integer,

by the product rule. [ Note, Theo. IV, Art. 44]

Ex. 1. (a) Show that

Let f(x)=2"=2.2 ..2 (n factors).

f (x)=a2 2... to (n~1) factors+a.z2 .. to (n—1) factors

+2.2... to (2 —1) factors

ah ceeece to m terms

= na} .

(b) Assumeng that g x"=ne"-' when n 8a positive integer, show

that the same result 13 true when n 18 a negate wteger, or a rational

fraction, positive or negnatove.

When n is & negative integer, suppose n= —m, when m is @ posi-

tive integer.
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s a n_ @ =m
a e@ dz” dz”

_— mo]

= jean aes <a FP mae = net?
Next let us suppose m is a rational fraction positive or negative,

and let n=p/q, where g is @ positive integer and p any integer positive

or negative.

Then, y=ax"=a2P/f; lets=ax'!%, .°. xeat and y=sz?., Then,

dy dy [dP gpa ang'?-M angPlt) ang?
dz dz/dz q

Ex. 2. Assuming that £ {oP la) — P(x) g(a) for all real values of x,

deduce that Z (2") =n2"-! for all real values of x.

Let y=at=e le &,

Then, oy g (e% log x) — pn log x, g (n log x)

n 1 Romi
2 =o" nn, =ne"-?,

x

Ex. 3. Fand the differential coefficrent of sun? (log sec =).

Let y={sin (log sec x)}?

=%7 where u=sin (log sec x)=sin v, where v= log sec x

=log w, whore w= sec a.

dy _dy du dv 2 «94.008 ve ‘sec x tan x
du du dv dw dx

= 2 sin (log sec x) cos (log sec x). tan x

=sin (2 log seo x) tan a.

Ex. 4. Defferentate (sec x)'*" *.

Let y=(sec z)**" *, log y=tan x log sec x.

Differentiating both sides with respect to a,

=— a ES a i e 2dz tan x bo x Be x tan ©+sec7@ log sec ®

= tan’2+seo"x log sec a.
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do” (sec x)*®9 © {tan? 2+ sec?x log sec x}.

Note. Writing the given function as e%@"# 10g 8e¢z we may pro-
ceed to differentiate it.

ay n/ — 1)(z — 2)
Ex. 5. - tsx.5. Find dz’ if y= (@—3)\e 4)

Taking logarithm of both sides,

log y=4% [log (a— 1)+ log (a —2) — log (x — 3) —log (w— 4)].
» e

Differentiating both sides with respect to 2,

Tdy_lif i, 1 1. 44]

y ax Qlea—-l° 2-2 «2-3 w«—4

__- 2w?—-1Ox+11
(x — 1)(a— 2)(a — 3) (a — 4)

dy _ _ Qn? —10r+11

dz @— 18 (e—2)%(a—3)'e— at
Ex. 6. Fund = af x=al(O— sin 89), y=a(1+cos 8). .

dy _dy asn@ _ 28m 46 cos$0_ _

da dé 207 ~ a(f—cos 0) 2 sin*40 cot $4.

Ex. 7. Fond at af y=tan=*- J(L+ sn 2)— S(1- sine)
i+ sen x) + J(l—sen a)

On rationalizing the denominator,

1—cos x 2 sin? da
= cio = el

y = tan sin 2 ta 2 sin $x cos $2

=tan~' tan 4a= 4a.

du_

Note. Sometimes an algebraical or trigonometrical transformation

as shown in this example considerably shortens the work. The next

example also illustrates the same method.

Ex. 8. If y=tan Nit e—1, find ay
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Putting = tan 6 V1+e7-1_ sec 6 — 1_1i- cos @
x tan @ sin 0

2sin? 40

2 sin 30 cos 40
=tan 40.

Hence, y=tan-' tan 36=%0=4% tan-'z.

ayoi, 1,
dx 2 1+2

¢

Ex. 9. Differentsate sen x with respect to a*.

Let y=sin x, z=2?.

dy _ dy dz_ dy /da_oos x,
dz dxdz dzx/dx 2;

Note. This is an example of the differential coefficiont of a func-

tion of x with respect to another function of a.

Ex. 10. If son y=x sin (a+), move that

dy _sin® (a+).

dx sin a

From tho given relation, we have

sin y

o= sin (a+y) (1)

Hence z is a function of y.

.. differentiating both sides of (1) with respect to y,

dz _ sin (a+y) cos y—sin y cos (a+4)

ay sin? (a+y)

_ (sin {sin (a+ 4) — uy _ sain a
7a ooo

~ sin? (at+y) sin? (a+ ”)

Since by Art. 4 7, te 1 / on the required result follows.

Ex. 11. Fand the derwative of A(x), where

Alw)= filx) 1 (x) y, (x)
So(xe) a(x) Wa (x)

fa(z) 3 (@) Ws (a)

and f, (x), fa a), fs (x), 1 (x) etc. are different functions of a.
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Furst Method :

A(eth)-—Ala)= fileth) P.le+h) Yi (e+h) |

fa(cth) dalath) y(a2+h)

fs@@+h) s(at+h) ps(e+h)

file) oz) ¥.)

fale) a(x) ¥.(z)

Fs(e) s(x) Ys (a)

fileth)—filz) o.(eeth)—9,() Wi (e+h)—y¥, (2)

fa(a+h) ba (a+h) Wa (a+h)

fs(a+h) ?;(x+h) ¥s(a+h)

+ | f. (2) P, (x) ¥, (2)

fa(eth)—fr(z) palet+h)—h.(z) Yalat+h)— ya (x)

f,(a+h) ¢,(e+h) Ws (a+h)

+ | f(a) ?, (2) ¥, (2)

Ff, (2) @ 2 (2) 2 (a) (1)

Ss(a+h)—f,(2) Os(2+h)—¢,(2) bi(vt+h)—Ws (x)

[ The right side on simplification can be casily shown to be equal

to left side. ]

Dividing (1) throughout by / and letting h—> 0, we get

A’(z)=|{ fil) .(@) Wil) | + fil) a) ¥.(2)

fale) 1(x) 2 (x) f'a(a) s(x) ¥2(2)

f(a) Gs(u) Hs (a) Fs(a) s(x) Ws (a)

+ i fi) ¢() ¥,(2)

fale) Pale) Yala)
|

If s(x) P s(x) py’, (x)
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Second Method :

Clearly A(x)=Z/f, (a){ha(z) Ys (a) — a(x) 2 (x)}-

A! (2) = 2" 1 (x}{bo(x) Ws (z)— 5 (x) Ha (x)
+f, (a){p..’ (x) V.(x)—¢,' (a) WY. (x)}
+f, (ribs (z) ¥ 5’ (2) — 5 (@) Wa’ (x)}

A'(a)= | fiz) Oo.) vile)) + {Aw 1) y¥.(@)

f'o(z) bale) Walz)! fate) Pala) ala)

f's(z) Gs(a) Ws (x) fs(z) ¢,() ¥s(2)

fi (z) 9%, (2) Ws (2) |

flr) do(z) Walz) |

folc) ds(c) Y's (a) |
Thus the derivative of a third ordor determinant A(z) is equal to

the sum of the three determinants, each obtained by differentiating

oné column of A(z) leaving the other colamns unaltered. Similarly,

A’ (x) is the sum of throe determinants each obtained by differentiating

one row of A(c) leaving the other rows unaltered.

Tho similar result is true whatever be the order of the determinant.

Examples IV(B)

Find the differential coefficients of :

1. Gi) i¢@)}". (11) (v7 +5)". Git) J/@? +a?),

(iv) 1/(ax + d). (v) (e7)°. (vi) /log a.

(vii) sina. (vin) tan®s. (ix) sec® a.

(x) (sin7*2)°. (xi) (tanTM*a)?. (xii) /d(z).

2. (i) eX”), (11) e%”, (iii) ewe? +oxto,

(iv) e**, (v) ean. (vi) e827 te,

(vii) eet) — gvl@-2),
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8. (i) a), Aili) 727422, (iii) oles =”.

4. (i) log d(z). . Gi) log sin a. (iii) log cos &.

(iv) log (ata). (v) log (ax +b). (vi) log ./a.

(vii) log (ax? + bx +c). (viii) log (log 2).

(ix) 10!08 sina, _ x) log tanTM*a.

(xi) log (sec x + tan a). (xii) loge a.

» e (xiii) loge sin =. (xiv) loge (a +2).

(xv) logsinz & ° -. {xv1) logsin x (sec 2).

(xvii) log tan (+2 + $2). (xviii) log («+ /a?+a?).

(xix) log (./z-at+ JVa—b). [0C. P. 1986]

(xx) logio (Qa + ./4x7+1).

(xxi) 4 log {(1 +2)/(1— a)f.

5. (i) sin d(2). (ii) cos ¢(a). Gii) tan ¢(a).

(iv) cosec ¢ (a). (v) see d(x). (vi) cot d(a).

(vii) sin az. (viii) cos (aw +b). (x) cos?a.

(x) tan mz. (xi) cosec®a.

(xii) sin 2a cos @. (xni) cos 22 cos 32.

(xiv) sin 2° (degrees). (xv) e*” sin bar.

Utxvi) eTM cos (bx +0). (xv11) tan 32+ cot 4a.

(xviii) sinzsin 22 sin3a. (xix) a tan?2 +b cot?a.

(xx) sin”TM2z cos"2. (xxi) sinTM2/cos”2.

(xxii) cot 2 coth a. (xxiu1) tanh 2 — $ tanh*e.

(xxiv) log tanh @.

6. (i) sin’ *¢(z). _ Gi) tan7*¢(@).

(iii) sec77¢(z). a sin 72,
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(v) tanTM* ( ./m). (vi) tanTM* (2/a).

(vii) sin~? (a/a). (viii) sec”? x.

(ix) cos~* /(ax +d). (x) cot~* (e”).

(xi) secTM* (tan 2). (xii) tan7* (sec =).

(xiii) tanTM* (L+a+2?).

(xiv) cos” * (8a* — 8a? +1).

(xv) sinTM* (8a — 42°).

(xvi) sec (tan>*x) [C. P, 1940]

(xvii) tan (sinTM*z). (xvi) tanTM? (tanh $2).

(xix) cot~7 (cosec 2 + cot 2).

(xx) tanTM* (sec x + tan =).

(xxi) cotTM? (./1+a?-—2).

-rita, v3 -11-2*). _ (xxii) cot toe (xxiii) cos 1a 2?

. —1 a + ba eo —1 Qa | .
(xxiv) tan 5 ax (xxv) sin its?

2

_— -1@ +1) ; -1_ 227 |,Y fxxvi) sec ae (xxvii) tan {st

(xxviii) tan7* eT (C. P. 1948 |

1(xxix) tanTM [C. P. 1938 ]
J/(1—2*)

_ f — mo

. Axxx) 2 tan"*,/(? - a ‘ {xxxi) tanTM* 30 x
b- 2 1-32?

(xxxii) sech”* 2 — cosech *2.

(xxxiii) tanhTM* (tan $2).

(xxxiv) tanhTM* {(v? — 1)/(z? + I}.

7 (i) cos { /(1 +27). (ii) eNcotz, [0O, P. 1948}
(iii) ecosee? a ' (iv) gsm tx)?
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(v) BNGta+a), (vi) log tan $a.

_ ii) /(log sin 2). (vin) (log sin 2)?.

(ix) cos {2 sinTM? (cos a)}. (x) sin? (log x”).

(xi) log sec (ax+b)*. [ OC. P. 1941 |

(x11) log {Qa +4+ /(4n7 + 16x” — 12)}.

(xii) /(1+log z,log sina). [C. P. 1944]

xiv) tan log sin (e””).

" (xv) Ale Je)" 4 Ble ~ Jo®=1)".

8. Find the differential coefficients of :

(i) 2”. (ai) (1 +a)”. (ari) gle 7,

(iv) wlt2tz? (vy) a’. (vi) e°”.

(vii) e®*. (vii) we”. (ix) (sin x)? 2,

(x) eee8?z, [ OC, P. 1944]

. (xi) (sin w)'8 =, [ O. P. 1943]

(xin) x®”. [C. P. 1937 ]

(xiii) (sin «)°°* * + (cos #)8TM *.

| xiv) (tan 2)*°°* + (cot x)” *,

9. Find the differential coefficients of :

(i) (L-—ax)(1 — 2x)(1 — 8x)(1 — 42).

8) ®/ole hie do) lta(ii) ala + 1)(@ + 2). (i1) J (1+ “).

iw) (SEB) 40) toe (253)4}
2

Kei) 2° aoa [ O. P. 1941]
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(vii) a — for «= 4,

(viii) (; cc): [C. P. 1986 ]

(4+ bit
(an + 3)*(6x— 1)*

b+¢ xb ot+a 53 at aore\a- oT 2\b—o 0-a

(x) (ae=#)" x (at B)* x (FF #)TM,
e

10. Find ov in the following cases :

Gi) Ba*—a2?y+2y%2=0. [C. P. 1941 ]

_Af) gtte*y*+y*=0. [C. P. 1939 ]

(iii) 2? + y® +427 y— 25=0.

2) o* + % = Sacy. (v) ot + yi= at.

(vi) ax? + Qhry + by? + Aga + Afytc=O0.

(vii) 2 =y log (ay). (viii) 2? y? = (2+ y)?**.

. Aix) y=a%. [C. P. 1940]

&) at=y*. [C. P. 1945]

(x1) 2%y®=1. [C.P. 1943] (xii) (cos x)” =(sin y)”.

(xiii) e®” — 4ay = 2.

(xiv) log (xy)=a? +y?. [C. P. 1943 ]

11. Fina 2 da ” when

J Hi) z=a cos ¢, ¥=b gin ¢.
(ii) 2=a cos®0, y=a sin*’é.

(iii) z=at*?, y= at.
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(iv) e=sin®6, y=tan 6. [C. P. 1948]

(v) =a sec*#, y=a tan*e. [C. P. 1942]

(vi) 2=a (cos ¢+log tan $1), y=a sin t.

(vii) ©=a (cos ¢+2¢ sin t), y=a (sin ¢—¢ cos 2).

(viii) ¢ =a (2 cos ¢ +cos 2t), y=a (2 sin ¢—-sin 2t).

(ix) «= 2a sin?t cos Qt, y= 2a sin”t sin Qe.

(x) peels ” y=8at7/(1+t°). [O. P. 1941]

wr tan v"j_27 mar sin 7 = ee [C. P. 1944 ]

12. If y=e!"'2 and z=67°"', then dy/dz is indepen-

dent of a.

18. Differentiate the left-side functions with respect to

the right side ones :

(i) «* w.r.t. x*. (ii) sec & w.r.t. tan @.

(iii) log, o@ w.r.t. 2°, (iv) tana w.r.t. «7.

a:

(v) cosTM* Ino w.r.t, tan”? a
1+2? 1-2?

(vi) tan? Mite )~4 w.r.t. tan” *2.

(vii) 227** wort. sin-*2. [C. P 1988]

14. Find the differential coefficients of :

0) Ja+ z)* va- ry He+a) + Jae +b)
- lt+ete # teeth.

is) TEST Gy og AEH
A) log Jf {pen 2h. a log J t — cos 2

1+cosz
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as -1 +=).(vii) tan J Tee

(viii) tan-2 itene [C. P. 1942, 44]

. - 1 ~ cos# -1 cos #— sin &
1 mine ie t i=“.(ix) tan Jf (; + cos 4 (x) tan cos z+ sin x

(xi) sin7*a2+sinTM* /(1— x).

(xii) sin” * {2ar /(1 — a?a?).

vs ~1 VL t+7?)- J/O- 7?)(xiii) tan JA +a?) + Ji 2?)

(xiv) sin {9 tan? J (=2)\.

Ji+7)+ Jl --2).
(xv) a +2)- J—a)

Ja? +47) + Ja? — 2?)
(xvi) Mat e%)— Ja? 09)

1

Lt+ar\* _ -1(xvii) log (+ te)" 4 tan ‘a.

(xviti) log J (2 COB © b anf.
acos x+6 sin &

. atbtan 2
(xix) log ab tan x LO. P. 1942 ]

(xx) tan~* {,/ (258) tan a

(xxi) sin7? atbeosr (xxii) cos72 3+5 cos £

b+acos2£ 5+3 cos x

(xxiii) log J { WAKE e a i

cain) oe [SEED x 0
at —

x
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“y in the following cases (Hx. 15-28) :

15. y=4e? tan” *2—4a? +4 log (1 +27).

16. y= (a? -— 2?) + $a? sin”? (2/a).

17. y=log (2+ s/x?—-a?)+ sec * (z/a).

18. y=aJ(a* +a") +a? log at /z*+a%),

19.° a= J(a?-y?)+ © 9 10g ao Ne =

Find

1t+a2,1 ltn+2? -1 @/3_
20. y=log, _.. + 108 to ae o + /3 tan 12?

_ 1 L+ae J/2+a? 1 ~4 @ JD

21. y= 47g 8 oe Jota? 9/9 1-2

22. y=tala? t+ 1)3 — ga(n? + 1)? — $ log (w+ /x? +1).
1 1

23. =Y T+g"-TM “TL oD —m + lta” Te al

1
+ LtgeTM Py ene

+ at+b+ 2x

24. If f(x)= (2 Fal » show that
2_ 2 atb

f0)=(a tog $4? 5 *)-(2)". Ce. B. 19461

28. TI)~I06 Jeet a) + le —ba)
find for what values of x, 1/f’ (x) =0.

26. Ifsin x sin (= + x) sin (74 a}
% V7

sin nz,
Q— L

m—Ia+ a) =
n
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show that

cot 2+ cot (* + x) + cot (*2 + «)
nN n

n-1+ seeeee + cot (“<4 n+ a) = col nx.

[ Cc. P. 1945 }

27. (i) From the relation (where mis odd)

9”~-+* cos 6 cos (0 + 2) cos (6 + ==) wenees ee
% n

os {0 + ab Val = Gos né,
N

deduce that

tan 6+ tan (6 +°n) + tan (0+ a fe ceeeee

+ tan {9 + An al =n tan 70.

(ii) From the identity

cos 8 g o Go O ieee cos 6_ sind,
9 SOF 92 SOF gs 9” 2” sin (0/2”)

show that

1 6,1 6 1 )

= cot a cot 0.

28. Find f’(x) in the following cases and determine if 16

is continuous for z= 0.

(i) f(2)=0 or a? cos (1/x) according as 2 is or is not

Zero.

(ii) f(z)=0 or 2* cos (1/x) according as 2 is or is not

zero, :



Hix. IV(B) ] DIFFERENTIATION 99

29. Tf (Lt a)" =co teyutcgu* tos + cyx”, then

(i) cy #2cg + 3c, +----- + Cn = 2.2777.

(ii) co + 2c, +8c, +------ + (2+ Len =(n + 2)2"-+.

1 Aoa

30. Ify=1 tT a, (2—a,\e—a,)

° + _ GseTM
oe (x —- asa — a.)(a—- as)

show that °

ay vf O15 Ge 4 Ge \
de xlay-2 Gg-X Ag-2&

*31. If A(z) =| (c-a)* (a-a)*® 11, show that

(x—b)* (@-—b)® 1

(x-c)* (x#-c)® 1

A'(27)=3 | (e@-a)* (a@-a)? 1

(c—b)* («-b)? 1

(2—c)* (a-c)? 1

*82. If A(a)=/ sine cosa@ sing

cos —sing cos@

x 1 1

show that A’(7)=1.

*83. Ii f(w)=|1 1 #1 21

1 «ae 1 1 |
112 1 |

lL 1 1 @!

prove that /’ (2) =3(@—1)?.
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*84. If the determinant of the 4th order

x a a a

a x a a

a a x a

a a a x

be denoted by A,, show that A’, =4As3.

ANSWERS

1. (i) nio(x)}"-1¢' (2). (1i) 149 (w7+5)°. (in) 2/ (0? +02). "

(iv) —a/(ax+b)?. (v) 3(e%)*.* (vi) 1/22 slog a.

(vii) » sin""'a cos a. (viu1) 5 tan‘*e sec?x.

(ix) 3 sec*a tan a. (x) eine) . ( owen.

(xii) ste) 2. (1) e%).¢/(z). (ii) ae**,

(11) (Qax+b) et **>=4¢, (Gav) 4e°¢"*. = (v) seca 6'#”

1 - pNatl eNe-l

(vi) ee Se Wo) 9 eel 2Nn—1

8. (i) (loge a.aPl@ )g’ (x). (i1) 2(2+1) log 772 et ae,

(iii) log. 10.10!°E <*.(1 + 1og a). (4) ¢@ (x)/o(a) (ii) cot a.

(ii) —tan 2. (iv) 1/(x-+a). (v) af(aw+b). (vi) 1/2.

(vii) (Qax+b)/(ax4+ bax +c). (vi11) 1/2 log a.

(1x) 10!°F 9% og, 10. cot x. (x) 1/(1-+ a?) tanm*a. (x1) sce 2.

x cot r.loga—Ilog sin x

aw (log x)? :
{x1i) —log a/xz (log x)?. (x1ii)

aw log x—(a+ 2) log (+2). log Sin x—@ cot log x.

x (a +2)(log a)? x(log sin a)"
(xiv) (xv)

.. tan x log sin 2 + cot x log cos &

(xvi) (log sin a)? (xvii) sec a.

ey ak _ 1, 2 log 10 |
twill) ega® a yietaery Yael



DIFFERENTIATION 101

(xxi) , +5. (5. cos &(x).¢" (x). (ii) —sin o(x).¢’ (a).

(ii1) sec? (x) ¢’ (zx). (iv) —cosec ¢(x) cot o(z).¢’ (za).

(v) sec d(x) tan ¢(7).¢' (x). (v1) ~—coseo?¢(x).¢' (2). (vii) a cos aa.

(viii) —a sin (ax+bd) (1x) —sin 2a. (x) m sec? mea.

(x1) —3 cosec*s cot x. (x1i) $(3 cos 32+ cos 2).

(xiii) —4 (5 sin 52+sirer) (xiv) cos x° (degrees).180
fxwW e% (a sin ba +b cos bax). (xvi) e** {a cos (ba-+c)—b sin (bx +0)}.

(xvii) 3 sec?3a~—4 cosec*4e (xviii) 4 (cos 2r+2 cos 42—3 coos Gz).

(xix) 2(2 tan x sec?2—b cot « cosec?z).

(xx) sinTM~'a cos"—*a: (12 cos*z—n sin?z).

(xxi) * 7 (m cos?a+n sin*z).soa" ap 1
(xxii) —cosec?gz coth x—cot x cosech ?z.

(xxi) sech*a. (xxiv) 2 cosech 2a.

FO) epee) rman 0 Sa) fip PEA

Oo) 0 a ©) a4 2) af () aya

(ii) Joe ge (vim) Spe 7

(ix) — Ti beet a 2 Jan tb (x) - 5 oa

(Xi) se eine costa’ (xi) costa

(xvi) 7 (xvii) (1-2), (xviii) § sech a.

(xix). Gx) Gx) Sep enti) -
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ves 2 1 . 2 .
(xxiii) 42" (xxiv) 1+? (xxv) 1+ 22

(xxvi) “4 2 x’ (xxvi1) = i “pet (xxviu) — wo

. 1 1.

(xxix) yp (xx) “Tayo =a)

(xxxi) 3_ (xxxii) — 2S i=].
1+? @LWNi—2* W1+a?

(xxxii1) 4 sec a. (xxxiv) 1/a.

a ¢ all

7. (i) = —2x -@ sin (,/1+a? 2). (i) — gNcot x

V1 Fg? ‘9 sin’m. /cot x

es — pcosea ? Ja _ cos alc . * sin” “et e(sinTM ‘ay?(iii) —e Ja sin? Jz (iv)

(1+ 22) log 3.042427)
(v) 2 J1d ota? °3 . (vi) cosec x.

(vii) $ (log sin x) 3 cot a. (vi11) 2 cot « log sin &

(ix) 2 gin 2z. (x) 2a-* gin (4 log a).

(xi) 3a (ax+b)? tan (av+d)*.

+. 1,

(th) Jett aes

(xiv) sec? vee sin e””) cot (e*) e* .2a.

(xiii) log sin x+ cot x log &

20 ./(1+ log x log sin x)

(xv) Tara a ; (Ale+ Ja? —1)"-Blaw— ./7—1)".

8. (1) a (log 2+1). (in) (1-+a)* { log (1+-2) + wat

(iii) 2 log a. Oe w= 1), (av) wtt@+"? {(97-+1) log w+a7-? +1+a}.

(v) a®” .a7 (log a)?. (vi) e*”.e. (vir) e*”.2* (log 2+1).

(viii) w*”.e” (a +log x). (ix) (sin a)*8 © {g00%¢ log (sin x) +1}.

(x) goos- tax {- ie i) -}- ons} *

(xi) (sin a) 108 = {e-2 log sin «+log a cot 2}.
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(xii) a®” oc flog x (log 2+1)+ 1/2}.

(xiii) (sin 2)°°* * {cos « cot a— sin # log sin a}

+(cos x)*'" * {cos a log cos w— sin & tan ay.

xiv) (tan x cosec’az (1—log tan 7(xiy) (tan «)°°** {cosec*a (1—1 }}
+ (cot ap) ®2" © {sec?a (log cot 2 — 1)}.

9. (i) 960" — 1502? + 7a— 10 (xy -Se2t 242. 4
° Bhor(ar + 1) (a+ 2)}

tT 1 2a __
aif (1—2) J1—2’ (ay) (a? +27) Nat —2*

2 a . 4 a
(v) @ 43. wi) 7 Cet? ser te +56), (vii) 120.

+ (a? + 4)9(x? +3)
_ 2

(v1ia) a Tae) (ix) - et? 2t+ ed ) o (x) O.

N (40+ 1)*(2a + 3)? (5a— at
. ax (60? — 9) . _ (2x? +4 *) 1 _ 307+8ry

10 (i) nt Gy? Qi) — y(a” + 24) 2)" (113) By? +4:

(iv) 2 —ay. " (v) —( 4 (v1) _ ant hy-hg,

ae—y? x hat by +f

. Wla— 4) ” 4? .

(vin) a(t-+y) (vina) (1x) a(1—y log 2)

(x) y (a log 4—Y), (x1) se 2(1—log 2).

*) 2 (y log «— 2) oe? (1 —log “y)

., y tan x+log sin 7 ay YU 4y(Qac -1),
(xis) log cos g—a@ cot y ° (x1ii) 2 (xv) a2(1— — 977)

41. (i) —(b/a) cot ¢. (u) —tan @. (ii) 1/t.

(iv) 4 sec*@ cosec 8. (v) 3 tan @. (v1) tan ¢

(vii) tan Zt. (vin) —tan dé. (ix) tan 32.

(x) 4(2—¢°)(1—2¢°). (x1) 1

13. (i) $2°. (ii) sin x. (ii) 4 v7" logio

(iv) 1/2” (1-+27). (v) 1. (vi) $.

(vi1) g8iB7* {log oe sin- ta wa —# eI.
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14.6) a-a)t-G4a). U8) a6» LZeaam Jered
we 1-7? . 2(1 — 2?)

) ate"a (l+2 +27)2(1—2+02)* Gy) 1+ ai +e
(vi) cosee x (wii) Teas (viii) —%. (ix) 3.

(v) see x.

_ . ss _ 2a A a
(x) —1. (xi) 0. (xii) natant (xii) Jaz)

iv) ——2 y-—- Po(xiv) va a’) , (xv) x? wt —n) o

(xvi) —~ 2a {1+ Sue as at . (xvii) = i i

%ab .

a? cos*a—b* sin?s

— /(b?—a?) es

b+acosr- (xxii) 5+3 cos @
we 1 - a* + x? + 2

(xxiii) J1 4+? (xxiv) or ral = ot (xxv) 1— (x* + Qa) 3°

—ab

2 cos?a—b? sin? c

(xx) Ma?)
2(a-+b cos x)

(xvii) - (xix) -

(xx1)

15. a tan-'s = 16 (a? — x”) 17 * J ax wa

18. 2472), Jo, . ; .2 /(a? +2?) 19 Ta? — 4?) 1-28

1 2
21. 5 fo 22. a? f(x? +1) 23. 0. 25. 0, +(a/d).

28. (1) f’(z)=0 or sin (1/z)+2x eos (1/7) according as = is or 18 not

zero ; f(z) is discontinuous for 7=0.

(ii) f’ (z) =0 or 3a? cos (1/r) +a sim (1/7) according as @ 18 or 18 not

zero; f(x) is continuous for x=0.

4°14. Significance of derivative and its sign.

A very important aspect of a derivative, following from

its definition, is as a rate-measurer. This will be clear

from the following examples.

Let s denote the length of the path covered by a moving

particle in any time ¢ Clearly, as the particle moves
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continuously, s has a definite value for every value of f,

and accordingly by definition, s is a function of 4. If st+As

be the value of s corresponding to the value ¢+At of t,

then as As denotes the distance moved over by the particle

a in the limit, when At becomes

infinitely small, represents the ratio at which the particle is

describing its path per unit of time at the moment. But,

in time Jt, the ratio

on the other hand, lt o is by definition (since As and At

denote corresponding changes in s and ?t), the derivative of

S$ with respect tot. Thus the derivative . respresents the
it

rate of change of s with respect to J, 2.e., the speed of the

moving particle.

More generally, 1f y be a function of the variable 2,

changing continuously with w, then Ay being the change

in y corresponding to a change Az of x, the derivative

dy Ay
— = Dtda x50 Ax represents the rate of change of y with respect

LO &.

Thus v being the velocity of a moving particle at time ft,

ae represents the time-rate of change of velocity, 1.e., its

acceleration ; again, if V be the volume of a quantity of

gas enclosed in a flexible vessel at a constant temperature,

when its pressure is p which we can change at pleasure,

dp represents the rate of change of volume with pressure ;

and so on.

Next we may note, that y changing with a, of y increases

when gx is increased and diminishes when & is diminished,
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the corresponding changes Ay and Az are of the same sign,

Az

it exists and 1s ~ O) 2s poszteve. Similarly, if y decreases

when x % increased, or iuncreases when w@ 18s diminished,

dy
dex as negative.

and accordingly the ratio ay is positive. Hence, oy (when

6

Conversely, a positive sign of ay at a point ¢ indicates

that in the neighbourhood of the point, y increases or

decreases with wz, 2.6., both y and x increase or decrease

. d
together. On the other hand, a negative sign of i. means

that y decreases when @& increases and vice versa near

the point.

A formal proof of the above result 1s given below.

A theorem on the sign of f’(x).

Tf f'(a) > 0, prove that f(r) < f(a) for all values of

x<a but sufficreently near to a, and f(x) > f(a) for all

values of x > a but sufficiently near to a.

Since f(a) >0

flax fla)Lt > 0, and

42040 he °
for all sufficicntly small values of h, we have

fla- dy < fla) < f(a+h).
In other words, there exists some nesghbourhood

(a — 6, a +6) of a in which

f(x) > f(a) for x > a, f(a) < f(a) for 2 <a,
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i.e., f (x) > f(a) for x > a but sufficiently near to a

t (x) < f(a) for x < a but sufficiently near to a.

When the function y=f(x) is represented graphically,

a geometrical interpretation of the derivative a corres-

Ponding to any value of x may be given as follows :

Let P be a point (2, y) on the curve, and @ a neigh-

bouring point (@ + Av, y + Ay) which may be taken on either

side of P, so that dz may have any sign. The equation to

the line PQ is (X, Y denoting current co-ordinates),

ye UT AY=Y (xy) = MY (x
Y-U= Te acne XO jy (X— 2).

If @ be the inclination of this ine PQ to the x-axis, the

slope of the line, 7e, tan g--4¥ - (i)
Ax

Now let @ approach P along the curve indefinitely

closely, so that Ar —0O. If the straight line PQ tends

to a definite limiting position TPR as @ approaches P from

either side, then 7’7PR# is called the tangent to the curve

at P. In this case, if » be the inclination of TPR to
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the a-axis, then as PQ tends to TPR, @—y. Also, as

Ag — 0, It en oy from definition. Thus (i) leads to

dy.tan V dx

Hence, the derivative ay for any value of 2, when it

exists, 13 the trigonometrical tangent of the inclination

(otherwise known as slope or gradzent) of the tangent line
at the corresponding point P on the curve y =f (a).

Also, if oy Y(=tan y) be positive, y is acute (as at P) in

the figure below, and at that point y increases witha. If

ou i.e., tan y be negative, » is negative (as at @), or is

obtuse (ax at RF), and y diminishes when 2 increases, or vice

versa.

At a point where ay =(Q, the tangent line is parallel to

the w-axis (as at #’), and at a point when oY —> ©, 4.6.,

an —> 0, the tangent line is parallel to the y-axis (as at @).
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4°15. Differentials.

Tf f(x) is the derivative of f(z), and Az is an increment

of w, then the dzfferential of f(x), denoted by the symbol

df (a), is defined by the relation

af (a) = f’ (x) An. ... (i)

If f(a)=2, then f' (a)=1, and (1) reduces to dx= Az.

Thus, when x 1s the wndependent variable, the differential

of «2¢=dax) is identical with da Hence, if y=f(x), the

relation (i) becomes

dy =f’ (x) dx .. (ty)

2.€., the differential of a function rs equal to rts derivateve

multiplied by the differential of the andependent varrable.

Thus, if y=tan 2, dy=sec*z da.

From the definition of the differential of a function, the

following formule for finding differentials are obvious :

d(c)=0, where c 1s a constant ; ,

d (w+ v—w)=du+dv— dw .

2d(uv)=u duty du; a{*) = tone adv,

Differentials are especially uscful in applications of

integral calculus.

Note 1. The students should note carefully that although for the

independent variable «, increment Az and differential dx are equal,

this is generally not the case with the dependent variable y, ~e.,

Ay ~ dy generally.

Note 2. The relation (11) can be written as dy/dx=/f" (2); thus

the quotient of the differentials of y and x 18 equal to the derivative

of y with respect to x.

Probably on account of the position that f’ (x) occupies in equation

(ii) above, f” (x) is called the dufferentral coefficient.
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4°16. Approximate Calculations and Small Errors.

Ay

Ax

=f’ (x) Ax for small values of dz. Thus dy and Ay may be

taken as approximately equal, when Az (=dz) is small.

Hence, when only an approximate value of the change of

a function is desired, 1t 18 usually convenient to calculate the

value of the corresponding differential and use this value.

If y=f(z), since Lit ) =f'(x), Ay is approximately
o>

Small errors arising in the vame of a function due to an

assumed small error in the independent variable may also

be calculated on the same principle.

As an illustration let us consider the following cases :

The radius of a sphere is found by measurement to be 7 inches ;

if an error of O01 inch 1s mado 1n measuring the radius, find the error

made in calculating the surface-area of sphere.

Tf S be the surface-area of the sphere of radius 1,

S= 4ar?.

adS=8rr dr.

Here r=7 and dr="01.

.. approximate error 1n the calculation of the surface-area

=dS=8x42x7x'01=1°76 sq. in.

Note 1. The actual error is 4m 4(7°01)7—7?} which is very nearly

equal to 1°76.

Note 2. If dx is the error in 2, then the ratios (i) a and

(ii) 100+ dz are called respectively the relatwe error (é.e., error rx pe

unit ~) and the percentage error. They may be easily obtained by

logarithmic differentiation,
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4°17. Olustrative Examples.

Ex. 1. Jf the area of a cercle increases at a unsform rate, show

that the rate of encrease of the peremeter varies enversely as the radvus.

[ Cc. P. 1980 }

At any time #, let A be the area, P the perimeter and r the radius

of the circle Then A=rr2; P=2rr. .*. FP? =4rA.

differentiating both sides with respect to t, we havo,

ppdP_4 dA, dP _on dA_1 aA,
dt at "dt FP at r dt

. aA. + dP .. 1
Since a 38 constant, ey oe

Ex. 2. A ladder AB, 25 ft. long, leans against a vertecal wall.

If the lower end A, which ws at a destance of 7 feet from the bottom of

the wall, os beeng moved away on the ground from the wall at the rate

of 2 ft per second, find how fast 1s the top B descending on the wall.

Let the distance of A and B from O, the bottom of the wall, at

time {be zx and y. Then the velocities of A and B are oe and —' dy .
at’

: dx
hence, #8 given here, atm 2.

Now, x7? +y?7=25?.

Differontiating with respect to t, 2x at ay "3 7H a =0,

dy __ _« da
dt ydt (1)

When a=7, y7=2957—T7=576=947, 2. y= 24,

Hence when 2=7, y= 24, o = 9;

-". from (1), OM — By xQ=— a ft. per sec.= —7 inches per sec.

*. the ond B is moving at the rate of 7 inches per second towards O

(°.° dy/dt is negative )«e., B is descending at that rate.

Ex. 8. The adtwabatec law for the expansion of air is PV*** =k,

where k 1 a constant. If at a gwen tume the volume ws observed to
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be 20 cu. ft. and the pressure 1s 50 lbs. per square mech, at what rate

ts the pressure changing wf the volume %s decreasing at the rate of

2 cu. ft. per sec. ®

PV***=k.

Taking logarithm of both sides and differentiating with respect

to t,

1 dP 1dV

Patt+y an” .

When V=20, P=50%x 144 Ibs, per sq. ft., and ve ~92 then ie «

og hPa aax 2d (9) 20.
Box144TM dt 20

ee a= "14 x 50 x 144 Ibs. sq. ft.

=°14%50, 12¢., 7 lbs. por sq inch per sec.

Ex. 4. If y=2x2—tanTM'ax—log (a+ J/1+22), show that y conte

nually oncreases as x changes from aero to positive wnfinity.

° [ CO. P. 1942 J}

dy 1 1 { 2x
_' ss —_— — w= -—- —~ _~—~— e@ +. - —_—

Here ie? 140 a+ fl+ta? * 2/1+2;"

=9 1 1

“Ita? Site?

Since 1+2? and /1+z2? are each greator than 1,

1

1+ m? and ise are each less than 1.

dy . .
one L 18 positive ; also y=0, when «=O,

.°. for positive values of 2, y must ba positive and continually

increases a8 < increases from 0 to oo.

Ex. 5. Fond approxumately the value of tan 46°, gwen 1° ='01745

radvwans.

Let y=tan 2. -. Gy =sec7n da.

Thus taking = 45° (=4r), dr=1° =’01745, we have

dy = 2 x ‘01745 = ‘08490.
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Hence, for an increment of 1° in the angle, the increment in the

value of tan 45° is ‘03490.

.. tan 46°=tan 45° + °03490 = 1°08490 approximately.

Ex. 6. If in a triangle the side c and angle C remain constant,

while the remaining elements are changed slightly, show that

da db _

cos A cosB “
»

: a _ b- =-—c_,

Ag any triangle, sin 4 sin B sin C

Since c and C are constant, %.". c/sin C=constant= K suppose.

“an dan BoE
.. @=Ksin A, and .*. da=Kcos dA dA.

Also }=K sin B, .. db=K cos B dB.

“ A} oa 'B = K.(dA+dB)=K.d(4+B)

= K.d (r—C)

=Kx0=0. (*.° C is constant )

Examples IV(C)

1. A point moves on the parabola 3y=a2? in such

a way that when z=3, the abscissa is increasing at the rate

of 3 ft. per second. At what rate is the ordinate increasing

at that point ?

2. A toy spherical balloon being inflated, the radius is

increasing at the rate of 7: inch per second. At what rate

would the volume be increasing at the instant when

r =3%4 inches ?

3. A circular plate of metal expands by heat so that its

radius increases at the rate of ‘25 inches per second. Find

the rate at which the surface-area is increasing when the

radius is 7 inches.
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4. The candle-power of an incandescent lamp and its
6

voltage V are connected by the equation C= ores

Find the rate at which the candle-power increases with

the voltage when V = 200.

5. If Y units be the heat required to raise the tempera-

ture of 1 gramme of water from 0°C to #°C, then it is
known that Q=i+107°.2¢7+1077.3¢°. Find the specific
heat at 50°C, the specific heat being the rate of increase of
heat per unit degree rise of temperature.

6. A man 5 ft. tall walks away from a lamp-post 124 ft.

high at the rate of 3 miles per hour.

(i) How fast is the farther end of his shadow moving
on the pavement ?

(ii) How fast is his shadow lengthening ?

7. If a particle moves according to the law a « t?,
when z is the distance (measured from a fixed point)
travelled in time ¢, show that the velocity will be pro-

portional to time and the rate of change of velocity will be
constant.

8. Water is poured into an inverted conical vessel of

which the radius of the base is 6 ft. and height 12 ft., at the

rate of 54 cu. inches per minute. At what rate is the water-
level rising at the instant when the depth is 34 inches ?

9. If the side of an equilateral triangle increases at

the rate of ./3 ft. per second and its area at the rate of
12 sq. ft. per second, find the side of the triangle.

10. If in the rectilinear motion of a particle s = ui+%ft?,

when uw and f are constant, prove that the velocity at time
tis w+ft and acceleration is /.

11. <A man is walking at the rate of 5 miles per hour

towards the foot of a building 40 ft. high. At what rate
is he approaching the top when he is 30 ft. from the foot

of the building ?
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*12. Accircular ink-blot grows at the rate of 2 sq. inches

per second. Find the rate at which the radius is increasing

after 24% seconds.

*13. The volume of a right circular cone remains
constant. If the radius of the base 1s increasing at the rate

of 3 inches per second, how fast 1s the altitude changing

when the altitude 1s 8 inches and radius 6 inches ?

*14. Sand is being poured on the ground and forms
a pile which has always the shape of a right circular cone

whese height is equal to the radius of the base. If the

sand is falling at the rate,of 77 cu. ft. per sec., how fast

is the height of the pile increasing when the height 1s

3°5 ft. ?

*15. The marginal cost of a commodity being the rate of

ztb
+-

zxte d
(6 > c) be the total cost of an output 2, show that' the
marginal cost falls continuously as the output increases.

change in cost for change in the output, if f(x) =az-

16. Gi) An aeroplane is flying horizontally at a height of
$ mile with a velocity of 15 miles an hour. Find the rate

at which it is receding from a fixed point on the ground

which 1t passed over 2 minutes ago.

(11) A kite is 300 ft. high and there are 500 ft. of cord
out. If the wind moves the kite horizontally at the rate

of 5 miles per hour directly away from the person who 1s

flying it, how fast is the cord being paid ?

17. If d(a)=(e—-1) e* +1, show that (a) is positive for
all positive values of 2. [ O. P. 1943 ]

18. If f(x)=cos x+cos*z+2 sin 2, then f(x) continually

diminishes as x increases from 0 to 4x.

19. Show that for0 < 9 <4n,

(i) 8 continually diminishes as 6 continually

increases.
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4 sin 6 . .
(ii) 2+ cos 6 6 increases with @.

*20. (i) Prove that if0 < 2 < 4z,

_i ~i,2,1 «4(a) 1-5) 2” < cosa < 1-552? +7.

(b) e- a 2 < sine <o- 5h a? + +e a,

(ii) Show that if « > 0,

(a) # > log (l+a2) > r-}e’?.

(b) a7 +90+3 > (8-2) e”.

@ sin | x+b cos x
“9 pr tc sin etd cosx prove tha

21. Given y=

(i) if a=1, b=2, c=3, d=4, then y decreases for all

values of 2 ;

and = (ii) if a=2, b=1, c=3, d=4, then y increases for all

values of x.

22. Find the range of values of x for which each of
the functions,

(i) «7° — 3x27 — 2427+ 30, (ii) «2° — 9x? + 24m — 16,

increases with 2.

(iii) Qa® — 9a? +1923, (iv) w* —4xr° + 47? + 40,

decreases a8 @ increases.

23. Show that the function 2? —32?+6z2—-8 increases
with 2.

24. Find the approximate values of the following by the
method of differentials :

(i) loge 10°1, given log. 10 = 2°308.

(ii) logzo 10°1, given log., e= 4348.

(iii) ./6°83, given ./695=2'5.
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(iv) sec?46°, given 1°=°0175 radian.

(v) sin 62°, given sin 60° = 86603.

25. What is the approximate change 1 in sin 6 per minute

change in @ when 6=60°? (given 1’=‘00029 radian. )

*26. Find approximately the values of :

(i) 2° +407 +99+2, when 2 = 2'00012.

(ii) 2* +4¢%+1, when 2=1'997.

437. Find approximately the difference in areas of two
circles of radii 7” and 7°01'e

*28. What error in the common logarithm of a number
will be produced by an error of 1% in the number ?

4 [ lof10 e='4343 ]

..j 29. Find the relative error (2.e., error per unit area) in
calculating the area of a triangle two of whose sides are
5 and 6 inches, when the included angle is taken as 45°
ingtead of 45° 2’, .

,380. Show that the relative error in computing the

“Yolume of a sphere, due to an error in measuring the radius,
is approximately equal to three times the relative error in

the radius.

f 31. The angle of elevation of the top of a tower as
observed from a distance of 100 ft. from the foot of the

tower is found to be 60° ; if the angle of elevation was really

60° 1’, obtain approximately the error in the calculated

height. [ 1’ ='00029 radian. ]

./82. The pressure p and the volume v of a gas are connect-
ed by the relation pv*** =k, where k is a constant. If there

be an increase of “7 per cent. in the pressure, show that

there is a decrease of 5 per cent. in the volume.

J 88. An electric current C as measured by a galvanometer
w ‘ig given by the relation C ~ tan 6. Find the percentage

error in the current corresponding to an error of “7 per cent.

in the measurement of 0, when 0= 45°.
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SS *34. The time 7 of a complete oscillation of a simple
pendulum of length 1 is given by the relation 7’= 2 ./(I/g),
where g is a constant. Find approximately the percentage

error in the calculated value of 7 corresponding to an error

of 1 per cent. in the value of l.

*85. (i) In a triangle if the sides and angles receive small

variations, but a and B are constants, show that

tan A db=b dC. ¢

(ii) In a triangle if the sides a, b be constant and t the
base angles A and B vary, show that

‘

-s.- aA —_— eee YO CUS dB
Ja®?-b* sin*A /b?-a? sin? B

*36. If a triangle ABC inscribed in a fixed circle be
slightly varied in such a way as to have its vertices always

on the circle, then

da _ , db dc

cos A” cos B’ cos @

ANSWERS

1. 6 ft. por sec. 2, 14 cu. inches per sec.

8. 11 sq. in. per second. 4. 96. 5. 1°00425.

6. (i) 5 miles per hour. (11) 2 miles per hour or 2°98 ft./seo.

8. + ins. per minute. 9. 8 ft. 11. 3 mules per hour.

12. ‘25 inches per second. 18. Decreasing 8 ins. per sec.

14. °2 ft. per sec.

16. (i) 9 miles per hour. {i1) 4 miles per hour.

22. (i) > 40r < —2. (i1) 2 > 4 or < 2. (iii) 1<a <2.

(iv) ¢<Oand1 <2 <2. 24. (i) 2 313. (11) 1°0043.

(ii) 2°516. (iv) 2°07, (v) °8835, 25. °00015.

26. (i) 30°0036. (in) 82°56. ° 27, ‘448q. inches.

28. °0045. 29. °00058. 81. °116 ft. 88. 11. 84. ‘5.



CHAPTER V

SUCCESSIVE DIFFERENTIATION

5°1. Definitions and Notations.

We have seen that the derivative of a function of x say
f(a),18 in general a function of 2 This new function
(¢.e., the derivative) may have a derivative, which is called

the second derivative (or seoond differential coefficient) of f(a),
the original derivative being called the first dersvative

(or first deferential coefficient), Similarly, the derivative of
the second derivative 1s called the third derivative ; and so

on for the nth derivative.

g dy
’ da

Again, da: “(%)-2
d deyNow, ay ou 1s denoted by da?’

Thus, if y=2 = 3xr?,

3

Pac (i.e, the second derivative of y with respect to 2)

in this case is 62.

Again, L (a *(53)- 2 dy (6) = 6

1 (d* d®Now, ot \ I? i) is denoted by dx Z.
. oF ¥ e., the third derivative of y with respect to x)

is 6 hone
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Similarly, the mth derivative of y with respect to @ is
”

generally denoted by ot.

If y=f(xz), the successive derivatives are also denoted

by U1; Yo Y gycverccccenes Yn

or, 4; y', Of evnenecccees yf")

or, 4%, yj, Y vecacececoee
or, f (2), f(x), ff" (a), veeeeaceeees f\(@)
or, Df(z), D*fla), , D°fla)..cceceeeeee D"f (x)

D standing for the symbol £ .

5°2. The nth derivatives‘ of some special functions.

(i) y= x", where n 1s a positive integer.

ys =n” * sy,=n(n—-1) 2"? s yg=n(n—-1)(n-2) 2” ® ;
and proceeding in a similar manner,

Yr = n(n — 1)(n—2)...4n—-(r - Ika” -* (7 <n)

Yn =n(n—-1\(n— 2)...3.2.1=7! :

e., D°(x) =n I.

r. Since yz=n!, which is a constant, Ynzyy Ynpqecceseces otic. are

all zeroes in this case.

(ii) y =(ax+b)TM, where m 2s any number.

Yi=ma (art+b)TM*: yo=m(m— 1a’ (ax +b)? ;

Y¥_ = m(m — 1)(m— 2)a* (aw t+ b)TM-* ; and proceeding

similarly,

Yn = mm — 1m — 2)...(m—- 2 +1) a” (aw + b)TMTM.

ve D"(ax+b)"=m(m—-1)(m -2)...(m—-n+ 1a"(ax +b)".

“Strictly speaking, in these cases, the nth derivatives are to be
established generally by the method of Induction.
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If m be a positive integer greater than n,

since m(m— 1)(m— 2)...dm—n+1)= ms any

e fn me n - . , Not > °* D (ax+b) im—np12" (ax+b)"-, - Pa (ax)

m being a positive wnteger greater than n.

rote. If m be a positwe mnteger less than n, D® (ax+b)TM =0.

Vv When m=n,“D" (ax+b)*=a", n!

Yr=aeTM ; ygareTM s yg =areTM; ...yn=a"eTM.

oe D" (e9*) = anes,

Cor. (i) D" (e*)=e*.

Cor. (ii) y=at =e 0%et, |, D" (a*) = (loge a)"a*.

: 1.
(iv) ” x-Fa ’

Y= —1.(a@+a)? ; yo =(—1)- 2Xat+a)?

=(-1)?7.2!(e¢+a)~*.

Similarly, ys =(—1)° 3! (x+a)~* ete

. 1 (-1)" nt

°° p(—)- (x+a)oti
. 1 (—1)"a" (m+n—1) !

Cor. Proceeding as above, D" (ax+b)m (m—1) 1! (ax+b)mtn

(v) yTMlog (x+ a).

1 e e
= ——— as in (i VvYio ta Hence as in (iv) above,

D* flog (x+.a)}= {= ae a

Cor. D" {log (ax+b)}= ‘= 1)" a) Ia.
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(vi) y = sin (ax+b).

Y¥1=a cos (ax +b)=a sin ($n + axr+ 8).

Yoq=a" cos (4n+ax+b)=a? sin (2.41 +ae +d).

Y¥,=a°* cos (2.4n +axr+b)=a* sin (3.42 + ax +b) ete.

nx* D®" {sin (ax+b)}—a" sin (® +ax+b F

Similarly, D" {cos (ax+b)} =a" cos (= + ax +b} - cm

As particular cases when b= 0,

D" (sin ax) =a" sin (BZ + ax :

D" (cos ax) =a" cos (2 +ax F

5°8. The nth derivatives of rational algebraic

functions.

The nth derivative of a fraction whose numerator and

denominator are both rational integral algebraic functions

may be conveniently obtained by resolving the fraction into

partial fractions. This is shown in Ex. 4, Art. 54. The

rules for decomposing a fraction into partial fractions are

given in the Appendix.

Even when the denominator of a given algebraic fraction

cannot be broken up into real linear factors, the above

method of decomposition can be used by resolving the deno-

minator into ¢maginary linear factors. In this case De

Moivre’s theorem is conveniently applied to put the final

result in the real form. This is illustrated in Ex. 5, Art. 54.
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5°4. Illustrative Examples.

Ex.1. If y=sen'a, find yn

sin 37=3 sin «—4 sin®z.

“. y=sin'g=47 (8 sin z—sin 32].

Yn=3 [3 sin (x +4n7) —8" sin (82+4n7)].

Ex. 2. If y=sin 32 cas 2a, find yn.

y=%.2 sin 3” cos 22 =% (sin 5a-+sin @).

oe) Yn= [57 sin (Anet 5x) + sin (4n7+2)].

Ex. 8 If y=e%* sin ba, find yn.

y, =e°**.a.sin 62+ e*7.cos bx b

=e" (a4 sin br+b cos bx).

Let a=vrcos ¢, b=r sin ¢, 80 that

r=(a?+b2)2, p=tan-? (b/a).

os «9, =7eTM sin (ba +¢).

Similarly, y.=re*” [a sin (ba +¢) +0 cos (br + ¢)]

= 7%e%* sin (b2+2¢), as before.

In a similar way, y,=r’e* sin (be +3¢), etc., and generally,

Un=r"eTM sin (ba +79),

4.e., D" (e® sin bx) =(a?+b?)2%e%% sin (bx+n tan~"b/a).

Note. Similarly,

D® (e® cos bx) = (a®-++b2)="e%* cos (bx-+N tan-‘b/a).

Again, if y=e%” sin (br+c),

Yn = (a?-+b2)* e** sin (ba+c+n tan”? b/a)

and if y=e** cos (ba+c),

n= (a?+b*)* e% cos (bau+ce+n tan“! dja).
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a* F+ae— 1

a? + a? 5G" ind Yns
o8 +o? —62=2(0?+a2—6) =a(e+ 3)(e—9).

a*+a—1 =f B C

Let eiat—6c” 2 ta+8 2

Multiplying both sides by a#(a+3)(a —2), we get

e2-+e—-1=A(x+8)(2—2)+ Be (w— 2)+ Cx (2 +38).

Putting wv=0, —3, 2 successively on boéh sides, we get

A=%4, B=}, C=.

Ex. 4. If y=

getidgh, ty.
77 U6 zt 3 x 37 9 %— 2

. =(—1)" Poi, di, 1 U1, 1,es Yn=( arnt | 2 mari tS G@+aynit ¢ Gray |

1
Ex, 5. Tf y= G7" find YUn-

1 1 1 1

YU (e+ta)(e—-w) Qale—w xt)

boyge (SD dt]
se Ya = ‘a (a —2a)"*2 (a-+%4a)"**

na

_(- s syn! [(a —2a)~"" 42? — (a+ ta)-F?),

Put z=,7 cos 0, a=,r sin 6,

so that r= (2? +a7)2, é=tan=' a/z.

Now (a — éa) 0+) = 7-2) (cos @—2 sin 6)-*+)?

= 7-2) foos (1 +1) 6-+2 sin (n+ 1) 8}.

(a + 2a) “°F P= 7-41) (cos O+¢ sin 6)-"t?

=r-("41) feos (n+ 1) O—¢ sin (n+ 1)6}.

(—1)"n!

Qe

Since r=a/sin 0, r7tP=q Ot sin») g@=gin®t! O/a*t,

os) n= o7—(t1) Of sin (n+1) 8.

aw {)0

pn (sepa )= ¢ a an! sin" +1 6 sin (n+1) 6,

a r
where @=tan~? 2 = cot7* a
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1
Note. If Y* (c+0)?+a"

_(- 1)" n!
sin"*’@ sin (n+1)@,

where @=tan-"' {a]/(b+2)}=cot7? {(6+2)/a}.

hence,Cor. If y=tan-" %Yy,= = psa: ’

D" (tan~'x)=(—1)"—1 (n—1) 1! sin"@ sin n@,

where @=tan-' (1/x)=cot~'x.

’ Examples V(A)

1. Find yn in the follow} ff CASES :

YY y=(a- ba) Rf Mg, = 1/(ax + b)TM. Gia) y=1/(a—2)
((iW) y=log (ax + d)?: (v) y=log {(a —x)/(a + x)h.

(yi) y= Jax, 4 (oi) y = Jz. QAvjt) y= (2- 82)".
Ga y=log (az + a2)“() y=10°-?”, (xi) y=a/(a +bz).
(xi) y =(a— 2) (a + 2) (ziti) y =2"/(2 — 1) ‘i y= sin*e@.
(xy) y=cos 2x cos 2, (xy) y= cosa.

(zypil y= sin*2 cos *t. (xyiin) y=sin @ sin 27 sin 3a.
(xix) y =e” cos z. (xx) y=e” sin & sin Qa. _

(xxi) y=e°* gin 4a. (xxii) y=e* sin ®z.

2. Find yz, if

WwW y=" log a. (Gi) y=e®TM =,

(iii) y=e* ”, (iv) y=sin 72.

8. Find the uth Serivatives of the following functions :

(iii) tan7? 2.
. 1

a? ~ (ii) 2? +16
1. x(iv) x2t+a* (v) e*—a* (vi) — oe zz. x . +1
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; 1 ses 1

Wil) Gr rarerrey Wi) yay

g) x*+1 .
(ix) (a - 1)(x—- 2) oF (2 — 1)\(@ — 2Xa —- 3)

(i) orig) ai) G—ie-2)(a + 1)?(a@ + 2) (x — ax — d)

(xiii) tan7* 77-2. (xiv) “sin”? =.

(xv) tanTM* vite a}. dxvi) cotTM*

4. If y=a2?”, where 7 is a positive integer, show that

Yn = 2” §1.8.5...(2n — 1} x”.

5. If w=sin az+cos az, show that

tn =a” {1 +(—1)” sin Saat?

6. If ax? + Qhey + by? =1, show that

a*y h® ab |

dx? (ha +by)*®

7. Find yg, if

(i) sin x+cos y= 1. (ii) y=tan (e+ y).

(iii) 2° + y® — 3axy =0.

. ay. .
8. Find dg? 1D the following cases :

(i) If e=a cos 0, y=b sin 0.

Gi) If c=a(@+sin 6), y=a(1— cos 6).

J lf c=f0), v= 4(0), then pre took

d*y Tia Vite,
dz? 21°

where suffixes denote differentiation with respect to ¢.
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10. If zsin@ + ycos 0 =a and 2xcos@—y sin 6=5,

prove that

de d*y_ d*x d?y
16? de? de® de? is constant.

a” a — (-1)*n111. Show that in” [ Fil @?+)"~

[(w+1)a" -("3 *) n— a4 ("Ft art — |.

12. If y=sin mz, show that

a

y Yi «=a | =0

Ys Va Ve

Ye Ur Vea

where the suffixes of y denote the order of differentiations

of y with respect to &.

ANSWERS

41. 0) (—1)%m (m—1)(m— 2) «+ --(m—n4+1) b" (a—da)TM=".

(ai) (—1)" m (m+1)(m+ 2)---(m+n—1) a”

u (ax+b)TMt"

@) m—s (Sh CME. (way (- yt EB 9),
(a—«)" ° (a-+2)" 2°24

(ni) (— "735 n=), (viii) (—1)".3".0t

(ix) (—3)"-* (ma) {+ colarah- (a) 10°-2*.(—2)". (loge 10)".

(xy iy wit)

(xiv) —2"-? cos (dour-+ 2a).
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(xv) ${3" cos (4nw+ 3x) +-cos (427+ )}.

(xvi) £43 cos (4nr+ a) +8" cos (Anm-+ 32)}. .

(xvii) —2?2"-* cos (4nm-+ 42).

(xviii) £44" sin (4na+ 42) +2" sin (47+ 2x) —6" sin (4nr+6z)}.

(xix) 28” ¢* cos (2+4n7).

(xx) 4e7 { oa" cos (7+ in7) — 10%” cos (82+ tan? 8)}.

(xxi) 5” e** sin (42-+7 tan? 4

(xxii) de* {1—5%” cos (Q2-+n tan7*2)}. ~

. (i) 2)a. (ii) — e®iN't cog x. ain a. (sin «+ 3).

1+ 22?1+62+627)e'!*(1+ 65+62")01F fs) Genexe(iii) —

-(@) (— (caf 1a ean}:
(a—a)"*2 (a+a)"t?

) (—1)" 1! sin®**@ sin (n+1)0 4
gave * where 0=tan7? x(ii

—1)"-1 — on) *

(iii) (=) (n= 1)! RL whero @=tan-!2.
a x

12,
x

(iv) (= fra sin"+!9 cos (n+1)0, where 0=tan-!

(wy are egy ger sin sin (n+1) 0)
where z=a cot @.

— 1)" OF+2

(vi) (- Coa sin "*'@ sin (n+1)8,

where 6=tan-! { ,/3/(2e2+1)}.

(vii) (= aura) sin"t*@ sin (n+1)0_sin"t*¢ sin (n+1)?¢],
a*?—b? Ort? ot

where z=b cot 6=a cot ¢.

(viii) (—1)"n 1 sin"*?0 sin (n+-1)0, where cot 0=a7+4.

(ix) (—1)"n! lea erie} when 1 > 2.

. 1 5 5
(x) (-1)"”! lea ay (gag +}
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: n +1 8 4
(xi) (—1)"1! lor i)"*3 ” (2+ 1)"*? + isxay}

{xii) a5) liz i — Gn yet

(xiii) (-—1)"-? (n—1) ! sin"@ sin 0, where cot 0=-.

(xiv) 2(—1)"-* (n—1) ! sin”@ sin n@, where cot 6=-2,

(xv) 4(—1)""* (xn—1) ! 51n"0 sin 8, where cot 6=2.

(xviy (TD" (n= 1) 1 bine sin no 2
®» where @=cot7? —-:

a a

/TM

_sin?’x+cos y, wey (1+?) ay Batoy
2. (1) sin*y (ii), y® (ini) (y?—az)*

8. (1) ae cosec* 6, (13) ue seo =

5°5. Leibnitz’s Theorem*. (nth derivative of the

product of two functzons)

Jf w and v are two functions of 2, then the nth deriva-

tive of their product 2.e.,

(uv) n= UnV + "C,Un_1V 1 + "CoUn-2Va to" + "Cp Un_pVr

where the suffixes in «# and v denote the order of differen-

tiations of « and v with respect to a.

Let y=wv.

By actual differentiation, we have

VY, = Uv tuUv,

Yo = Ugy + QU + Ug = Ug + 764U1V4 + Ue

Yu =Ugd + B8UgV, + 31 Veg ts

= UWgd + 264901 + *CgtiVg tg.

*Leibnitz (1646-1716), was a German mathematician, who invented

Caloulus in Germany, as Newton did in England.

9
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The theorem is thus seen to be true when »= 2 and 38.

Let us assume therefore that

Un = Und + "C4 Un—1 Vz + Catin-gVq terre + Cpt 7 Vr

where 7 has any particular value.

.. differentiating,

Yn+-1 = Un+1U + ("c, + L) nd 1 + ("co + "c,) Un—1Ve-+ wre

” ”+ ( Cr + Cr )tn—re Vr sb oseeeee + UUn+ 16

° nm

Since, "cr + "cra = "tc, and "cx +1="t1c,, (12 "Cs)

— nt+1 nm+t1
Unter =Un4r10 t CyunVy + Colln—1V_ +

na+1+ + Crltn—r- Ur + wsrere + UWUn+1-

Thus, if the theorem holds for du:ifferentiations, it

also holes for ~+1. But 1t was proved to hold for 2 and 3

differentiations ; hence it holds for four, and so on, and

thus the theorem is true for every positive integral value

of n.

5°6. Important results of symbolic operation.

Ii F(D) be any rational integral algebraic function

of D or i (the symbolic operator), 2.e., if

F(D) = AnD" + An-1D"~* ++ ++ +AiD+A,

= ZA,D", where A, is independent of D, then

(i) F@) e®*=F(a) e®*,

(ii) FD) e®* V=e®* F(D+a)V, V being a function of a.

ees a, f sin (ax+b)) _ a in (ax+b)

(iii) F@") { Cos (ax +b) F(—a*) { Gos (ax4.b).
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Proof :

"= (i) Since De = ae,

F(D)eTM = SA,D"* (e9”) = SA,areTM =(SA,a") eTM

= F(a) eTM.

(ii) Let y=e"*V ; since D'eTM” =a"eTM,

by Leibnitz’s Theorem, we have
e

Un =e (a"V+%c,a""* DV +"c,a”""2®D*V +-- + DY)

whivh by analogy with the Binomial theorem may be

written as °
D” (e%* V) = et (D + a)” V.

F(D)eTMV =(SA,D") eV

= NA yD” er V

= 9% DA, (D +a)"V

=e B(D+a)V.

(1ii) We have D sin (az + b)=a cos (az +b), and so

D? sin (az + b)=(— a?) sin (az +b) ;

D?” sin (aw +b) =(—a?)” sin (aw +3).

Hence, as in (1) and (11), it follows that

F(D*) sin (ax + 6) = F(— a?) sin (ax +d).

Similarly, F(D*) cos (az + 6) = F(- a?) cos (ax +b).

5°7. Illustrative Examples.

Ex. 1. Tf y=c**x*, find yn.

Let w=e%, v=o5. Now, t¢na=a"e%*.

by Leibnitz’s Theorem,

nin= 1) D) 8-209? GaYn=are® 22 +n.a"* 6? 8x7 + 3 i

+ n (u- Dm — 2) a"* e=6

met g"-3 {4323 + 8na2n2-+3n (n—1) aw+n(n—1)(n—9)}.
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Ex. 2. If y=a cos (log x)+b sin (log x), show that

e*ygtoy, +y=0.

Differentiating, ‘

y,=—a sin (log x). — 2 +5 cos ( log =).

2. %Y,=—a sin (log 2)+5 cos (log =).

Differentiating again,

gisLY_g+Yy, = —a cos (log n).* —b sin (log =).

x*y.+2y, = —(a cos log x+b sin log x)= — y.

eyotoy, +y=0. :

Note. This is called the dsfferentral equatcon formed from the

above equation.

Ex. 3. Differentiate n tumes the equation

(1+a*) y,+ (27-1) y, =0.

By Leibnitz’s Theorem,

n(n—1)
oe fy, (L+a*)}=Yneg (lta?) +2.yne, i Yn-B

mt

£. dy, (22—-I)}= ye. (Qa—1) +n yn.2

-". adding,

(1+ 27) Ynen +42 (n+ 1) e—- 1} Ynertn(nt+ 1) Yn=O0.

Ex. 4. Fond the value of ya for x=0, when y= e% !"~**,

From the value of y, when +=0, 7=1.

Hore y, =e? 8" 77* Lal /(1—2?) ses --+ (1)

=ay] J/(1—2”).

we. 921-2?) =a7y?.

Differentiating, 2y,%/, (1—a2*)+4,7 (—2x)=2a7yy,,

or, (1—2°) ve—ay,—a*y=0. wee (2)

Differentiating this » times by Leibnitz’s Theorem as in Ex. 3, we

easily get (1—2?) yaea— (Qn+1) ryne, —(n?27+07) Yn=O0.
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Putting 7=0, (yns2)o=(n? +a") (Ya)o. seo (8)

“Replacing nm by n—2, we get similarly

(yn)o ={(m — 2)? +47} (yn=a)o

={(m — 2)? +47} (n— 4)? +47} (yn-4)o = ote.

Also from (1) and (2), (y:)o=a, (ya)o=a?.

Thus, (%n)o={(n—2)? +a?}{(n—4)* +a7}- -

e = =6(42+.4") (22+?) a’, if n is evon

and, ={(n— 2)? +a7?H(m— 4)? +a7} +

. (3? +a?)(1? +a")a, if n is odd.

Note. The value of 7, for «=O is shortly denoted by (¥y,)o.

Examples V(B)

1. Find y» in the following cases :

aw G) y=2%eTM, Su) y=2* gin x.
(ii) y=a* log a. Gav) y=2? tan” 12. °

(v) y=e% cos bz. (vi) y=log (ar+ 2").

(vin) y=a" (1-2). (vin) y=a"/(1 +2).

2. If y=A sin mz+B cos ma, then yz +m*y=0.

3. If y=AeTM+ Be"TM, then y, —m’7y=0.

4. If y=e” sin bz, then yo — 2ay, + (a7 +57) y=0.

5. If y=log (c+ ./a?2+22), then (a2? +27) yg +ary,=0.

6 If y=(x@+ /1+a?)TM, then

(1+27)y, +x2y,—m?y=0.

7 If y=tan ‘2, then

wi (i) (1 +27 )y,=1

and (ii) (1 +27) yap. t+ Wnxeyn +n(m—- 1) yn_1=0.

Find also the value of (yn)o.
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*25. Show that &. (e? g@ te)

xo
r=0\

nm [Na ul—-r
- x=nle” \

*26. If f(x)=tan a, prove that

f” (0) -— "cg Ff"? (0) + "cg f"* (0) — ++ = sin Snz.

*29. Show that the n’” differential ‘coefficient of

itoaatey is $(- 1" mt sin "**9@ [ sin (n+1)0

— cos (n +1) 6+(sin 6 +cos 6)>TM 7 |,

where 6=cot “2.

ANSWERS

1. (i) 6%. a"? {a2 a? 4+-2nax+n (n—I)}.

(ix) a sin (4ne+a)+ 3nx? sin {4(n—1)r+a2}4+ 3n(n—-l)ex

x sin {4 (n—2)r+a}+n(n—1)(n—2) sin {4(n—3) 7+ 2}.

(iii) (—1)". 6(n—4) t/a"-5.

(iv) (—1)°7? (n—3) I sin"-?0 {(1.—1)(n— 2) sin n@ cos?0

—2n (n—2) sin (n—1}@ cos 6+n(n—1) sin (n —2) 6},

whore cot @=2.

(v) e9* (a" cos ba+%c, a"-! b cos (be +hr)

+%c, a"~7b? cos (bu +2. dr) +---+0" cos (batn. dr}.

(vi) (-ay(n-1) 1 | J teen |

(vii) nt {(1—a)"—("c,)? . (L—a)"-! © +("c,)? (L—a) "7? . w2— oo},

(viii) nm I/(1+2)"*7.

7. 0, or (- yi(n-1) (n—1) ! according as n is even or odd.

8. 0, or {1, 3, 5...(n—2)}? according as n is even or odd.



CHAPTER VI

EXPANSION OF FUNCTIONS

6°1. Rolle’s Theorem.

If (1) f(x) 1s contingous an the closed wnterval a <a < 8,

(22) f’(a) earsts on the open interval a <a <b,

and (x) f(a) =(0),
then there exists at least one value of x (say &) between a and

b[26e,a<&<b], such that f’(Q=0.

Since f(a)=f(b), if f(z) be constant throughout the

interval (a, b), being equal to f(a) or f(b), then evidently

f' (2) =0 at every point in the interval.

If f(z) be not constant throughout, then it must have

values either greater than or less than f(a) or both, in the

interval. Suppose f(x) has values greater than f(a). Now,

since f(a) is continuous 1n the interval, it must be bounded

and M being its upper bound [ which is > f(a) in this case },

there must be a value é of x in the interval a << 2 < b for

which f(£) = ¥.

f(Et+h)-—F(E) <0, for positive as well as negative
values of h.

AE + Wf) <0 if h be positive, and 20 if h be

negative.

Hence Lt FE + iH ~ fle) < 0, and rf * Wate) = 0
h>0+ I

provided the limits exist.
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Now since /’(a) exists for every value of zina<a«2< 4,

S' (© also exists, and so the above two limits must both exist

and he equal, and the only equal value they can have is

zero. Hence f’(€)=0.

If f(a) has values less than f(a) in the interval, we can

similarly show that /'(é)=0, where f(€) =m, the lower bound

of f(z) in the interval. r

x

6°2. Mean Value Theorem. [ Lagrange’s form ]

Tf (2) f(x) 28 contanuons on the closed interval a < x <b,

and (22) f'(x) eaxssts on the open interval a < 2 < 3b,

then there 1s at least one value of «x (say &) between a and b

{tze,a<£< 5], such that

f(b) — f(a) = (b — a)f’(£).

Consider the function (x) defined in (a, b) by

v(a) =F(0) - fle) - 7 {¢@)- Fla}

Here y(x) is continuous in a <a <b, since f(z) and

b- 2 are so.

y (2) = — f'(ax) LO —f) exists in axa< b,

since f (2) exists ina <2 < b.

Also, y(a)=0, y(b)=0. “. y(a)=y(d).

Hence, by Rolle’s Theorem, »’(xz) vanishes for at least

one value of a (say €) between a and J, 2.e., y’(é) =

— f'(€) +fO~ = f(a),
t.€.,

whence, f(b) — f(a) = (6 — a) #’(€), t a < E< 6].
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Cor. Since & lies between a and J, £ can be written as a+ 6 (b- a)

wero 0<@<1. Putting bJ=at+h, we get another form of the

Mean Value Theorem

Slath)=f(a) +h’ (a+ 0h), where 0 < 9 <1

or, f(x-+h) =f(x) +hf’ (x+ 6h), whereO < 6 <1.

Note. The value of 8 usually depends upon both x and h, but there

are cases where 1t 15 not s% dependent. [See Fa. 2 and 13, Examples

VI (A)]. Also @ may have more than one value in a given range in

some cases [ See Fic. 12, Hramples VI(A) J

6°3. Geometrical Interpretation of Mean Value

Theorem.

Let ABC be the graph of f(a) in the interval (a, b) and

let a, £, 6 be the ahscisse of the points A, C, B on the curve

y=f(x), such that the relation f(b)-—f(a)=(b-a) f’(€ is

satisfied.

Draw AL, BM perpendiculars on OX, and AN perpen-

dicular on BM. Then AL=f(a), BM=f(b). Tet CT be

the tangent at C.

f(b)-f(a)_BM-AL_ BN _

Then, 7G LM” AN tan Z BAN.
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Since, f(é)=tan ZCTX (as explained in § 414), it.

follows from the Mean Value Theorem, that tan Z BAN

=tan ZOTX, t.e., 2 BAN= ZOCTX, i.e., AB is parallel to

CT.

Hence, we have the following geometrical interpretation

of the Mean Value Theorem :

If the graph ACB of f(a) 1s a contenuous curve having

everywhere a tangent then there must be at least one point C

entermedrate between A and B at which the tangent is parallel

to the chord AB.

6°4. Taylor’s Series in finite form. (Generalized

Mean Value Theorem).

If f(a) possesses differential coefficients of the first (n—1)

orders for -svery value of x in the closed anterval (a, b) and

the nth derivative of f(x) exists in the open wnterval (a, b)

[2.6 of f""* (x) as continuous mn axax<b and f” (a)

exists ina<2<b], then

F(t) = fla) + (6-4) f(a) + SEM" pla) + ---o

We OT pay ” $(,
wherea <£< bd wee wee a)

and if b=ath, so that b-—a=h, then

2

flat h)=f(a) + hf'(a)+ 2 £"(a) ofa ee eeee
, 2!

+ Oni f-*(a)+ BH + 6h)

where 0 < 6 <1, vee > (B)



EXPANSION OF FUNCTIONS 14]

or writing x for a,

5 1

f"—-1 (x)

n=

{(x+h)=f (x)+hf (x) +B ". G@) te !

—— fii+o (x+ 6h),

where 0 < @ < 1. - ose (C)

Consider the a w(x) defined in (a, b), by

v (2) = d(x) - P—2, ola), ss (I)
o

where

$ (0) =f() - fla) — (6 2) fe) C5 TM prea)

- ey fP-? (a). ss (9)

Then, evidently y(a)=0, and y(b)=0.

[ since (b) = 0 identically ]

Now, ¢ (a) = —f'(a) +1 f'(a) — (6 — x) f"a)k

+ (0-2) f'(@)- OS pr’ @h tn

, f(baa2) ry? nna (d —a)"~* ”* Vim 2)1 2) 1 f (x) - (1 DT I (2)}
b \n— 1 n

~ “yD t (x ).

Hence, from (1),

via) = — Gah pay eR ala) > (8)

Since »(a)=y(b), and v(x) exists in (a, bd),

by Rolle’s Theorem, »’(€)=0, where a < &£ <b.
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substituting & for # in (3), and cancelling the

common factor (b— £)"~*, we get ultimately,

d(a) = 6 ~ a. fF” (©, and since from (2),

$(a) = 700) - f(a) - (6-4) f(a) —--- -C
the required result follows by transposition.

-f"-* (a),

Since, a < £< 6b, we can write =a +(b~a)@,

2.¢6.,§=at+h0, where 0 < @6é<.1, and b-a=h,

and hence the form (B) follows.

Note 1. Tho series (A), (B), or (C) 1s called Taylor's series with

the remainder in Lagrange’s form, the remainder (after terms) being

=a)" ym (@), of, p (a+on), or, BT MM (x-+9n), 0< 0 <1
which is generally denoted by Ro.

Note 2.” Putting ~=1 in Taylor's series, we get

flath)=f(a)+hf (at+6h),0<9<1

which is the Moan Value Theorem.

So, Taylor’s theorom is sometimes called Mean Value Theorem

of the nth order. Putting n=2 10 Taylor’s theorem, we:get

a

flath)=f(a)+af (a)+o (a+ 6h),O<0<1

which is often called the Mean Value Theorem of the sccond order,

and 80 on.

Note 8. Yet another form of Taylor’s series which 1s found some-

times usoful 1s obtained by putting a for bin (A). Thus,

f(2)=f(a)+(x—a) f (a+? a - f” (a) peeves

(r—a)"~

(1-1)!

and the function f(x) 1s sasd to be scpanded about or wn the newhbour-
hood of x= a.

ae as ~ a)" f" {a+ 6(c@—a)},0<6<1,
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6°5. Maclaurin’s series in finite form.

) Putting s=0, h=z in Taylor’s series in finite form (C),
we get

f(x) =1(0) +x (0) +35 t7(0) + + ej mm (0) += 1” (6x),

o<¢é< i,

the corresponding forrA of the remainder Ry being

xn

nl gn (Ox).

The above is known as Maclaurin’s series for f(a), and
f(x) is said to be expanded an the nerghbourhood of «=0.

Note. Putting n=1, 2, we get Maclaurin’s sories of the first and

second orders v22.,

f(x) =f (0) + rf’ (Ox) and f(x) =f (0)+af'(0)+2, f"(@z),0< @< 1,

6°6. Cauchy’s form of Remainder Rp.

In Art. 6'4, 1f we take »p(a2) = = $(e)-? — , O(a), the other

conditions remaining the same, and carry out the investi-

gation as in that Art , we get

y' (x) = — ve a Ff" (a) + ‘. (a). s+ (4)

Since v(a)=y(b) and »’(x) exists in (a,b), by Rolle’s

theorem, we have y'(£)=0,a<& <b.

substituting é for xz in a), we get

d(a) = (n _ 1) ai f* (). ."* (5)

Writing £=a+(b—a)0, where 0 <6 < 1,

we have, b—-£=b—-a—b0+a0=(1 — 6)(b—a).
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(b —£ (1 _ g)”-+ (b _ a)"~* = (i —_ 6)”-2 h”-+,

since b-—a=h.

.. from (5), we get

h”(1 — 6)"-*
(a) (n= 1)1 f” (a + 6h).

Now replacing a by a, the required expression for the

remainder Ry, would come out as

~ h® ( {= @)"-1

(n-1)!

This is known as Cauchy's form of remainder in Taylor's

expansion,

Rn (x+6h), O<@e<1.

The corresponding form in Maclaurin’s expansion is

Ra “ee f" (Ox), 0<¢60<1.

This form of remainder is sometimes more useful than

that of Lagrange. It should be noted that the value of 6

in the two forms of the remainder for the same function

need not be the same.

6°7. Illustrative Examples.

Ex. 1. (2) Tf f’ (r)=0 for all values of x wm an wnterval, then f(x)

as constant a that wnterval.

(oo) If ¢ (x)= (x) on an anterval, then ¢ (x) and w (x) differ by

a constant an that enterval.

(i) Suppose, /’(7) =0 at every point in (a, 5).

Let us take any two points 2,, 2, in (a, 6), such that z, > a.

By Mean Value Theorem,

f (vs) —f (v1) = (2, —2,) f’ (c), where z, < ¢ < 2,

=0, since f’ (c)=0 by hypothesis.
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o's f(a.) =f(x,).

Since 2,, %, aro any two points in (a, d), it follows that f(z) must

be constant throughout (a, b).

(ii) Lot f(x) =¢ (x) —y (a).

tS (x) = ¢' (2) —y (x) =0, everywhere in (a, 5).

oe FS (vz) =constant=k say, by (i).

oe p(x) —Y (x) =k.

Note. The result (11) is fundamental in the theory of integration.

Ex.2. If f(h)=f(0)+nf (0) +p if” (6h), 0 <0 <1, find 0, whenh=1

and f (r)=(1—2)*. [C. P. 1944]

We havo, f(h)=(1- n)*, since, f (x)= (1—2)?.

r(iW=-81 — 2)? pr =3e a —ayt

f(0)=1, f (0) = — §,

.". from the given rolation,

(1— n)P=1— Bask 2? (ron)

Putting h=1, 0-1-4248 (1- nt whence (1— 6)2=4.
1—d=48. 2 Oma.

Ex. 3. Prove that the Lagrange’s remainder after n terms an the

expansion of e°* cos bx wn powers of x vs

(a2+02)TM x" e%8” cos (002 +n tanTM* 2), 0O<6é@<1.
[ C. P. 1942 ]

Lagrange’s remainder after n terms in the expansion of f (a) is

Zp (on), O<O<1. (by Art.65) + (1)

Here, sinco f(x) =e*” cos bz,

oe f(z) =(a2 +b7)2” e** cos { buen tan-*( yi + (2)

[ See Ha. 3 § 54)

10
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.. writing 6x2 for x in (2), we get f*(éx), and substituting this

value of /" (62) in (1), the required remainder is obtained.

Ex. 4. Prove that the Cauchy’s remainder after n terms en the

expansion of (l+2)”, (m beang a negatwe wteger or fraction) m powers

of x is

m(m—1):--(m—n+1) on

(n—1)1!
(1+ 6x)"-1 (era) 0<6 <1.

Cauchy’s remainder after n terms in the expansion of f(z) is

x “ES =n f°(0x),0<6<1. (by Art.66) + (1)

Here, /f(2)=(1+2)".

we F* (a) = m (m—1)(m— Q) +02 (m—n+1)(1+a)"-".

So, the expression (1) is equivalent to

m(m—1)(m—2)---(m—n+ 1)
(n-1)!

which is the required remainder.

"(1 — 6)"-* (1+ Ba)TM-*

Ex. 5. Show that the Cauchy’s remaonder after n terms wn the

expansion of log (1+ x) on powers of x 18

(-1)""? 2" ee) O<6 <1.
1+ 6a\1+ 6x

_ (—2)""* (n—1)!,Here, f(x)=log (1+2). . ft(a)=! (i+2)*

Hence, = es Hr: - f" (6x) =(—1)"-? w*(1— 6)*-?. area"

which 1s the required remainder in Cauchy’s form.

Ex. 6. Jf (1) f' (x) exustsena <x < b, (m) f’(a)=a, f'(b)=B, «a ¥ 8B,

and (a) 7 les between a and B, then there exists a value & of « between
a and 8 such that f’ (§)=+7. [ Darboux’s Theorem }

Suppose, a < y < § and let ¢(z)=f(x) —y(xz—a).

oe $' (x) =f" (x) — +.

Since, ¢’ (x) exists in (a, 5), ¢ (x) is continuous in (a, d) and therefore

attains its lower bound at some point £ in the interval [ § 3°4 (vw) J.
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Now this point cannot be a or b, since ¢'(a)=/'(a)—y=a—y which

is negative and ¢'(b)=/'(b)-y=8—y which is positive. Hence, the

point € is between a and b, and ¢ ({f)=0. .. f(—)—y=O. oo. P(E)=¥

fora < § < 0.

Ex. 7. (a) If (2) o(x) and (x) are both continuous ina < @ < b,

(wu) ¢ (x) and ¥' (x) exist ina <a <b,

and (vir) Y (x) ~ O anywhere ina < x < b,

then there is a value & of x between a and b for which

$(b)—¢(a) _ ¢ (&)
¥(b)—¥(a) ¥’ (8)

(b) If further ¢(a)=y(a)=0 and y (xz) 0 on the newghbourhood

of a,

[ Cauchy’s Mean Value Theorem ]

Li ® (z)_re % (e),then Sa W (a) x2a W (a) af the latter lamat exists.

[ L’ Hospital’s Theorem ]

(a) Oonsider the function f(z) defined by the equation,

= $(b) — 9 (x) - 2 O=9) yay —

Now, /(a)=/(d), since each =0 identically.

¢(b)— (a) ,,

¥(6)—-v(a) * (x).
Since f(z) satisfies all the conditions of Rolle’s theorem,

Also, ff’ (x)= —¢'(x)+-

oe f (&)=0, for some &, where a < & < b,

whence the required result follows.

Note 1. The condition y’ (2) #0, anywhere in (a, d) ensures that

W (a) + ¥(b) 3 for if yy (a)=y(d), then ¥(x) satisfying all the conditions

of Rolle’s theorem, y’ (x) would vanish at some point z in (a, 5).

Note 2. Putting b—a=h, we get

¢(a+h)—¢l(a)_¢ (a+ 6h) |

Wath)—y (a) ¥ (a+en)

Axr+h)—o(r)_ 9 (w+ Oh)
Vle+h)— Wa) y' (a+ 0n)’

Note 8. Mean Value Theorem can be deduced from this theorem

by putting y (a) =<.

0o<6<1,

or, writing «x fora, 70 < @ <1.
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(b) We have for a < = < 3,

Ft" vey cplay’ se Aa) = Vie) =O here,
=% 5 2a < € < x, by Cauchy’s theorem.

Taking limits, and noting that’—>aasa2—a,

re Pr =8 HL a, oa),we got 7 >a+0 w (2) E>a+0y (&) = ato Y (x)

Again, when b, < a«<a, [assuming 6, sufficiently close to a,

such that ¢'(z) and y’ (a) exist at every point in the intorval, and

WY (x) + O1n it J, we may similarly write

$ (a) _ ¢(a) —¢ (a) _#' (E,)

Y (a) (a)—v (a) Ey Where w < fs <a
by Oauchy’s Theorem, and making x —> a, we get

Lt g(a) _ re P(E.) _ rt ? (x)

z>a-OW (2) E:>a-0¥(£,) z>a-0¥' (x)

Combining the two cases, L’Hospital’s Theorem follows.

Examples VI(A)

1. Find the value of € in the Mean Value Theorem

f(b) — f(a) = (b- a) Fé)

f(a) if f(@)=2?, a=1, b=2,

/(ii) if f@)= J/2,a=4, b=9,

{(iu) if f@)=a(a— 1X2 — 2), a=0, b= te/

(iv) if f(r) = Ax? + Ba +C in (a, 0).

‘2. In the Mean Value Theorem

f(a +h) =f(x) + hf'(a + 6h),

show that if f(x) = Aa* + Bat OC, A ¥ 0, then 0=#.

Give a geometrical interpretation of the result.
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8. In the Mean Value Theorem

flat h)=f(a) + hf' (a + 6h),

ifa=1, h=8, and f(x)= ./2, find @.

4. (i) In the Mean Value Theorem

f(h)=f(0) + hf’ (0h), O< 0 <1,

1 age . it 1
show that the limiting value of 6 as h > O+is 9° 3

according as f(#)=cos # or sin @.

(ii) In the Mean Value Theorem

flath)=f(2) +hf' (2@teh), O<O6<1,

show that the limiting value of 6 as h—0O+ is 5 whether

f(x) is sin x or cos =.

/5. It f(h) =F(0) + hf’ 0) + re 7" (6h), O<6<1,

find 6 when h=7 and f(x) =1/(1 +2).

6. From the relation

f(a) =F(0) + af" (0)+% | f" (6x), 0< 0 <1,

show that log (l+2) > 2-427, ifxa > 0,

and cos @ > 1—4nr?, fO< a2 < 4a.

7. Show that sin 2 > 2—-?de2*, if0O<a2< $x.

8. If f(x)=tan 2, then f(0)=0 and f(x) =0.

Is Rolle’s theorem applicable to f(x) in (0, x) ?

9 Is Mean Value Theorem applicable to the functions

(i) and (ii) in the intervals (— 1, 1) and (5, 7) respectively ?

(i) f(z) =2 cos (1/x) for x # O

=0 for 2 =0.

Gi) f@=4-6- a)*.
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10. If /’ (c) exists and > 0 everywhere in (a, 3), then

f(z) is an increasing function in (a, b); if f’ (x) < 0 every-

where in (a, 0), then f(z) is a decreasing function in (a, d).

11. Show that 22° + 2x? -102+6 is positive if ¢ > 1.

_ fir. (1) In the Mean Value Theorem

flat+h)—fla)=hf' (a+ 6h), O<6<1,

if f(2) = 42° —$ar24+ 207, and a=0, h=3,

show that 6 has got two values, and find them.

(ii) In the Mean Value Theorem

f(b) — fla) =(6-a)f' (€), a << <8,

find é if f(z@)=”2*-382-1, a= -11/7, b=13/7 and give

a geometrical interpretation of the result.

13. (i) Find the value of @ in the Mean Value Theorem

F(a +h) ~F(2) + hf’ (a+ Bb), f

where, (a) f(x) 7 6 fe) =0%, © fe) Neg «
Gi) If f(x) =a + ba + cm”,

show that @ is independent of z.

14. Show that

3.1 h? 13_, 3 3 4 aan a |(e+h) + — BOR 951 GOR 0O<é6e< 1.

Find 6 when x= 0.

15. Expand in a finite series in powers of h, and find

the remainder in each case :

(i) log (a2 +h). (ii) sin (a@+h). (ii) (2 +h)TM.

16. (i) Apply Taylor's Theorem to obtain the Binomial

expansion of (a +h)", where » is a positive integer.
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(ii) If f(z) is a polynomial of degree 7, show that
2 r

flath) = f(a) +hf'(a) +9; f" (a) teveee +2 pr (a).

(iii) Expand 52? +72 +8 in powers of (a — Q).

17. Expand the following functions in a finite series in

powers of 2, with the remainder in Lagrange’s form in
e

each case :

(i) e%. (ii) a®. (iii) sin 2.

(iv) cos a. (v)*log (1 +72). (vi) log (1-2).

(vii) (1 +a)TM. (viii) tanTM*2. (ix) e* cos a.

(x) e*” sin ba.

18. Find the value of 6 in the Lagrange’s form of the

remainder R» for the expansion of ; in powers of &.

19. Expand the following functions in the neighbour-
hood of z=0 to three terms plus remainder (in Lagrange’s

form)

(i) sin? 2, (ii) cos*x. (iii) e7=".

20. Expand the following functions in a finite series in

powers of 2, with the remainder in Cauchy’s form in each

case :

(i) e”. (1) cos 2. (iii) (l1-—2)7*.

21. (i) Prove that Lt fla+ h)~fla- h) _ (a)
h->0 2h

provided 7’ (x) is continuous.

(ii) Prove that Lt 5 fla+h)- Bf fo) + fla =f" (a)

provided f” (@) is continuous.
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22. (i) If f'(z) is continuous in the interval (a, a+h) and
a

h =f' (a) ¥ 0, prove that Lit | g=4,

where 6 is given by

Slath)=f(a)+ hf’ (at+6h),0<6<1.

(ii) Show that the limit when h—2O of @ which
”%

occurs in Lagrange’s form of remainder - f" (w@+6h) in

the expansion of f(a+.), is provided {"*? (x) is conti-
ntle

nuous and ~ 0.

23. In Cauchy’s Mean Value Theorem, (i) if (2)

=sin x and (2)=cos a, or (ii) if d(a) =e” and y(z)=e", or

Gii) if d@)=a2* +241 and p(x) = Qn? + 32+ 4, show that 6 is

independent of both « and h, and is equal to #.

24. If f(a)=a?, d(x)=-2 then find a value of & in terms

of a and 6 in Cauchy’s Mean Value Theorem.

25. If f(x) and ¢(z) are continuous ina<a2<b and

differentiable in a < # <b and /’ (x) and @’ (x) never vanish

for the same value of x, then,

t@)-F(0) _F' ©,
(0) () gp’ Where a SE Sb

26. If y (z) ¥ Ofora<2 <b, then

&(b) — o(a) — (b— a)d'(a) _ ¢" (6)
y(b) — y(a)— -(b- a)y’ (a) = y"(E) where a < € <b.

27. If f(x) and g(x) are differentiable in the interval

(a, b), then there 1s a number &, a < € < b such that

f(a) f(a) fla) f£
: a

g(a) gd) g(a) g’ (§)
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28. (i) If f(a), d(2), y(~) are continuous ina < a2 <b and

differentiable in a < a < b, then

f(a) (a) y(a) |

f(b) 4) ~—-v) | =0.

r® #@ vw!

(ii) If F(x), G(x), H(x) are continuous in a Kw <b

and differentiable ina < x < b, then

}1 FO-F@) F©

1 G)-G@ a |=0.

1 H(b)-H@) H'f

29. If f(a@)= sma sin a sin B

cos £ cosa cosp O<a< 6 < dz,

ltangw tana tang

show that /’ (€)=0, where a < é < 8.

[ CO. H. 1955 ]

30. Deduce Taylor’s Theorem from Cauchy’s Mean

Value Theorem.

[ OC. H. 2961 ]

[ Assume ¢(x)=f(b)—f(x) —(b—2) f’ (2) — oa f"-* (a) and
¥ (a) =(b—=x)”. ]

31. If f(a)=f(c)=f(b)=0 where a < c <8, and if f’ (x)

satisfies the conditions of Rolle’s Theorem in (a, }), prove

that there exists at least one number & such that a < &€ < B,

f" (6 =0.
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32. Given that

be) = (Bae RF 5 (a) 4 BI NERO) 700)

+e ate =P) #(e)— F(a),

where a <c <b and f” (x) exists at all points in (a, d).

Prove by considering the function ¢(z), that there exists

a number é, a < & < 8, such that

_f(a) f(b) _f(c)
@—d)a—c) * = clb—a) *C—alo-H ~ *F @-

88. Given that

d(x) =| f(z) xe x 1 |

|

|
S(b) b? b 1 |:

F(a) a® a 1

f(a) 2a 1 O

and f’ (x) exists at all points in (a, 5), deduce

f(b) =f(a) + (b-— a) f (a) + 46-4)? f’ Oa<&E<b,

34. If f’ (a) exists for all points in (a, b) and

F(c) — fla) _ f(b) — flo),
c—a b-c

where a@<c<.b, then there is a number €é such that

a<€< band f’ ()=0.

35. Given that

d(z): fla) f(b) f(a)

g(a) g(b) g(x)

h(a) h(b) h(x)

and F(ax)=¢(z)- eae em = ate} ps (c),
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where a <c<bandf’ (a), 9” (x), h” (x) exist throughout the

interval (a, 6), show that by considering the function F(x)

d(c)=$(c—al(c—b) ¢" (Q,a<E<b.

36. It f’ (x) exists at all points in (a, b) and if f(a) =f(b) =0

and if f(c) > 0 where a <c <b, prove that there is at least

one value € such that f(O@<0a<xé< b.

ANSWERS

1. (x) 15. (ii) 6 253 (au) L~ ya: (iv) $(a+4).

2. The tangent at the middle point of a parabolic arc is parallel to

the chord of the arc.

3. +h. 5. 4. 8. No. 9. (1) No. (ii) No.

12. (i) 6=$(3+ 4/3). (ii) £=+1; the tangents at these two

points are parallel to the line joing the points a, f(a) and b, f(b) which

is paralle] to @-axis in this case. "

13. (i Jei+th—x 1 ev 1

1 _, 9
(c) log (1+h/x) h 14. vs

: hh? n-1 ”
15. (i) log D+ ont sree +(—1) nl (0+ 6h)TM

: h? h® hn”. nT(ii) sin 2+h cos 2— 51 sin Bg, COS G++ + sin (c-+0n+ m.

mlm — 1) m—27,2
a1 h* +(i) 2" + maTM- A+

4 mm = (1 — 1) (2 — 2)---(m—n+1) hn (a+ Oh)TM=",

gut

16. (i) a®+%c a" A+ "ca" htt ee Cah tee EA

(ii) 87+ 27(@ — 2) + 5(a@ ~2)?.
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In the following series in every caseO0 < 0 < 1.

efx47. (i) 1+0+5 +5 it ee

(i1) 1+a log ats (og Q)2 + eveces +r (log a)"a9.

. ee a” nT

(113) a— 7+ BY +o sn ("7+ 92).

a? o* a” TMm ’

Qv) l-s5tygyro +7 cos ("4 + On }-

a” at (—1)"-* _
(v) a- ots saeeee + °- nn (13 6x)"

(mi) -e—-% —.....-1 TO,
V 2 nm (1—@x)"

(vii) L+ mat Om L) oe sceeee

4. mn — 1)(m— 2)---(9 —m+1) x” (1+ Ox)"—"

| °

ess a? a
(viii) 2— gta

4l- a a re -
sin” (cot~*@x) sin n(cot~* Oz).

(ix) i++ jw2 wo (242 , (0/2)? cos (2. 1 )+ wee as
r” 0 nN+7 _ n Ox w\.nl ( /2)"e°* cos (o2+ z)

3 "n

(x) = ; 7 sin ote, r? Bin Zh -eeree +o 9” eZ gin (bOx+n¢),

where r= ,/a?+b?, and ¢=tan~! (b/a).

18, gat—(—a) emer?

19. (i) a? - +22 F x7 gin 262.

(ii) 1- . a+ 2 a =F e*® (81 sin 36x+3sin Oz).

(iii) 1-2?+ 4 at ist e-8" 7? (405 25 —200%a:" +1502).
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e"(1—9)*-' |.20. (i) sitar Pb see “(na =ajy1 & .

x” (1—6)"-3(ii) 1-2, +2 47707" + (n—1)1 ( +92)

(iii) Leatatteee. ar 24. 4(b+a).

6°8. Expansion of functions in infinite power series.

Taylor’s series (extended to infinity).

Ti f(x), f’ (x), F''(a),...0- St” (x) exist finctely however large

m may be, in any interval (z— 6, +6) enclosing the point x

and if in addition, Rn tends to zero as n tends to enfinity,

then Taylor’s series extended to infinity is valid, and we

have

f(x+h)= mf (x)+ht'(x) +3, 5 1" (x)+ -to o, [[r]< 6]

Denoting the first ~ terms of the expansion of f(a +h)

by S, and the remainder by RR», we have by Art. 6°4,

tT (x + h) = Sn + Rn, 2.€., Ft (x + h) - Ra = Sn.

Now, let » © ; then if R, — 0, we have

fla+h)=Lt Sn = f(a) + h(a) + -— f(a) +++ to ©,

Again, since f(7+h)—Sy=Ra, if (a + =Tt Sn,
1-50

then, Lt A,=0.
27> CO

Thus, Lé R,,=0 is both a necessary and sufficeent condi-
Mor oO

tion that f(a +h) can be expanded in an infinite series.

Cor. Another form of Taylor’s series which is found often useful

is obtained by putting «—a for h 1n the form (B), Art. 64.

Thus, f(x) =f(a) +(x —a) f(a) +{(x— a)?/2 I} f(a) +--+ to o.
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Maclaurin’s series (extended to infinity).

Tf f(x), f’ (a), F’"(a)...... f"(x) exist finztely however large »

may be in any interval (— 6, 6), and if Ry tends to zero as n

tends to wnfinity, then Maclaurin’s series extended to infinity

is valid, and we have

f(x) = £(0) + x?’(O) +55 = 10) sfecceees to -, where |z/< 6.

Ex. Expand the followung functions wm powers of x wn wfinite

serses stalang wn each case the conditions under which the expansion

is vaisd.

(i) sina, (i) cosa, (ii) e”%, (iv) log (1+), (v) (1+a)TM.

(i) Let f(2)=sin x.

we F(x) =sin (4nr+2), 30 that f(x) possesses derivatives of every

order for every value of x. Also, f"(0)=sin (4n7) which is 0 or +1

according a8 n is even or odd.

e R=", rr(on)=TM sin (62+ ):

l<
a®TM

|
“. 1Bal=|© "I Jin (oz+n=)/<

since | sin (62+4n7) | < 1.

Ra — O, a8 2 — 09, since 17 O as 2 — > for all values of a.

[ Ea. 8 § 2°12 J

Thus the conditions for Maclaurin’s infinite expansion are satisfied.

7
e = —_ ae _e easees-. BID Gea 5 e+e ; 7 yt to oo, for all values of z.

(ii) Let f(z) =cos 2.

°, f"(x)=cos (jnr+a). .°. £* (0)=cos (n.g7), which is Oor +1

according as 7 is odd or even.

oe R,==, P* (0x) == { 008 (on+%).
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Now proceeding as in the case of sin 2, we can show that

Bn 0 as 2 — co, for all values of «a.

cos m=] — +o ceceee to co for all values of z.

(iii) Let f(z) =e".

Sf” (w)=e7. .*. f"(0)=1, thus f* (0) exists and is finite, how-

ever large nm may be.

xz_=" Lid _e" GzRa mit (Ox) ni?

OxNow since 6°” < ¢! “l(a finite quantity for a given x)

2"

and nf O88 2 &, RamOasn— oo,

oe e” =1+a2+”7 met seeeee to ~, for all values of a.

(iv) Let f(x)=log (1+72).

hel ‘

f'* (z= (= = as which exists for every value

of n fora > —I1.

f" (0) =(—1)"-" (n—-1)!

If Rx» denotes Tagrange’s form of remainder, we have

x nm

Ra= ~ ~ ¢" (62) = (— 1)"-* +(:2,,) °

(i) Let O< w= < 1, 80 that (
a "

toa) —>O0a8 n°,

since is positive and less than 1.ibe

Also n >Oasn—@oo. .°. RyamOasn- oo,

(ii) Let -1 < 2 < 0; in this case —--,- may not be numericallyTies
less than unity and hence (,.) may not tend to 0 as n => oo,
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Thus, we fail to draw any definite conclusion from Lagrange's form

of remainder. Using Oauchy’s form of remainder, we have

” — 9)"-} oe” 1~@ Nok

R ao %" (1 -——- n =(— n=l, (22) e
” (n—1)! f" (62) =(—1) 1+ 02 \1+ 62

Now Ano is positive and less than 1; hence 1—@\"" > 0
7 14+ 062 , 1+ 62

as n—> oO,

Also, 2" 0, as n> oo, sinco -1 <a <0; —~ igs bounded.
1+ 6x

ove R,—> 0 as n— oo,

a — x? aoee. log (l+a2)=a a7 37 ecasea

is valid for -l < a2 < 1.

Proceeding similarly we cun show that

— rt m= pespeselog (l—-x)=—a@ 973

is valid for -1< 2 <1.

(v) Let f(a)=(1+2)”, whero ms any real number

{ Bonomial expansn ].

(i) When m 2s a positive enteger, f” (z) =0, when 1 > m, for every

value of x. Hence the expansion stops after the (m+ 1)th term and the

binomial expansion being a finite series, is valid for all values of x.

(ii) When TM is a negative integer or a fraction,

f* (x) =m (m—1)-+-(m—n+1)(it2)"“", for « > —-1.

Fflence Oauchy’s form of remainder R, is

—-1)--(m—n+1) , m-, {1-98 \"-*By a ER Bol % ) x (1+ 6x) (14)

Lee -l<2x<i1lae,|a|] <1; alsoO <6 <1

oe 0 < 1-86 < 1+ 62.
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1-0 . i-@eay0< <i. ons o< (25% <1.

( being a positive integer > 1)

_ fai

(F4) > Oasn-—-oo, Also (1+6@x)"-! is finite whether

(2 —1) is positive or negative.

Again if |x] <1, mm — 1) «(m= n+1) a" —> O,
(n—1)!

[ See Art. 2°11, Ea. 8(1v)

when [xz] < 1, Ry, > Oasn—>o,

for |x| <1, Maclaurin’s infinite expansion for (1+ 2)” is valid,

m being a negative integer or a fraction.

69. Determination of the coefficients in the expan-

sion of f(x) and f(x+h). (Alternative method)

(i) Assuming that /(2) admits of expansion in a conver-

gent power series in @ for all values of x within a certain

range, and that the expansion can be differentiated term by

term any number of times within this range, we can easily

get the coefficients of the different powers of x as follows :

Let f(z)=aygtairt+a,n® tagr® +--** we (1)

where @o, @1, @g,.-. are constants.

We have by successive differentiations,

S' (a) =a1 + 2aou + B8agr* + 4age® terres (2)

Ft’ (w) =2.1ag +3.2ag7+4.38a,07 +--+ (3)

f(a) = 3.2.15 44.38.2440 +002 (4)

etc. etc. etc.

Putting c=Q in (1), (2), (3), (4), sesees , we get

f (0)=a0,f' (O=a1, f(O)=2! aa, f"(O)=3 1! ag...

Hence, f (2) =f (0) + af"(0)+% #0) + ZF" (0) toe

11
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(ii) Let f(+h) be a function of hk (x being independent

of h), and let us assume that it can be expanded in powers

of h, and that the expansion can be differentiated with

respect to h term by term any number of times within

a certain range of values of h. We can easily obtain the

coefficients of the various powers of / as follows :

Let f(a th)=ao tayhtagh*® +agh? +--+ (1)

WheLre Ao, B41, Aayeseees are functions of z, and independent

of h.

Since, £ fet h) = ff (2) 02 [ where z=2+h ]

=f' (z)=f' (x +h),

differentiating (i) successively with respect to h, we get

S’ (eth) =a, + Qaght Bagh? + 4agh? +°°-+- (2)

F' (eth) =Wlae +8.2 aght4.3.agh? +--+ (3)

f'" (@ +h) = 3.2.1.4, +4.3.2.agh +208: (4)

etic. etc. etc.

Putting %=0 in (1), (2), (8), (4),... we have

f (a) =ao, f (a) =as, f" (@)=21 ae, f'" (x) =3 1 asg,...

fet n)=sfla)+ np (a) + © p(n) bf" (a) ++

Note. Although the forms of the series obtained above for f (a+ h)

and f(x) are identical with the Taylor’s and Maclaurin’s infinite series

for the expansions of these two functions, the above method of proof,

if used, for establishing these two sories, is considered as defective

in a8 much as it does not enable us to determine exactly the values of

@ for which the infinite series obtained [rom each of the functions con-

verges to the value of the function. In fact, Taylor’s and Maclaurin’s

expansions in infinite series do not converge to the functions from
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which they are developed unless Rn—->O as n-> ~~, even though

the function might possess finite differential coefficients of all order,

and the infinite series may be convergent ; e.g., f(x) =e7*?!** (20),

Ff (0) =0.

Here, f” (0) =0 for every value of r. But Maclaurin’s infinite series

for this function, though convergent for all values of 2, is not equal

to f (x).

6°10. Other methods of Expansion.

The use of Maclaurin’s (as also of Taylor's) theorem

in expanding a given function in infinite power series is

limited in applications because of the unwieldy form of

the remainder (2.e., of the nth derivative of the function)

in many cases. So we employ other methods for expan-

sion. Now, in this connection it should be noted that the

operations of algebra lke addition, subtraction, multipli-

cation, division and operations of calculus like:term by

term limit and term by term differentiation, though appli-

cable to the sum of a finite number of functions, are not

applicable without further examination to the case when

the number of terms is infinite, and hence to the infinite

power series La,2z”. Ifa power series in x converges

(7.e., has finite sum) for value of z lying within a certain range

(called the «wnterval of convergence)*, then for values of x

within that range, operations of algebra and calculus referred

to above are applicable, as in the case of polynomials, and

the series obtained by such operations would represent the

function for which it stands only for those values of #

which lie within the interval of convergence. We illustrate

below some of these methods.

* See Appendiz.
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A. Algebraical Method.

Ex.1. Hazpand tan « um powers of x as far as x°*,

ee mh

sin « © gira”
nee, tan 2= —Si , % cos x rz? ot

trot ain

we may by actual division, show that

tan x=x+5x°+ 2x'+---
€

Ex. 2. Hzpand fog + 2) an powers of x as far as x*.

Multiplying the two series, e

log (l+a)=2—$27+$e5—43r*+-. (-l <2 <1)

and (l4+a)-'=1l—-ote?—o2i+at—-» (~-l<a<1) ”

and collecting together the coefficients of like powers of «2, we have

108 OF) (14+ d)e? + (148+ H)0® —(L4AS+EAP TAH ce ceeeee oe for

{a2 | < 1, (the common interval of convergence),

B. Method of Undetermined Coefficients.

Ex. 3. Expand log (1+) on ascending powers of x.

Let log (L+a)=agota,etagr*t+a eit + vee (1)

differentiating with respect to 2,

Lg 201 t Btae + Baye? + ++ (2)

ot (1+2)(a,+2aqut 3agu? +o )=1. + (3)

Equating coefficients of z" on both sides,

nda t (n+ any, =0. see (4)

Putting z=0 in (1) and (2), ao =log 1=0, a, =1.

Putting n=1, 2, 3, ..... in (4), we get a, = —4, d3=4, a,= —f, ote.

log (l+2)=a2—d27+42°—--- ses (5)

Alternatively

For { x | <i, (Lat = leat? ea eens
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Hence, comparing coefficients of like powers of ~ on both sides

of (2), we obtain a, =1, a,= —4, a, =, etc.

Note. We shall have now to find for which values of x the series

is convergent, and hence represents the function.

It can be shown that the series is convergent for -1 < 2 < 1,

Ex. 4. Show that

Lo? 1.32" 1.352"
sin“ "e=at 5 3 tOo4 5 +946 77 wacee [ Cc. P, 1947 }

Let y=sin7*e=agta,ctagu? tere + anu" +> (1)

Since y=sin-'g, .°. differentiating, y, = iz (2)

: (1 — 92) 2 a4 2-3 442-35 a, 3“. ¥,=(1—-2?) I+d4a +540 +546 t (3)

for —1 < x < 1 by Binomial expansion.

Also, y, =@,+2agr+ 3a,xu? tereees + Nay = Ht eeeeee (4)

Hence, comparing the coefficients of (3) and (4), wo get

3
a,=1,a,=0, asx > a4=0, as=5 75! etc,

3

Also, putting «=0 1n (1), ag =sin=* 0=0.

Hence, the result.

C. Method of formation of Differential equation.

Ex. 5. Expand (son-)x)? an a serves of ascending powers of a-

Let y=(sin-*z)?. nee -.- (1)

sl

Differentiating, y aera a vee wee (2)

or, y,7(1—a?)=4 (sin7'a)? =4y,

Differentiating again, and dividing by 2y,,

(1—a?) y.—a2y, —2=0., vs ve (3)

Differentiating this n times by Leibnitz theorem, we get

(L—2*) Yap2— 2nxyns, —2(nN—1) ya— Tyne, — NYn =O,

or, (1—a@7) Ynta— (2041) cy. — nN? Yyn=O. eve (4)
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From (1), (2) and (8), we get yo =0, (y.)o=9, (ya)o =2;
and from (4), putting «=0, we get

(Wn+-2)0 = 7(yn)o- “se ee ())
.. putting n=1, 3, 5,....... in (5), we get

(ys)o=(¥s)o=(Y2)0= eooree =0
and putting »=2, 4, 6,...... in (5), we have

(ya)o = 27 (Yo)o = 272

(velo = 47 (Ya)o = 47.27.2, «

Similarly, (y,)o=67.47.27.2, etc.

Assuming that a Maclaurin’s series exists for this function, the

coefficients are the values of 4, 4, Yayerorecy ny scores when 2=0.

Hence,

1 2? 97.43 27.47.67s. 142 On? -On4 = _ OG yp A wD 8 Lb secs .(sin- 12) = 51 2" Hyatt By Dar? + —" Bae

Note. Jt can be shown that this series converges for x? < 1.

D. Differentiation of known series.

Ex. 6., Assumong expansion of sin x, prove that

_, «* at 2%
cos r=1 otal 61>

. . me gh ot
From the series sin r>2 3175! aye eee

which converges for all values of x, we get the required result by

differentiation.

Ex. 7. Show that secPx=1+a7+$24 +--+

Since, tan e=a¢+4r°+73507°+°-

we get the required result by differentiation.

Examples VI(B)

1. Expand in infinite series in powers of h:

(i) et”, (ii) cos (w@ +h). (iii) e” sin (2 +h).

2. Expand the following functions in powers of 2 in

infinite series, stating in each case the condition under

which the expansion is valid :

(i) a”. (ii) sinh a. (iii) cosh a.
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(iv) tan~*2. (v) cot7 tz. (vi) e* sin ba.

me e= cos ba. _— (viii) e” sin a. (ix) e” cos 2.

8. Show that

tan "(2 +h) = tan” * 2 +(h sin 6). sin 0—4(h sin 6)” sin 20

+4(h sin 6)® sin 39 +---, where @=cot 12.

4. Find approximately the value of sin 60° 34’ 23”

to 4 places of decimals fron? the expansion of sin (v+h) in

@ series of ascending powers of h by putting

a= tn (=60°) and h=xts of a radian (= 34’ 23” nearly).

5. Show that

(i) log w=(a@— 1) — He@-— 1)? + 42-1)? -
is true forO <a <& 2.

wey = 1 _ A 2 .(ii) zo 1 (gy 2) + os (a — 2)? —

is true forO <a < 4.

6. Expand e” in powers of (x—1).

Verify the following series (Ha. 7-19) :

G7 secv=1thte*+aqya*+-:
2 3

8. log (1 +a)?t®@ =a +7 --% 4+
2 6

2)= — _— 2 a? eo.9% log A-2+27)= rit 425 +5

g®

10. ePsing=atatt-—

11. 6 log (1+a)=a+- or 4 Be OF yn.

(Cc. P. 1983 ]
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© _, 1 ,1 2 1
12.0 ey =1- gat ig® — 709

18. cot s=1-— te? —-dger* t+

o* 4-266

2 3

14. log (1+sin meg — oe
2 6

15. 1 p= TM 42% 416%~ log sec o1t 41 eit

16. eTM2%=[+e+477-drt---- [O. P. 1940 ]

2 8

tan-1g; _ me ‘eee17. e ” l+a+5 gt

18. log {e+ /(22 +1}}= 1 gt, 1dat
© ROBE NN ~*~ 9 3 "O45

1

19. (l+a)*=e[1—42 + hha? - gee? +--],

20. (i) By differentiating the identity

(l-gz)*=1l+aeta?t+a%+--, |xl|<1,

show that

(1—a)-* =14+324 24 2 +345 pay...
1.2 1.2.3

(ii) Differentiating the expansion for log (1+sin 2),

obtain the expansion for sec 2— tan 2.

5 Who

21. (i) Show that ./x, and 2”, cannot be expanded in
Maclaurin’s infinite series.

ii) Given f(x = gt show that for this function the
expansion of f(a+h) fails when 2=O, but that there exists

@ proper fraction @ such that .

f(a th) =f(a)+ hf’ (x) +4h? f"(e+6h) holds when 2=0.

Find @. [ C. P. 1949 ]
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22. If y=(1+a)"=aotayrta.r7 +>

show that (1 +a) y1=ny

and hence obtain the expansion of (1+2)”.

28. If y=etTM = =a, +a,0 tage? +02" +

prove that (i) (1-2?) y, =ayit+a7y,

(ii) (n + 1)(n,+ 2) an+3 = (n? + a*) Ons

and hence obtain the expansion of e# *!97*=,

[C. P. 1945 ]

Deduce from the expansion of et*#in“*x the expansion
of sinTM +2.

24. If y=oemtantecog,t+asr tage? t-:

show that (i) (1 +2?) y, =my,

(ix) (2 +1) Qnga + (2-1) an-1 = Man,

and hence obtain the expansion of e” 27? =,

25. If y=sin (m sin 72), show that

(1 — 27) Ya+ta — (Qn + 1) LYn+-1 + (om? —n”) yn=0,

and hence obtain the expansion of sin (m sin7*2).
[ C. P. 1988 ]

26. If y=eTM cos bz, prove that

Yq — 2ay, + (a* +b*) y=0,

and hence obtain the expansion of eTM cos bz.

Deduce the expansion of e*” and cos bx. [C. P. 1937]

ANSWERS

1 z h* h® eae e1. (i) e fith+s+5 i+ a}

i h?
2

~, C08 e+ Sin wee(ii) cos ex—h sint— 5 a1

(iii) sinc+ Jah sin («+ % )+ (-s/h)" sin («+ 2r) vee
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2

2. (i) 1+2 loga +5 (log aye (log a)* +--+.

Qi) 2+2 a+? qt ee for all values of 2.

(iii) 14+ % na

5

(iv) o—S +-5 meee5 +5 ~

05-348)
(vi) 17 sin eg +55 oy? sin 2¢+-:-

for -l<e<cl.

where r= ,/(a?+7)

and #=tan-"(d/a)
(vii) 1+ ros $+ 7 COs 2p-+e-

!

(viii) x /2 sin (7) +2 (2) sin (2 2). +2 of sin (27) +---
(ix) I+” s/2:c08 ( 7 )+2; 5 | (2)? cos (27 )+--

—— r eea a) cos (42) +-

Ex. (vi)-(ix) are valid for all values of 2.

20.

23.

(x) l—aw+27-25+:-- Ja] <1.

(xi) 1—aw?+2*—2°+--- -l<¢2¢<1.

, (x—1)? , (z—1)” }8700. 6. ef 1+ (2 1)+ art 3) T°

(ii) l—wa+4n?—far5+ -- 21. (ii) 2%.

Lent") +

2? , a(a?+1*) a?® (a? + 27)Lan +2 e 4 te 3p 2° + 7 x"

4 a(a?+1)(27+3") 4,

5!

3

sin gee li 3* 38 m8 fee
Bl BL
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m(m?- — 2) gi + m3 (m? (m?—8) 4

mr m*— 1?) 2 m (m? —1)(m? — 3") -
25. ma — “ 4m EI

9

26. Ltan+2 ~ 2 2p ale" — 3b") ag,
2} 3 |

otax — + mf napeceé Ltant 92

Ian 2 44

cos bo = 1 — 2 ore"
2! 4|



CHAPTER VII

MAXIMA AND MINIMA

( Function of a Single Variable )

71. By the maximum value of a function f(x) in
Calculus we do not necessarily mean the absolutely greatest

value attainable by the function. A function f(z) is said
to be maximum for a value c of x, provided /(c) is greater
than every other value assumed by f(z) in the mmmediate
neighbourhood of z=c. Similarly, a minimum value of

F(a) is defined to be the value which 1s less than other values
in the immediate neighbourhood. A formal definition is

as follows :

A function f(x) is satd to have a maxwmum value for
L=c, provided we can get a posrteve quantity 6 such that

for all values of w an the wnterval c~-5b Ma<ctsdé,(2@F c)

f(c) > f(a) ;

2.6., if f(e+h)—f(c) < 0, for | h | sufficiently small.

Similarly, the functson f(x) has a minumum value for

c=d, provided we can get an wnterval d-—d' <a<dté’

within which f(d) < f(a) (aw # d):

2.e., if f(d +h) —f(d) > 0, for | h | sufficiently small.

Lame mwar wn seeawsas
x

So © ol% 9 2 oO

Thus, in the above figure which represents graphically

the function f(x) (2 continuous function here), the function
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has a maximum value at P,, as also at Ps, Ps, P,, ete.

and has minimum values at @1, Qa, Vs, G4, ete. At Pi,

for instance, corresponding to r= OC, (=c, say), the value

of the function, namely, the ordinate PiC, is not neces-

sarily bigger than the value Q,D, at r=ODg,, but we can

get a range say L,C,Z, 1m the neighbourhood of Cy, on

either side of it, (2.¢., we can find a 6=2,C,=C0,L, say)

such that for every value of x within 2,0,2, (except

at C,), the value of the function (represented by the corres-

ponding ordinate) is *less than P,C, (the value at C,).

Hence, by definition, the function 1s maximum at 2=O00C;.

Similarly, we can find out an interval M,D.,M, (MiD,

= D,M,=6' say) in the neighbourhood of D, within which
for every other value of a the function is greater than that

at D,. Hence, the function at D. (represented by Q2Dz.)
18 & minimum,

From the figure the following features regarding maxima

and minima of a continuous function will be apparent :

(i) that the function may have several maxima and
minima in an interval , (ii) that a maximum value of the

function at some point may be less than a minimum value

of it at another point (C,P, <D,Q.), Gi) maximum and

minimum values of the function occur alternately, 7.e.,

between any two consecutive maximum values there is

a minimum value, and vzce versa.

72. A necessary condition for maximum and

minimum.

If f(a) be a maximum, or a mimmum at x=c, and if
tf’ (c) exrsts, then f' (ce) =0.

By definition, f(z) is a maximum at r=c, provided we
can find a positive number 6, such that

t(e+h)—f(c) < 0 whenever —5< hh < 6, (h ¥ O),

fle *h = Fle) < 0 if 2 be positive and sufficiently

small, and > O if hbe negative and numerically sufficiently
small,
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Thus, Zt flo+ h)~f(o) <0, [See Ha. 5, § 2°21]
h->0+ h

and similarly, Li fle +h) - f(e) => 0.
h>0= h

Now, if (c) exists, the above two limits, which repre-
sent the right-hand and left-hand derivatives respectively

of f(z) at 2=c, must be equal. Hence, the only common

value of the limit is zero. Thus, f’(c)=0.

Exactly similar is the proof when f(c) is a minimum.

Note. In case f (c) does not exist, f(c) may be a maxumum or

amnimum, as is apparent from the figure for points Q, and P,. At

the former point f(x) is a minimum, and at the latter it 1s a maximum.

J’ (x) is however not zero at these points, for f’(2) does not exist at all

at these points.

73. , Determination of Maxima and Minima.

(A) If c bea pownt on the interval 1n which the function

F(a) is defined, and of B(ce)=0, and t'(c)¥0, then f(c) is

(i) a maximum if f" (c) is negative and (ii) a minimum if

f’(c) is positive.

Proof: Suppose f’(c)=0, and f” (c) exists, and + 0.

By the Mean Value Theorem”,

((c+h)—f(c) =hf' (c+ 0h), O< 0 <1,

—ap2/4 (e+ 9h) —f (ec),

oh 8h

Since 0 < 6 < 1, 02-0 as 2-0, and writing 0h=k, the coefficient

of 0h? on the right side—> Lt | f{e+ *) THO) = 90). Accordingly, since

6h? is positive, f(c+h)—f(c) has the same sign as that of f’(c) when

[% | is sufficiently small.

* Since, f” (c) exists, f’ (x) also exists in the neighbourhood of ce.
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o's 4£f'"(c) is positive, f(ct+h)—f(c) is positive, whether h is positive

or negative, provided || is small. Hence f(c) is a minimum, by
definition.

Similarly, if f” (c) is negative, f(c+h)—f(c) is negative, whether h is

positive or negative, when | % | is small, and so f(c) is & maximum.

{, AB) Let ¢ be an interior point of the interval of definition

of the Functvon f(a), and let

Jf (c)=f" (c)= “es em gn (c)=0, and f* (c)¥0 ;
then () if nbe even, f(c) is a maximum or a minimum
according as f" (c) 1s negative or positive,

and (ii) if n be odd, f(c) 2s neither a minimum, nor

& maximum.

Proof: By the Mean Value Theorem of Higher order, ‘here

(o+ h)—f (= ay ft-? (c+ oh), 0 <0 <1,

en" f"-* (c+ on)—f"-* (c),
Ee -—--—

(n—1)! Oh

Since 0 < 6 <1, a8 A->0, 6h—>0 and the coefficient of 6n"/(n—1) },

on the right side— f* (c),

Now, suppose 7 is even ; then, 0h"/(n—1) ! is positive.

*, f(c+h)—f (c) has the same sign as of f"(c), whether x is positive,

or negative, provided || is sufficiently small. Hence, of f"(c) be

positive, f(c+h)—f(c) is positive for either sign of h, when|h| is

small, and so f(c) «sa mnwmum. Similarly, of f"(c) os negatswe, f(c) is

@ maxyumum.

Next suppose 12s odd; then 6h"/(n—1)! is positive or negative

according a8 h 18 positive or negative. Hence, f(c+h)—f(c) changes in

sign with the change of % whatever the sign of f"(c) may be, and so

J (c) cannot be either a maximum or a minimum at #=c.

Hence to determine maxima and minima of f(z), we

proceed with the following working rule : | -
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Equate f(x) to zero, and let the roots be Cx, Co, Cay.

Now work out the value of f" (c,). If it is negative, then

@=cC, makes f(z) a maximum. If f"(c,) be positive, then

f(c.) is a minimum of f(z). Similarly test the sign of f” (x)

for the other values cg, cs... of @ for which f(z) is zero,

and determine whether f(#) is a maximum or a minimum

at these points.

If in any case above, f” (cn) =0, use criterion (B).

Note 1. The above criterion for determining maxima and minima

of f(a) fails at a point where f(x) is non-existent, even though f(2) may

be continuous there.

In such @ case we should bear in mind that if f(z) be a maximum

at a point, immediately to the left of 1t the value of f(x) is less, and

gradually increases towards the value at the point and so f’(z) [which

represents the rate of increase of f(x)] 1s positive. Immediately to the

right, the, value of f(x) 1s again less, and so f(x) decreases with @ in-

creasing and therefore /’ (x) 1s negative to the right. Thus /’ (”) changes

sign from positive on the left to negative towards the right of the

point. [ See point P, um the figure of Art. 771]

Similarly, if f(z) be a minimum at any point, f(x) is largor on the

left, and diminishes to the value at the point, and again becomes larger

on the right, «.¢., f(x) increases to the mght. Thus / (z) changes sign

here, being negative on the left, and positive on the right of the point.

Thus we have the following alternative criterion for maxima and

minima: At a pot where f(z) 1s a maximum or a meunimum, Y (x)

changes sign, from positive on the left to negative on the right

if f (x) be a maximum, and from negative on the left to positive on

the right if f(x) be a minimum.

If f’(c) exists at such a point, its change of sign from one side to

another takes place through the zero value of f’ (x), so that f° (x) =0 at

the point. If /’(#) be non-existent at the point, the left-hand and

right-hand derivatives are of opposite signs at the point.
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Even in the case where the successive derivatives exist, instead of

proceeding to calculate their values at a point to apply the usual
criteria for maxima and minima of f(z) at the point, we may apply

effectively in many cases, this simple cmterion of changing of sign

of f’(z+h) as 2 is changed from negative to positive values, being

numerically small. [ For ellustrateon see Ea. 4, § 7°5 }

Note 2. At points where f(x) 1s a maximum or a minimum, f (~)=0

when it exists, and accordingly at these points the tangent line to the

graph of f(x) will be parallel to the z-axis (as at P,, Q,, Ps, Qa, Pss Qa»

etc. in figure of § 7°12). At points where f(z) is a maximum or a mini-

mum, but f’(r) does not exist {e.g., at Q, and P,), the tangent line

to the curve changes its direction abruptly while passing through the

point. <A special case is where the tangent is parallel to the y-axis, the

change in the sign of /’ (x) taking place through an infinite value.

Note 8. A maximum or minimum is often called an ‘extremum’

(extremal) or ‘turnong value’. The values of « for which f (x) or

1/f’ (xz) =O are often called ‘eretical values’ or, critical points of f(x).

Note 4. The use of the following principles greatly simplifies

the solution of problems in maxima and minima,

(i) Since, f(x) and log f(z) increase and decrease together, log f(a)

is maximum or minimum for any value of x for which f(x) is maximum

or minimum.

(ii) When f(z) increases, since 1/f(z) decreases, any value of w

which renders f(z) a maximum or minimum renders its reciprocal

1/f (x) # minimum or a maximum.

(iii) Any value of ~ which renders f(x) positive and a maximum

or a minimum, renders {f(z)}" a@ maximum or a minimum, m being

& positive integer.

For examples on maxima and minima of functions of

two variables connected by a relation, see Ex. 7 and Ex. 12

of Art. 7°5.

12
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.7°4. Elementary methods (Algebraical and Tri-

gonometrical).

Certain types of problems in maxima and minima can

be solved very simply by elementary algebra or trigono-

metry*. The discussion of the maxima and minima of the
quadratic functions or the quotient of two quadratic func:

tions, will be found in any text book on algebra. T

In solving simpler problems of maxima and minima of

functions of more than one variable, the following elemen-

tary results are of great use :

(i) wy = {k(x + y)}? — {4a — yf?

(ii) (2 + y)? = dary + (@ — y)?.

Gii) 2? +y*=F(ae+y)*+4(e-y)?*.

When the sum of two positive quanitties is given, it
follows from (i) that thezr product is greatest, and from

(iii) that the sum of their squares is least, when they are
equal. When the product of two quantities is given, from

(ii) their sum is least when they are equal.

The above theorems may easily be extended to the cases
of more than two quantities.

Thus, when the sum of any number of positive quantities

as given, their product ts greatest when they are ali equal,

and so on.

For illustrative examples see Art. 7°5, Ex. 9 to 11.

Note. In algebraical or trigonometrical examples, by maximum

or a minimum value of a function we usually mean the greatest or

the least value attainable by the function out of all its possible values.

In Osloulus however, as has already been remarked, ® maximum or

® minimum value indicates a local (or relative) maximum or minimum.

“See Das & Mukherjees’ Higher Trigonometry, Chap. XV, Sec. B.

t See Ganguly & Mukherjees’ Intermediate Algebra, Chap. VITI,

Ari. 61. . "
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4

76. Illustrative Examples.

Ex.1. Find for what values of x, the followmg expression is

manimum and mumnimum respectwely ;

Qo,* — 21a? + 36a — 90.

Find also the maximum and mounamum values of the expression.

[ OC. P. 1986 J

Let f(2)=22*—212?7+ 362—20.

ef (x) =62? — 492-736, which exists for all values of a.

Now, when f(x) is a maximum or a minimum, f’ (xz) =0.

»". we should have 6x2? — 424+ 36=0, 2.¢., 27 ~7x+6=0,

or, (x—1)(x—6)=0; -. w=I1or 6.

Again, f* (2)=1292—42=6(22—7).

Now, when «=1, {” (2) = —30 which is negaiwe,

when c=6, f’ (x) =30, which is posite.

Hence, the given expression is maxemum for x=1, and mounyunwmn

for 7 =6.

The maximum and minimum values of the given expression are

respectively f (1), ¢.e., —3, and f(6), 4.e., —128.

Ex. 2. Investogate for what values of 2,

St (x) = 5a* — 1825 + 1524+ —10

4s @ maximum or minemum.

Here, ff" (x) =30 (2° —3a++ 22°),

Putting f’ (c)=0, we have x* (7? —3x¢+2)=0,

.€., 2° (x—1)(2—2)=0, whence, z=0, 1 or 2.

Again, f” (x) = 80 (5a* —120*+62”).

When 2=1,/" (x) is negative, and hence f(x) is a maximum for

g=l,

When 2=2, f”’ (x) is posttsve, and hence f(z) is a minumum for

=D,

When x2=0, f” (z)=0;s0 the test fails, and we have to examine

higher order derivatives.
f” (x) os 120 (Ba* ~ 9a? + Sa). ae f” (0) =(,

" f” (@) = 860 (507 —Ga+1). . ft? (0) is positive.
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Since even order derivative is positive for «=0,

oe for «=0, f(x) is a minimum.

Ex. 8 Show that f(z)=a2*—627+24r+4 has neither a maximum

OT a mumimum.

Here, * (x) =3(2? — 4e+8) = 3{(x7 — 2)? + 4}

which is always positive and can never be zero.

S (x) has neither @ maximum nor a minimum,
@

Ex. 4. Ezamuene f (x)= 2x* —9x? + 240-12 for maximum or minimum

values.

Here, f (x) = 3(a? —6a + 8) = Bla — 2) (a— 4).

Putting f (x)=0, we find 2=2 or 4.

Now, f (2—h) =3(—h)(-2-h) = +,

and f (2+h) =3(hk)(h — 2) = —, since, fis positive and small.

by § 7°3, Note 1, for x=2, f(x) has a mazemum value, and this

is f (2) =8.

Again, ff (4—h)=3.(2—h)(—z)=-—, since 7, is positive and small,

f (4+h) =3.(2+A)(A)= +.

by § 7°3, Note 1, for x=4, f(z) has a meneunum value, and this

is f (4)=4.

Note In this case we could have easily applied rule of Art. 7°3.

Ex. 5. Fond the maxywma and munima of

1+2 son 2+8 cos?e. (O<aciar).

Let FS (wv) =14+2 sin +8 cos*a.

Then ff” (x)=2 cos «—6 cos & sin a.

o's f’ (wv) =O when 2 cos z(1—8 sin x) =0, 1.¢., when cos 7=0,

and also when sin z=4.

S'’' (x) = —2 sin 2—6 (cos*z—sin’ 2).

When cos z=0, 2=4$7. .*. sin x=1. .°. f” (x) = —2+6=4 (posutwe).

.. for cos c=0, f(c) is a menamum, and the minimum value is 3.

When sinz=3,

f’ (q) = —2 sin e«—6(1—2 sin?x) = —§ —6(1— 3) (negatwe).
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Therefore, for sin x=4, f(a) is a maximum and the maximum

value is 1+ 2.44+3.(1— $3) =44.

1

Ex. 6. Examine whether x* possesses a maxumum or @ nunimuwn,

and determune the same. {[ C. P. 1941, '45 ]

1

Let y=rt .°. log y= : log x.

1 dy _ 4-3 = eeewe deat ~~» log x =-4 (1—log =). (1)

-. When ay =0, 1l—logw=0. .'. logw=l=loge. .°. c=e

Again, differentiating (1) with wespeot to 2,

_1 (w)*+3 1 d®y_ 2?.(—1/x) — —(1= —log x) 2r_ —3+2 log a
y? 3dx y ax? o* a

1

»-. when z=e, avy meee —3+2_ _ ¢", which is negatave.
da? e* e*

a _, HW. )( .’ for «=e, dx 0.

.. for s=e, the function is a maxemum, and the maximum

2

value 18 e °.

Ex.7 Fond the maxumum and minunum values of u where

3= £36 and 2+y=2.
c y

Eliminating y between the two given relations

u= 4 36 . Ab _ 4 36 16 (20:7 + 2—1)

o 2-2 ‘‘dx (Q—x)* a? (2-2)?

du _ : — _ d’u_ 8 72.
ano givesx=gor —1. Also, in? xi t (g@—z):

a

When x=, os = aay + aay which is postteve.

-. for c=4, wis & munwnum.

moenemum value of u= ; +5 = $2.

a*u

When x= -—1, ~ a ws — 8+ a which is negaiwe.

. forz=—1, u is a macimum.

. 4 36
“. maxenum value of w yt o44 8.
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Ex. 8 Euamine the function f(x) =4—3(a—2)® for maxima and
minama at 2=2.

Here, f(z)=— —” :
(x —2)

For x=2, f(x) does not exist, the left-hand derivative being +o

and the right-hand derivative —co ; butel/f’(z) is zero for «=2. Bo

the test of Art. 7°2 fails. Let us apply the criterion of § 7°3, Note 1.

Now, f’(2—h) is positive and f’ (2+h) is negatewve. Hence, the function

has a maximum value for «=2, and the maximum value is f(2) é.e., 4.

Ex. 9. 4 contcal tent of given capacity has to be constructed.

Find the ratw of the height to the radws of the base for the mummum

amount of the canvas required for the tent.

Tet » be the radius of the base, 2 the height, V the volume, and

S the surface-area of the conical tent.

Then, V=437r7h -- (1) and S=7r,/r*+h?, ++ (2)

Here, V is given as constant,

2

one Sten sr (72 +h2)=7' r? (124377) [ from (1) ]

2 4 3 1sem? 74 +9V a

Now, if S is a max. or min., S? is so and hence for max. or min.

a , d 1of S, 7, (8") =O, i.€., Pa mrt 4977-2, )=0,

1 . ov? gs 8 VF%€., 4m°r*—18Y% + 5 =0. 7. re Ont" “. OF (*,)

Now a (S*) = 1292724 54)? At which is posstwe for r=(27)"
* dr? ré w J/2

for menimum amount of canvas,

av\3_ . 6 9M" oO arerth® = yDr= (25) 9 465 T= On or? { from (1) ] a A”,

ae, riedn?. ris h2=1LiQorri k=l: 2/2.



MAXIMA AND MINIMA 188

Ex. 10. Show that for a given perimeter, the area of a triangle is

manivmum when rt rvs equilateral.

The area A of a triangle ABC= 4/3(s—a)(s—b)(s—c).

Let s~a=a, s—b=y, s—c=z. . atyte=Bs—(at+b+c)

=8s—2s=s=const. Now, A=./szyz. Since s is constant, A will be

maximum when x7z will be maximum subject to the condition a+y+a

=const. 2.¢., when z=y~ez, [See § 7°¢ }

4.¢, when s—~a=s—b=s—c, 12.¢., a=b=c.

Ex. 11. Show that the mdaiumum triangle whch can be inscribed

in a circle 1s equelateral.

Area A of a triangle ABC inscribed in a circle of radius R

=be sin A=3.2R sin B.2R sin C.sin A

=2R? sin A sin Bsin C

= R? {cos (A— B)—cos (A+ B)} sin C.

Let us suppose C remains constant, while A and B vary. Since,
B is constant, the above expression will be maximum when 4=B,

Hence, so long as any two of the angles, A, B, C are unequal, the

expression 2R° sin A sin Bsin C is not a maximum, that is, it is

maximum when 4=B=C.,

Thus, A will be maximum when 4=B=C.

Ex. 12. Fund the maxumum and minumum values of

@ son a+b cos a.

Let a=~* cos 6, b=9r sin 6,

sothat r?=a@?7+ 6? and tan @=D/a.

Thus, asin 2+6 cos e=r (sin x cos 8+ cos # sin 6)=r sin (a +6)

Ja? +b® sin {e+ tan-*b/a}.

Since the greatest and least values of sine of an angle are 1 and

~1, the required maximum and minimum values of the given expres-

sion are ,/a?+6"% and — /a?+5".
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Ex. 13. Assuming Fermat's theorem that a ray of light im passing

from a point A wm one medium to a point B wn another medeum takes

the path for which the time of description is a minimum, prove the law

of refraction.

Let AOB be a possible path

of the ray of light, O being the

point where it meets the surface

of separegtion MON of the two

~~ media, and let POQ be the normal

= to the common surface MN at O,

and AM, BN the perpendiculars

from A and Bon MN. Let

ZAOP=6, ZBOQ=¢9, and let v

and wv’ be velocities of light in the two media. If AM=a, BN=6, then

AO=a sec 6,BO=bsec ¢. The time taken by the ray of light to travel

the path AOB is

“---7>
2

\
\.

b \

vr - - - - - -

Pon 28000 4 D8OES «++ (i), and by Fermat’s theorem this is to be

&@ minimum:

Again, since A and B are fixed points, a tan 0+) tan ¢=MO+0ON

= MN=constant -- (i1), so that 0 and @ are not independent, and we

can thus consider ¢as a function of 6, which is then the only inde-

pendent variable.

For 7 to be minimum, = =Q, giving

a b dd
> sec 6 tan O+ sec % tan @ 30 0.

Also, from (ii),

d¢rs 2 ——_—-—==a sec’ 6+b sec*d qe 0.

From these two, eliminating oe we easily get

sin 6 _sin ¢, or sin @_w = p (say)

v o ‘sing o “ Bay

which is the law of refraction, satisfied for the actual path of the ray

of light.
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Examples VII

1. Kind for which values of the following functions

aré Maximum and minimum :

(i) 2? = On? +152 —3. (ii) 47° — 1527? +122 — 2.

2 2

(ii) SES. Lop. 1939] (iv) S22 Et.

(v) a* — 8x? + 22m? — 940 +5.

2. Find the maximum and minimum values of (iii), (iv)

and (v) of Ex. 1.

3. (i) Show that the maximum value of s+ . is less

than its minimum value.

(Qa — 1) (2-8)
(ii) Show that the minimum value of (e = 1 Ne ~ 4)

is greater than its maximum value.

4. Show that 2* —627+122¢-—38 is neither a maximum

nor @ Minimum when z= 2.

5. Show that the following functions possess neither a

maximum nor a minimum :

(i) «3 — 37246243. Gi) 2*® —38e7+92-1.

(ii) sin (2 +a)/sin (@ +d). (iv) (aw + b)/(cx +d).

6. Show that 2° — 5a2*+52°—-1 is a maximum when

z=1,a minimum when «=3 ; neither when z=0.

%. Examine for maxima and minima of the following

functions :

(i) sin 2. (ii) cos 2. (iii) 5.

(iv) 2°. (v) 2° — 42%. (vi) e”. sin 2.
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8. Test the following functions for maxima and

minima at c=0:

ao* at gt a(i) sing-a2t 5, BI (ii) cos 21+ 95 ran

9. Show that

(i) /8 sin «+3 cos w is a maximum for 2 = $n.

Gi) sin 2 (1+cos 2) is a maximum for 2=4n.

[ OC. P. 1942, '47 }

(iii) sin®z cos x is a maximum when z= $x.

(iv) 27+ sin 2+ 4 cos z is a maximum for c=0.

(v) sec x+log cos?z is a maximum for z=0 and

@ minimum for r= 4x.

(vi) 20 ~ sin 26 (@ > 0) is maximum when 6= $n.

10. If y is defined as a function of z by the equations

y=a(1-—cos 6), z=a (@-sin 8),

show that y is a maximum when 6=72.

11. Show that

(i) the maximum value of (1/xz)” is e? °.

(ii) the minimum value of 2/(log 2) is e.

(iii) the minimum value of 4e7% + 9e~?” is 19,

12. (i) Show that 4*— 8z log, 2 is a minimum when #=1.

(ii) Show that 12 (log «+1)+x2?-—10¢+83 is a maxi-

mum when 2 =2 and a minimum when x2=8.

(iii) Show that 2? log (1/x) is a maximum for z=1/ ,/e.
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18. If f(x) =(2—a)*TM (2 -—b)9"*"?, when m and 1% are

positive integers, show that c=a gives neither a maximum

nor a minimum value of f(z), but «=b gives a minimum.

14. Find the maxima and minima, if any, of

e/a — 1a — 3)*.

ax+b
15. If y= (e- 1\e- has a turning value at (2, — 1),

find a and 6 and show that the turning value is a maximum.

16. Prove that = (2-4)? is @ minimum when @z is the

arithmetic mean of @4, dg, &g,--. An-

17. G) Given 2/2+y/3=1, find the maximum value of zy

and minimum value of #7 +y?.,

(ii) Given wy=4, find the maximum and minimum

values of 4% + 9y,.
.

18. (i) If f(x@)=1—-— /(x?), when the square root is to

be taken positive, show that 2 =0 gives a maximum for f(z).

(ii) If f (w)=at(a2 - bye + (a — a), show that f (a) is
@ minimum for z=b.

(iii) Show that («&—- a)* (Qe _ w)® is @ maximum for
x=ta, a minimum for =%q and neither for =a. [a > 0]

(iv) If f(@)= |2 |, show that f(0) is a minimum

although /’ (0) does not exist.

19. Show that

(i) the largest rectangle with a given perimeter is

@ square.

(ii) the maximum rectangle inscribable in a circle is

@ square. [ 0. P. 1936 ]
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20. Find the point on the parabola 2y=a7 which is
nearest to the point (0, 3).

21. P is any point on the curve y=/(x) and C is a fixed
point not on the curve. If the length POC is either a

maximum ora minimum, the lhne PC is perpendicular to

the tangent at P.

22. Find the length of the perpendivular from the point

(0, 2) upon the line 82+4y+2=0, showing that it is the
shortest distance of the point from the line. Find also the

foot of the perpendicular. ‘

23. A cylindrical tin can, closed at the both ends, of a

given capacity, has to be constructed. Show that the amount

of the tin required will be a minimum when the height is
equal to the diameter.

24. By the Post Office regulations, the combined length

and girth of a parcel must not exceed 6 feet. Find the

volume of the biggest cylindrical (right circular) packet that

can be sent by the parcel post

25. A line drawn through the point P (1, 8) cuts the
positive sides of the axes OX and OY at A and B. Find the

intercepts of this line on the axes so that

(i) the area of the triangle OAB is a minimum ;

(ii) the length of the line AB is a minimum.

Find also in the above cases the area of the triangle

and the length of the lne respectively.

26. FP is a point on an ellipse whose centre is C, and N

is the foot of the perpendicular from C upon the tangent to

the ellipse at P ; find the maximum value of PN.

[ CO. P. 1945 ]

2%. The height of a particle projected with velocity u at

an angle a with the horizontal, is «sin a.t—%4gt? at any
time ¢. Find the greatest height attained and the time of

reaching it.
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28. The total waste per mile in an electric conductor

is given by W=(07R+ K*/R, where C is the current, # the
resistance, and K a constant. What resistance will make

the waste a minimum if the current C is kept constant ?

29. The force F exerted by a circular electric current

of radius a on a magnet whose axis coincides with the axis
of the coil is given by

_ 6

Fe gla? +2?) ?,

where x is the distance of the magnet from the centre of

the circle. Show that F is, greatest when x= $a.

*80. Assuming that the intensity of light at a point on an
illuminated surface varies directly as the sine of the angle

at which the ray of light strikes the surface, and inversely

as the square of the distance of the source from the point,

find how high should a hght be placed directly over the

centre of a circular field of radius 30./2 ft. in order to
have & maximum illumination on the boundary.

$1. (i) Find the altitude of the right cone of maximum
volume that can be inscribed 1n a sphere of radius a.

(ii) Find the altitude of the right circular cylinder of
maximum volume that can be inscribed in a given right

circular cone of height h.

82. (i) For a given curved surface of a right circular
cone when the volume is maximum, show that the semi-

vertical angle 18 sinTM*(1/ ./3).

(ii) For a given volume of a right cone, show that when
the curved surface is minimum, the sem1-vertical angle

is sinTM*(1/ ./3).

88. An open tank of a given volume consists of a square

base with vertical sides. Show that the expense of lining

the tank with lead will be least if the height of the tank is

half the width.
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34. If POP’ and QOQ’ be any two conjugate diameters
of an ellipse, and from P and Q are drawn two perpendi-

culars to the major axis cutting it at M and N respectively,
show that PM+QN is » maximum when POP’ and QOQ’

are equi-canjugate diameters.

86. A window is in the form of a rectangle surmounted

by a semi-circle. If the total perimeter be 25 ft., find the

dimensions so that the greatest possible amount of light

may be admitted. .

36. A particle is moving in a straight line. Its distance

a ft. from a fixed point O at any time ¢ secs. is given by

the relation

ao = t* —10¢% + 24¢? + 36¢ + 129.

When is if moving most slowly ?

37. In enclosing a rectangular lawn that has one side

along a netghbour’s plot, a person has to pay for the fence

for the three sides on his own ground and for half of that

along the dividing line. What dimensions would give him
the least cost if the lawn is to contain 4800 sq. ft. ?

388. <A gardener having 120 ft. of fencing wishes to

enclose a rectangular plot of land and also to erect a fence

across the land parallel to two of the sides. What is the

maximum area he can enclose ?

89. A shot is fired with a velocity « at a vertical wall

whose distance from the point of projection is x Find

the greatest height above the level of the point of projec-

tion at which the bullet can hit the wall.

40. From the fixed point A on the circumference of
a circle of radius c the perpendicular AY is let fall on the

tangent at P. Show that the maximum area of AAPY

is $c? ./3. [ C. P. 1980 }

41. The intensity of light varies inversely as the square

of the distance from the source. If two lights are 150 ft.

apart and one light is 8 times as strong as the other, where
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should an object be placed between the lights to have the

least illumination ?

*42. The boundary wall of a house is 27 ft. high, and is
at a distance 8 ft. from the house. Show that a ladder, one

end of which rests on the ground outside the wall, and

which passes over the wall, must at least be 18./18 ft.
long in order to reach the house.

“48. Aman in a boat $./3 miles from the bank wishes
to reach ao village that is 5% miles distant along the bank
from the point nearest to him. He can walk 4 miles per

hour and row 2 miles per hour. Where should he land in

order to reach the village in the least time ? Find also the
time.

*44. If for a steamer the consumption of coal varies as
the cube of its speed, show that the most economical rate

of steaming against a current will be a speed equal to

1% times that of the current.

*45. For a train the cost of fuel varies as the square of
its speed (in miles per hour), and the cost is Rs. 24 per
hour when the speed is 12 m.p.h. If other expenses total

Rs. 96 per hour, find the most economical speed and the

cost for a journey of 100 miles.

*46. Assuming Fermat’s law, that a ray of light in pass-
ing from a point A to a point B in the same medium after

meeting a reflecting surface takes the path for which the

time is @ minimum, prove the law of reflexion.

*47. Assuming the law of refraction, if a ray of light
passes through a prism in a plane perpendicular to its edge,

prove that the deviation in its direction is minimum when

the angle of incidence is equal to the angle of emergence.

ANSWERS

1. (i) w@=1 (max.), «=5 (min.). (ii) «=3 (max.), x= 2 (min.),

(iii) 2= 4 (max.), c=16 (min). (iv) e=1 (max.), « = —1 (min,),

(v) w=1 (min.), c=2 (max.), ¢=8 (min.).
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2. Max. value=1, min. value= 25 for (iii). Max. value=3, min, value

=4 for (iv), Max. value= —8, and min. value= —4 in both cases

for (v).

7. (i) e=(Qn+4)r (max.) 5 c= (2n—4)r (min.).

(ii) c=Qn7 (max.), c= (2n+1)7 (min.).

(iii) Neither max. nor min. (iv) z=0 gives minimum.

(v) =O (max.), c=1 (min ).

(vi) ©=2nr+ 30 (max.), 2 = Qnr —4dr (min.).

8. (i) Neither max. nor min. (ii) Max. for x=0.

14. Min. for 2=0, max. fora=$. “15. a=1,b=0. 17. (1) $, B§.

(in) Max. value= —24; mun. value= 24. 20. (+2, 2).

22. 2 units; (—#, 2). 24. 2y% cu. ft. 25. (1) 2, 16.

(ii) 5,10. Area of the tmangle in (1)=16 sq. units ; length of the

line in (i1)=5 ./5 units. 26. a—b. 27. (uw? 81n%a)/2g; (usin a)/g.

28 (K/C) units. 80. 380 ft. 81. (1) $a. (ii) $n.

35. Height of the rectangle=radius of the semi-circle.

86. At the end of 4 secs. 37. 80 ft. x60 ft. 38. 600 sq. ft.

89. (u* —g?a")/2ug. 41, 100 ft. from the stronger light.

48. 4 mile from the point nearest to him ; 1? hours.

45. 24 m.p.h.; Rs. 800.



OHAPTER VIII

INDETERMINATE FORMS

( Evaluation of certain lamits )

8°1. The limit of d(z)/y(z) as w > a is in general equal

to the quotient of the limiting values of the numerator and

denominator [ See Rule,(iiz) of Art. 2°7 J, but when these

two limits are both zero, that rule is no longer applicable,

since the quotient takes the form 0/0 which is meaningless.

We shall consider in the present chapter how to obtain the

limiting values of the quotient in such cases, and also the

limiting values in other cases of meaningless forms, appar-

ently arising out of the indiscriminate use of the rules of

Art. 2°7. The name ‘indeterminate forms’ as applied to

these cases, is rather misleading and vague.

8°2. Form § (L’ Hospital's theorem).

If d(x), v(x), as also their derivatives ¢'(a), y' (x) are

continuous at c=a, and if d(a)=y(a)=0 [2e, Lt d(x)
s?a

=Lt y(x)=0 ], then
xa

Lt ¢(x) _ut ¢ (x) ¢ (a) |
xoa ¥(X) xeon V(x) y’(a)

provided y'(a) # 0. ,

Since, d(a)=0 and y(a)=0, we have

_ $@)=4(@)~ o(@), and v(x) = v(@) - va).

Now, by the Mean Value Theorem,

d(x) — (a) = (e@- a)d'fa + 6, (x — a)t,O< 6, <1
y(a) — v(a) =(a@— ay’ fa + 6, (a@—-a)}, O< 0, <1.

13



194 DIFFERENTIAL CALOULUS

pla) _ d(a)— dla) _ ofa +01 (e— alt
es

vie) v(a)—vla) viat+6,(a—a)}

(a) _ (a) _ d(x).
» 2 (a) v'(a) aoa P(e)

provided »’(a) ¥ 0.

Generalization :

In case ¢ (a) and y’(a) are both zero, applying the above

theorem again, we get

d (x) (a) _ 6" (a),

Li ¥ (a) = Lt ¥ "(n)e v"(a)
provided ¢' (x) and (2) are continuous at s=a, and

y'(a) #0. If however ¢'(a)=y"(a)=0, then we again

apply the above theorem, and obtain the limiting value as

'” (a)/p'" (a), and so on.

[ For illustraivon, sec Ex. I, Art. 8 8.)

Noté 1. The above result can also be established by Cauchy's

Mean Value Theorem. [See Ha. 7(a), Art. 6°7.]

Note 2. In the theorem of this article if « tends to - instead

of a, then the substitution 1/é for x would reduce it to the above form

when # tends to zero.

8°3. Form —

Tf Lt d(x) = © and Lt v(x) = ©, then if Lt ae Kewists,

then Lit 3 will also extst, and wts value is equal to the
tra

former lumit.

Let Lt a er Then we can determine a positive
number * such that in the interval a-é <« <até
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[xe x al, oi is as near to] as we please. Also, since the
limit exists, it follows that for z sufficiently close to a

[ but # a], d’(@) and y’(2) must both exist, and y’(z) * 0

there.

Now first consider the interval a <2 qj a+6, and let

Xq be any particular value therein, and take another value 2,

such that a <@ < Zo.

Then by Cauchy’s Maan Value Theorem [ See § 67,

Ex, 7a) J,

b(ao)— (x) _ o'(€).
v (ao) = v(x) w'(é)’

where <£<.2, and soa<&é<.atd,

(a) {89-1}
Hence, ve) (real i} et .

(x) _ oe "(é),P(X) via *¢ we
v(z) He) i” (é) Gi

d(x

Now keeping 2, fixed, if we make 2 >a, y(x) > © and

(a) > ©, and so {ees) 1} /{t49) - 1} 8-4 1.é., ~> 1.

Also oe is as near to / as we like, by a proper choice

or,

of 8.

), dle) .
Hence, from (i ple) is arbitrarily close tol, as 7 at 0.

dls) _
Thus Li +8 wie)!
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Similarly, considering the interval a-~é <<. «< 4, and

proceeding exactly as before, we get Li $(@) == J,
“?an7 v{az)0

Hence, Li (a) = Lt (a)
ora V(t) zea (a)

We can also prove a modified forra of thé above theorem

as follows :

Tf Lt g(a) and Lt (x) ara both infinte, then
o> a sa

? (x) ’ (x)
Lt (when it exists)= + ae .

o(a) _ 1/p(a)_ 7, La)
it v (a) Dt 1/p(a) Li g(x)

[ where f(x) =1/y(x) and g(a) =1/¢(2) ]

say,

which being of the form 0/0, [ See Art. 82, above ]

= Lt f (a) _ Lt = y’ (x)/{y(a)}? = v' (x) [o(x)\*7,cra g(a) aa —o (a/id(a)t* Li Ye re |
Lt $(z) ry wie {rt ote". + (1)

" eta V(e) ara ¢’ (x) a v(m)

Now, let Lt b(a)/p(a) = 1. eee es» (Q)

Three cases arise :

Case I. 1 is neither zero, nor infinitely large.

Dividing both sides of (1) by 2?, we obtain

Loy YO. «acer ty Har, 80,
t ti ¢ (a)’ vo 146, Dt y(z) Lt y’ (a)
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CasH IT, J=0.

Adding 1 to each side of (2),

l+1=Lt (x) + (a) wx Tit d (x) + y’ (x)
x >a Fx ara ¥ (x)

[ by case (I)]

= Li (a) + 1.
asa ¥Y (z)

be . Lt (a) = (2),
ty 4., aa ¥(%) aoa Y (x)

CASE III. When 2 is irffinitely large,

1 .,, Mo, vo),
Lt {ava} Lt oe) Ft oe)

[ by case (II) ]

d(a)_ _— f' (),
Lt ya) Lt y'@)

Hence the theorem is proved in all cases.

For ellustration see Ha. 8, Art. 8°8.

Note 1. The theorem is evidently true also when one or both the

limits tends to — °°,

Note 2. By substituting c=1/t, it can be shown that theorem

is also true when z tends to © instead of a.

8°4. Form 0x co.

Such forms arise when we want to find the limiting

value of d(x). y(z2) as 2 — a, where (x) > O and y(z) > ©

ast a.

We can write

_ (a) v(x) |
(a). Ha?) ~ Tila) °° 17h (a)

which being of the form 0/0 and ~/©, as aa, can be

evaluated by the methods of Arts. 8°2 and 8°38.

[ See Illustrahwe Example 4, Art. 88. ] °
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e 8°5. Form eo «= OD,

Such forms arise when we want to find the limiting

value of (x) — y(xz) as 2 — a, where ¢(z) > © and y(2) > ©

as ©? a.

We can write

~ ane) wx Li (ar) — 1/ (a)
$(@)- ¥@) = Tey @)

which being of the form 0/0 can be evaluated by the method

of Art. 8°92. t

{ See Illustrative Example 5, Ari. 88. ]

8°6. Forms 0°, 0°, 12.

These forms occur when we want to evaluate the limits

of functions of the form {¢(z)}TM as 2 > a,

when (i) both d(2) and y(z) > 0 as 2 > a.

Gi) o(@)—> © .and y(z) > 0 as 2 a.

(iii) d(@) > land y(@) > + ~ asxw—a.

If p(x) > 0, let y={o(a)"TM. . log y= v(x) log d(x).

Lt log y reduces to the form discussed in Art. 8°4,

and hence can be evaluated.

Since, Li log y=log Li y, the required limit Lt y can be

obtained.

[ See Illustrative Example 6, Art. 88. ]

8°7. Use of power series.

In evaluating limits of certain expressions, if is some-

times found convenient to use the expansions of known

functions in the expressions in power series in a finite

form, and then to take the limit. —

( See TRustratiwe Example 7, Art. 88. ]
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8°8. Illustrative Examples.

Ex.1. If ¢(a), ¢’ (a), ¢” (a),....-.¢""? (a) and ¥(a), W (a), Y” (a),.0

y"~2 (a) are all sero, and y" (a) 0, then

o(x) £"(x).
Di ya) Et ye)’

Put «2«=ath, so that when «>a, ho.

e

Now, by Taylor’s theorem,

o(ath)=(a)+h¢y’ (a) +5 f"(a) + vere

+ nay Oo +E o (a+ 9.0)

=e ¢ (a+6,h), where0 < 6, <1.

Similarly, Hath)=” y"(a+6,h) where O < 0, <1.

dla) Plath) _ h*¢"(a+6,h) .

Lt ya)” Le, ylath) Et, nV" (a+00h)

b" (a) _ $"(a),
epee

=Lt yF(e)~ y*(a)
xa

provided ¢"(a) and y" (a) are continuous at z=a.

2 at

Ex. 2. Evaluate 7; ee 22
c— sun &

a>0

The reqd. limit as 1t stands, being of the form 0/0, [ See § 8&2 ]

= ete 2 [ form 5 |
Li 1—cos x 0

= Te [ form 5 |
Li sin & O

since, Lt (e*+e-*)=1+1=2, and Lt cosa=1.
a->0 . a0
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at

Ex. 8 Hvaluate Tt oe
w~>0o

The given limit, as it stands, being of the form =" can = be

written [ by § 8&8 ] as

42% co 120?=Di oe ( form) = 4 z ( torm 2)
w-> 90 w-rco °

242 oo “94= TDi e® ( form =) = Tt 3 =O.
Loo m~> 00

Ex. 4. Evaluate Lit (1—sin a tan x.
corr

The given limit, as it stands, being of the form Oxo, oan be

written as

1-—sin x oO=0t 7-34 [ form -— |
oir cot x 0

—cos £

wt ~ cosec4a =

since, cos x =0 and cosec «= 1 as 2-—> dr.

Ex. 5. Hvaluate Lt {a5 _-2 i.
zl x? _ 1 at — 1

The given limit, as it stands, being of the form c%-—oo, can be

written as

x?—1 0

1 1
= Tt ; e

one tl 2

Ex.6. Zvaluate E14 (cos x)°°***. [ Paina, 1938
a0

The given limit as it stands is of the form 1TM.

Let y=(cos @) °°%*,

-. log y=cot’ax log cos z= 198 O98 2,
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*
* Lt ig cosa [ 5 |

Now Lt , log y ey tan*s form 4

— (sin xfeos r) _ a

Lt 2 tan w sec*a it ( $ cos )
=—3$(°.° Lt cos’2=1).

Pe)

Since Zt logy=log Lt y, .. log Lt y=}.
x20 a0 a>0

»

Lt yoo? .. the reqd. limit =e", %
220

Ex. 7. Show that Lt S727 = a: [ C. P. 1982 ]
x

Writing down the expansion of sing in a finite power series,

we have

3 &

£-sin aaa—{e-Fi+e, sin (7 +on ) ts Oo<6é<1.
Bl 9

“5-H sin (+02 )

=a {si e sin (F+ ax) - ,

- Bad Bi sin (+ ox).
. i, eae [a 2" sin (F+00 I-23 L,

since, z sin (r+ ax)» 0, as x —> 0, | sin (+ oz) | being < I.

Note. This being of the form 0/0 can also be obtained by the

method of Art. 8°2.

N(a? +an+a7)— Ja? -ante),Ex. 8. Evaluate Lit. Natx)— S(a—a)

Rationalizing both the numerator and denominator, the required

limit

_ Gaz {{ Jatr)+ S(a-z)}
Lt on { Na? +art+2")+ \(a*—an+0)}
x->0

a{Mata2)+ Ma—r)}

a0 {Ma?+ax+a")+ J(a?-an+2%)}
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Now, the limit of the numerator=a.2/a amd, i of the
denominator = 2a.

.. the reqd. limit= ./a.

Note. An algebraical or trigonometrical transformation often

enables us to obtain the limiting values without using calculus, as

shown above, which case belongs to the form 0/0. .

Ex.9. If Lt oun Dat a sen 2 be fimie, find the value of ‘a’ and

the limit. [ 0. P. 1981 ]

The given limit being of the form 0/€

= Dt 2008 2¢-+a cose

a~>0 32? : (by § 8&2)

When v0, the denominator 827=0; hence, in order that the

limiting value of the expression may be finite, the numerator

(2 cos 22-+a cos x) should be zeroasa—>O0. .°. 2+a=0, u6., a=—-2;

when a=-—2Q2, the given limit becomes

-DLt sn 2-2 sin [ ° |
a—>0 a* form Oo
Dt 2.008 24-2 cos & [ 0

w—>0 3a? form 0

=Li —* sin 2: ae +9 +2 sin & [ form ° |

x—>0 oO

= Lt con an+2 cone _ 6
a>0 6 6

==—j],

I
=

Ex 10. Hvaluate Lt (222) [ C. P. 1947 ]
x0 x

1

Let un (SRe =) °
to]

. wi tan @) tan xo's log um > tog (22) mtog (8 2) /a.

Since Zt Li B21, Di log w is of the form 5
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“ Lt 9 (log u)= Lt | log (‘22 2) |

3 a

=Lt 227 —~sin Qe w= Lt 2-2 cos 27
— +=

220 2& ge sin 2 a->0 sin 20+ 22 cos 2a

— Dt 4 sin Qn =O

a0 4 cos Ya— 4a sin Qa
e

Since Lt it (log u) =log (Li u), .. log (Lt u)=0.
z->0

. Lt u=e°=I, ¢e., the reqd. limit =1.
xz>0

Otherwise: Writing the finite form of the expansion of tan x by

Maclaurin’s theorem,

tan ¢=a2-+3a'%a where a=sec Oz (1+2 tan?6z),0 < 6 < 1,

, = bi jog 2%. 14, eraser 1 2 ). logu x log 7 7 108 7 = 7 log (1440

- 1 lo g (1+ 42° a) gra= > log (1+). dau,
co a

where v= 47a.

When 2-0, v0, also Lt 0 1 log (1+v)=1. { Art. 2°9 J
v

1
Lt = Lt . LtHence, oo (tog u) 20 0 (1+) ano ($a).

oe Lt (log u)=0. Hence, etc.
a->0

Ex. 11. Evaluate Lt (¢°-1) tan’a,
a0 xz

Given limit= L¢ [@=-1. (#22) ‘|
a->0 © x

== Lit ai, {et ene},
ae0 2 20 «©

Now, Li, ei ( being of the form ~ 5 att, % Oe =1,
a>0. & 0

Also, Lt @2®.1. ., the reqd. limit=1x1?=1.
z>0 2

Note. Such forms are sometimes called Compound Indeterminate

forms. In evaluating limits of such forms, the use of the theorems on

limit ( Art. 2°8 ) is of great help.
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Examples VIil

Evaluate the following limits :

. @—sin x cos a. / tan 2-a@
1. (i) it ze > Gi i) Lit

: 20-810 ©

(iii) I it i oe a ' (iv) Is, mae

i) mga’
(vi) Li. é tet £ (vii) Lt on be

(it) Le Tee ray” Oo) ee
(x) Lt en enn * (xi) L , tan ma—n tan 2,

2»0 2 —- sin & on sin £— sin nx

(xii) Lit J2r ~ J6-2 | (xiii) Li, 2 sin s—sin 20
2 80-2,/19-5 tan®@

sin log (1 + »)

(xiv) Dt tog (L- log (1+sin x)
gin 297+2 sin*a— 2 sin w\? 1-—cos x(xv) Li [ (se Ae? sine aoa a - oF :

x0 cos @— cos*2 cos @ sin" az}.

; (42-2) log sin x cos +

(xvi) rit Fe *—1+log (1+a— $n) *7- al:
2. (i) L tan So Gy re log (a?) ,

a ‘tan 2 Di, log (cot#a)

Gif) Li = (n berng positive). .

‘t y) pt ten Sax (~) Le le e= cot dna,
a-rh BOC rx x->0+ cot nx

n+ 3a
(vi) Li, logtans, (tan* 2x). (vii) Let it 1a bat
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/

8B. (i) Lt w* log (*). . (ii) Lt cosec (xs) log 2x.
a0 o>

(iii) Li @ log sin*®a. (iv) Lt seo x (@ sin x - tm),
x0 x>gr ‘

(v) Ze sina. log xe? an | (vi) Lt sec 5x cos Tzx.~
a->0 war

(vii) Dt «TM (log x)", m and n bewng positive.
aw—>0-+- -

a

4. (i) Lt (sec x— tan ah (i) Li (a~*—- cot a).
a->ar az->0

(9) [A-slteh 6 LAL -galx sin ee1Le— log x

4 1](v) it lees x— 2,
, 1_1 .(vi) It. [2 2 ee log (1+ z)|

(vii) Lt (a— J/x*—-9). (viii) Le (J/z% 492-2).
w2-oo x00

a

5. (i) Li m2? (ii) Lt g?ane 4
a

(iii) Lt (sin x)? *82&, = (jy) Li (cos g)ootra
@ xu a

2

(v) Lt, (sin a)ben (vi) Lt ghee

(vii) Lit (cot 7a)89 =, (viii) Li, (1/n?)tene, -
a> o> *

. .. m2 \ilog (1 -d) a 11 ~log x) +(ix) Lit (1 — x?) PP. (x) Li (log a) *.

(xi) Lt (1+ a) (xii) Lé it (222 a
Vas Wa?

(xiii) Lt xt (#25 ane)" : (xiv) Li (22 in 2) °
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6. Lt Op@ ” +410" + +4 go 2 +: "tan

soo Oot” +b40TM""2 +b, an +++ + bm
(ao £ 0,bo = 0), according as nm > = or <TM

(n and m being positive integers ).

% Lt (ao2TM +a ,0""1+--++am)"*', m being a positive
@-POO

integer (a, »f 0).

8. Li 3% sin 5 2 (ax 0). [C. P. 1946 }
w->Sco

xe ¥. © + 608 —1+(24-—1)%9. (i) Lit +L Gi) Lt * os ph-otr

10. I Lt 28m 2 fin Oe
tan®2 is finite, find the value of a,

and the limit.
11. Adjust the constants a and 6 in order that

Lt O(l+a cos 8) = 6 sin 6

6-0 0
= 1.

12. Determine the values of a, b, c so that

(i) ae "—b ec cos 6 2+ce”
— 22, asx — 0.

xv sin £

(ii) (a+b cos 2) x—-csine
2 >lasxz—> 0.

ii) asin ©-— bx + cx? + 2°

92" log (1 +2) — 22° +a

limit as z -> 0, and determine this limit.

Evaluate the following { Hw. 78-19]:

e
13. (i) Lt 2 log Lt),

4 may tend to a finite

Gi) Lt | 2 - Ze log (1+2)}-
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14.

15.

*16.

17.

18.

19.

a->0

(iii) Lt @ Gos w—log (1 +a)

a->0 x?

an *a@—@?

x

Li e*—e *+2 sin x—4e

wo->O 2

it, e* —(L +2)
Li [/ {ates 20 — sin z (2-22 )"].

amb ire @ sin 27-2 cos x 2 sin 2n

Lt | lata). cot {F n/(252}}]

Lt, E43) — e-9)
Lt Je- Jat J(e—-a)

z->a+0 J (x? — a*)

Show that [ Ha. 20-26]:

20.

21.

*22.

*23.

*24.

25.

Lt a” gin & =O or b
coo a

according as O<.a<.{1, ora > 1.

Lt {e—2* log (1 + * ha.
200 x

py ee (lte +2”) + log (1 e+e") _,

2c-»0 sec £—- Cos & ,

-1 (i sine < sin’ 3)" =1
z>0 2 sin 2\ cos —cos 32

t 108 sinte (cos z)

a->0 log sint%z (cos$az) ~~

L

\Tt Ate 4. — te,
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cn, (ce tO tat
0

=d a oo eh ee-> 00 n | 143 %
=z

ty Evaluate Lt aTM sin ba — b sin ax
a>> tan de—tan ag

*O8. If (@)=a? sin (1/x), and y (x)=tan a, show that

although Li SA does not exist, Li it ee } exists, and =0.

ANSWERS

1. (i) 4. (ii) 2. (i) 2. 4 = (av) na". (v) 6.

(vi) 2. (vin) log (a/b). (viii) 2. (ix) —-

(x) 1. (xi) 2. (xii) zy. (xiii) 1. (xiv) 1.

(xv) 163. (xvi) 4.

2. (i) 2. (ii) —1.0 (i) 0. = (iv) 4. (vw) 8. (vi) 1. (vii) -2.

8. (i) O.@hi) (—1/r). (ii) 0 = av) -1. (v) 0. (vi) —Z. (vii) 0.

4, (i) 0, (ii) 0. (iii) —%. (iv) 4. (v) —d. (v1) §. (vii) 0. (viii) 1.

5. (i) 1. (Gi) 1. Gh) 1. Gv) oe) (wi) He. (vid) 2,

(viii) 1. (ix) e. (x) Ife. (x1) 1. (xia) 1. (xii) ob, (xiv) et,
6. -+oo or, —0° (corresponding to ay/bp being positive or negative),

Aolbo, O according asm > = or < m.

11. 8&4. 9. (i) 1. (ii) -8 = 10. a=; limit=1.

1. a= ~$, b= —$. 12. (i) a=1, b=2, c=1. (ri) a= 120, b= 60, c= 180.

(iii) a=6, b= 6, c=0; limit= 45.

18. (i) # (ai) #- Gi). (iv) BA ye 15. 0.

16. —#. 1%. 4a/7. 18. —8. 19. 1/ 9c.

27. b*7+ (b cos be—sin be) cos*be.



CHAPTER IX

PARTIAL DIFFERENTIATION

( Function of two or more variables )

9°1. Definition.

If three variables *, x, y are so related that for every

pair of values of 2 and y within the defined domain say,

ag2x<bandec<y < d, wu has a single definite value,

wis said to be a function of the two wndependent variables

xz and y, and this is denoted by u=/(a, y).

More generally (i.¢., without restricting to single-valued

functions only), if the three variables ~, 2, y are so related

that uw is determined when @ and y are known, u 18 sazd to

be a function of the two wndependent variables x aid Y.
e

Illus: Since the area of @ triangle is determined when its base

and altitude are given, area of a triangle is a function of its base and

altitude.

Similarly, the volume of a gas is a function of its pressure and

tem perature.

In a similar way, a function of three or more indepen-

dent variables can be defined.

Thus, the volume of a paraillelopiped is a function of three vari-

ables, its length, breadth and height.

Note 1. If to each pair of values of z and y, uhas a single definite

value, wis called a stngle-valued function (to which the definition refers,

and with which we are mainly concerned in all mathematical investi-

gations), and if to each set of values of x and y, w has more than one

definite value, u is called a muliivple-valued function. A multiple-valued

function with proper limitations imposed on its value can in general be

treated as defining two or more single-valued functions.

14
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Note 2. Geometrical representation of s=f(x, y).

When a single-valued function z=/(z, y) is given, for each pair of

values of x and y, there corresponds “a point Q in the plane OXY, and

if a perpendicular @P is then‘erected of length equal to the value of s

obtained from the given relation, the points like P describe what is

called a surface in three-dimensional space. Thus to a functional rela-

tion between three variables 2, y, 2, therefore corresponds a surface

referred to axes OX, OY, OZ 1n space.

Note 3. Continuity.

The function f(x, y) is said to be continuous at the point (a, b), if

corresponding to a pre-assigned positive number e, however small, there

exists & positive number 6, such that

| f(z, y)—f(a, b) | <«,

whenevor 0 < | w—a l< 3 and 0< |y-b] < 4.

9°2. Partial Derivatives.

The result of differentiating w=j/(e, y), with respect

to 2, treating y as a constant, is called the partial derivative

of uw with respect to w, and is denoted by one of the symbols

éu, of
dx bx. fala, y) [ or briefly, Sas ], Ue; ete.

Analytically, J = Lt Fat Ae. v) - fe, y)
n->

when this limit exists.

The partial derivative of u=fla, y) with respect to y

is similarly defined and is denoted by by’ by’ Sy (a, y)

Lor simply fy ], wy, ete.

Thus, 2f = Lt f(x, y + Ay) ~ f(a, v),
dy Ay>0 Ay

provided this limit exists.
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If w=f(a2, y, 2), then the partial derivative of «w with

respect to zis the derivative of uw with respect to x when

both y and z are regarded as constants.

Thus, of az, fe+Asz, y, 2)—fla, y, 2),
Ax->0 Az

imi of, of,Similarly for By 8a

e

Illustrateons :

Let w=2?+ay+7" ; then

au ou e
5x Qra+ 7 ; by ZY +2

Let w=yz+2e+2y; then

eeUt bu bu
=ytzZ; ay ete 52 =2rt+y.

Note. The curl 6 is generally used to denote the symbol of partial

derivative, in order to distinguish it from the symbol d of ordinary

derivative.

9°38. Successive Partial Derivatives.

6u du. .
Since each of the partial derivatives rn by is in general

a function of 2 and y, each may possess partial derivatives

with respect to these two independent variables, and these

are called the second order partial derivatives of u. The

usual notations for these second order partial derivatives are

é (6 .. b7u( “), 4.@., sae or fag etc.
ox Ox

6 (du\ . 57a
tby (24) 2.€., 5y4 or fyy etc.

& eH), ie ont or f
da \oy ” dx dY vy:

2

S (2), 4 SY oy fun,
6x #.6., oy 6x
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Although for most of the functions that occur in appli-

cations we have,

é7u_ _—6"u

ox dy dy 06x

z.¢., the partial derivative has the same value whether we

differentiate partially first with respect to @ and then with

respect to y or the reverse, 1 must not be supposed that

the above relation holds good for all functions ; because, the

equality implies that the two limiting operations involved

therein should be commutative, which may not be true

always. Ex. 8, Art. 9°4 will elucidate the point. We can

; . 674 674e if ae

prove in particular that if the functions By Ox and « Sy

both exist for a particular set of values of 2, y, and one

of them is continuous there, the equality will hold good*

We have similar definitions and notations for partial

derivatives of order higher than two.

If z=f(a, y), partial derivatives of z are very often

denoted by the following notations :

d2 52 6°z "2 872
=~ = —_ gm —_{ = = = 6
sa oy © on* ” Susy dyor sy? °° *

Illustrations :

Ua erry? +?

Gu 3 2. 57m ae Btw =5x Ba7*+ Day? ; 302 62+ By" ; By da 4ny.

du 3 2p) s B70 a, Stu _

* See Appendiw.

t These notations were first introduced by Monge.
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9°4. Illustrative Examples.

Ex.1. If w=r cos 0, y=r sun 0, so that r= n/(v2+y"),

6=tan-'(y/x), show that

be 1 [or and . mle

ox _ or © ot cos @

ba 9: 8. _ 4 _7sind_ _sin 0,
50 rain 0; ioe yt rr? r

®

Hence, the required result follows.

Note. If 7 is a function of a sengle varvable : then we have seen

that under certain circumstances (See § 4°7), 4 54 /% dy" A simular

property 1s not true, a8 seen above, when y 1 a Function of more than
one varvable.

=f v ouEx, 2. If u=s( 4 ); show that wet yy =0.

u=f(z), say, where g=y/a.

5 du dz ,

setae" F=f (ape =-4 fe)

Similarly, ua f (else = > f’(2).

. a OU 547
- ty can 2 fet 2 fle)=0.© 5a

Ex. 3. Show that

"re ot =!
y>0 z>0 ak y

Left side= 7, v=Tt 1=1.
a2->0 a>0

Right side=7z -“=y7z (-1)=-1.
y>0 yo0

Hence, the result,
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Examples IX(A)

1. Find fz, fy for the following functions f(z, y) ;

(i) am* + Qhay + by®. ~ (ii) tanTM*(y/a).~

(iii) 1/ /(a? +y%). (iv) log (2? +y?)a

(v) w?/a? + y?/b? — 1. ‘

2. Find fez, Say, Fyn: Sv for the following functions
F(a, y) :

(i) 2? + 8a?yt+3ay?+y?,° A (ii) et? tevtv SN |

(iii) a cos y+y cos 2. ~_/ (iv) log (w*y + ay”).

8. G) If V=x7 +y? +27, show that 2V_t+yVyat2Ve,= 2X. ,

(ii) If w=a22y +y%2+ 222, show that

Un +My +%e=(etytz)2. ,

(iii) If w=f(ryz), show that

Lig = YUy = Zbg. an

2

(iv) If w= ot ” + st prove that

but OU OU
ty +2g—=0.-..ox Y sy * bz 0

dU, _ os a @ iY,
4. (i) If w=sin y + tan x show that @ an eC Ly by =(Q),

.. _aty, a(1—y?)+y(1—2?)
(ii) if U= 1 py and V= (L+ax2)(1+y?)

prove that UzVy = UyVz.

5. (a) Show that & e428 =0, if

(i) w= log (x? + y”). (ii) «2 = tanTM*(y/z).

(iii) w=e" (2 cos yy sin y).

(0) If V=2 ton?» then? ae i V =9,
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6. (i) It f(x, y, 2)= | 2? y” z° |

7 y Z |

1 1 1 |
show that fatfyt+fz=

*Gi) Ifw=| 1 1 1 1

2 ¥Yy Z w

2 2 2 2
x y° Z w

a? y* 2° w?

show that wUz, tuytuszt uy =O.

7 If V=ae7+Qhay + by?, show that

Vx Vuy — QV2Vy Vey + Vy" Ven = = 8(ab - 2) py
8. If w=log (2? +y° + 2° — 8ryz), show that

(i) éu ou, du 3 ,

Sat by 6z avtytz
s by 67, 8° 3

(ii) 5 + ey ato 2 @@ty+e* [C. U. 1946 |

9% Tf V= J(et*+y? +2"), then View + Vyy t+ Vaz = 2/0.

10. li V= 1/ M(x? +y? + 27), then View t Vuy + Viz =0.

11. Ifew=e""*, prove that

X ‘ A bo u =(1+32y2+2"1 222) ere (6.0 1947 ]
"br Oy 02 yaney be

12. (i) If V=(ax + by)* — (277 + y?), where a? +5? =9,

show that Vaz + Vyy = 0.

(ii) If «= 38(aar + by + cz)? — (a? +y2 +27) and

a? +b? +c? =1, find the value of vs + cs + 2

[ 0. U. 1984 ]
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Gii) If w=av?+ by? +027 + Afyz+2qza+ hey, and
z

> <tr 0, show that at+td+c=0.

18. Show that if u (2, y, z) satisfy the equation

2bt 674 + 6? uo 0,
gt os —

bx? éy" 627

then (i) Gu , Ou, du satisfy it,
6x OY oz

and also (ii) op OH 4 yi + 2°" satisfies it.be oy ézZ
e

14. If«w=log (2? +y? +27), then

671 67a 88

"sy oz 6260 7 6mu dy

15. Ifw=log rand r?=27 +y"7 +27, prove that

(2 wy O° 49 t) 1.

éa"® dy? dz?

16. If y=f(vxt+ct)+4¢(x— ct), show that

dy _ 28%,
ot? 6x”

17. If w=f(an? + Qhryt by”), v=¢ (ax? + Ahay + by”),

show that é 9 (82) 2 ust):
oy

[ OC. H. 1984}

*18. (i) If V=etyte, Vea? ty? +e2?,

Wea? +y% +2° — B8eryz.

Gi) If OV=atyt2z, V=an7 +y% +27, Weve tang _
show that in each case} Ue Uy Uz

Va Vy Ve

We Wy WwW,
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*19. Ifa, B, Y be the roots of the cubic 2* + px? + gz +r=0,

show that

ép 6q or
da da da

6p Og Or
op op op

dp ° 6g or
| OY oY oY

vanishes when any two of ths three roots are equal.

*20. Show that

_ 8° | fi @) faz) faz) | | Fa’ @) fa’ (a) fo’ (@) |
ow by 52 | 4, (y) da (y) ds (vy) | = | ba'(y) a’ (v) os’ (vy) |

YP. (z) Yo (z) Ys (z) y,'{z) Yo (z) Ys. (2)

where dashes denote differentiations w. r. t. the variables

concerned. "

ANSWERS

1. (2) 2(aa+ hy) ; 2(ha + by). (11) ae zm try

Qii) — — .__4 . (iv) ~ » =, .
(a:? pat (a? +42)? x oye +y?

(v) 2. 24. 2. (i) 6(c+4), Ble+y), 6lo+y), 6a +y).

(ii) at(2n +y)27+9}, 2{(22+ y)(a+ 2y)+ 1},
e{(224-y)(a2+2y)+1}, 2f(a + 2y)* +2},

where 2=¢77+*#+v?,

(iii) —y cos 2, —(sin w+sin y), —(sin w+sin y), —@ cos y.

1 1 1 1 1 1
= -7 a —_ sen cn ee eee ne ge — => -——_—— >e(iv) Fe tora’ (at+y)? (x+y) Fr era}

42. (ii) 0.
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9°5. Homogeneous Functions.

A function f(z, y) is said to be homogeneous of degree 2

in the variables 2 and y if it can be expressed in the form

xv" db (+). or in the form y"¢ ( ) }

If V be a homogeneous function of degree m in @, y, z,

6V, éV. 6V ‘ 
sa 

t f

da oy’ 6g 1 ® homogeneous function othen each of

degree (n — 1).
‘ a

Since, ag?+2heyt+ by? =a? ja+2hu +b ( u ) } =27¢ ( u),

ac?+2hey+ by? is a homogoneous function of degree 2 in 2, y.

Similarly, y/c, « tan-?(y/x), x? log (y/x) are homogeneous functions

of degree 0, 1 and 2 respectively.

Note 1. An alternatwe test for a function f(x, y) to be homoge-

neous of degree 1, 18 that f(ta, ty)=t" f(x, y) for all values of #, where

t is independent of 2 and y.

Note 2. The test that a rational sntegral algebrare function of &

and y should be homogeneous of degree n is that the sum of the indices

of @ and y in every term must be n.

Note 8. Similarly, a function f(x, y, 2) is said to be homogeneous

of degree nm in the variables x, y, 2, if it can be put in the form

a (2: £); or if f(tx, ty, tz)=t"f (x, y, 2) ; and so on, for any number

of variables.

Thus, f(z, y, z)= Jz+ Jy+ Vz is a homogencous function of

degree 4, since

ftw, ty, t2)= Jiat Jig + Jie=t fle, v2).

9°6. Euler’s Theorem on Homogeneous Functions.

If f(x, y) be a homogeneous function of x and y of degree

n, then

6
cay Haat (x, 9)
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Since f(a, y) is a homogeneous function of degree n,

let f(x, ) = 2"o(y/z)
= 2"¢ (v), where v = y/x.

of an nm at(,\ OVsep *dlojt+e ¢'(v) =

=n” (v) +2” ¢' (v)- 3

Bf matin) Pom at (ny L,Sy xi (v) x” ’ (v) x

x ov +y ,, = na"d (v) = nf (a, y).

9°7. Differentiation of Implicit Functions.

Let the equation f(z, y)=0 vee >» ees (1)

define y as a differentiable function of a2, and let fe and fy

be continuous.

dy . of , of ,
Then, we can find da 1D terms of dx dy as follows :

We have, f(a + Az, y + Ay) =0.

flat Ax, y+ Ay)—f(2, y)=0. s+ (2)

Now, by the Mean Value Theorem, [ See § 62 ]

S(a+ Ax, y+ Ay)—f(a, y + Ay)

= Aa © f(a +0,40, y+ Ay) fo<6,<1].

ST (a, y + Ay) —f (a, )

= dy © fle, y+ 0,40) [(0<0,<1].
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Adding these two and using relation (2), and dividing

by dz, we get

Ay 65
o +ag! (@ + 91.40, y Ay) +7 byS(z, y+0,4y)=0. ... (8)

Since, y is a differentiable function of w, when Jaz > 0,

Ay — 0, and since, f; and fy are continuous, we get by

making Am — 0 in (3),

Of , dy of _
62 dx oy 0. ‘

of

° dy _ _ ox = 4x eesee dx ot or fy Sy ¥ 0). (4)

oy

9°8. Total Differential coefficient.

Let «=f (2, y), where x= ¢ (t), y= (i).

Then, usually « is a function of ¢ in this case.

To obtain the value of a

Let us suppose that f,, fy as also ¢’ (t), »’(t) are

continuous. When ¢ changes to t+ At, let x and y change

to 7+ Az, y + Ay.

Now, u=f{g(t), xO} = F() say.

dur, Ft+4t)- FU

at At->0 At

apy Sidlt+ At), vt + 4tt— flo, v@
At->0 At

@7, Liet4u, y+ 4y)-f, vy)

Ai>0 At
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= Lit fetse tay — f(a, y+ Ay) Aw
Ato Ax At

fle, y+ 4) — fle, v) Av),
Ay At

But by the Mean Value Theorem, [ See § 62 ]

F(a + Ax, y + Ay) — f(a, y + Ay) = Avf,(e2 + 04x, y + Ay)

and fla, y+ Ay) —f(a, y) = Ayfy(a, y +8’ Ay),

where @ and @’ each he between O and 1.

When At > 0, Ax > O and Ay > 0 and Az/At > ¢’ (),
Ay/At > y' (2).

Also fa (v+0 Ax, y+ Ay) > fe (a, y) ;

Sy (a, y+’ Ay) —> fy (x, y),

. du_, dx ay, _
“" at Jeg ty at (1)

du_dudx_ du dy, a.
6 Gt dx dt dy dt (2)

Note 1. As a particular case, if w= f(x, y) where y is a function

of x,

du_ 6udu __ du, du dy

dx éx+35 dx

a is called the total dufferentral coefficient of u, to distinguish it from

its partial differential coefficient.

Note 2. The above result can easily be extended to the case when

wis @ function of three or more variables.

Thus, ifw=f(a, y, z), where a, y, s are all functions of 2,

du _ ou daz, du dy, du dz,
dt dudt dy dt bz dt
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9°9. Differentials.

We have already defined the differential of a function

of a single independent variable; we now give the ocorres-

ponding definition of the differential of a function of two

independent variables z, y. Thus, if w=/f(a#, y), we define

du by the relation

du=fy An+fy Ay.

Putting w=2 and w=y in turn, we obtain

dx=Az, dy=Ay* ees (1)

so that du=f, dx+f, dy. ‘ase (9)

Multiplying both sides of the relation (1) of Art. 9°8

by dt, and noting that since, x, y are each function of ¢,

_ au o dy
du = dé dit, dx = di, dy = dt at

we get, adu=fydxt+fy dy

which is same in form as (2) above. But 2, y here are not

independent, but each is a function of #.

Hence, the formula du=fe dxet+fy dy is true whether the

variables x and y are endependent or not.

This remark is of great importance in applications.

Similarly, if w=/f(a, y, 2),

du = f, dx + fy dy +f, dz,

whether z, y, z are independent or not.

Note. It should be noted that the relations (1) above are true only

when az and y are independent variables. Ife and y are not indepen-
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dent but functions of a third independent variable ¢t, say 2=¢(t),

y=y (i), then dr=¢'(t) di and dy=y'(#) dt, where di= At.

9°10. Exact (or Perfect) differential.

The expression

f(a, y) det+yp(a, y) dy : ss (4)
e

is called an exact (or perfect) differential if a function

of 2, y exists such that its differential

au 1.é., oe de + May ese (2)

is equal to (1) for all values of da and dy.

Hence, comparing (1) and (2), we see that if (1) be an

exact differential, it is necessary that

se = 6 (a, y) and $ * y 7a y) ,

Differentiating these relations with respect to y and «&

respectively, we have

6°44 dh 67u oy.

by da dy Oo srby 5a

6°u _ o°u

Oy Ox baby

ordinary cases, in order that (1) may be an exact differ-

ential, it is necessary that,

dd dy.

éy ox.

Since, in all ordinary cases, hence in all

It can be easily shown that this condition is in general

also sufficient.
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9°11.

Functions.

Tf w=f(x1, 2&9),

where %1,=¢, (2, y); 1

variables then,

Partial Derivatives of a Function of two

do (2, y), and 2, y are independent

du | Ou 6x; 6u_ dXe

6x ” OX, “Ox OXe Ox

ou du 6x, , du 6X2

dy Ox, dy | 0xa Ov

We have

du = 7 ot +4 dag e-- (1)
OX

624 624 O25 es
= - = —- - +ax, 5a dx+ by dy, AX. 5 ax ay.

When values of 21, £2 in terms of 2, y are substituted,

w becomes a function of x, y ; hence

ou ou oe
au = ix dx + by ay. (2)

Now, substituting the values of dz,, dx, in (1), we get

du ~ (5 6&1, 6% Ra) g (Su 6X5 , ou a2) ay,
62, 0% 6%, 62 Ox, Oy * S26 oy

Comparing this with (2), since, dz, dy are independent,

the required relations follow.

Note. The above result admits of easy generalization to the cases

of more than two variables. Thus, if w=f (x,, 22, #;,), where z7,=

«<P, (2, Y, 8), Go = Py (2, Y, 2), Te=H, (w, y, 2) and x, y, s are independent
-yariables, then

Su, Sa dx, , Su 5x0, du dx,
dx dx, 8x dx, Ox ‘dx, ox



PARTIAL DIFFERENTIATION 225

sa sa Sx, 6u 8xe oa 5x,

Sy” 8x, dy dx, dy dx, by

Su Su dx, , ou Sx0 du dx,
Sn" dx, 82 dx. On 8x, 32°

9°12. Euler’s Theorem on Homogeneous Functions

(generalization).

If f(x, y, 2) bea homogeneous function im =, y, 2 of

degree n, having continuous partial derzvatives,

pba y +, of ng
then © 5 by Z 55

Proof: Since f(z, y, z) is a homogeneous function,

Sf (ta, ty, tz)=t" f(a, y, 2) st -*- (1)
for all values of ?¢.

Putting tvz=u, ty=v, tz=w

differentiating both sides of (1) with respect to t, we have,

of ou, Of 80, Of 80 nes )
bu dt ' du dt ow ot S(t 2),

oy 4 Fm nit fle, y, 2). (3)

Putting ¢=1 in (2),

2 24 y+ 2U = nf

Note 1. The above method of proof is applicable to a funotion of

any number of independent variables.

Note 2. The above result can also be established as in the case

of two independent variables +.¢., by writing

Slay, =a (2 u, 2 )=n"s (u, v), where u= fy y= - and then

ning of, a, a,
obtaining ba By’ ie

15
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9°18. Converse of Euler’s Theorem.

If f(x, y, 2) admits of contunuous partial derivatives and

satisfies the relatvon

Of , of ofwz + va, +25 nf (x, ¥, 2),

where n is a positive integer, prove that f(z, y, 2) 1s a homo-

geneous function of degree n. [ Cc. H. 1960 ]

Proof: Put €= =) = e (=z;

then =ét, y=nt, z=¢. Suppose when expressed in terms

f 9 n, ¢,
off fla, y, z)= (8, n, ©.

of (5938 avon , dvot

Then, 24 "@ ee eee

ov 1=O at 2 294 5. 0]

Similarly ye = nee

ot 2 (gnee dvdn , vat

and 25, \oédz * Onde’ dtdz

-2( Ov @& ov y +01]
8

08 2? On z? a¢

Ov
= +~ £36 og -"5n ee

Hence, the given relation reduces to

co? a Lov a
ae mv, OF, 0 oC ¢

whence, log v= log +a constant,
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where the constant is independent of ¢, bu& may depend

on £ and 7 ; let this constant be denoted by log ¢ (&, »).

Then, v=("¢ (&, 7),

1.6., f(x, y, 2)=2 no (2 ¥)
z

which, according to the definition of a homogeneous

function, shows that f(g, y, z) is a homogeneous function of

degree n.

Note. If n be any rational number, the proof and the result

remain unchanged.

9°14. Illustrative Examples.

3 3s

Ex 1. Tfu=tan-* an 1 show that

op Ot op Ou
= on iy]sot! 5y tt Du.

From the given relation, we get

aety® a? {1+ (y/r)*} (#)tan w=" 7 = "P\- }on any @—(yfa)} 7? OVE
.". tan u is a homogencous function of degree 2.

Let v=tan wu; .*. by Euler's Theorem,

6v2 ty 5 = 20,

ou Ou,
o 2 2 -. £2 8eC ust ¥ sec u sy? tan wu,

. oot du _ 2 tan ub

°* dx 3y = sec 7

Ex.2. If A be the area of a triangle ABO, show that

adA=R(cos A da+cos B db+cos C de),

where R 1s the corcum-radius of the triangle.

= sin uw COS U= Bin Ju.

From trigonometry, we have

A? aa yy (2626? + 2c? + 2a7b? —at—d* —c*),
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Thus, A is a function of the three independent variables, g, b, c

Hence, taking differential of both sides,

BAdA = zy {4a (b? +0672 —a?) dat 4b (c7+-a7—57) db

+ 4c (a? +b? —c*) ao}
= yy (4a .2bc cos A da+4b .2ca cos B db+4ec .2ab cos C deo)

=tabe (cos 4 da-+-cos B db+cos C de).

“ da =e (cos A da-+tcos B db+cos C de)

=F (cos A da+cos B db+cos C de).

Ex. 8 If P da+Q dy+R dz can be made a perfect drfferentral of

some function of x, y, 2, on multrplecation by a factor, prove that

29_9R) 4 9(2F_2P) 4 p(3P_20)_p (x me) +O (se - Oz +h oy oO 0.
[ O. H. 1949, 1954 ]

Suppose u is a function of z,‘y, 2 and

Bw (P dz+Q dy+R dz) =du, eee es (1)

where # is some function of a, y, 2.

Also, dua ou da+s y+ gu ds one -++ (2)

since u isa function of a, y, z

Oomparing (1) and (2),

Ou 0oY w= uP eos (3) ’ ay =e “ee (4) ; Ae BR “ee (5)

8% oP +P Om C on differentiating (3) with respect

°* Byda ” ay” ae toy
-- (6) (on differentiating (4) with respect

= use +05 to a assuming = Ug 07U
Oyen omdy

Similarly,

07% eQ nok Ou

dey “Se +95 3e #5, yt Bay -_ @)
074 PRR 26 2Ps p38 wee w+ (8)
onda * Ox Ox dz
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From (6), (7), (8), we get on re-arranging

oP _20 OM p Ou wee we (9w (5 5 )= q@ On Oy (9)
oq _OR Ou on ase wee
(- ay )= =a, (10)
OR _OP\ _ po oe, we -(55-3 jg )=P aa (11)

e

Multiplying (9) by R, (10) by P, (11) by Q and adding together, we

get the required result.

Note. If P dz+Q dy+fR dZ be wiself a perfect dofferentral, then we

0@_0R_ Oh @P_oP_2Q =0,
— ineasily deduce the conditions that 0s Oy On Os oy O@

Ex. 4. If V be a function of « and y, prove that

0°V_,0°9V_o0°V, 1 OV, 10°V

Ox? “Oy? Or? 4 Or 4400?

a .- [0. H. 1958]where x=r cos 6, y=r son @.
4

Here g=r cos 0, y=7r8in 6; wea! °
‘ ~

a

se r= Natty O=tan-**.

Ch _ or x _ 7 COs 0

oy or y _7 Sin 0
=sin@; 3-=—>475=35 -- =sin 0.

or Oy Jat+y rn

0@_ 4d (- "= a iy __rsind_ _sin 6
02 1+? a? stty? go 7 r

Simularly, se = one .

Since V is a function of (x, y), and « and y are functions of 7, 0, so

V is a function of (7, 6).

aV_ OV ar, 2V 26

Hence, 5. dr dnt 00 da

= Cos O-- — ag ace eee (1)
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OV eV or, OV 08
Oy Or dy 08 Oy

COs 0 UY wee (2)aa oy
sin 0.5, r 0o@

Thus we have the following equwalence of Cartesan and polar

operators :

=( g 2-2 d ©)
So or” hr (88 {

a 9 Oo | sin @ A\(e 38 OV _ sin 6 0

“s alo = (cos or r 00 ( COS” Orr 06
0°V_sn007V OV sin 6

io as

= 008 § [cos 6 arte 000730 rr?
sin 6 o7Vw ov 10V _i © |-—— E ® a905 sin 0 > _ = 99 008 8 Lon 0 51

. 07V ag O20 _ 2 sin 8 cos 8 07 V , sin? 0°V , sin?6 OV
.° 0a = CoB” or? r or 00 r' 06? r or

42 sin @ cos 6 OV.

r? 00

Similarly,

0°V_ snag O7V_, 2 8in 8 cos 6 077 , cos?6 07V_, cos78 OV

yo SINC oa FO araet ort 909 Or

2 sin 6 cos 6 OV.

yr" 30°

a7 V Orv WO Vy 1 OV 1 aV.
Ox? Oy? Or? 72 002 x Or

Examples IX(B)

erify Euler’s theorem for the following functions :1.

se met Diag (i3) w= ar + ye + Baty + Bay,
2 2

(iii) ween / (iv) w=sin2 7.

(v) w= (a + y Vat +y?),
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. 4 AY. .
2. Find da in the following cases ;

7 28 +y% =a%. (ii) avty==a>,_f C. H. 1944 ]
,

(iii) (cos 2)” =(sin y)”. (iv) e? +e% = Qay.s

(v) y® + aY =(2 + yt.

8. (i) If w=¢ (Hn), where Hn is a homogeneous function

du bu bu ne. F (x) |
of nth degree in 2, y, z, show that ety sy? 2 62. E(u)

where F'(u) = Hy.

(ii) If w=cos? {(x+y)/(./2t+ /y)}, show that

OU Ot
“ e®t sy +8 cot w=0

4. If V=sinTM* (2* +y7)/(ae+y), then

2Vat+yVy=tan V.

5. If w=a2d we +y(y/x), show that

(1) ns at us = xp (y/a).

(ii) 2 * ten + a + y* Uy = 0.
6. (i) If v=f(u), w being a homogeneous function of

degree 7 in 2, y, show that

bv ov av
pecirs + —— = °ety by nu ay [ C. P. 1948 ]

(i) If V be a homogeneous function in 2, y, z of

degree m, prove that ow i. and y are each a homo-

geneous function in x, y, 2 of degree (x — 1).
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*(iii) If V be a homogeneous function of the n degree

ing, y, zand if V=/(X, Y, Z), where X, Y, Z are respectively

67, dV, 6, bv OV 7 oV Lnbx’ by 62 chow that Xip+¥ oh + Zoe = ne ty Y.

7. (i) If H be a homogeneous function of degree » in

2 and y and if w=(27 + y?)-%, then

in (2) + 2 (H%)-0.

“63 If H be a homogeneous function of 2, y, z of
degree n and if u=(a27 +y? + 2%)-#"+) then

ie (Hse) * ip (ay) * de (50) ~°
8. Ifa=-r cos 0, y=r sin 6, then

(i) da* + dy*® =dr? +1? d0?

(ii) exdy-ydz=r* dé,

9. If d(a, y)=0, v (2, z)=0, then

dy bh dy _ bh, oy.
6a dy 62 dé 62

10. Express A, the area of AABC, as a function of

a, b, C and hence show that

dA _da , db
aA” ata? cot C dC.

11.) If 2? +y? +27 — Qayz=1, show that

de, dy 4. ; Oe a =0

Ji-a* Ji-y8*) J1-2*

12. (i) If aw? + by? +c22=1, and le+my+nz=0, then

ade ay de

bny-—cmz clz- ane amt - bly
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2 _y? 2 1,2
os ws “2 = 2 eee(ii) If ait vee land jagatpayat oar,

—72 2prove that core), y(o" — a") 4 2a" 5) 9,
ay dz

*43. The radius of a right circular cone is measured as

5 inches with a possible error of ‘01 inches, and altitude as

8 inches with a possible error of 024 inches. Find the

possible relative error and percentage error in the volumeTM i
®

as calculated from these measurements.

*14. The side a of a triangle ABC is calculated from

b,c, A. If there be small errors db, dc, dA in the measured

values of 6, c, A, show that the error in the calculated value

of ais given by

da=cos B.dce+cos C.db+6 sin C.dA.
%

*15. If f(p, t, v)=0, show that

(22), cose (ae) pecans” (ap) scones 3dt ly const av p const dp ¢t const "

*16. Ifuw=Fly—2z, 2-2, 2-—y), prove that

du, ou , du
— + — +-—e(),6x by dz 0

17, If w= F(a? + y? +27) f (ey + yz +2), prove that

(yz) ot 4 (z- —2) 5
bu bu
M4 (a 1) =

*18. If w=f (x? + Qyz, y* + 2ez), prove that

iy
z)

Ou

[ 0. H. 1947 ]

2 oa) OU a(y en) 5+ (e yz
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*19. If P(v?-2?, v2 —y?, v2? -—27)=0,

where v is a function of x, y, z, show that

zor y dy 262 Y

*20. If «u be a homogeneous function of 2 and y of

2 dimensions, prove that

(eo +y 2) wen(n-2)x U 55) wm nln lb,
ox

where (« oy uno? <4 + on Seu 2 6” tb,
én» by ° 6a? Y sa by y dy”

[ C. U. 1946 ]

"21. Ii w=a2d (at+y)tyy (at y), show that

57% 57a , 70
—7 +ox? 2 ox dy dy” =0.

*22. If V be a function of r alone, where r? =a”? +y? +2?,

a —r 6°77 , 57V a V, 2 aV_
42!

dy” bz" = adr? y dr
show tha

ANSWERS

3 yon
i) —¥,. i) — Vt log vy, ii) ¥ tan_etlog sin y,

2. (i) oe (ii) ay?) +o log « (iii) log cos w—a cot

Gv) ef — Oy (vy) —Y log yt yet —(a+y)**¥ {log (7+ y)+
Q7—e% a log atay*-*—(a+y)** {log (2+4)+ if

13. *007 (relative error) ; ‘7 (percentage error).



OHAPTER X

TANGENT AND NORMAL

10°1. We shall now consider certain properties of curves

represented by continuous functions. If the equation of the

curve is given in the explicit form y= (2), we shall assume

that f(x) has a derivative at every point, except, in some

cases, at isolated points. If the equation of the curve is

given in the implicit form f(a, y)=0, we shall assume that

the function f(x, y) possesfes continuous partial derivatives

te and fy which are not simultaneously zero. When the

equation of the curve is given in the parametric form

«=¢(t), y=y(t), we shall assume that ¢’ (é) and y’ (¢) are not

simultaneously zero.

10°2. Equation of the tangent.

Def. The tangent at P to a given curve 1s defined as

the limiting postion of the secant PQ, (when such a limit

exists) as the point Q approaches P along the curve (whether

Q is taken on one side or the other of the point P).

(i) Let the equation of the curve be y=f(x) and let the

given point P on the curve be (2, y) and any other neigh-

bouring point Q on the curve be (a+ Aa, y + Ay).

The equation of the secant PQ is (X, Y denoting current

co-ordinates),

aye tAy-y — mp) wz 4Y (yx
¥-y rt Ac x (X—a) Ax (X~ 2)

the equation of the tangent at P is .

9 = AY (7 _ 7) a MY (xY-y dt ne x)=, (X— a),

provided dy/dz is finite.
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Thus, the tangent to the curve y=f (a) at (2, y) (not

parallel to y-axis) is

~va Wye vesYoy=q, (X-x). (1)

(ii) When the equation of the curve is f(a, y)=0

since, ov 7 (fy #0)

the equation of the tangent to the curve at (2, y) is

(X —x) fx+(¥ —y) fy =0. “s+ (9)

(iii) When the equation of the curve 1s x= (t), y= v(t),

; dy _ dy /dz v(t), 4since, da” dt/ dt 4'() ¢’ (t) ¥ 0,

the equation of the tangent at the voint ‘t’ is

Y- v=" 1X- sO} \.. (3)
t.e., v(t) X—¢' (t) Y=4(t)y’ ()- vt) gs (t)

Note 1. When left-hand and right-hand derivatives at (a, y) are

infinite, with equal or opposite signs, the tangent at (2, y) can be con-

veniently obtained by using the alternative form of the equatwn of

the tangent X—x=(Y-—y)(dal/dy) which can be easily established as

before. { See Ex. 82, Examples X(A)}

Note 2. In the notation of Oo-ordinate Geometry, the equation of

the tangent to the curve y=/(a) at (x,, y,) can be written as

y-m=Sf (w,a—a,).

In the application of Differential Oalculus to the theory of plane

curves, for the sake of convenience, the current co-ordinates in the

equation of the tangent and normal are usually denoted by (X, Y),

while those of any particular point are denoted by (a, y). The current

co-ordinates in the equation of the curve are however, 28 usual, denoted

by (cr, y).
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10°83. Geometrical meaning of ay.

Y

The equation (1) of the tangent can be written as

a, ( _ ay)ae Xt+ly—-=z da

which being of the form y=mz+c, the standard equation

of a straight line, we conclude that

de is the ‘m’ of the tangent at (a, y).

If » be the angle which the positive direction of the

tangent at P makes with the positive direction of 2#-axis,

then

a gy wm OY.tan y=m dx

Hence, the derivative wv at (x, y) ts equal to the trigono-

metrical tangent of the angle which the tangent to the curve

at (x, y) makes weth the positive drrection of the x-amis.

[ See Art. #14 }

Note 1. It is customary to denote by y, the angle which the

tangent at any point on a curve makes with the e-BXis.
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Note 2. The postive direction of the tangent is the direction of

the arc-length s inoreasing. Henceforth, this direction will be spoken

of as the direction of the tangent or simply as the tangent.

Note 3. tan y, +.é., au 18 also called the gradient of the curve at

the point P (a, y).

Note 4. The tangent at (a, y) os barallel to the w-awvis, if y=0,

%é., if tan y=O0, «¢e., 1f oY 0, ¢

The tangent at (x, y) 18 perpendrcular to the x-axis (i.e., parallel to

. _ . . _ . dy | da _the y-axis), .f y=gr, i.¢., if cot y=O, ofe., if 1/ a or, dy 0.

10°4. Tangent at the origin.

If a curve passing through the origin be given by a rational

entegral algebrarc equation, the equation of the tangent

( or tangents ) at the origin 28 obtasned by equating to zero

the terms of the lowest degree an the equation.

“10

Let the equation of a curve of the nth degree passing

through the origin be
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Let P(e, y) be a point on the curve near the origin O.

The equation of the secant OP is Y= a

the equation of the tangent at O is

y=Lt x =mX (say). vse (2)
yO

Thus, the ‘m’ of thé tangent at the origin is Lit i.
v0

Case I. Let us suppcse that m is finite ze., the y-axis

is not the tangent at the origin.

Ga) Let us suppose b, ¥ 0.

Dividing (1) by a, we get

Y
Gi tbi® tage t+ bay t cay. © + eeeeee =().

Now, let x0, y 0 then Lt (y/x) =m.

a, +b,m=0, the other terms vanishing.

m= — a4/b4. oes ess (3)

From (2) and (3), the equation of the tangent at the

origin is a,X +b,Y=0,

or, taking 2 and y as current co-ordinates,

a,c+b,y=0.

(ii) If }, =0, then from (3), it follows that a,=0: now

in this case, let us suppose that b, and cg, are not both zero.

Then, the equation of the curve (1) can be written as

a,x" +bgxry + coy? +ag2° + eeeene =(Q, eee (4)

3

Dividing by 2%, a, +b, ; +0, (¥) + agente =0.
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When «—>0, y— 0, we have

a, +bgm+c,m* =0, the other terms vanishing. --> (6)

From (5), it is clear that there are two values of m and
hence there are two tangents at the origin and their equation

which is obtained by eliminating m between (2) and (5) is

a,X°+b,.XY¥+c,Y7=0,

or, taking # and y as current co-ordinates

aor" +bory + coy? =0.

If a, =b, =a, =b,=c, =0, it can be shown similarly that

the rule holds good then also ; and so on.

CAsE II. When the tangent at the origin is the y-axis,

then Li (z/y) as # and y both > 0, being the tangent of the
inclination of the tangent at the origin to the y-axis, is zero.

Hence, dividing throughout the equation of the curve by y,

and assuming a, ~ 0, and making x and y both approach

zero, we find 6,=0. Hence, the equation of the curve now

being

Aietagx? +bory + egy? +-+-+* =0

we see that the theorem is still true in this case.

Illus.: If the equation of a curve be 1?7—y?+4°+8n2y—y*=0,

the tangents at the origin are given by 2*—y?7=0, ie, 2+y=0 and

2—-y=0,

10°5. Equation of the normal.

Def. The normal at any point of a curve 2s the straight

line through that point drawn perpendicular to the tangent

at that point.

Let any line (not parallel to the co-ordinate axes) through

the point (a, y) be

Y-y=m(X-2).

This will be perpendicular to the tangent (not parallel to

the co-ordinate axes) to the curve y =f(z) at (2, y).
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_@ FY _ /¢4.e.,to Y-y (x - a), if mse 1, 2.6., if m= 1/4

Substituting this value of m in the above equation, we

see that the normal to the curve y= f(a) at (x, y) (when not

parallel to the co-ordinate axes) is

OW (y —y)+(K-x)=0. (1)
° ,

Similarly, if the equation of the curve is f(z, y)=0, the

equation of the normal at (a, y) is

X-x Y-y , eee aoe (2)
tf, fy

and if the equation of the curve is «=¢(%), y=y(t), the

equation of the normal at the point ‘¢’ is

b(t) X+y'(t) Y= a) e’@Mt+vO vO. +>)

Note 1. When the tangents are parallel to OX and OY, the nor-

mals are X=e and Y=y respectively.

Note 2. The posvteve direction of the normal makes an angle + dr

with the tangent, or 47+ YW with the x-axis.

10°6. Angle of intersection of two curves.

The angle of intersection of two curves is the angle

between the tangents to the two curves at their common

point of intersection.

Suppose the two curves f(z, y)=0, $(z, y)=0 intersect

at the point (z, y).

The tangents to the curves at (a, y) are

Xie t+ Yfy —(wfe + yfy) =, [ by § 10° 2(2) }
Xbe + Vpy — (rbz + Ydy) =(0.

The angle a at ao these lines cut is given by

tan a= ree Pfs
16
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Hence, if the curves touch at (x, y), a=0, ¢.¢e., tan a=0,

t.6., Saby=baly 1.0. faloa=Sy/oy,

and af they cut orthogonally at (a, y), a=4n, 2.e., cot a=0,

1.6.5 Saboatfydy =O.

Note. If the equations of the curves are given in the forms

y=f(x), y=¢(z), the angle of their jntersection is given by

a. J e)~¢e) ,
tan” 1+f' (oe @)

Hence, the curves cut orthogonally 4f f’(x)¢’ (a) = —1.

10°7. Cartesian Subtangent and Subnormal.

Let the tangent and normal at any point P(x, y) on

@® ourve meet the z-axis in 7’ and N respectively and let

PM be drawn perpendicular to OX.

Y

Eb----zy 0 N *

Then, TM is called the subtangent, and MN, the sub-

normal at P.

In the right-angled A* PTV, PNM,

since, ZLNPM=2ZPTM=y», and PM=y,

Subtangent = TM=y cot p=y / (32).

Subnormal = MN = y tan y=y w.
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Note. PT and PN are often called as the length of the tangent and

the length of the normal (or somctimes simply, tangent and normal)

respectively. Thus, from A’* P7'M and PNM,

PT =y cosee y= y /1+ cot?yey f/t+ (I/y,)?=(yJ/ltyr ya:

PN=y sec y=y /1+tan*py=y/1+y,?.

10°8. Derivative of arc-length (Cartesian).

Let P(x, y) be the given point, and Q(a#+Az, y+ dy)
be any point near P on the curve.

Y

O M N x

Let s denote the length of the arc AP measured from

a fixed point A on the curve, and let s+As denote the
arc AQ, so that arc PQ=As. Here, s is obviously a func-
tion of az, and hence of y. We shall asswme the funda-

mental limit

chord P@ _
psqg arc PQ

From the figure, (chord PQ)? = PR? + QR? = (4x)? +(4y)?.

(chord 2OV" (4° \" =14 (42° ,
As Az Ax

Now, let Q — P as a limiting position; then dr 2 0

and we have

ds\* _ (44) " vee vee(3) + da} ’ (1)
oe ea

ae = it i ee reer cere

als

1.”e

* For proof see Appendtz.
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Since, ite a , we get on multiplying both sides

of (2) by =

s¢ /1+(% Fa, w+ (8)

Cor. Multiplying both sides of (1), (2) and (3) by da’, dx, dy, we
get the corresponding differential form

ds* =dx*+-dy"

= dy ‘ ® =/ (3) -as /1+(2) dx; ds 1+ dy dy

10°9. Values of sin », cos y.

~fQ_ Ay Bs,
From APQR [See Fig, § 10°8] sin QPR = PQ AsPQ

In the limiting position when Q@— P, the secant PQ

becomes the tangent at P, ZQPR—y and As — 0 and

As/PQ=(are PQ)/(chord PQ) —> 1.

e + = Ay = dy «© c4e ees

Az dx eue eeeSimilarly, cos y= = Lt ty As ds (2)

Since tan y= and cot » -= > we get from (2) and (3)

of Art. 10°8, ds =sec Y, o = cosec Y,
dx

whence also cos ¥, sin Y are obtained.

2 ("4 (aan ~ (3)
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Cor. Ite= ol, =v (th EHTS ; eae.

OCC)

~ (B+) ay: =
Note. Relations (2) and (3) of Art. 10°8 can also be deduced from

the values of sin y, cos y, tah y.

10°10. Illustrative Examples.

Ex.1. Find the equation of the tangent at (a, y) to the curve

(ala)* + (yfb)8 =1.
Here the equation of the curve is f(z, y)=(a/a)? + (ylb)* — 1=0.

The equation of the tangent is

(X—«a) fat+(¥—y) fy=0,

we, (X—z). an 8/o3 4 (Y—y) 4473/04 =0,

ine., Xe78/o3+ vy b/o8 = (cJa)? + (y/0)?,

deOry Xan-3/ ae+ yy?/ os =i,

Note. The equation of the tangent should be simplified as much

as possible as in the above example.

Ex. 2. Fand the angle of wntersection of the curves a? —y? =a* and

city%=q? /2. [ Paina, 1940 ]

Adding and subtracting the equations of the two curves, we find

their common points of intersection given by 2n?—a@7(/2+1), ie.,

a= ba rf(/2+1)/ JZ and 2y?=a?(/2—1), 26. y= ta J/2—1)/ /2.

Since the equations of the curves can be written as

f(z, ya? ~y?—a2=0 and (2, y)=ae27+y?—a? J/2=0,

hence if a be the angle of intersection of the curves at (a, y), we have

by Art. 10°6,

Qn . 2y~(2r)(—2 2a

tan ano. aa rte aa =i,
on substituting the values of » and y found above. Hence, a= Zr.

.. the curves intersect at an angle of 45°.
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Ex. 3. Find the condition that the conics

avt+by2=1land a,e°+)b. y=

shalt cut orthogonally.

The equations of the conics are

f(z, y=az? + by?—1=0, wee eve (1)

d(x, y)=a,07 +b,y7-1=0. ase wee (2)

Now, the condition that they should cut orthogonally at (z, y)

is by § 10°6,

Shut fydy =, ‘

v.€., 2av.2a,e2+ 2y.2b, y=,

2.€., 40,0°+bb,y?=0. ae eee (8)

Since the point (x, y) is common to both (1) and (9), the required

condition is obtained by éliminating (a, y) from (1), (2) and (3).

Subtracting (2) from (1), (a—a,) 27+(b—6,) y?=0. wes (4)

Comparing (3) and (4), we get

aA, b—b,

Ad, “bby olsor, L- toi
"a, a ob

which is the required condition.

Ex. 4. Ifa cosa+y son a=p touch the curve

eta =1,
>

m

vod [ O. P. 1939 ]show that (a tos a) +(b sin a)TM-* =p

The equation of the tangent to the given curve at («, y) by

formula (2) of Art. 10°2 is

(X—«a)-*

v.€., XaTM-2faTM-- Vy—21/b" = og" +4 yTM/5TM = 1, ee (1)

Ii X copa+Y sin a=~p --- (2) touch the given ourve, equations

(1) and (2) must be identical.
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amn tam — yTM—*/bTM 1

Hence, cos a sina ~p

we | MMM aMaE uct domes 1
“ve @ COB a b sina Pp

TT (2)""=4 COB @ (#)""=? sin a

** a p b Pp

_TM _m
1 m—1 m m

(2208.2) +(222 2) = (=) +(%) =1,
p p a b

_TM _m 7

deEoy (a cos a)TM—-14-[B sin a)TM~2 =pTM-1,

Ex, 5. Jf 24, y1 ve the parts of the axes of « and y wmtercepted

by the tangent at any pornt (x, y) to the curve (afa)® +(ylb)® ==1, show
that v,2/a?+y,7/b27=1. [ C. P. 1941 ]

The equation of the tangent at (x, y) to the given curve is, as in

Ex. 1,

xa /a3 + vy-3/o8 =1. "

Where it meets the wv-axis, Y=0; hoenca X= =atg, hry Ly =atet :

and where it mects the y-axis, X=0, hence Y= p3y3, 1.0.5 Y,=b 3,5,

*, 2,7]a*+4,7/b? =asq4/42 +5348 /p? =(xJa)* + (y[b) = 1.

Examples X(A)

1. Find the equation of the tangent at the point (e, y)

on each of the following curves :

(i) +4 = =1. (ii) a+ Gel.

(iii) at + yt = at. (iv) v*® -—Sary+y* =0.

(v) (0? + y7)* =a7(2? — y?).
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2. (i) Find the equation of the tangent at the point 0@
on each of the following curves :

(a) e=a cos 0, y=d sin 0.

(b) z=acos*6, y=d sin®d.

(c) e=a (8+sin 0), y=a (1 —cos 6).

(ii) Find the equation of the normal at ‘t’ on the
curve

2=a (2 cos ¢+cos 2t), y=a (2 sin ¢—sin 2é).

8. (i) Find the tangent at the point (1, —1) to the
curve

x* + ey? — 807 + 4¢ + 5y+2=0.

(ii) Show that the tangent at (a, b) to the curve

(a/a)® +(y/b)® =2 is w/a + y/b=2.
[C. P. 1948 J

(iii) Show that the normal at the point 6=42 on the
curve =3 cos 8-—cos®6, y=3 sin 0-—sin®@ passes through

the origin.

4. (i) Find the tangent and the normal to the curve

y(a — 2a -38)-2+7=0

at the point where it cuts the z-axis.

(ii) Show that of the tangents at the points where
the curve y=(%—1X¢—-2\a¢—-—3) is met by the z-axis, two

are parallel, and the third makes an angle of 185° with the
©-axis.

(iii) Find the tangent to the curve ry2=4(4—2) at
the point where if is cut by the line y=z.

5. (i) Find where the tangent is parallel to the z-axis
for the curves :

(a) y=o® —8a*-9e+15. (b) av? + Bheyt by? =1.

(ii) Find where the tangent is perpendicular to the
a-axis for the curves :

(a) y? =x? (a—2). (b) ax? + Shay + by? =1.

(c) y=(z — 3)*(e — 2). [C. P. 1986 ]
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(iii) Show that the tangents to the curve

8a" + day + 5y* -—4=0

at the points in which it is intersected by the lines

3a +2y=0 and 2a + Sy =0

are parallel to the axes of co-ordinates.

(iv) Find at what points on the curve

y = Qn* — 1527 + 84” — 20

the tangents are parallel to y + 2a =0,

(v) Find the points on the curve y=2* +3244, the
tangents at which pass through the origin.

6. Show that the tangent to the curve v?+y* =8aay

at the point other than the origin, where it meets the

parabola y* =az, is parallel to the y-axis.

7. Prove that all points of the curve

y* =4a {x +a sin (x/a)}

at which the tangent is parallel to the z-axis lie on

a parabola.

8. Tangents are drawn from the origin to the curve
y=sin 2, Prove that their points of contact lie on

ary? =? — y?,

9. (i) Show that the curve (2/a)*+(y/b)"=2 touches
the straight line v/at+y/b=2 at the point (a, d), whatever \¢
be the value of x.

(ii) Prove that ¢/a+y/b=1 touches the curve

w/a + log (y/b) =0.

10. Gi) If la+my=1 touches the curve (az)"+(by)"=1,
show that

<i

(1/a)~* + (m/b)* = 1,
Gi) If le+my=1 is normal to the parabola y* = 4az,

then al® + 2%alm? =m?.
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11. Prove that the condition that « cosaty sin a=p

should touch gmy" = gmtn

m+n, mM n” =(m+n)TMt" a mtnis. D Mm sin”a cos””a.

‘ 12. Find the angles of intersection of the following

curves :

Gi) a2*-—y*=2a? and 2” +y2 =4a".

(ii) w*=4y and y (@?+4)=8.

Gii) y=a* and 6y=7— 2%,

ao? y?

+571
y?

13. (i) Prove that the curves — 4 i =] and =

will cut orthogonally if a-b=a’- “yy.
(ii) Find the condition that the curves ar® +by? =1

and a'a* +d'y* =1 should cut orthogonally.

(iii) Show that the curves w2*°-82y7=-2 and
8a? y—y? =2 cut orthogonally.

14. G) Prove that the sum of the intercepts of the tangent

to the curve ,/x+ ./y= ./a upon the co-ordinate axes is
constant.

(ii) Find the abscissa of the point on the curves
(a) ay* =2°, (b) J/xy=at+a, the normal at which cuts off
equal intercepts from the co-ordinate axes.

15. Show that the portion of the tangent at any point

on the following curves intercepted between the axes is

of constant length.

(i) aityt=al. [ Co. P. 1940 ]
(ii) #w=a cos*6, y=a sin®8.

*16. If the tangent at (21, Y%1) to the curve 2° +y% =a®
meets the curve again in (72, y.), show that

tele. +Ye/y1= —1.
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17. (i) Show that at any point of the parabola y* = 4az,
the subnormal is constant and the subtangent varies as the,
abscissa of the point of contact.

Gi) Show that at any point of the hyperbola zy=c?,
the subtangent varies as the abscissa and the subnormal

varies as the cube of the ordinate of the point of contact.

18. Prove that the subtangent is of constant length in
the curve log y= a log‘a.

you

19. Show that for the curve by? =(x+a)*, the square of

the subtangent varies as the subnormal.

20. Show that at any point of the curve ct" =khTM"y?",
the mth power of the subtangent varies as the nth power

of the subnormal.

21. Inthe curve 2”y"=aTM'*", show that the subtangent
at any point varies as the abscissa of the point.

22. Show that in any curve, the rectangle contained by

the subtangent and subnormal 1s equal to the square on the
corresponding ordinate.

28. Find the lengths of the subtangent, subnormal,

tangent and normal of the curves

Gi) «=a(6+sin 6), y=a(1—cos @) at ‘6’.

Gi) w=a(cos t+t sim 2), y=a(sin t-7t cos 2) at ‘?’.

24. Find the value of 2 so that the subnormal at any

point on the curve zy” =a"** may be constant.

25. Show that in any curve

Subnormal _ (length of normal) *
Subtangent \length of tangent

26. Show that the length of the tangent at any point on
the following curves is constant :

_ 2 a,Z

(i) w= Ja®—y? + 3 log aaa V
(ii) «=a(cos t+ log tan $t), y=a sin ¢.

(iii) s=a log (a/y).
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27. (i) If, and ps be the perpendiculars from the origin
on the tangent and normal respectively at any point (2, y)
on a curve, then

pPi=2# sin y-—y cosy

Pg=ecosyty sin y

where, as usual, tan y= dy/da.

(ii) If in the above case the ‘curve be ateyt=al,
show that 49,7 + 9,7 =a*.

28. In the curve w2”y"=aTM'", show that the portion

of the tangent intercepted between the axes is divided at

its point of contact into segments which are in a constant

ratio.

29. (i) In the catenary y=c cosh (2/c) show that the

length of the perpendicular from the foot of the ordinate

on the tangent is of constant length. [ C. P. 1948 ]

(ii) Show that for the catenary y=c cosh (a/c), the
length of the normal at any point is y7/c.

*30. Prove that the equation of the tangent to the curve

x = af(t)/y (t), y=ad (t) / y (¢) may be written in the form

2 y a

if) of) yt) -0,
f(t) op (t) y(t)

*81. Find the equation of the tangent at the origin on
the curve

y=" sin (1/2) for z # 0, =0 for2=0.

*82. Show that for the curve y = zt. the tangent at the
origin is 2 =0, although dy/da does not exist there.

83. If aand 8 be the intercepts on the axes of x and y

cut off by the tangent to the curve (a2/a)” + (y/b)” =1, then

(a/a)*=? + (b/p)"-? =1.
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34. Find a for the following curves :

(i) y? = 4a. (ii) ot + yt = a’.
co

(iii) y= $a(e* +e °%).

(iv) e=a(1—cos 6), y=a(6+sin 6).

35. If for the ellipse w*/a2 +y?7/b2?=1, x=a sin d, show

that

=a J/1—e? sin 24.

*86. Two curves are defined as follows :

(i) 2=2*,

y=t* sin (1/t) for ¢ # 0, =0 for t=0;

Gi) w@=2¢+¢? sin (1/2), y=#t? sin (1/2), for t ¥ 0,

x=0, y=0 for ¢=0;

show that for the first curve, although dz/di, dy/di are

continuous for t=0, the curve has no tangent at the point ;

and for the second curve, although dz/dt, dy/dt are not con-

tinuous for t=0, the curve has a tangent at the point.

ANSWERS

1. (i) we Sy =1. (i i) He + +0. ned,

(iii) Xan 3+ Vy t=a', (iv) X (2? —ay)+ Y¥ (y?— ax) =azy.

(v) X {Qa (x? +?) ~a2a}+ Vi2y (x? +y2)+a7y}=a? (27 —y?).

2. (2) (a) * cos 6 + E sin 6=1,

(b) bX sin 0+aY cos 6=ab sin 6 cos 6.

(c) X sin $0—Y cos 40=28 sin $0.

(ii) X cos $i- Y sin $¢ =3a cos Hi.
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8. (i) 2a+S8y+1=0.

4. (i) Tangent «-20y—7=0; normal 207+y—140=0.

(iii) a+ y—-4=0. 5. (i) (a) (8,-—12), (—1, 20).

(b) where az+hy=% intersects the curve.

(ii) (a) (0, 0), (a, 0). (6) where ha+ by =0 intersects the ourve.

(c) No such point exists.

(iv) (2, 4); (3, 1). (v) (2, 14) ; (.-2, 2).

12. (i) d7. (ii) tan-? 3. (iii) gor.

18. (1i) aa’ (b—')8 +b (a— a’)? =O.

14, (ii) (a) 4a. (b) tal »/2.

23. (i) a sin 6, 2a sin? $6 tan 30, 2a sin 40, 2a sin $6 tan $0.

Gi) y cot z, y tan ¢, ¥ cosoc ¢, y sec Z. 24. —9Q. 81. 7=0.

4.) 4/227. (i) (2)* (an) as a/(**).

10°11. Angle between Radius Vector and Tangent.

:« If ¢ be the angle between the tangent and radius vector

at any point on the curve r =f (60), then

r dog r de dr
tan =~? sin =~ cos @ ds’

Let P (r, 8) he the given point on the curve r=/(6), and

Q (r+ Ar, 6+ 46) be a point on the curve in the neighbour-

hood of P. Let QP be the secant through Q, P. Draw

PN perpendicular on OQ.

Then, 2 PON=A0, PN=r sin 40, ON=r cos AO.

Let ¢ be the angle which the tangent PT at P makes

with the radius vector OP, i.e, ZOPT=¢.
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From the right-angled APQN,

PN_ PN rsin AO

tan PQN= NQ ~ OQ— -ON r+Ar—r cos 40

= ry sin Ad rT sin n 46

7(l1—cos Ad)+Ar ~ Or gin 2 4A0 + Ar

r. (sin 46/46)

$7 AG - (sin 446/440)? +(A%/A0)

( on dividing both numerator and denominator by Aé ]

Now let Q — P, then A9 — O, and the secant QP becomes

the tangent P7, and 2 PQN — ZOPT, 1.e., 4,

Oo. Am T

or rin A040) __ .

Lv 7. ?a yf — 1.é2., = = ae’ Tie ( rfr')=r ar
[ since Li (sin A@/A@) and Li (sin 4A0/$4 6) aro each equal to 1 ]

Now let s denote the length of the are AP measured

from a fixed point 4 on the curve, and let s+As denote the

arc AQ, so that the arc PQ=4s. Here s is obviously a

function of @, and hence of ¢.

PN _7 sin 46 Ad As

sin PONTM 59 Ap As PQ
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Now, let Q—2 P:; then 46—0, 4s —>O and then

As/PQ=(are PQ)\(chord PQ) —> 1.

ginactt ren, @.ee sin ¢ = Lt | 775" ds

Again,

QN _ OQ-ON _(r+4r)-7 cos A0cos PoN- PQ” PO : PO

_’(l—cos 46)+ Ar _ 7.2 sin*$40 + 4r

PQ PQ

_ sin $40\? 46 As , dr As

br 40° ( 440) “As PQ* as PQ’
Now, let Q— P. Then as before,

Ar ar
= Dt — a

cos As>0 As ~ ds
Olherwsse :

{ « LQ

cn cot ging Ht Pade
Cor.1. From AOPT, ) Pree LPOT+ ZOPT.

ee Y = O@+ ed.

2 2

Cor. 2. (=) +r? (32) =cos*¢ +sin7¢= 1.

10°12. Derivative of arc-length (Polar).

With the notation and the figure of the previous article,

we have

PQ? =PN?7+QN? =(rsin Ad)? +(r+ 4r—r cos A6)?

=(r sin 46)? +(r. 2 sin®$A6 + Ar)*.

Dividing both sides by 40*, we get

(Zo . 4s)" = p2 (sin Ao)" + {+r ao-(% 440)" 1 (42 :
As A6 Ao $40 Aé
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.’. in the limiting position when Q — P and 4é@ — 0,

Gye
1.6., ase / 12+ ar)" see = (Q)

Multiplying both sides of (2) by o. we get

as /--7-d8\"sen a/1+(r8Z) ~ @)
Cor. Multiplying (1), (2) and (3) by d6’, dé, dr, we get

the corresponding differential forms

ds? = dr* +r? d@?.

ds— af 72+ (27)" dé

as= af 1+ (72%) " ar.

Note. Relations (2) and (3) can also be deduced from the values

of sin ¢, cos ¢, tan ¢.

10°18. Angle of intersection of two curves (Polar).

Suppose two curves r=f(0), r=¢(0) intersect at the

aa __
Oo / te [Ts x

“point P, and let P7T,, PT, be the tangents at P to the two

curves, and let ZOPT,= =i, ZOPT,= =o.

17
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Then if a be the angle between the two curves,

= $1 — da.

_ tan od, — tan de .

tan a 1+tan ¢, tan d,

Since, tan ¢,=7/r’ =f(6)/f' (@)

and tan ¢, ~7/r'=¢4(6)/¢'(@), we get

tan gat Oe (O—F (8)p(6).
F'(0)¢' (0) +f (0) (8)

10°14. Polar Subtangent and Subnormal.

Let P be any point on the curve r=/(@), and let the

N

+

tangent PT and normal PN at P meet the line drawn

through the pole O perpendicular to the radius vector OP,

in 7 and N respectively.

Then OT is called the polar subtangent

and ON is called the polar subnormal.

Since, ZOPT=¢, OT=OP tan ¢=rr @.

*. polar subtangent —r* re ;
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ar
Again, ON=OP tan OPN=r cot d=r': zr)

dr
ee polar subnormal = —— do

1 du i ar
Note. Tiu= =) 397 r? ao’

, 40 dp.. — ge

- polar subtangent=r ar du

10°15. Perpendicular from pole on Tangent.

Let p be the length of the perpendicular ON from the
pole O on the tangent PT at*any point P.

Then from AOPN, ON=OP sin ¢.

“ p=rsin &. ee “+ (1)
. 1 1 1

Again, p27? cosec*d = me (1 + cot*¢)

ene” (2)

The symbol « is generally used to denote 1/r, the reci-

procal of the radius vector.

du 1 dr

do. rae

Hence, the relation (2) becomes

1 so)"

amu (33 (3)
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10°16. The (p, r) or Pedal equation of a curve.

The relation between the perpendicular (p) on the
tangent at any point P on a curve and the radius vector (r)
of the point of contact P from some given point O, is called

the (p, 7) or pedal equateon of the curve with regard to O.
Such equations are found very useful in the application of

the principles of Statics and Dynamics.

(i) Pedal equation deduced from Uartesian equation.

Let us take the origin at the point with regard to which

the pedal equation is to be obtained, and let f(z, y)=0 be
the equation of the curve.

The tangent at (a, y) is

Xfat Yfy— (afc t ufy)=0.

If » be the perpendicular from the origin on it,

a fatty),Fer + fy? oes e+» (1)

Also, gt =o? + yy? on s+ (Q)

and St (x, y) =0. eee see (3)

If « and y be eliminated between (1), (2) and (3), the
required pedal equation is obtained.

(22) Pedal equatzon deduced from polar equation.

Let us take the pole at the point with regard to which

the pedal equation is to be obtained, and let f(r, 6)=0 be

the equation of the curve.

Let p be the perpendicular from the origin on the

tangent at (7, 6); then

Ft (r, 6) =0, vee -++ (1)

tan goa, ~
p=r sin ¢. eee eve (8)

If @ and ¢ be eliminated between (1), (2) and (3), the
required pedal equation is obtained.
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Note 1. When in any case nothing is mentioned about the given

Point with regard to which the pedal equation is to be obtained, the

given point is to be taken as the origin in the Cartesian system and

the pole in the Polar system.

Note 2. In some elementary cases, pedal equations can be easily

obtained from geometrical properties. [ See Ex. 6, Art. 10°17 ]

10°17. Illustrative Examples.

Ex. 1. Obdtacn the vatues of sun 9, cos %, tan ¢ and arc-differential

in polar co-ordinates by transformation from Cartesran system.

Since, «=r cos 0, y=r sin B,

oe dx=cos 0 dr—r sin 6 dé,

and dy=sin @ dr+rcos @ dé.

e' dz?+dy?=dr?+r? dé?,

UWOey ds? = dr?+,r? aé?. eee wee (1)

Also, «2 dy-—ydz=r?* dé. wee wee (2)

Again, since x?+y?=r?, .°. adaty dy=r dr. e+ 9 (8)

Now, y=0+d. .. p=y-8.

ae cos @=cos y cos 6+sin y sin @

_ ae a dy, y _cdut+y dy _dr [ by (8) }

ads r as r rds ds

Again, sin ¢=sin y cos 8—cos y sin 0

a2y,% dey _vdy—ydu_1 de,
ds r dg r rds ds C by (2) J

+ s 700. dr_7r dé.tan @=sin ¢+cos g= ds ds dr

Ex. 2. Fand the angle of wntersectron of the curves

r=sin 0+cos 0 and r=2 sen 4.

r cos @+sin @ 1+tan 6

Here, tan $, ry cos@—sin@ 1—tan g = an (¢r+ 6).
ry Qsin 6

fan $.=77 =o cos 9 an
. O, = drt 6, ,= 0.

.”. angle of intersection = ¢, —¢, =Fr.
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Ex. 8. Prove that the curves

r° =a" cos nP and r= b" sen nO

cut orthogonally.

Taking logarithm of the 1st equation

n log r=n log a+log cos n8.

Differentiating with respect to 6,

1dr_ _nsin 76,
we do cos 18

.. cot d, = —tan n@=cot (§7-+76).

Similarly, from the 2nd equation, we get

cot ¢,=cot né.

“.d, = 3rt+n8s d,=n0.

.". angle of intersection ¢,—-¢%, =47.

Ex. 4. Fund the pedal equation of the parabola y?=4ax with

regard to ats vertex.

Differentiating the given equation, yy,=2a. .°. ¥, =2aly.

.°. the tangent at (2, y) 18

Y—y=(2a/y)(X—2),

4.e., 2aX—yY+2ar=0, ("." y?=4az )

a 40°72? 4a7x? _ ax?

“* 2 ~ 4°? +y? 4a?+4an +a (1)
and r?=97+ 4? =27+ 4az. oe «s+ (2)

From (1) and (2),

an? — p'a—ap?=0 wee ws (8)

o?+4an—r? =0. one wee (4)

By eliminating « between (8) and (4), the required relation between

and r will be obtained.

By cross-multiplication,

ao® = v = _ 1 s
p?r? +4a%p? ar?—ap? 4a7+p?

os (p?r® + 4a"p?) (4a? +p?) =(ar? — ap?)

is the required pedal equation.
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Ex.5. Fund the pedal equation of rTM=aTM cos mé.

Taking logarithm of the given equation

m log r=m log a-+log cos mé.

Differentiating with respect to 0,

1 drm sin me,
‘9, dé cos m@

“. cot d= —tan m0 =oot (gr-+m8),

ee p=gr+m.

e

Again, p=rsin ¢=r sin (47+ m6)=r cos m8

7

= — from the equation of the curve.
a

. r@tl=gTMn, is the required pedal equation.

Ex. 6. Find geometrically the

pedal equaton of the ellipse with

respect to a focus.

SN, S’N’ are drawn perpendi-

culars on the tangent at any point

P onthe ellipse. SP=r, S’P=r’,

SN=p, S’'N’=p’. We know from

Oo-ordinate geometry that,

rtr =2a and pp’=b?.

Since, ZSPN=ZS'PN’, .*. A' SPN, S’PN are similar.

— For tm, [Ooo
"" p p pp 53

. 2 r(Qa-—r b? Qaee met 42 r) Of ae

which is the required pedal equation.

Noting that the semi-latus rectum 7 of the ellipse=b7/a, the above

. . 1 2 #4
equation may be written as > a
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Ex, 7.. Hund the geometrical meaning of 3 ay and hence deduce

2 | dp .
coors (@y

We have p=, sin ¢.

Differentiating with respect to y,

ap dd | drdy reos $ ay tsin } oy '

= dd dé dr [ . sng 7 dé
Yr COB & ae a ray * Coa dr

= COB > s (0+¢)

=rcos¢ (°.° 6+¢=y)

=PN (Bee fig., § 10°15)

= projection of the radius vector on the tangent.

From AOPN, OP? =ON?*+PN’.

Examples X(B)

1. Find a for the followjtig curves :

(i) r=a(1+cos 6). (ii) r=ae® Ft @,

(iii) r? =a? cos 26. (iv) rTM =a” cos n0.

2. Find es for the curves: (i) r=aé. (ii) r=a/é.

8. Show that in the equiangular spiral r=ae’ t*, the

tangent is inclined at a constant angle to the radius vector.~

4. Show that for log r=a6+)b, p=r.
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5. Find ¢ in the terms of @ for the following curves :

(i) Cardioide r=a(1-—cos @).

(ii) Parabola r= 2a/(1— cos 6).

(iii) Hyperbola r? cos 26=a?.

(iv) Lemniscate r? =a? cos 26.)

e

6. Find the angle of intersection of the following

curves :

(i) r=a sin 20, r=a cos 20.

(ii) r=6 cos 6, r=2(1 + cos 6).

(iii) r? =16 sin 20, r? sin 26=4.

7. Show that the following curves cut orthogonally :

(i) r=a(1+ cos 6), r=b(1—cos 6).

(ii) r=a/(1+cos 0), r=b/(1 —cos 8).

8. Show that the curves

r”° =a” sec (nO +a), r”=b” sec (nO + B)

intersect at an angle which is independent of a and b.

9. Prove that

oe dy\,tan b= (x 3 vy) /(2+u St)
where ¢ is the angle which the tangent to a curve makes

with the radius vector drawn from the origin. [C. P. 1981]

[ Use d=y—-@; tan @ =y/x ]

10. Show that for the curve r0=a, the polar subtangent

is constant and for the curve r=a0, the polar subnormal is

constant.
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11. Show that for the curve r= e Bre Polen subtangent

is equal to the polar subnormal.

12. Find the polar subtangents of

Gi) r=ae’ oo ®, (ii) r=a(1—cos 6).

(iii) + = 2a/(1 — cos 6). (iv) r=2/(1 +e cos 86).

18. Show that the locus of the extremity of the polar

subtangent of the curve w+/(0@)=0 is w=/' (42 + 6).

14. Prove that the locus of the extremity of the polar

subnormal of the curve r=f(0) is r=f' (0 — $2).

Hence deduce that the locus of the extremity of the

polar subnormal of the equiangular spiral r=ae’°** is

another equiangular spiral.

15. Show that the pedal equation of the ellipse

2*/a?+y7/b2=1

with regard to the centre is a7b?/p? =a? +b? — 77.

16. (i) Show that the pedal equation of the astroid

4, $_ #4
xe +y° =a" is 77 +3p? =a’,

(ii) Show that the pedal equation of the parabola

y? = 4a(2+ a) is p? =ar. [ Cc. P. 1981 ]

17. Show geometrically that the pedal equation of

a circle with regard to a point on the circumference is

od =r", where d is the diameter of the circle.

18. Show that the pedal equation of

(i) the cardioide r=a(1+ cos 6) is r° = Qap?.

(ii) the parabola r= 2a/(1— cos 6) is p* =ar.

(iii) the hyperbola 77 cos 20=a? is pr=a’.
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(iv) the lemniscate 7? = a? cos 20 is r° =a?»p.

(v) the equiangular spiral r= ae’ ©°** is p=r gin a.
1.

(vi) the class of curves r”=a”" sin n@ is r*t* =a",

(vii) the reciprocal spiral 78 =a is p? (a? +72) =a?r?,

[ C. P. 1988]

ANSWERS

1. (i) Qa cos 40. = (ii) cosec a. (iii) a?/r. _— (iv) a seo oer)
2. (i) Jr? +a2la, (i) — /r?+a?/r.

5. (i) 40. (ii) r—306. (iii) 4r—26. (iv) 4r+20,

6. (i) tan7? 4. (11) dor. (ii) 3a, 12. (i) r tan a.

(ii) (2a sin® 46)/(cos 40). (in) 2a cosec 6. (iv) Z/(e sin 6).
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P as the curve has, and this explains the nomenclature of the above

circle. Since the curve and the circle of curvature at any point

P(x, ¥) have the same tangent and the same curvature, hence a, y,

y,y have the same values at P for the euwrele of curvature and the

curve. [ See Art, 12°2 ]

11°2. Formulse for radius of Curvature.

(A) For the Cartesian equation y=1(x).

¢

dy _
We know dx tan y.

.. adifferentiating with respect to 2,

bY cog ty? = cacnty lv .as
da? 8° P ay 806 Pos dar

30%, [ a |
sec Y 5 1g 008

: ds _ 48 a*ye pm ay sec ”’y dx?

2\3
Since sec y=(1 +tan2y)? -{1 + (<2) \ ’

dy)? 3
3(+ la) } _ A+y37)? see (i)

d®y Yo
dx?

where y, ¥ 0.

Note 1. Making the convention of attaching positive sign to

(1+4,)%, pe is positive or negative according ss y, is positive or
negative.

Note 2. The above formula fails when at any point y, becomes

infinite, «.¢., when the tangent at the point is parallel to the y-axis

( For ellustratwn, see Hx. 4, § 11°56). In such cases the following
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formula, for the equation of the curve as «=¢(y), would be found

useful.

ae «cot y; .°. differentiating with respect to 4,
dy

a*a a _ 2. av, as
dy? — cosec?y CoBac 7p ds’ dy

= es [-.- a esin v|
eo

@?

=— cosea*y / 4%

Since cosec*’y =1+cot?y= 14(5)’ ’

considoring the magnitude only of the radius of curvature

_{1+(3) b _(+x,2)?
p= d*x Xe

dy*

(i a)

where 2, * 0.

(B) For the Parametric equation x= ¢(t), y=vit).

dy dy /dx_y (,)Here, de dt | dt ~ x! (2 ¥0)

where dashes denote differentiations with respect to ¢.

d*y_d (%)- d(x, at wy! ya"

dz? da\za'] at ‘de

Then substituting the values of oy, ” in the formula (i)
above, we get

(x/2-+4y’ 2) -
aye Gi)

where dashes denote differentiations with respect to ¢, and

where (2’ y"—y' a") + 0.
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(F) For the Tangential polar equation p= f(y).

When the tangential polar equation 7.6., the relation

between p and y of a curve is given,

dp _adp dr ds dp = 2P, dr
dy dr ds’ dw dr C8 ?-P = gy" C08 b-4 7

=%7 GOS d.

2 ‘

p* +(2) = 7% sin?dtr? cos*d = r?,

Differentiating with respect 4o 7,

dp d*p avo dr,

*e capa s+ (vi)
Aliernative Method : .

Ti p"be tho length of the perpendicular from the origin on the

tangent’at (a, y) wz., Y-y, X+aey, -—y=0, ®

i744 2 tan yy .

then p= Jit +tan®y

p=ax2 sin y—y oos p.

. ap da _ ;"* ay = gy 92 ¥ +x cos ¥ ay 08 vty ain y

= cos Yy+y sin y.

: dx da ds _ dy dy ds _ |[ since dy" ds" dy poos W 3 ay= ds’ dy p sin yp.

anSimilarly, op = iv cos ¥—@ sin y+ sin y+y cos ¥

=p cos*y—a2 sin y+p sin*y+y cos y

m=p—(x sin Yy—y cos Y)=p—>p.

Hence, the result follows.
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11°38. Curvature at the origin.

(i) Method of substitution,

Radius of curvature at the origin can be found by substi-

tusing «=0, y=0 in the value of p obtained from Art. 11°2,

or by directly substituting the values of (yi)o and (yq)o in

the formula,

(ii) Method of Expansion.

In some cases the above method fails, or becomes

laborious. In such cases,. the values of (yi)o and (¥a)o

can be easily obtained in the following way by assuming

the equation of the curve to be y=f (x), and writing for y in

the given equation its expansion by Maclaurin’s theorem
2

vrz., vf (0) +5, f’ (0)+--- [f(0) being zero here, since the

curve passes through the origin] 2.¢., prt+qu*/Q2it-=,

where p, g stand for f'(0), f” (0), 2.e., (yiJo, (Yao, snd then

equating coefficients of like powers of 2 in the identity

obtained.

This is illustrated in Example 9 of Art. 11°5.

(iii) Newton’s Formula.

Tf the curve passes through the origin, and the agis of @

4s the tangent at the origin, we have

x=0, y=0, (vido; 2.€., p=0.

by Maclaurin’s Theorem,

Dividing bv 27/2 ! and taking limits as x — 0, we get

Lt (2y/x*) =q.

It should be noted here that as x — 0, y also ~ 0,
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(1+ Le)"But from formula of Art. 11°2, at the origin p= a

- pelt =. -- ? Lt 2y ‘@
y>0

Similarly, 2f a curve passes through the origin, and the

axis of y as the tangent there, we have at the origin
2

p= Lt — . “+ (9)

y>0

Geometrically :

Let the x-axis be the tangent at the origin.

Draw a circle touching the curve at O, and passing

Y

8

through a point P (a, y) near O, on the curve. Now when
P — O along the curve, the limiting position of the circle is

the circle of curvature. *

Let OB be the diameter of the circle, and draw PN perp.

to it, and PM perp. to OX. Let r be the radius of the circle.

Then, ON.NB=PN’, i.e., ON (OB—-ON)= PN’,
3 3 2

“. OB=EN' 4 onN=PN FON" OF,
ON ON ON

OP? 2° +y" a”
2.6., or = >i y y + 7.

Se eee ee ee eee ee eee

*Sea Appendrz.
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In the limit when P—>O, x«—>0, y—>0, r—p, and

hence we get as before

1p= Lee

Similarly, when y-axis is the tangent at the orsg2n,

e 2

we obtain p= 2 Lit

Analytrcally :

The equation of the circle passing through the origin and having

the z-axis as the tangent at the origin is

a? -+y4 —Ofy=0, coe (1)

If r be the radius of the circle, r=/.

Since (i) passes through the point (x, y) on the curve,

oe? +-y? —2fy=0 whence f= (2? + y?)/2y.

xr oe =rit.p=Lir=Lt f=Lt Dy

General Case:

If az + by =0 be the tangent at the origin, then, proceed-

ing as above, we get

_OP ety
OB PM (ax +by)/ /(a? +6?)

. ~ x?+y*

emt Jat+ be Lt SE (3)
y>0

Note. It should be noted that as x0, y @ 0, yfa (- ): the

‘m’ of the tangent line av+by=0. Here, it is supposed that a = 0,

b x0.
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11°4. Chord of curvature through the origin (pole).

Let PQ be a chord passing through the origin O, of

QO T Xx

the circle of curvature at P on the given curve, and let

C be the centre of curvature and PT be tangent at P.

Join PC, produce it to D ; join DQ.

Then 7 PQD=a rt. Z, being in a semi-circle.

ZLOPT=¢ and ZPTX=y.

From APQD, chord PQ= PD cos DPQ

= 2p cos ($2 — 4)
=2P sin @

a

adr p
2.7 dp r

dr
a a ©2p dp

Note 1. From above it is clear that the chord of curvature through

the origin can be easily obtained when the pedal equation of the curve

is given.

Note 2. If the chord PQ, without passing through the origin,

makes an angle a with the tangent PT, i.e, ZQPT=a, then obviously

£.PDQ=a, and hence

PQ =2p sin a.

Hence, the chord of curvature parallel to the x-axis is 2p sin y

(*.: here 2 PDQ=y )

and the chord of curvature parallel to the y-axis is 2p cos y.

('.* here 2 PDQ=47-y )
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11°56. IWustrative Examples.

Ex. 1. Show that the circle is a curve of uniform curvature and

éés radius of curvature at every point is constant, being equal to the

vadius of the corcle.

Oo

Let C be the centre of a circle of radius a. Let P be the given

point, Q @ point near it, and let PT, QM be tangents at P, Q and let

LPTX=y, 2QMX=y+ Ay; join CP, CQ.

o's L.PCQ=LZPRM= Ay. .

. Av_angle PCQ_ Asla_ 1,oe As As As a since 7 PCQ is measured in

radians.

asin Art. 11'1,

Av_rt 1 1

0 As as20 a _ a (constant) and hence p=a.curvature = it.

Ex, 2. Find the radwus of curvature at the pout (s, ¥) of the curve

s=a sec y tan W+a log (sec y+ tan y).

Here, a (sec y.sec*y+tan’y seo y)<a

tas ac pene sec (sec y+tan y)

=@ sec y (sec?¥+seo*y—1)+a sec y= 2a sec*y,

Ex. 3. Find the radius of curvature at the povnt (a, y) on the curve

w= a log sec (z/a).

Here, Yim aera) « seo (a/a) tan (x/a) + > = tan (r/a).
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o's Yq =(L/a) sec? (m/a). Also, 1+y,7=1+ tan? (x/a) =se07 (z/a).

galictus)t _ {8002 (e/a)}* _
7? Ya (1Ja) sec? (wa) * *°° (c/a).

Ex. 4. Fond the radwus of curvature of the parabola y* =4x at the

vertex (0, 0).

The tangent at the vertex being the y-axis, ad at the vertex (0, 0)

is infinite. Hence, formula (i) of Art. 11°2 being not applicable, let us

apply formula (ia). [See Note 2, Art. 11'2 ]

dx , ara - .Here, dy 24 + ay &.

.. atthe vertex, c,=0, 7, =4. -

8

(l1+2,7)? 1
p= = 9,

3

Ex. 5. Fond the radwus of curvature at the pont ‘8’ on the cyclowd

p=a (8+sin 0), y=a (1—cos 6). [C. P. 1944}

Hore, 2 =a (1+cos 6), y’=a sin 4,

e’=—asin 6, y”’=a cos 6.

.. by formula (1i) of Art. 11°2,

at the vertex,

= 12? (1+cos 6)? +a? sin?® | ot =a: 8 cos* 40
“a? cos 6 (1-+c08 6)+a? sin? 6 2 cos? 40

= 4a cos $0.

Note. p can also be obtained by using formula (1) of Art. 11°2 by

first obtaining the values of y, and y, in terms of @.

Ex. 6. Fund the radwus of curvature at the point (r, 0) on the

cardvoide r=a (1l—cos 6), and show that st varies as s/r.

Here, r,=a sin 0, rg=a cos 6,

.°. by applying formula (iv) of Art. 11°2,

fa? (1—cos 6)?+a? sin? oy!
a" (1—cos ay + 2a" sin’ 6—q" cos . ‘(1—cos 8)

p=

&

m2 fects noble (aoe)
= $a sin 40. neo eos wee (1)
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Since, y=za (1—cos 0)=a.2 sin? 40, .*. sin $0= /(r/2a).

Hence, from (1), p= r/ 2a. air. .*. poealr.

Note. In cases where it is easier to transform a polar equation

into a pedal one, to find the radius of curvature it is convenient to

transform the polar equation into the pedal form first, and then use

formula (v) of Art. 11°2.

Ex.7. Fond the radius of curvature at the point (p, r) of the curve

gMTMtliagTMn.

yt . dp_(m+1) rTM . ar amWe have p 7 -* Gp ett dp (m-+1)rTM

. r aTM am
e p=7 =ap " “(m+ 1) rTM (m+ 1) 77"

Ex.8. Hand the radius of curvature at the origan for the curve

w* +y*— 2a? +6y=0.

Here, y=O, 12.¢., the z-axis is the tangent at the origin,

a3

at the origin Lt y = 2p.

Dividing the equation of the curve by 7, we have

a 2

ge et y7— 97 4+6=0.
y Y

Now, taking limits as 7— 0, and y-> 0, we have

—2.29+6=0, or, e=}.

Ex.9. Fund the radws of curvature at the origin of the conte

y— v=? + Boyt 4. [ C. P. 1948 }

Furst Method: Differentiating the equation successively with

respect tog, y,—-1=2 (e@+ay,+tyt+yy,),

and Yo=2 (I +0y.+ 241+ yyat yr’).

.. at the origin, ze, when 2=0, y=0, ¥,=1 and y, =8.

oi petit)? (1+1)"_ V8_ v2.”, at the origin, p Yo = 8 8 4
=°35 nearly.
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Second Method :

Putting y= pot 4 «+s. on both sides of the equation, we

have

(p—1) a+ Le. 7 * + higher powers of «=(1+2p+p?) x?

+ higher powers of 2.

Equating coefficients of a and x? on both sides,

p—1=0, 4.2, p=1,

and §g@=1+2p+p?. .*. g=8. ¢

Since here p and gq are the values of y,, ¥_ at the origin, using

a)?
the formula p= ra he we get p at the origin.

2

Third Method (Newtonian Method) :

Since 7—2=0 is the tangent at the origin here, by the formula

for the Newtonian method at the origin,

== mo ey? _ 2+y?pmo. Lt” "ma 8 Lt aie aaa

(from the equation of the curve }

= 1L+(ufx)?
N82. Lt or 3 yic)+ ule)?

(on dividing numerator and denominator by 2? }

want geap ite v2
Since Zé (y/a) being the value of ‘m’ of the tangent at the origin

viz, y—-c=O0, is equal to 1.

Ex. 10. Show that the chord of curvature through the pole of the

arna omecurve rTM=aTM cos mé is m+t1L

Taking logarithm of the given equation

m log r=m log a+log cos m6.

Differentiating with respect to 0, we have

1 ar —sin m@

> dO. cos mo tan md.
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os cot ¢=cot (fr+mé), 2€., P@dr+ md.

o's pear sin d=r7 cos m0=r.7TM]aTM =rTM /aTM,

e dp _(m+1)r”.
°° ar aTM

, =90 sin d or . Pag 2,ore chord of curvature= 2p sin ¢ = 2r dp “r 2 dp’?

a= De am” ret = ar. e
° (m+1) r*TM aTM ~~ m+1

Ex.11. For any curve prove that

1 a*x a? 2

ania) Ha) -
dx _ ° ane -— dy _ — wi eosWe have de 08 we. de® sin vas sin wy 0 ’ (1)

dy _ ~ ay dy _ i, eveand = sin Y. .*. 7a =c0s Po cosy (2)

Now, squaring and adding (1) and (2), the required relation follows.

Ex. 12. For any curve prove that

p= i dg » where tan =r oe
son 143)

sin g (14 a¢) =sin o+ ofan per oer @

=> dé , dd a) = (3 st)

(+55 ads ds* ds
__ a _, avy... =tp, Otd)=r Gg, (. O+e=y).

oe right side= “a7 .

"ds

Examples XI(A)

1. Find the radius of curvature at any point (s, y) on

the following curves:

(i) s=ay. J (ii) s=4a sin y.
(iii) s=c tan y. (iv) s=8a sin*$y.
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(v) s=a(eTM — 1). (vi) s=c log sec y.

(vii) s=m(sec*y-— 1): (viii) s =a log tan (42 + 4y).

2. Find the radius of curvature at any point (x, y) for

the curves (i) to (viii), and at the points indicated for Ahe

curves (ix) to (xiv) :

(Gi) y? = 4az. (ii) e¥/*=ge6 (a2/a).

Giii) y=log sin z. (iv) ay? =. (v) ay=c*.

(vi) y= 4a. (a4 a) (vii) 2?/a? + y"{b° =].

(viii) at+y! =a’. [O. P. 1948 ].
(ix) y=a* — 27" + 7a at the origin.

(x) y=4 sin e-sin 22 at x=4n.

(xi) 97? + 4y? = 362 at (2, 3).

(xii) y=e7*” at (0, 1).

(xiii) /a2+ ./y= ./a at the point where y ye cute it.

(xiv) y=aze~” at its maximum point.

8. Find the radius of curvature at any point of the

curves (i) to (vi), and at the points indicated for the curves

(vii) and (viii) :

(i) =a cos 6, y=a sin 6. (ii) 2=at?, y = 2at.

(iii) 2=a cos ¢, y=b sin ¢.

(iv) c=a sec d, y= 5 tan ¢.

(v) e=a(cos t +é sin ¢), y=a(sin t—¢ cos #).

(vi) c=a sin 26 (1+ cos 26), y=a cos 20 (1—cos 26).

(vii) c=a cos*6, y=a sin®6 at 8= dz.

(viii) c =a(0+sin 6), y=a(1l—cos 6) at 9=0.
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4. Find the radius of curvature at any point (7, 6) for

the curves (i) to (xi), and at the points indicated for the

curves (xii) to (xvi):

(i) r=aé. Gi) r=a cos 6. (iii) r=a sec74é.

(iv) r=a(1—cos 6). (v) r? =a? cos 20.

(vi) r=ae’ ot®, (vii) +r? =a® cos 38.

(viii) r=a+b cos @. (ix) rTM=aTM cos m6.

(x) r? cos 20=a". (xi) r=asec 20.

(xii) r= 2a cos 0-a #t 0=0.

(xiii) r=a sin 70 at the origin.

(xiv) r=1/(lt+ecos 0) atO=n, Le< 1].

(xv) r?=a? cos 20 at 0=0.

(xvi) r=a(6+ sin 6) at 0=0.

5. Find the radius of curvature at any point (p, r) on

the following curves whose pedal equations are

(i) p=r sin a. (ii) r? =Qav. (iii) p* =ar.

(iv) pr=a?, (v) 7? =Qap?. (vi) r? =a.

(vii) a + r2=a7 +57,

6. Find the radius of curvature at any point on the

curves :

(i) p=a(1+sin y). (ii) p=a cosec ¥.

(iii) p? +a” cos 2y=0.

% Find the radius of curvature at the origin of the

following curves :

Gi) y=2* — 42° —182?. (ii) Qa? —wyt+y?-—y=0.

(iii) 3a? + 4y? = Qe, (iv) 822 +ay+y? —42=0,
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(v) S3a* — Qy* + Baty + Bry — Qy? +42 =0.

(vi) 4a4 +3y° — 8a7y + Qa? — Bry — Gy* — By =0,

(vii) a? +y° = 3acy. (viii) 2? +6y? +22-y=0.

(ix) af +y?=6a (w+). (x) wv? +y" + 6x + 8y=0.

(xi) y® =a" (at a)/(a-2).

(xii) aw + by +a’x* + Dh’ay + b’y* =O.

(xiii) y* — Qay— 3a? — 4a° — a7 y? =0.,

(xiv) y? — 82y— 407 +527 +a*y—y'* =0.

8. Show that the chord of curvature through the pole

for the curve p= (r) is given by 2f(r)/f' (7).

9. Find the chord of curvature through the pole of

the curves :

(i) r=a (1+cos 6). (ii) +? =a? cos 20.

(iii) +? cos 20=a7. (iv) r=ae’ oe,

(v) r”=a” sin 78.

10. Show that the chord of curvature parallel to the

axis of y for the curve :

(i) y=a log sec (2/a) is constant.

(ii) y=c cosh (a/c) is double of the ordinate.

11. Show that in a parabola the chord of curvature

(i) through the focus, and (ii) parallel to the axis are

each equal to four times the focal distance of the point.

12. Show that for the ellipse 27/a? + y7/b* =1, the radius

of curvature at an extremity of the major axis is equal

to half the latus rectum.



Bix. XT{A) ] OURVATURE 287

18. If£C be the centre of the ellipse 2*/a? +y*/b* =1,

show that at any point P,

ab p*

where CD is the semi-diameter conjugate to CP, and 7 is

the perpendicular from the eentre on the tangent P.

14. If p, and p, be the radii of curvature at the ends P

and D of conjugate diameters of the ellipse x7/a? + y7/b2 =1,

then

ps2 + pat = (a7 + B*)/(ab)®.
15. Prove that the radius of curvature of the catenary

y =a cosh (z/a) at any point is equal in length to the portion

of the normal intercepted between the curve and the axis

of &.

16. Show that for the cycloid 2 = a(@ — sin 6),

y =a (1—cos 6), the radius of curvature at any point is

twice the portion of the normal intercepted between the

curve and the axis of 2.

17. Show that in a parabola the radius of curvature is

twice the part of the normal intercepted between the curve

and the directrix.

18. If ep: and pz, be the radii of curvature at the ends

of a focal chord of the parabola y? = 4az, then

ps = +p, *=(2a) *

19. Show that in any curve

i en t(ae) +(3) }
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p ds*/ ds ds*/ ds

1 d®a d’y_ d*y d*a
ae ee

“Gil) Os as8 "ds? ds? de®
20. Show that in the curve for which

(i) y=a cos TMy, pis m times the normal.

(ii) y=aeTM”, p is m times the tungent.

21. Show that

(i) for the cycloid for which s* = 8ay,

p=4a J/(1 — y/2a).

(ii) for the catenary for which y? =c? +387, p=y?/e.,

*29. Prove that in any curve

) 1 af2_ 1 (ary?_ arnt fy - ary"\3
@) p ‘3 r aa ds?J 1 a" "
. __ 6 d6\? a? r\.

(ii) parr {ola ds*
28. Show that the radius of curvature at any point of

the equiangular spirial subtends a right angle at the pole.

24. Show that at the points in which the curves r=ad

and 76=a intersect, their curvatures are in the ratio 3 : 1.

25. Show that when the angle between the tangent to

a curve and the radius vector of the point of contact has

@ maximum or minimum value, p=r?/p.

26. Prove that in any curve

dp _ 3yi¥a? — 5 (1 +41")
ds Yo"

and show that at every point of a circle

BY1Y 2" =Ves (1 + 1%),
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ANSWERS

[In the following examples, generally the magnitudes of the radis

of curvature are given. ]

1. (i) a. (ii) 4a cosy. (iii) ¢ seo*y. (iv) $a sin gy. (v) am eTM¥,

(vi) c tan y. (vii) 3 seo*y tan y. (viii) a sec y¥.

2. (i) 2(z+a)*/ Ja. » (ii) @ sec (aa). (111) cosec a.

(iv) (4a +92) *x%/60. (v) (cc? + y?)*/20?. (vi) y?Ja.

(vii) (4a? +aty)*/a40*. « (viii) 8(aay)®. (ix) $(125 »/2).
(x) #,/5. (xi) ¢. (xii) 4. (xiii) a/ /2. (xiv) e.

3. (i) a. (ii) Qa(¢2 +13. (iii) (a? sin?¢+B? cos¢)#/ab.

(iv) (a2? tan?¢+ 5? sec?¢)! fab. (v) at. (vi) 4a cos 8@.
(vii) #a. (viii) 4a.

4. (i) (r?-+02)? /(r? +202), (ii) da. (iii) 2a seo*30.
{iv) 3 ,/2ar. (v) a?/3r. (vi) 7 cosec a. (vii) a?/4r?,

a a = TMm

(Will) Seeaap cos er ane? Os) Seca Oe) tla
(xi) r(4r2—8a7)*/84°. (xii) dc. (xiii) dna.
(xiv) 1, (xv) $a. (xvi) a.

6. (i) rcoseca. (ii) a. " (ili) 9 Jr? Ja. (iv) r?/a?.

(v) $J/(Qar). (vi) a?/3r. (vii) a7b7/p*.

6. (i) a. (ii) 2a cosec® y. (in) a*/p*.

7. (i) de. (ii) 2. (iii) 2. (iv) 2. (v) 1. (vi) 2. (vii) fa, $a.

(viii) To 5. (ix) 6a /2. (x) 5. (xi) ta n/2e

34 72)8
(xii) 2. yO tO) (Riti) B10; WB (xiv) 2, AT ATT,

8. (i) gr. {ii) $r. (iii) 2r. (iv) 2r. (v) 2r/(n+1).

19
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11°6. Centre of curvature.

Let (@, y) be the co-ordinates of the centre of curvature

C corresponding to any point P (z, y) on the curve.

Since C(a, y) lies on the normal at P viz.,

(X-a2)+(Y—-y)y, =0,

(a — a2) +(y— y)y1 =0. Meee vee (1)

Again, since PC =p, 1.e., PC? =p”,

Ga)? +G-yPaptat tH. (gy

Substituting -(y-y)y, for (@—«a) from (1) in (2),

we get

G-wr1ty)—pra Ett. (3)

t —_ a _(l+yi")?.
1.€.,, (y-y) a

_ +y,?
\ jy) = eee ove (4)

Again from (1),

Z-0= -G- vy, = - tH), ©)
from (4) and (5), we get

gex Wty), yeyeity*. .. @
Y2 Y2

Cor. Hence the equation of the circle of curvature is

(x — x)" +(y—y)* =p?.

Note 1. According to our convention, we take the positive sign

only in (4) ; for if y, is positive, p is positive and hence y¥—y is positive,

Similarly if y, is negative, p is negative and hence y—y is negative.
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Note 2. Since the normal at P makes an angle (47+) with the

a-axis, it follows from the definition of the centre of curvature that

f-o = yy

cos (4r-+y) sin (§r+y) Ps

4.€., x=c—p sin y, youre cos ¥. (7)

Now, since tan ~=y,, sin Y= wis? and cos y= say
L

Thus substituting the values of p, sin ¥, cos Y in terms of y, and

#%_ in (7), values (6) of z, y 4 can be obtained.

Note 8. By writing the relation (1) as (x7—-2)z,+(y-—y)=0, and

using the values of p = (1m, °) fea” (from Art. 11°2, Sec, 4) we can

Similarly obtain

~~ 2 2 2xorg tts Fs yom txr) (8)

where n= a Le 2,
This form is useful when y, becomes infinite.

Note 4. The cenire of curvature can also be obtained geometrically

as follows :

Let C (z, y) be the centre of

curvature corresponding to the

point P (x, 4) on the curve.

Then PC=p.

Let PZ be the tangent at P,

so that 7 PTX=y.,

Draw PN, CL perpendi-

oularson OX, PM perpendicular

on CL. Then ZPCOM=y.

2=O0L=ON—MP ©

=2-—-PC sin PCM

=g—psiny --- (1)

y=LC=LM+MC=PN+MC=y+P0 cos PCM

=y+pcosy. -- (2)

Since, tan y= =y,, sin y= Joga and cos y=
a

Y

_ 1 @
a/ 1+y,"

Now substituting the values of p, sin y, cos yin (1) and (2) the

required values of z and ¥ are obtained,
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11°77. Property of the Centre of Curvature.

The centre of curvature C for a point P on a curve is the

limiting position of the intersection of the normal to the curve

at P with a netghbouring normal at Q, as Q->P along the

curve.

Let P(x, y) be the

given point and Q (2+ Az,

y+ Ay) be a point near P

on the curve y=f(x); let

us suppose Yi, Yg exist

at Pandy. ~ 0.

Y

“

0 x
The normal at P is

(Y—y) y1 +(X-2)=0 (1)

or, (Y—y)¢ (7) +(X-2)=0. (2) putting y1 = (2).

.. the normal at Q is

(Y-—y-— Ay)b(@ + Ax) + (X— 2 — 4x) =0. e++ (8)

Suppose the normals at P, Q i.e., (2) and (3) intersect

at WN (£, 7); and let (2, y) be the point C to which N tends

as QP.

Subtracting (2) from (8) and putting 1 for Y, we have

(n— yigla + Aw) — p(x)} — Syd (a + Ax) - dv =0. «++ (4)

Dividing by Az, and making 4x — 0 and noting that in

that case 7 > y, we have

(y—y) ’ (@)—y1¢ (@) -1=0,

ie, (y—Y) Ya - Ya" ~1=0. s+ (5)

Again, since (z, y) is a point on (1),

“. (y-v ys t@—a2)=0. “+> (6)
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The values of (2, 7) obtained from (5) and (6) are identical

with those of the co-ordinates of the centre of curvature

obtained in Art. 11°6.

Hence, (2, y) i.e., C is the centre of ‘curvature.

11°8. Evolute and Involute.

The locus of the centres of curvature of a given curve is

called its Hvolute.

If the evolute itself be regarded as the original curve,

a curve of which it is the evdlute is called an Involute.

Formule (6) and (8) of Art. 11°6, give the co-ordinates

of any point (z, y) on the evolute, expressed in terms of the

co-ordinates of the corresponding point (x, y) of the given

curve ; since y is a function of z, these formule give us

the parametric equation of the evolute im terms of the

parameter i. °

Ordinary cartesian equation of the evolute is obtained

by eliminating z and y between the two expressions for

2, y and the equation of the curve. [See Art. 11°10, Ex. 2]

11°9. Properties of the Evolute.

(I) The normal at any point to the given curve is the

tangent of the evolute at the corresponding point of the

evolute.

Let (z, y) be the centre of curvature corresponding to

the point (x, y) on the curve. Then from Note 2, Art. 11'6,

e=e2-psiny, y=yt+p cosy.

, & =1-pco ay _ i 1 dp,°° da PCOS Y Tle sin Ye
=l- ds dw dp_.._ . dp dp

dy ‘ds da ~ Sin ya ain aS
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dx 4 oe dp,Thus, de sin (1)

dy. dp.
Similarly, Jy COS Ya (2)

dividing (2) by (1),

au — cot p= - which is the ‘m’ of the

norma! at (2, y).

‘m’' of the tangent to the evolute at (a, y)=‘m' of the

normal to the given curve at the corresponding point (a, y),

and since both the tangent to the evolute and the normal

to the curve pass through the same point (a, 7), they are

identical. Hence the result.

(II) Length of an are of the Evolute.

The, length of an arc of the evolute of a curve ws the

difference between the radii of curvature of the given curve,

which are tangents to this arc of the evolute at zts extremities.

Let s be the length of the are of the evolute measured

from some fixed point on it up to the centre of curvature

(z, y). Then from (1) and (2) above, we have

da)" 4 av)" = (4e)"
ax ax ax

Cy
6
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— _

Also we have (z=) + “= a)"
dz

ds = 2P 2.6. d (5 _ p)=0. Hence [by Art. 6°6, Hx. 1]
“dx da " da

s — p=C (a constant), 7.e.,s=p+O.

Hence, 8§1—-S3=P1—P3, Where 3, P, are the values

of pat the two points P,, P. on the curve and s,, Sq are

the values of s of the corresponding points C1, C4 on the

volute.

Thus, the arc C,C, of the evolute = P,C,—-P,Cz.

Hence, if a string is wrapped round the curve 0,C,,

it is clear that when the string is unwrapped, being kept

tight all the time, the point on the thread which was at P,

will describe the curve P,P.

This is why the curve C,C, is called the evolute of the

curve Pi Pg.

(III) Radius of the Curvature of the Evolute. °

Let yp’ be the angle which the tangent at the point

C(x, y) on the evolute y

{corresponding to the point

P(x, y) on the original

curve] makes with the

x-axis, then y’ is the angle

which the normal at (a, y) 5

on the given curve makes

with the a-axis.

1 ay 4. asy=tnty, .. dy’ 1 ; also from (II) above, dp’ o

Let p be the radius of curvature of the evolute at (@, y).

5a 28 a8 dp dy de - 2 (#)- = is,
dy} dy?
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11°10. IWustrative Examples.

Ex.1. Fund the centre of curvature at any point (a, y) on the

parabola y? = 4am.

= a, = aw 1, Na,Here, V1 /2 a ae

aye /2(14%\_ Na (eta),yi(1+y,%) J 2(1+2) i

If z, y be the centre of curvature, we have

ea g— 2 aie Ve +3 +a) =8n-+ 2a.

_ 1+4,? _ 2 Jax (x +a)
ex ye}

yr Yo y Ja

+=2 Jan 282 fea) («..
2

a. SocoO_— —2 4? = 4aza ) 1, &

Ex. 2. Find the evolute of the parabola y? = 4am.

As proved above, its centre of curvature (z, y) at any point (x, ¥) is

given by x= 3n+ 2a, s+ (1)

_- 2y= --5 at nee (2)

2aFrom (1), 2= a2 :

’ z—2a\*. trom (2), = 3, (75°7)
.. Squaring and writing x, y for z, , the required evolute is given

by 27ay" = 4(a¢—2a)*.

Ex. 8. Find the equation of the circle of curvature at the point

(8, 1) on the curve y=" —6x2+10,

Here, y, 22-63 y,=2.

.. at the point (8,1), 9, =0, y,=2.

If (G, y) be the centre and p the radius of curvature at (3, 1),

gue HOt ag, jayt th erstat
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at
Also, _= (1+, 7) = ¢.

y

the equation of the required circle of curvature is

(a —3)?+(y—§)? =4,

or, v2 -+-y?—6x2—38y+11=0,

Examples XI(B)

1. Find the centre of curvature of the following curves

at the points indicated :

(i) vy=12 at (8, 4). PC. P. 7984]

(ii) y=a° + 277 +ae+1 at (0, 1).

(ii) ay=o7 +4 at (2, 4). (iv) y=sin?a at (0, 0).

(v) w=e7?* cos Bt, y=e 7* sin Qt at t=0.

2. Determine the centres of curvature of the following

curves at any point (2, y) :

(i) 2? = 4ay. Gi) a?y=2*,

(iii) vw? /a? + y?/b? =1. (iv) ry=a?.

(v) ae + ye = a? (vi) y= ta (e7/* + e77!),
(vii) e=acos¢,y=d sind. (viii) c=at?, y = 2at.

(ix) e=a (@-sin 6), y=a (1—cos 6).

(x) c=a (cos ¢+¢ sin é), y=a (sin ¢—¢ cos £).

$8. Find the evolutes of the curves (iii), (iv), (v), (ix), (x)

of Ex. 2, above.

4. If (a, B) be the co-ordinates of the centre of curva-

ture of the parabola

Jat /y= Ja, at (a, y), then

a+p=3(rty).
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5. Show that the co-ordinates (z, 7) of the centre of

curvature at any point (@, y) on a curve are given by

1. ay - ax
m=z —" 5 =a + —-?Gi) c=@ dy Y~Ytay

(ii) c=at+p%n", y=y t+ pty”,

where dashes denote differentiation with respect to the

arc 3.

6. Prove that the distance 7, between the pole and

the centre of curvature corresponding to any point on the

curve r=f(6) is given by

ry7 =r? + p® — Qpp,

where oe and p have the usual significance.

7 For the equiangular spiral r=ae’°°'*, prove that

the centre of curvature is at the point where the perpendi-

cular to the radius vector through the pole intersects the

normal,

8. Find the circle of curvature of the curves :

(i) y=a+4/zx at (Q, 4).

Gi) y= a? +277 +241 at (0, 1).

(iii) a =e at the point where it crosses the z-axis.

(iv) y* =4@ at the ends of the latus rectum.

(v) e+ y=anr? + by? +cxz® at the origin.

ANSWERS

1. (i) (74, 78). (ii) (—4, #). (iii) (2, 6).

(iv) (0, 3%). (v) (0, 14).

_ a. 82;* ny [afl 92) (5 o* a?

a) (- Ger mat). wo (5 (1-F) (9 Brel}
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(iii) (w= oo, -2 y* ) (iv) (3 ats na Qa" 1 2+ 25);

(v) (c+ 8a8y?, y+ Sa $d), (vi) (o-Us/e?=a" a, ay)

(vii) (a cos*¢, aoe sin’), (viii) {a (2+827), —2at*}.

(ix) {a (@+sin @),—a (1—cos 6)}. (x) (a cos 2, a sin ¢).

8. (1) (az)8+(dy)# =(a2—o79, (ii) (e+ 4)8 ~(0—y)* = (4a)?

(iii) (7+ y)o+ (s— ys = 20°,

(iv) c=a (6+sin 6), y= —A& (1—cos 6). (v) ow? +y?=07,

8. (i) 22+ y?—42—10y+28=0, (ii) 2? +y?+e-—3y74+29=0,

(iii) wo? + y?—6ar+4y+5=0, (iv) e7-+4y?—10r+ 4y-3=0,

(v) (a+b)(a? +y?) =2(x+ 4).



OHAPTER XII

ASYMPTOTES

( Rectilinear )

12°1. In some cases a curve may have a branch or

branches extending beyond the finiteeregion. In this case

if P be a point on such a branch of the curve, having its

co-ordinates 2, y, and if P moves along the curve so that

one at least of 2 and y tends to * © orto — ©, then P is

said to tend to infinity, and this we denote by P > ©.

Det. Jf P be a point on a branch of a curve extending

beyond the finite region, and a strarght line exists at a finite

distance from the origin from which the distance of P

gradually diminishes and ultimately tends to zero as P > ©

(moving aleng the curve), then such a straight line is called

an asymptote of the curve.

12°2. Asymptotes not parallel to y-axis.

If y=ma+c be an asymptote corresponding to an infinite

branch of a curve, where m and c are both finte (including

zero), then

m=Lt y and c= Lt | (y —mx),
x00

where x, y are the co-ordinates of a point P on the branch of

the curve.

The distance of the point P from the straight line:

y-mz—c=0O is given by

gat itm ne a) and if y= ma +c be an asymptote,
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ad —>0O0Oas2— © and since m is finite here,

Lt (y-mae-c)=0, or, Lt (y-mmz)=c.,
w-reo e700

Again, denoting y-— mz-c, i.6., d./1+m? by 4,

y _ m= Cc tu

xx

Now making 2 — ©, since 4 — 0 in this case, and ¢ is

finite, °

(¥ ~ m)=0, or, Lt Y =m,
x eco zx

Accordingly, to find asymptotes (which are not parallel

to the y-axis) of a curve y=f (x) { or F(e#, y)=0}, we first

of all find out Lt , from the equation to the curve, which
aw->Cco

may have several finite values (inclusive of zero). Cor-

responding to any such value (m say), we next proceed to

find Lt (y—ms), using the equation to the curve.
woo

If this limit is found to be finite, say c, then y= me +c
is an asymptote. [ See Ha. 7, § 12°8 ]

Note. An alternative definition of a rectilinear asymptote is

sometimes given as follows: Jf P be a point on a branch of a curve

extending to infinity and if a straight line at a finite destance from

the orig exisis towards which the tangent line to the curve at P

approaches as a lumt when Po, then the straight line ts an

asymptote of the curve.

With this definition also we can prove the results of the above

article ; for the equation of the tangent at P(az, y) to the curve is

d d d .Y-y=3 (X—«a), or, yao x+(y-2%), and as «-> oo, if this

tends to Y=mX-+c, where m and c are finite, clearly m= Lt dy, and
ay g->oo AX

c = lt (y-2 Ge) a Lt (y—ma).*

“A rigorous proof of this last equality requires the use of

integration.



302 DIFFERENTIAL CALOULUS

It should be noted that when P —> o, if the tangent line tends

to a straight line as its limiting position, that line is an asymptote.

The converse however is not true, 4.¢e., even if the tangent line has no

definite limiting position when P > ©, there may be an asymptote.

[ Bee Ha. 8, § 18°8 }

12°38. Asymptotes parallel to y-axis.

The necessary and sufficient condition that the straight

line 2=a 18 an asymptote to the curve y=f(x) is that

lf (w)| > © when ether « > a+0 or «& > a-0.

For suppose « > a-—0. Since | y | © in this case,

P being the point (z, y) on the curve, P ~ © in this case ;

[ conversely, if P—- © in this case, | y|— ©, and

hence the necessity of the condition]. Now the per-

pendicuar distance of P from the line x=a is g—-a (the
axes being rectangular), and | «-a |—~>Oas2x—7a—O0.

Hence, z=a isan asymptote. Similarly, for the case when

oat.

Thus to find asymptotes parallel to y-axis, we may write

eg for 1/y in the equation to the curve, and then make

zg—0O0. If then the result leads to finite value or values

of z of the type =a, these will give us the corresponding

asymptotes parallel to y-axis. [ See Hz. 7, § 12°8]

Note. In a similar way we may get asymptotes parallel to w-azis ;

thus if/as y > b + 0, | 2 | > ©, (where z, y is a point on the curve),

then ¥=0} is an asymptote.

12°4. Asymptotes of algebraic curves.

The most useful case of determination of asymptotes is

for algebraic curves. The general form of the equation of
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an algebraic curve of the nth degree is, arranging in groups

of homogeneeus terms,

(aox” +a." ty+ Gar” *y? a err rer + any”)

+ (B27 7 + bye Fy Hees ceeees + bn—-iy”” *)

+ {con "9 + 0,0" By + +++ + on_-ayTM *)

fe seeeee a), eee (1)

which can also be writtan as,

v - y - yon (Y) +0" 1bn-1 (4) +0" "bua (L)+---=0, aes (2)

where ¢,r is an algebraic polynomial of degree 7.

For asymptotes of this curve, we proceed to prove the

following rules :

Rule I. Asymptotes not parallel to y-axis wll all be given

by y=mxtc, where m is any of the real finite roots of”

$,(m)=0 and for each such value of m, e=—Sn-1(m)/*' n(m)

provided it gives a definite value of c. ,

Proof :

The equation (2) of the curve can be put in the form

1 1
bul E)+ 5 dna (E)+ Za dna(Z)tera0. + @)

Now if y=maz+e be an asymptote, where TMm and c are

finite, Li (y/x)=m (See § 72°2 ). Hence from (3), making
2->co

2 —> ©, since m is finite, and the functions ¢n(m), dn—1 (m):

etc. which are algebraic polynomials in m are accordingly

finite, we get dn (m)=0.

Again, since in this case Lt (y—ma)=c{ See § 122),
woo

we can write y—- mz=—=ct+4, where u is a function of x such.

CHU
that uw —> Owhen«— >. Thus, =, +
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From (3) now, we get
ctu 1 cu

(meses) oe nettx
=5 bn-s ( m+ o=4)+ ose wz (),

Fixpanding each term by Taylor's theorem, 
since the

function dr are all algebraic polynomials and will each lead

to a finite series, and remembering that ¢n (m)=0, we get,
3 8

{o%8 wm) Oey (m+ (ort a sialon) too}
ctu

x

2

+ EL s (m+ 2S daa (on) + (otal gs (m+ -~}
+ AA dn-a(m) + one ra n-3 (m) + .--}

op cccees =(). ees (4)

Now multiplying throughout by 2 and m
aking # > ©;

~we get (*.” u > 0 now )s

coh'n (m) + dn—a (m)=0, oF, O= — bn-a (m)/¢'n (m).

Fach finite root of ¢n (m)=0 will give one value of c

{ provided ¢'n (m) ~ 0 for this value ), and a
ccordingly we

get the corresponding asymptote y= ma + c.

Special cases.

If any value of m satisfying ¢n (m)=0 (say m=m,) makes ¢’ a(n) = 0

also ( which requires to be » multiple root of $n (m) =0 as we know

from the theory of equations ), and if da-. (m) # O for this value, then
ca © a8 m—? TM- Accordingly there is no asymptote corresponding

to this value of m.

If for m=m,, we gel Pn (m), @'n(m), On-a (m), each =0, then from

«(4), multiplying throughout by 2”, and making x —> ©, we derive
yo? ''n (m)+ ef n-1 (m)+ dn-o (m)=0

-giving two values ( SAY Cy: Ca ) of c in general [ provided ?''n (m,) #01,
and thereby giving two parallel asymptotes of t

he type y= mitter

ngy = 970, 0-1 Ca-
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If $¢”.(m,) is also zero {i.e., if m, is a triple root of d, (om) =O}, and

if ¢’n-, (771), Gn—-g (m,) are also identically zero, we shall, proceeding

in a similar manner, get three parallel asymptotes in general corres-

ponding to m=m, ; and So on.

Rule II. Asymptotes parallel to y-axis exist only when

an (the coefficient « of the highest power of y 2.¢., of yTM) is zero,
and in this case the coefficient of the highest available power
of y in the equation ( provided at involves x, and zs not merely

a constant) equated to zero will give us those asymptotes.

A similar rule will ,apply to asymptotes parallel to

v-a7s.

Proof :

After dividing by y”, and replacing 1/y by z, the

equation (1) of the curve can be written in ascending

powers of z in the form

An + 2(an— 12 + bn 1) + 27(An—2%" + byn_gt + Cn) sss
= 0. aes oe 63>)

This will have an asymptote parallel to y-axis of the

type <=a where a is finite, provided z—~0O when rz—at+0

or a—O[ See § 72°38 ].

Hence making z — 0, since 2 now tends to a finite value,

we must have the necessary condition ay, = 0.

Assuming this to be satisfied, we get from (5), dividing

by 2 and making z — 0,

Qn-10 + bn_1 =0 wee vee (6)

giving a finite value of x (provided an_, is not zero) which

makes | y |—> © and thus represents an asymptote.

In case dn-1 is also zero along with a, in order that

we may have an asymptote parallel to y-axis, since 2 is to

be finite, we must have from (6), dn-; =0. Hence, from (5),

20
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dividing by 2* and making z 0 now we get the asymp-

totes parallel to y-axis (two in this case) given by

dn—9%" + bn_gt + Cn-g = 0

provided this gives finite values of x. Im case Gn—2, Yn-e,

Cn—2 are all identically zero, we proceed in a similar manner

with the coefficient of z® in (5) 2.e., the coefficient. of y”~*

in the original equation (1), and so on, proving the rule.

Note. By interchanging y and x in arranging the given equation

(1), and proceeding in a similar manner, (making 1/20) we can prove

the corresponding rule for finding the asymptotes parallel to the x-axis.

12°56. Working rule for asymptotes of algebraic

curves.

For an algebraic curve of the mth degree with equation

given by (1) of the previous article, first of all seeif the

term involving y” is absent, in which case, the coefficient

of the highest power of y involved in the equation (unless

it is merely a constant independent of xz) equated to zero

will give asymptotes parallel to the y-axis.

Similarly if the term involving x” is absent, the coeffi-

cient of the highest available power of @ equated to zero

will in general give asymptotes parallel to the «-axis.

Next, replacing z by 1 and y by TM in the homogeneous

n** degree terms, get on (m) [ as is apparent from the alter-

native form 2%" (y/z)]. Similarly get ¢dn—1(m) from the

n—1** degree terms, and if necessary (see later), dn—. (m)

from the »— 2°" degree terms, and so on. Now equating

dn (m)to zero, obtain the real finite roots m1, mg, etc.,

which will indicate the directions of the corresponding
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asymptotes (repeated roots giving in general a set of parallel

asymptotes).

For each unrepeated root (m, say), a definite value c,

of c= — dai (m)/d'n (m) is obtained, and the corresponding

asymptote y=m,2+c¢, is determined. For repeated roots,

the several values of c may be obtained as explained under

the head ‘Special cases’ 6n rule I.

12°6. Alternative method of finding asymptotes of
algebraic curves.

Let the equation to an algebraic curve be

Pat Pa-1t+Pa-~t oveeae =, eee (1)

where Ppl = aoe” taza” ty te + any” = "dn (y/a) J

consists of homogeneous terms of degree , Py, is homo-

geneous of degree ~»—1, and soon. Now m1, mq, Mogyere ese

being the roots of ¢n (m)=0, we know from the theory of
equations that m— m1, m—%Mgq,..--- are factors of dn (m)

and accordingly Py, = an (y—mix\y— m2)... The possible

asymptotes are parallel to y—m,x=0, y-m,x2=0, etc., as

proved in § 12°4, and their directions are thus all easily

found from the factors of Pn.

CasE I. Let y—m.ia@ be a non-repeated factor of Py.

Fiquation (1) can then be written as

(y— ma) Qn-1 + Fn-1 =0,

or, y~ mie +(Fa_1/Qn-1) =0, “*° (2)

where Qn-1 [ =(y— mga)(y — mgn)-*** ] is a homogeneous

expression of degree »—1 which does not contain y— mia

asa factor, and Fn_1[ = Pa-1+Pn—. te: ] consists of

— 1*" and lower degree terms. :
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Now the asymptote parallal to y — mi% = 0, is ¥— 4 e = Cs

where 6,=Lt (y-mio)=Lt (—Fr-s/Qn-s) [from (2)
coo 

so

above], it being remembered that Lt (y/x)=ms in this
2-00

#,case { See § 22°2]. Inother words, the particular asymptote

in question is

y~- m,x+ Lt (Fa-1/Qn-1) = 0,
x00

where in determining the limit involved, we are to put y = m1&

and then make 7.
£

Case Il. Let Pn have & repeated factor (y — mr&).

The equation (1) can then be written as

(y — myx)? Qn-a + Pay + Fa-2 =9, on (3)

where Qn, is 2 homogeneous expression of degree n—- 2,

and Fru-g { =Pn-2+Pna-st°"” } consists of TM— 9 and

lower degree terms.

Now the asymptotes parallel to y- MTMrar= QO willbe

y — Mr = Cr, where Cr= Lt (y-—myx), and this from (3) is
woo

given by

Cr? + Li Pui + Fa-a = 0,
w-P0O n—-2

it being remembered that Lt (y/a) = my here.
Cro

Tf Pn-1 does not contain Y— MrT as a factor then it is

easily seen that cr? as given above, does not tend to a finite

limit, and accordingly there are no asymptotes par
allel to

Y= Merl.

Tf on the other hand, Pn-s has a factor y—
 mrv, assum-

ing Pn-1=(y— mre) Rn-a, we can write (3) in the form

(y — meet)? + (y — mre) or + En-a 0,
m-3 a—2
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~

and arguing as before, the required asymptotes will be

given by

a Rn-s Fa-a(y — mya)? +(y— mre) Lt ="=3 4+ Lit =0,
~-POO Qn—2 POO Qa-s

it being remembered that in proceeding to determine the

limits we are to use Lt (y/x)=m,r here.
woo e

The two parallel asymptotes corresponding to fhe two

repeated factors of P, are thus obtained.

Similarly we may procéed in cases of factors of Py

repeated more than twice.

Note. If in P, the term involving y" be absent, that is a,=0,

clearly P, will have a factor 2, and corresponding to this there will

be in general an asymptote parallel to y-axis, ¢.¢., parallel to x=0,

@, (m) (which is in general of degree n) will have its degree lower than

min this case. If for instance x? bea factor of Pa, oa (m) will be of

degree n—2, as x*y""? will be the term involving the highest power

of y in Pry. In this case, there will be in general two asymptotes

parallel to y-axis (v.e.,2=0) and »—-2 asymptotes corresponding to the

roots of dp (m) = 0, t.e., corresponding to the other factors of Pa.

Thus, all the possible durections of the asymptotes of the algebraic

curve (including those parallel to y-axis) wall be indicated by the

factors of Py, and the asymptotes may be very effectively determined

by the method of the present article. [For ¢llustratvons, see

Ez. 1-5, § 12°8 ]

A special case (Asymptotes by inspection).

If the equation to an algebraic curve can be put in the

form F'n + Fn—g =0, where Fn consists of nTM and lower degree

terms which can be expressed as a product of n linear factors

none of which rs repeated, and Fn-g consists of terms at

most of degree n- 2, then all the asymptotes are given by

Fn =0.
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For let F, =(a42 + diy + ci)aga t+ bay +9)°°**

(ante + bay + Cn)

=(ai¢+biy + ¢,) Qn-1 (say),
where Qn-1 is of degree n~ 1.

The equation of the curve can then be written as

Gye+byy +06, + By_o/Qn-1 = 9,
and the asymptote parallel to «,¢+6,y=0 is as shown

above,

Ge+byyteyt Li. (Fa-o/Qn- 1) =0

where, in calculating the limit of the last term, we are to

put y= —(a,/b,)z, and then make > ©, and this limit ~
is easily seen to be zero, since Fn, is at most of degree

a—~ 2, and Qn-1 is of degree x — 1.

Thus, a:¢+d,y+c,=0 is an asymptote. Similarly,

each of adgat+beyt+c,=0, etc. will be an asymptote. As

there are » asymptotes here, #',=0 represent all the

asymptotes.

Note. If in the above case, F,, consists of real linear factors,

some repeated, and some non-repeated, the non-repeated linear factors

equated to zero will be asymptotes to the curve. The asymptotes corres-

ponding to the repeated factors however will have to be obtained as in

the goneral case.

12°7. Asymptote of Polar curves.

Let r=f(6) be the polar equation to a curve. This

. 1 1 .
may be written as «= , F077 F(6) (say). +» (i)

P being any point (7, 0) on the curve, P > © as7y—> ©

which requires F(8)->0. Let the solutions of F(6)=0 be

@=a, Bf, ¥,...... etc. Then these are the only directions

along which the branches of the curve tend to infinity.
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Consider the branch corresponding to 8=a. Let the straight

line r cos (@~—a,)= 9: (ii) be the asymptote to this branch.

Then p=ON, the perpendicular from the pole O on the

line, and ZNOX=a,. Let OP produced meet this line at Q.

The perpendicular from P on the line is

PM=PQ cos QPM=(0Q- OP) cos QON

={n sec (@—a,)—f(@)} cos (8—a1) [| From (2) & (22) J

= » — f(6) cos (0-a,).

Now since (1i) is an asymptote, PM—> 0as P—~ ©

4 ¢., a8 @—>a for the branch in question.

oy Lt {p — f(0) cos (@— a,)}} =O, or Lt £(6) cos (@—a1,)=p

and as 7: is finite, and f(@)— © as 0— a, Lt cos (@—a,)=0;
>a

a- a, =z, or a, =a— $x.

cos (8 — a,)Again, p= Lt (6) cos (8-ai)=Lt —~a76)
| | 

0) 7, —sin @-a,)which being of the form 4 Li F" (6)

_ sin (a—a,)sin ta~a),_l ,
F’ (a) F" (a)

—
—
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Hense, (ii) reduces to r cos (0-— a+ $n)= — 1/F’ (a),

or, r sin (@—a)=1/F’ (a)

which is the required asymptote.

Similarly the other possible asymptotes corresponding

to the other branches are 7 sin (9 — B)=1/2" (8), r sin (8-7)

= 1/F"(r), etc.

12°8. Mlustrative Examples.

Ex. 1. Fund the asymptotes of the cubic

a2? —8y>+ay (Qe-y)+y (2 —y) +1=0. { C. P. 1949 }

The curve being an algebraic curve of the third degree, since the

terms involving 2* and y® are both present, there are no asymptotes

parallel to either the z-axis or the y-axis in this case.

To find the asymptotes of the type y=mx-+c, which are oblique,

considering respectively the third and second degree terms (putting 1 for

% and m for y), we get here

dn (m)=1—2m> +m (2—m)=(1— m\(1+m)(1+ 2m),

and n-, (m)=m (1—m).

Now, on (m)=0 gives m=1, —1, —4.

= — ener (m)__m(m—1)_, =1-.20:Also c gn’ (m) ~ 6m? +2—Im and thus for m=1, c,= 0; for

m= —1,c,=—1; and fot m= —4, c, =}3.

Fence the required asymptotes are

yY=nu, y= —ae—-1, and y= —ga+4,

2.€,, c—y=0, oF yt+1=0 and o+2y=1.

Note. It may be noted that the equation to determine m and c

might be obtawed im practice by puting y= mate un the given equa-

tcon, and then equatung to zero the coefficients of the two highest powers

of =.

Alternative method :

Writing the highest degree terms in factorised form, the equation

can be written as

(x — y) (e+) + 2y) + ye — y)+1=0.
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Hence the possible asymptotes are parallel to «—y=0, w+ y=0,

and 7+2y=0, and these asymptotes are respectively

+Lt Ye-y)+1 Ly a
ay waco (2+ y)(a+2y) (i)

yx

Le ¥(ery)+1 _ ——-
oY eco (w—y)(a+ 2y) (ii)

youre

Lt’ yey) +1_ asand tat Te (o—4)(a-Fy) ~ =0, (iin)
y=—-ie

imi * = lt x (a — —ar)+1 .
The limit involved 1n. (i), Ht co (w+) (c+ 2a) TM =0;

ni) =Lt weieta)t+lio 7p, -2e?+1_
that in (ii) asco et a)e—2a) ~ wkco — In?

and that in (aii), =Li ase (etde)el op, —Be* +1 1.
co (atdar)\(a—dxz) z200 2a?

Henco the asymptotes are
a-y=0, c+ yt+1=0, 7+-2y—-1=0.

Ex. 2. Fond the asymptotes of 2a (y—b)4=3 (y—2)(2—1)7

As the curve is algebraic, arranging the torms in descending degrees,

the equation can be written as .

xy (2y — 82) 4-22 (8a — 7) + 38x — 3y+6=0. eee (i)

The possible asymptotes are parallel to x=0, y=O and 2y—327=0.

The asymptote parallel to 2=0, 1.e., to the y-axis, is (equating to zero

the coefficient of y?, tho highest available power of y in (i), since the

term involving 7° 1s absent here) 2x =0, 2.e., c=0, tho y-wx1s itself,

The asymptote parallel to y=0, (in a similar manner, since g* term

is absent here), is —3y+6=0, or y=2.

The third asymptote is

Qa (Ba — Ty) + 38a — 3y +6

“Ly
Qy — 80+ Lt =0

moo

yria
—e_ ah u—_ @

and since the limit involved = Lt 2a (8x a)+(88-F)r+6 _
00 #2"

the asymptote is 9y—38a2—10=0.

— 10,

Hence the asymptotes required are «=0, y= 2, 29 = 3a+10.



$14 DIFFERENTIAL CALCULUS

Ex. 8. Determine the asymptotes of

wo +2 — oy? — yy? + Qay + By? —8a+y=0.

Writing the equation as

(a+)? (c—y)+2y (w+y)—-32+y=0, ves (i)

we note that there are presumably two parallel asymptotes parallel

to w-+7=0, and one parallel to z—y=0.

The asymptotes parallel to x+y =O are given by
s

a Lt 4 nt 3874, we (8(wy)? +2 (x+y). Lt oy mic ay 7° (ii)

provided the limits involved exist.

Now, Lt -Y JL —" = —}
x00 UY goo TT

y=~a

Lt vl, Fete lg
moo 2 Y asco Lt

Y=Uu~ a

and

Hence the asymptotes from (i) are

(a+ y)? —(e+y)—2=0, or, (waty+1)(a+y—2)=0.

Again, the asymptote parallel to s—y=0 is given from (i), by

Oy (e+ y)—Bat+y

00 (a+ y)*
Yr

a—yt Li =0,
o>

. o. _ nt Dt Qn. (a+ a) — Bat x
Mey 2 Yt 00 (a+ a)” =0,2.¢., m-yt1=0.

Thus the required asymptotes are

otyt1i=0, e+y—-2=0 and s—-y+1=0.

Ex. 4. Fond the asymptotes of the Foluun of De Cartes

ua? -+y*? =Zary.

The equation can be written as (a+ y)(a#?—axy+y?)=S3ary, and

since the highest degree terms have got only one real linear factor

w+y, (the linear factors of 2?7—ay-+y? being clearly imaginary), there

is only one possible asymptote here, which is parallel toz+y=0. The

asymptote in question is

2

Cty = co ao? —xyry? 2-200 2+ +a? a
yr~2z

$0. wkyta=O,
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Ex. 5. Find the asymptotes of a(x — 1)? —3(x? — y?)+8y =0.

The possible asymptotes hore are, one parallel to »=0, and a pair

parallel to z—-y=0.

The first one which is parallel to #-axis, 18 found by equating the

coefficient of y? to zero (the term involving y° being absent, as it should

be under the circumstances), namely, 7+3=0.

Tho other two are given by

—a4)? — _ Lt uty L =(w—y)? —S8(x y). te x +8 it oa 0,

y=x Vr

i.e., (w—-y)? —3 (a—y).2+8=0, or, (x—y—4)(e—-y—2)=0.

Thus the required asymptotes are

e+3=0, e—y=4 and «—y=2.

Ex, 6 Prove that the asymptotes of the cwboc

(2° —y?)y — 2ay? +5a—7=0

form a triangle of area a?.

The equation to the curve may be written as

(a? —y? — 2ay) +5a—7=0, or, ya? —(y+a)*}+a7y+ 5a—7=0,

i.¢., yW(atytale—y—a)+a°y+5x—7=0 °

which is of the form F,+F',=0, F, having three unrepeated linear

factors, and so the required asymptotes are given by equating these

factors to zero, namely,

y=0, e+yt+a=0, c—-y—-a=0.

By solving in pairs, their points of intersection are easily seon to be

(—a, 0), (a, 0) and (0, —a).

The area of the triangle with these as vertices is

t a 0 1 | =$97°=a’,

| —a 0 1 |

0 —a 1

Ex. 7. Find the asymptotes, af any, of the curve

y=a log sec (z/a).

This is not an algebraic curve. To find its asymptotes, if any,

which are not parallel to y-axis, we know that y=maz+c will be an

=aLi ¥ = Lit _asymptote where m ern and ¢ ut (y~ ma).
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Now in the curve, Li 4 «Lt a log seo («/a)
too ct -P0O x

which limit does not exist.

Hence there is no asymptote non-parallel to y-axis in this case.

To find if there be any asymptote parallel to y-axis, we notice that

yoo when z/a—> 2urtdr, and accordingly the asymptotes parallel

to y-axis are ( See § 12°38 )

w= (Qn +hr)a s

which are the only asymptotes of the given curve.

Ex. 8 An asymptote os defined on the following two ways:

(A) 4n asymptote ws a strasght lone, the distance of which from

a pont on a curve demimishes without lamet as the point on the curve

moves to an wnfinite destance from the origin.

(B) An asymptote to a curve 1s the lumiteng posetion of the tangent

when the pownt of contact moves to an infinite distance from the orwun.

Consider the two curves

(2) yraxtb+ © s (2) y= =an-+b+2 Sn 2,

Show that for the first curve, an asymptote exrsts accordung to both

the definitrons, but for the second curve an asymptote exists according

to the first defimtion, but not according to the sécond.

et us consider the first definition. According to this it has been

proved ( § 12°2 ) that the straight line y=ma+e will be an asymptote

ex Lt ¥ = it _ | i ito a curve, where m tt ot and ¢ UM (y—ma), (x, y) being a point

on the curve, provided the limits exist.

Now for curve (i),

m=dLt Y = IJut (a+ b+ saa
@ xzoe © eur oo

= Dt _ = Lt —ae)= Lt &.)and c a! oc (y— mz) at oot az) aut (o+ db.

Accordingly the asymptote exists, given by y=az+b.

Again, for the curve (ii),

Mees ahem (Het Ge) me Isis}
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=Lt (y—mz)=Lt (y—-ax)=Lt ( otsin 2).and c Int (y— max) Lit (y—aw) it b+ b

Thus the asymptote exists here also, givan ky y=art+b.

Next, consider the second definition.

dyFor curve (i), 3 ee = and so the equation to the tangont line

at (a, y) is roel)

ws Balog) xe9me (on d)=(o— 3) x0(00%)
As #->oo, the equation becomes Y=aX+6, which is then the

definite straight line towards which the tangent line approaches, as the

point of contact (x, y) moves to an infinite distance. Hence this is the

asymptote.

For curve (ii), au = a+ 008 #— {oF ein 2)

and the equation to the tangent line at (z, y) is

_ oe @ COS 2—(c+sin =)}( _ )Y y= a+ a A 2

or substituting the value of y from (ii),

Y= fa+o8 # tein a x+ {aletsin x) _ cos a+b}.

x x

Now, a8 2->0o, cos 2 does not tend to any definite limit. Hence

the tangent line at (x, y) does not tend to any definite limiting position

and so the asymptote does not exist in this case, according to the

second definition. .

Ex. 9. Fund the asymptate of the curve (r—a) sun 0=b.

: ‘ sin @
The equation can be written as w= b+a sind = F'(6) (say).

The directions in which 7->o°o are given by w=O0, or sin @=0,

giving =n.

Now F"(6) ines, du _cos 6 (b+a sin @)—sin 0 (a cos 6)
a (o+a sin 6)? |

as 0008 @ _ = = 9 008 nTM _ 008 ur= O-+a sin 6)2 and for @=m7, this =
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Hence, as in § 12°7, the asymptote required is given by

r sin (0-2) =1/F" (nxr)=b seo mr

which, whether n is even or odd, reduces to

r sin 06=0d.

Examples XII «

Find the asymptotes of the following curves :

1.

Ze

8.

4.

10.

y* —~2* —-Ie—-By-3=0..

4° — Gary? + lle*y — 6a* + y? — @* + We —- By—1=0.

o*® +302 y —ay*® — 8y9 +27 -— Ary +83y2 +474+5=0.

80° + Qn? y — Tay? + 2y* — l4ey + Ty? +40 + Sy =0.

[C. P. 1943 }

a? + Qa? y — cy — By? + 4y? + Qny - 5yt+6=0.

2 2
ft
va gel. 7. wv —y® =B8y (x+y).

et — yt + 327% y + Bay? +ay=0.

Ao* — Betty? +y* +y* — 3a2%y +5e-8=0,

(i) sy — Q2y — 38a2=0. Qa) y2(2* — a?) =a.

(iii) ola? + y?) + ale? — y?) =0.

11.

12.

18.

14,

15.

16.

17.

ety? — 4a — y)? +2y-3=0.

ery? — @*y- ay? +at+yt+1=0. [ C. P. 1987 J

y7* — 8ya? — Say? + Qn? + by? — a — 8y +2=0.

et —g*yt te? +y*—a? =0.

yr — ye? ty2?+an7-4=0.

e2(a — y)? —a*(e? +y?)=0. [ Cc. P. 1946 }

a? — dry? — 8a? + 12ya — 12y% + Ba + By +4=0.
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18. 2° +827y-4y°-—e@+y+3=0.

19. y®?—ay?-—a2?yte 2 +e?-y?-1=0. [C. P. 1989)

20. yi +a2%y + Avy? —y+1=0. [C. P. 1941, 44]

21. (2? — y*)? — Sia? + y?) +8a—16=0.

22. ly —a)*(y— 2x) + 3a*(y— x) — 2a? =0.

23. a (a+ya—y)? + 9a3(a—y)—4y* =0.

24. (at ya — 2a — y)? + 3ny(a@—y) +a? +y? =0.

25. (a +y)?(a— y)? — Wat y)*(a— y)*® — Wa? +y7 Katy)
+ An—y)? +4(a—y)=0.

26. y® — dary? + 8n7?y— 40° —4y? +129ry — 8x?

+ 3y—-37+2=0.

27. (i) wyl(a? —y*2)=n77% + y?. (ii) xy(e? +y?)=2? -y?,

28. (2? — y?)\(a? — 9y?) + 3ay — 62 —-5y +2=0.

29. (i) 2° —6a7y + Lllzy? — 6y? + 2a—-y+1=0.

(ii) ao* — 5aty? +4y* +a? -— Qy2?+Or+y+7=0.

30. (2@-ytiIlaty +1\(e—- Qy +3) =Q2e—- Sy +1.

*31. 4) y=tan 2. (ii) y =e",

(iii) y=e”’. (iv) y=log @.

$2. Show that the asymptotes of the curve

ay? =q"(e? + y*) form a square of side 2a.

33. Show that the asymptotes of the curve

n®y? —a? (22 +y")—a*(a4+y)+a* =0

form a square two of whose angular points lie on the curve.

[C. P, 1947 ]
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34. Show that the finite points of intersection of the

asymptotes of xy (2? — y?) + a(x? + y*) —- a°® =0 with the curve

lie on a circle whose centre is at the origin.

35. Find the equation of the cubic which has the same

asymptotes as the curve 2a (y— 3)? =3y(¢—-1)? and which

touches the axis of # at the origin and goes through the

point (1, 1).

“36. If any of the asymptotes of the curve

an? + Qhay + by? + Qgxrt+ 2yt+c=0 (h? > ad)

pass through the origin, prove that

af? + bg? = 2fgh.

*37. If the equation of a curve can be put in the form

y=ar+b+4(x), where d(x) ~Oasr—> ©,

then show that y=axr+b is an asymptote of the curve.

Apply this method in determining the asymptotes of the

curve v*y — 2° — 7? — 82+2=0.

*88. ‘An asymptote is sometimes defined as a straight’

line which cuts the curve in two points at infinity without

being itself at infinity’. Comment on this definition.

Attempt a correct definition and use it to obtain the asymp-

totes of (w+ y)"(a@ + Qy +2)=a2+9y — 2.

39. Find the asymptotes of :

(i) r=a (cos 6 +sec 6). (ii) r cos 6 = Qa sin @.

(iii) r=a sec O6+Otan 6. (iv) r cos 6=a sin70.

(v) r=a cosec 6+ 5b. (vi) r sin n0 =a,

(vii) re=a. [O. P.1937] (viii) rTM sin n6=a" (n > 1),
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40. Show that there is an infinite series of parallel

asymptotes to the curve

a

6 sin 6
r= + 6,

41. Show that all the asymptotes of the curve

r tan n0=a

>touch the circle r=a/n.

*42. Show that the curve

r=a sec n0+b tan 160

has two sets of asymptotes, members of each set touching

a fixed circle. .

ANSWERS

1. y-a2=2, yt+xr=0. 2 yn, y=QWa+3, y=3xe—-4,

3. 420+19y+9=0, 2e+27—-3=0, 4a—4y+1=0.

4. 6y—62+7=0, 2y—62+3=0, 6y+-32+5=0.

5. 2+2y=0, a+y—-1=0, c—-y+1=0.

6. y= 2. 4 e-y=2. 8. a+ty=0, Ic—27+3=0,

9. 8a—38y—1=0, 8a+3y+1=0, 122-—6y—1=0, 127+6y+1=0.

10. ) e=2, y=3. (1) y=0, a= +a. (ii) z=a.

1. w= 423 y= +2. 12. <=0, c<=1, y=0, y=1.

13. 2=2,7=3, y=1, y=2. 14. w@=41;y=+4+¢0.

15. y=1,y=a2-1, y=—-a2—1. 16. c= +a, e—y= +2 /2.

17. w2+3=0;5; 2—-2y=0 5 a+ Qy=6.

18. y=oa;a7+2y—-1=03 e+ 2y7+1=0,

19. y= +e; y=rcrl. 20. y=0, oty= +1.

21. y=rt23; y= —c#e.

22. Qyt8B=03 e-ytl=0; a—y+2=0; 4v—2y—-3=0.

21
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23. r= t2ig-yt2=0; 2-y—-1=0; 2+ytl=O.

24. g—y—2=0 ; Io—Qy+1=0; Ww+2y—1=0; e-Bay +2=0.

25. aty-2=0;e+y=t1;0-y= +1.

26. y=x;yq2et1; y= 20+ 3.

27. (i) c=0, y=0, c+ y=0, c—y=0- (i) c=0, y=0.

28 ety=0, c—y=O0, o+3y=0, 2—-3y=0.

29 (i) a—y=0, e—2y=0, —3y=0.

(ii) e+ 2y=0, 2—- 2y=0, g+y=0, 2-y=0.

30. c-y+1=0, a+yt1=0, 2-2yt+3=0.

81. Gi) «= (2nt+ 1) $7, where m is zero,or any integer positive or nogative

_(u) y=0. (iii) y=. (iv) 2=0.

35. any? —8x2y —6ryt Ty =O. 87, y=at1.

88. ctQyt2=0; ct+y= +2 /2.

89. (1) r cos 0=a. (11) 7 cos 0= + 2a. (in) 7 cos O=a+tb.

(:1v) 7 cos 6=a. (v) r sin 6=a.

. . mT a4 e s

(vi) r°BiD (6 _ mz) = n sec m7, where m is an integer.

: nur .

(vn) r sin 0=a, (vin) 6= where m 18 an integer.



OHAPTER XIII

SEC. A. ENVELOPE OF STRAIGHT LINES .

13°1. Introduction.

Let us consider the equation

x cosa,t+y sin a=a.

This represents a straight line; by giving different values

to a, we shall obtain the equations of different straight lines

but all these different straight limes have one characteristic

feature common to each of them wvzz., each straight line is

at the same distance a from the origin. On account of this

property these straight lnes are said to constitute a famrly,

and a, which is constant for one line but different for different

lines, and whose different values give different members of

the family, is called the parameter of the family. It should

be noted that the position of the line varies with a.
As we have a family of straight’ lines, we have a family

of curves. Thus the equation
(2 — a)? +y2%=r?

represents a family of circles for different values of a, all the

individual members of the family having the common cha-

racteristic viz., they are of equal radii ‘r’ and their centres

he on z-axis. Here a is the parameter of the family.

In general, the equaizon of a family of curves is repre-

sented by F(z, y, a)=0, when a is the parameter.

13°2. Definition of Envelope.

If each of the members of the family of curves

C= F(a, y, a)=0 touches a fixed curve ZH, then EF is called
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the envelope of the family of curves CO. The curve £ also,

at each point, is touched by some member of the family C.

Lllustraivn :

We lImow that 2# cos a+y sin a=a touches the circle ¢7+y?2 =q?

at (a cos a,asina), Thus, each of the members of the family of st.

lines C= cos a+y sin a=a (for different values of a) touches the fixed

circle H=a?+-y?=a7, and hence the circle 2*+y7=a? 1s the envelope

of the famely of straight lines w copat+ysina=a; also the circle

o7?-+-y%=a" at each point (2 cos a, a sin a) obtained by varying values

of a, is touched by some member of the family of straight lines.

Y

>»

A |

In the present section we shall confine ourselves to the

determination of the simplest type of envelopes, 2.e., the

envelopes of straight lines.

18°3. Envelope of straight lines.

The equation of the envelope of the family of straight

lines F(a, y, a)=y—f(a).2-—d(a)=0 (a being the parameter)

as the a-eliminant of F=0 and vr =0.

From F'=0, and * =(), we have respectively

y= f(a) 2 +¢(a). ss» (4)
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and O=f' (a)a+¢'(a). ees (2)

from (2), «= - $7 oe) say + (8)

and from (1), yal ~{eishe) rm ay a (0) fla) h(a) say. (4)

Hence the curve (2.é., the envelope) whose equation is

obtained by eliminating a between (1) and (2) is the same as

the curve whose equation is given parametrically as

em gla) \ wes
y = h(a) 6)

Now the equation of the tangent at the point ‘a’ on the

curve (5) is given by

y— Wa) =", hte - g(a) (6)

Substituting from (3) and (4) values of g(a), h(a), g’(a),

h’(a) in (6) and noting that h’(a)/g'(a) reduces to f(a), and

simplifying, we get the equation (6) z.e., the equation of the

tangent at ‘a’ on the curves (5) as

y= fla)x + o(a)

which is the same as the equation of the given family of

straight lines.

Thus every member of the family of straight lines

F(x, y, ¢)=0 touches the curve whose equation is given

as the a-eliminant of F=O and or =O, and hence the

a-eliminant curve is the envelope of the family of straight

lines.

Cor. 1. From the definition, it at once follows that every curve és

the envelope of ets tangents.
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Cor. 2. Since we have seen that normals at different points on &

curve touch the evolute at the corresponding points, it follows that

the evolute of a curve is the envelope of its normals.

Thus, if N(x, y, a)=0 be the equation of the normal of a curve

at a point with parameter a, the evolute is obtained by elaminating a

between WN (a, y, a) =0 (i) and ov = 0 (ii). Since the evolute is the locus

of contres of curvature, the co-ordinates of the centre of curvature are

obtained in parametric form by solesang the above two equations for x

and y in terms of a,
a

The above methods of determining the evolute and

centre of curvature are much simpler than the methods

already given in the chapter XI (curvature). [See Hz. 4

and He. 5, Art. 18°4 ]

13°4. Ilustrative Examples.

Ex. 1. Fand the envelope of the straaght line yamats ow being

the variable parameter (m #0).

Here, mat © —y=0. se» (1)

Differentiating with respect to m,

a a . aC= —;=0, ae m? = —*e = © m=ta/ %,
a1 2 x

Substituting this value of m in (1),

£ (y/ Sere/4/3) a0
1.6, t2,/ar=y, or, y?=4ax (paratola) which

is the required envelope.

- Ex. 2. Find the envelope of the family of straaght lines

Aa?*+Bat+O=0,

where a is the variable parameter, and A, B, C are linear functions

of @, ¥.
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Wo have 4a?+ Bat+C=0. -e- (1)

Differentiating this with respect to a, we have

9Aa+B=0, 2.@., a= —B/2A.

Substituting this valuo of a in (1), we get

B? 8B?

Aga’ 94

Thus, the envelope of tho family of straight lines Ae? +Ba+C=0

is the curve B*=4AC.,

+C=0, or, B?=4AC.

Note. When the parameter occurs as a quadratic in any cquation,

the above result is sometimes usad in determining the envelope.

Ex. 3. Fond the envelope of the strarght lines

2. 4
—

a pods

where a and b are varvable parameters, connected by the relation a+b=c,

¢ beng a non-zero consiant.

Since atb=c, .°. b=c-a.

*, the equation of the straight lines becomes

a tsi th or, (c—a)z+ay=a(c—a),

or, a?+al(y—a—c)+cx=0.

Since it 1s in the form Aa?+ Ba+ C=0, its cnvelope is

B°=4AC, v6, (y—x—c)*= 4c2,

which represents a parabola.

The above equation can be written as

oO? by? to? = Wary + Yer+ Ay,

or, sat J/y= ale, (which represents a parabola ).

Otherwese :

Tho elimination of a and b can also be performed thus :

Differentiating the cquation of the line and the given relation with

respect to a, we get

2 ydb
577 b8aa? and 1+

db
da”
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On equating the values of $ ® from these two, we get

b at+bse

a Ny Nae ly Wer ly
c/a cy

eo Oat al
Substituting these values of a and bin the equation of the line,

we get

(J/et+ Jy)?=c, fe, J2+ J/y= ole.

Ex. 4. Fund the evolute of the parabola y*?=4amn (evolute being

regarded as the envelope of sts normals).

The equation of the normal to the parabola at any point ‘m’ is

y=mx—-2am—am’. eee (1)

Let us find the envelope of this, m being the parameter. Differentia-

ting (1) with respect to m,

< O=27—2a—3am?, or, m? =(2—2a)/3a wee (2)

From (1), y= m(z2—2a— am?) = m(3am? — am?) =2am?,

“. yr=4a" "m8 = Aa? Ee ae) from (2),

4.6., 2Tay? =4(2—2Qa)',

which is the envelope of the normals +e., the required evolute of the

parabola,

Ex. 5. Find the centre of curvature of the ellapse |

«+ The normal at the point ‘¢’ is

aw 8e0 ¢— by cosec $= a? — b?. eee (1)

Differentiating this partially with respect to ¢,

ax sec ¢ tan ¢+ dy cosec ¢ cot d=0. son (2)

Solving for 2 and y from (1) and (2), we easily get

2.073 2.323

@ =! cos, yo 22 sin *¢,T=
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Examples XIII(A)

Find the envelopes of the following families of straight

lines :

1. gw cosat+y sin a=a, parameter a.

2. ax sec a— by cqsec a=a* —b”, parameter a.

8. «x cos 36+y sin 30=a(cos 26)2, parameter @.
4. xcosaty sin a=a cosa sin a, parameter a.

5. y=mxt+a/1+m?, parameter m.

6. y=mrt J/a?m?+b?, parameter m.

7. wsec*@+y cosec*@=a, parameter 6.

8. 2«./cos 0+y./sin @=a, parameter 0.

9. «x cos"6+y sin"@—a, parameter 6.

10. Find the envelopes of the straight line

ote =,

where the parameters a and b are connected by the relation

(i) a? +b2=c?, (i1) ab=c?, c being a constant.

11. Find the envelope of the straight line

a
'

where / and m are parameters connected by the relation

+ ¥ ow},
mm

l/a +m/b=1, a and b being constants.

12. Find the envelopes of straight lines at right angles

to the radii of the following curves drawn through their

extremities.

G) r=a(1+cos 0). (ii) r? =a? cos 20. (iii) r=aeTM.
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13. From any point P on a parabola, PM and PN are

drawn perpendiculars to the axis and the tangent at the

vertex ; show that the envelope of MN is another parabola.

14. Show that the envelope of straight lines which join

the extremities of a pair of conjugate diameters of an ellipse

is a similar ellipse.

15. If PM, PN be the perpendiculars drawn from any

point P on the curve y=az® upon the co-ordinate axes,

show that the envelope of MN is

O7y + 4an° =0.

16. From any point P on the ellipse 2?7/a?+y7/b? =1,

perpendiculars PM, PN are drawn upon the co-ordinate

axes. Show that MN always touches the curve

(ce/a)® + (y/b)* = 1.
17. Find the envelope, when ¢ varies, of

(a,t? + Qa,t tase t+ (bit? + 2bot +bs)y

+(c4t? + 2cot +c) =0.

18. Find the evolutes of the following curves (evolute

being regarded as envelope of normals).

Gq) =a cos ¢, y=b sin ¢. Gi) 2=at?, y = Qat.

(iii) at + ye a’. Civ) 2?/a? + y?/b? =1.
(v) «=a(@-sin 6), y=a(1—cos 8).

(vi) t=a(cos ¢+¢ sin é), y=a(sin ¢—¢ cos #).

19. Two particles P, Q@ move along parallel straight

lines, one with uniform velocity u and the other with the

same initial velocity « but with uniform acceleration f.

Show that the line joining them always touches a fixed

hyperbola.
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20. Show that the radius of curvature of the envelope

of the line cos at+y sin a=f(a) is f(a) + f(a).

ANSWERS

1. 2?+y?=a?. 2. (az)? + (by)* = (a? —b2)9,

3. (a? + y*)? =a? (x? —y?), ° 4, ottys =a. 5. e?t+y?=a’.

4+ 4

6. 27Ja? + y?/b? =1. 7. at Jsy= ala. 8. ety =al,

9.2 2-4 y8 mgd, 10, 1) eet yack, Gi) 4ry=c?.

“et au

12. (i) a circle through the pole. (ii) a rectangular hyperbola.

(iii) an equiangular spiral.

17. (a,2+b,yte,)(a,ct+b,yte,)=(a,r+b.y+e2)’.

18. (i) (az)? + (by)? =(a2— 02) (ii) 27ay? =4(2—2a)*.

(ini) (a+ 3 + (a~y) t= 203. (iv) same as (i).

(v) c= (@+sin 6), y= —a (1—cos 8) (vi) 2?+y?=a?.

SEC. B. ENVELOPE OF CURVES

13°5. Ifa curve £ exists, which touches each member

of a family of curves C [ =f(2, y, a)=0], the curve £ is

called the Envelope of the curves C. Since # is the locus

of the points of contact of the family of curves f(x, y, a)=O0,

the point where the curve f(z, y, a)=0 for a particular value

of a touches #, depends upon that value of a. Accordingly

the co-ordinates of any point on H are functions of the

parameter a [ being of the forms r=d(a), y=yla)] and

they satisfy the equation f(z, y, a)=0 of the enveloping

eurve which touches # at that point.
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The equation of the tangent to a C-curve at (a, y) is

of of(X-a) 50 +(Y-y) a =O, aes (1)

and that of the tangent to the H-curve at (a, y) is

X-a Yr-y (9) {Since equation of EB is of
dx dy the form xz=P(a), y=¥(a) I

da da

or, (X-2) Y-(y-y) “=o, vs (8)
da da

Since the lines (1) and (3) are coincident, lcoefficients of X

and Y in the above two equations are proportional.

of af
Oc _ dy .. Ofde, Ofdy _ .
dy da 1e€ry anda dyda 0. (4)
‘da da

Now, differentiating f(z, y,a)=0O with respect to a,

remembering that 2 and y are now functions of a, we get

Of , Ofda , Of dy _ - ve
Qa dada ' dy da 0. (5)

from (4), BA =0. nee “++ (6)

Hence the equation of the envelope, in case an envelope

exists, is to be found by eliminating the parameter a between

the equations

»Y,a)=0f(x va)

and da” 0.
(7)

Cor. It is shown in Art. 14°1 (iii) that the aircle on the radids

vector of a curve as diameter touches the pedal of the curve, so the
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pedat of a curve can be obtained as the envelope of the circles described

on the radwus vectors of the curve as deameters. [ Bee Art. 13°9, Ea. 6.)

Note. It should be noted that a-eliminant between f(a, y, a)=0

and of 9 may contain other loci, besides the envelope, for instance,

nodal locus, cuspidal locus, tac-locus etc. in case, the family of curves

© has singular points.

13°6. The envelope, rs, wm general, the locus of the

ultemate points of intersection of newghbouring curves of

a family.

The co-ordinates of the point of intersection P, of two

neighbouring curves of the family must satisfy

F(x, y, a)=0 and f(z, y, a+ 4a)=0,

i.e., f(a, y, 2) =O and fle, y,2 +49) ~ f(a, y, 2) 0,
a

the second relation by Mean Value Theorem becomes

2 $l, y,at+04da)=O0 whereO<O<1. °

Now as 4a > 0, P satisfies f=0, oF 0,

the required locus is the a-eliminant of f= 0, gL =(.

Note 1. Although the above theorem is generally true, but itis

not always true. For example, consider the family of semi-cubical

parabolas y=(x—a)*. Here for different values of a, we have different

semi-oubical parabolas no two of which intersect but every one of which

touches the z-axis. So here the x-axis is the envelope, although no

two members of the family intersect. From the graphs of the curves,

the whole thing becomes at once clear.

Note 2. Alternative defenstron of Envelope.

The points of intersection of the curves f(z, y, a)=O and

, f(x, y, «)=0 (a being given) are called characteristic ponts of the family
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f(a, y,«)=0 (for the given a) if these points exist (i.c., if f=0 and of 0

intersect) and if those points are not singular points of f(z, y, «)=0.

The locus of the charactersstec pownts of a family of curves ts sometemes

called the envelope of the family.

13°7. Envelope of a special family.

If the curve f(r, y, a)=0 be algebraic, the a-eliminant

of f=0, ef =( is the condition that f=0 (considered as an

equation in a, has equal roots). t Theorem of Equations |

Thus, if f(z, y, =A (2, vy) a? + Ble, ylat+C=0, [te.,

if f(z, y, a2)=0 be a quadratic in a, the parameter ] the

envelope of the family 1s given by

B* =4AC.

[ For allustration see Ex. 2 of Art. 13'9 |

13°8. Hnvelope of two parameter family.

If the equation of a family of curves involves two para-

meters a and § connected by a given equation, then we

can proceed by two methods in finding out the envelope.

Suppose the equation of the family is

f(a, Y, a, p)=0, °r* see (1)

where a and £ are connected by the equation

¢ (a, B)=0. wee cee (2)

First Method : Suppose we can solve ¢d(a, §)=0 for
B in terms of a ; then we substitute this value of 6B in(1) and

now (1) reduces to one parameter family and we eliminate

a between f=0 and oF =),
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Second Method :

For a particular pom (2, y) on the envelope

ee +t dB QO «ee ces (3)

and from (2), bas ae eee ore (4)
Eliminating da, @B between these two equations (we

may regard a as the independent variable and fp the depen-

dent variable), we get

Of of
Oa _ OB. vee ee (5rE Od (5)

Oa Of

If we eliminate a and 8 between (1), (2) and (5), we

obtain the equation of the envelope.

Note. This method can be extended to obtain thé envelope of

a family depending upon » parameters which are connected by (m— 1)

equations.

13°9. Ilustrative Examples.

Ex. 1. Fond the envelope of the famuly of ellapses

at ge aeth
a being the parameter.

We have e?a-?* +? (a—a)-*=1. one sss (1)

Differentiating with respect to a, we have

eS =a) wee we (2)

x? 2 x

a® —(a—a)?_ att (a= Yt 1 [by (1))
a ana
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nen Be wt, ot gt a bag?
a $ a(a—a)* a “" @ ana a

att y 3 =at which is the required a-eliminant between (1)
and (2) and hence is the equation of the required envelope.

Ex. 2. Fund the envelope of the system of parabolas

Aw?+A?2y=1, A beng the parameter.

Since the equation of the family 1s

My + Ae? —1=0,

and since it is a quadratio in A, the parameter, by Art. 13°7, its

envelope is

a4 + 4y=0,

Ex. 8. Prove that the envelope of the paths of projectiles in vacuo

from the same pout with the same velocity um the same vertical plane

+ a parabola with the point of projection as focus.

The equation of the path of the projectile with the point of projec-

tion O as origin and the horizontal and the vertical lines through O as

axes of z and y is

y= tan a-ag a er x tana—ag ~ #; (1+ tan?)

{ See Authors’ Inter. Dynamics: Art. 8°5 J

= m0 — ig - 5 = (14m?), where tan a=,

4.6.5 m?.ag we matty the x" =0Bry a 72 = 0-

Here a, and hence tan a +.e., m being the variable parameter, the

equation of the envelope is by Art. 13°7,

ai 1 a?
2

U" ay ig ®t gg? ~ 2" ( -*):ten 35 Ut 59 a ar Yo
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2

Transferring the origin to the point (o, *). the equation of the
3

envelope is xo? as y

2

which is a parabola with its vertex on the y-axis at the yoint (0, a.)
2

and its concavity turned downwards and latus rectum ‘4a’ = and
e

2

hence ‘a’ being cqual to i” the focus is at the origin.

Ex. 4. Fund the envelope of circles whose centres lve on the rect-

angular hyperbola xy=c? and which pass through its centre.

Let the equation of a circle having centre at (a, 8) and passing

through the centre of zy =c?, which is the origin here, be

e*+y?—2ax—-ABy=0 ... (1) where aB=c*. ... (2)

This is the case of a two parameter family, where the parameters

are connected by a given relation.

Following the first method of Art. 13°8 4.e., eliminating 8 between

(1) and (2), the equation of the circle becomes

ce c?
27+ y27—I2aae—2 a y=0, since from (2), B= a

or, Qa 7x — a(x? + y?) + 2c7y =O.

.. by Art. 13°7, the required envelope is

(2? +)? = 4.29.2c7y = 16c7 xy.

Note. By transformation to polars, this equation can be shown to

be transformed to r*?=8c? cos 24, where ¢=4}7r—6; +3.¢., the required

envelope is a lemniscate.

Ex. 5. Find the envelope of the parabola

x ye/ +a/ 6 1,
where ab=k*, a and b being variable parameters.

We have Af eta tnd “ eee = (1)

ab=k"*. eee eon (2)

22
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We apply here the second method of Art, 13°8. Taking differentials

of both (1) and (2) with respect to a and b, we have

x da+ “u db=0 ue v= (3)
at b

da , db
at po ees see (4)

ve Aly :
at obt

From (8) and (4), -——=/|=——
rot
a

x x y

or, Va v3 Mitt t/t = 5 from (1)

. ves Vin sey _ 1,=; 4.6, ' fab 4

Squaring and using (2), we get (a, d)-eliminant, 1l6zy=k? and

hence this is the required envelope. This obviously represents a

hyperbola.

Ex. 6. Fand the pedal of the cardimde r=a (1+ cos 0) with respect

to the pole (origin).

We shall here find out the first positive pedal by considering it as

the envolope of the circles desoribed on the radii vectors a8 diameters.

{ See Cor., Art. 18°5 ]

Let p, a be the polar co-ordinates of any point on the cardioide.
i

Then p=a (1+cos a). oes eee (1)

Again the equation of the circle on the radius vector p as diameter

ig r=p cos (9 —a) ooo eee (2)

or, r=aq (1+cos a) cos (9@~-a), «+ eee §(8) from (1)

Here « is the parameter.

Differentiating (8) with respect to a,

O= —sin a cos (@—a)+(1+cos a) sin (@—a) ;

a's sin a cos (@—a)—cos a sin (9@—a)=sin (8@—a) ;
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4.6., sin (2a—6@)=sin (9—a),

4.6, Qa-8=9—a, +6, a=4O. eee eve (4)

Substituting this value of a in (3), we have the required envelope

as r=a (1+ cos $6) cos $6

=2acos*$@, or, rs = (2a)? cos 30.

Ex. 7. Show that the peflal equation of the envelope of the lune

% cos 2a+y sin 2a=20a cos a,

where a 4s the ‘parameter, is p? = 4 (r?—a?).

Let (z, y) be the co-ordinates of any point P on the envelope.

Then (x, y) satisfy the equation, f(x, y, a) =0, af =0,

#6. 2008 2a+y sin 2a=2a cosa see os+ (1)

2 sin 2a—y cos 2a=a sin a. cee ese (2)

From the definition of the onvelope, it follows that (1) is the

tangent to the envelope at P (z, ¥). :

Let p be the length of the perpendicular from the origin O upon the

tangent (1) to the envelope at P and r be the distance of P from O,

o's p?= 4a" cos7a eos one eee (3)

r?=e7+4? = 4a? cos?at+a? sin7a,

( squaring and adding (1) and (2) J

= 3a? cos*a+a’. aes see ss (4)

Eliminating a between (3) and (4), the required pedal equation of

the envelope is obtained.

Examples XIII(B)

1. Find the envelopes of the following curves, a being

the parameter

(i) circles (x — a)? +y? - 4a=0,

(ii) parabolas ay? = 2a +12a°,

(iii) ellipses 2? + a*y? = 4a.
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2. Find the envelope of the family of curves, 6 being

the parameter

(Gi) 2® cos 6+ y* sin 6=a7,

Gi) P(z, y) cos 6+ Q(z, y) sin @= R(a, y),

(iii) A(x, y) cos” + B(x, y) sin6 = O(a, y).

8. Find the envelope of the family of curves

La® +38Ma? +3NA+P=0,

where 4 is @ parameter and DL, M, N, P are functions

of @ and y.

4. Show that the envelope of the family of ellipses,

(a being the parameter)

. a°g? sectat b*y? cosec‘a = (a? — b?)?

is the evolute of the ellipse 2*/a? + y?/57 =1.

5. Find the envelope of the family of circles which are

described on the double ordinates of

(i) the parabola y* = 4az as diameters,

(ii) the ellipse 2?/a? + y*/b? =1 as diameters.

6. Find in each case the envelope of circles described

upon OP as diameters where O is the origin and P 18 a

point on

(i) the circles 2? + y? = Qaz,

(ii) the parabolas y* = 4az,

(iii) the ellipses b°7? + a*y* =a70%,

(iv) the rectangular hyperbola zy=c"*.
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7% If the centre of a circle les upon the parabola

y*=4az and the circle passes through the vertex of the

parabola, show that the envelope of the circle is

y? Qat+a2)+2° =0.

*§. Find the envelope of the family of ellipses

Vv+2, =]

p* ?

(i) whose sum of semi-axes is constant (= c),

(ii) whose area is constant (=a2c?).

*9. Show that the envelope of the circles 2? + y? — Qaz

— 2py + p* =0, where a, B are parameters and whose centres

lie on the parabola y? = 4az is x(a? + y? — Qaxr) = 0.

*10. Find the envelope of (i) the family of ellipses at oa

= os ° c y a=*1 and (ii) the family of parabolas J a + J i 1, where

a"+b"%=c". (a, d being the parameters )

*11. Show that the envelope of the ellipses

”—a)* — p)?( “a 4 we “BN” =1,

where the parameters a, 8 are connected by the relation

+a,
2

qa

. ; a”is the ellipse a2 + - 4.

*12. Find the envelope of the family of curves

eV a1,
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where the parameters a and b are connected by the equa-

tion

a? +o?=

*18. Find the pedal with respect to the pole of the

curve r? =a” cos 26.

*14. Find the envelope of the circles described on the

radii vectors of the curve 7” =a”TM cos mé@ as diameters.

*15. Show that the pedal equation of the envelope of the

line

£ cos maty sin ma=a éos na, (m * n), where a is

the parameter,

. a 2 m? 7? — 243
1s p = _-3s 73°

m? —n”

16. Given that the astroid oe + ys = of is the envelope
2 2

of the family of the ellipses a + 52 = 1, where a and Bb are

parameters, show that a and 6 are connected by the

relation a+b=c.

ANSWERS

1. G) y?-—4r7-—4=0., (in) y® = + 182z. (iii) ey= +2.

a 2 a

2. (i) 2*+y* =a‘. (u) P?+Q°?=R?. (ii) 4777+ B2-TM=C0?TM.

8. (MN~ LP)? = 4(MP— N*)(4N ~ 1"). 5. (1) 9? =4a(2 +a).

y° _ : 2 2 2? (p27 4-4/7),(ii) a3 at = 1. 6. (i) (2? +4? — am)? =a? (x4? + y?)

(ii) a(e? +?) + ay? =0.

(iii) a2a? + b2y? = (we? + y?)?. (iv) (a9 +7)? = 4c%ay,

») ate ateet. G3 :8. (i) 22+y7°=c (ii) Qay=c?. 10. (1) o®F34 4844 = ont,

(i) pri gy TWET om g2ett, 12, ott P 4 yPt? x oAtP,
18, r° =a’ cos $6. 14. r=" cos n0, where n= m]/(m+1).



CHAPTER XIV

ASSOCIATED LOCI

14°1. Pedal curve.

The locus of the foot of the perpendicular drawn from

a fixed point on the tangent to a curve, is called the pedal

of the curve with regard to the fixed point.

(2) To find the pedal wath reyard to the origin of any

curve whose cartesian equation 18 given.

Let the equation of the curve be f(z, y)=0. -** (1)

Let zcosaty sina=p be the equation of the tangent

PT to the curve at any point P.

Now, the condition that the line xcosaty sina=p

should touch the curve is of the form ¢(p, a)=0. «+ (2)

Since (p, a) are the polar co-ordinates of the foot of the

perpendicular N on the tangent PT, hence in (2), if 7, 6 are
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written for p, a, the polar equation of the locus of N £6. i

of the pedal curve will be obtained as

H(r, 8) =0 - (3)
which can now be transformed into cartesian.

Aliernative Method :

Let (a, ¥) be the co-ordinates of P; then the equation of the

tangent PT is e

Y-y=2 (X—2) eee w+ (1)

and the equation of ON, which passes through the origin and is perpen-

dicular to P7, is

xX+5 oy Y=0, “- s+ (2)

Hence the locus of T (i.e., the pedal) which is the intersection of
(1) and (2) is obtained by eliminating « and y from (1) and (2) and from

the equation of the ourve f(z, y) =0.

(ii) To find the pedal with regard to the pole of any

curve whose polar equation 18 given.

Let the polar equation of the curve be j(r, 0)=0, --- (1)

and let (71, 61) be the polar co-ordinates of the foot of the

perpendicular N drawn from O on the tangent at P (r, 6).

oO

e sNow ¢ denoting Z OPN, tan ¢d=r oe (Q)
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Also @= ZXOP=ZXON+ LNOP=6,+%n-¢-- (3)

and since ON= OP sin ¢, r, =r sin ¢. o> (4)

If r, 6, @ be eliminated between (1), (2), (8) and (4),

a relation between 7, and @, will be obtained, and from this

relation by dropping the suffixes, we get the required polar

equation of the pedal.

(ii7) The circle on radius vector as diameter touches the

pedal.

LXON=ZPTX—- ZONT. [See Fug. of (ii) ]

6,=y-—txz; also p=ON=7,.

Again, e =rcos ¢. [ See Hzx., 7, § 10°17 |

If #, be the angle between the tangent NZ, and radius

vector ON of the pedal at any point N (i.e, ZONT,=¢:1),

then

d0, _,, 40, dw dp,
tan bi 71 7) dw dp drs
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$1 =, 1,6, ZONT, = ZOPN.

T.N touches the circle passing through OPN.

Hence the result.

(av) If vp, be the perpendicular from the pole on the tangent

to the pedal, then p,r =p’.

Draw OT, perpendicular from O on the tangent NT, to

the pedal.

Since ZOPN=ZONT,, .. A* OPN, ONT, are

similar.

OP _ON r 2?
"= -— #9 4 =m"ON OT, 4.€., D Di 2.€,, Div =-Dp .

(v) Zo find the pedal of a curve when rts pedal equation

48 given.

Let the pedal equation of the curve he p=f(r) -- (1)

and let p, r denote the usual entities on the original curve

and p3, 71 the corresponding things of the pedal curve.
2 2

Then p=7, ; also from above, poh".
Pi Da

Hence from the equation (1), we get
r 2

nos (o-)
the pedal equation of the pedal curve is

its)
Note. If there be a series of curves designated as

such that each is the pedal of the one which immediately precedes it,
then I, I,;...I", ste called the first, the second,...... the nth possirve

pedal of [. Also regarding any one curve of the series, say [,, a8 the

original curve, the preceding curves [,, [,, © are called respectively

the first, second and therd negatse pedal of T;. ’
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14°2. Inverse curve.

If on the radius vector OP (or OP produced) from the

origin O to any point P moving on a curve, a second point

@ be taken such that OP.OQ=a constant, say k*, then the

locus of Q is called the inverse of the curve along which P

moves, with respect to a circle of radius k and centre O, or

briefly with respect to O.

(1) To find the inverse of a given curve whose cartesian

equation 78 given,

oO v N x

Let (7, y) be the co-ordinates of any point P on the

curve f(z, y)=0, and let Q(z’, y’) be a point on OP such

that OP.0OQ =k’.

Draw PM, QN perpendiculars on OX.

Now, Sa = ON -60 (*. A’ OPM, OON are similar )

_ OP. OQ _ _ k* .
0Q? g’* +4/3

2/ 2 #

‘.2 = 8 y'2 Similarly, y “pitys

ken ; k?y ’

g3 g 2 +"? 1 yn) = 0.Since f(z, y)=0, .’. t(ah2n
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Hence by dropping dashes, the equation of the inverse

curve is

tates 0,gity? 2 ss Ma) =
46., the equation of the inverse of a curve is obtained by

writing k?2/(a7 + y*), k?y/(e® +y*) for 2, y in the cartesian

equation of the curve.

(ii) To find the inverse of a given curve whose polar

equation ts gzven.

Let f(r, 0)=0 be the equation of the given curve and let

(r, 6) be the co-ordinates of P and (r’, 6) be the co-ordinates

of Q.

Since OP.OQ=k?, .. rr’ =k?. 2 re kt/r’,
2

Again, since f(r, @)=0, .. f (* a} = (0,

Hence the polar equation of the inverse curve is

k?

s( a) =o
Thus, the equation of the inverse of a curve is obtained

by writing k?/r for r in the polar equation of the curve.

(i4i) Tangents to a curve and zts inverse are inclined to

the radius vector at supplementary angles.

Let ¢,¢' denote the angles between the tangents and

radius vector at the corresponding points of a curve and its

inverse.

Then, tan ¢= re, tan ¢ =r dr’
2 a

Now, (°°. rr’ =k® ) dr’ eo k_ dr) G0” a ~ 9 de
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2 2

tan gar Oak (- 7) - rom tong

=tan (x— ).

b =2— 9d, 1.6. 6+ =x.

(iv) To find the inverse of a curve when its pedal equa-

tion 18 grven. .

Let the pedal equation of the given curve be

p=flr). vs s+ (1)

Let p, 7, @ denote the usual entities of the original curve,

and let p’, 7, ¢ denote the corresponding things of the

inverse.

Then rr’ =k?, i.e, r=k?/r'.

Also, Bm sin ¢' =sin (xn - d) =sin d= ze

pot "hp =e’. :
r r ,

from equation (1), we get
k?

nae’ =#(% ;):

Hence the pees equation of the inverse curve is

a)
14°3. Polar reciprocal.

If on the perpendicular ON (or ON produced) from
the origin on the tangent at any point P on a curve,

a second point Q@ be taken such that ON.OQ=a constant

(say, &?) then the locus of Q is called the polar reciprocal

of the given curve with respect toa circle of radius k and

centre O.
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From the definition, it follows that the polar. reciprocal

of @ curve is the snverse of rts pedal. Hence the equation

of the polar reciprocal of a curve can be obtained by first

finding the pedal of the curve and then its inverse.

Let NN; be the tangent to the pedal at N and let QM

be the tangent to the polar reciprocal at @ meeting OP

produced at M, °

Now, ¢= ZOPN=ZONN, [by § 141 (t)]. Since

QM is the tangent to the inverse of the pedal, hence

by § 14°20ii), ZOQM= ZONN, = Z OPN.

Hence the quadrilateral PMQN is cyclic.

OM.OP=0Q.0N=k’*,

Also, ©. Z2PNQ=90°, 2 PMQ=90°,1.¢., OM is perpen-

dicular to @M. Hence the locus of P, 2.¢., the original curve

is the polar reciprocal of the locus of Q, 7.¢., of the polar

reciprocal. Thus, the polar reciprocal of the polar reciprocal

of a@ curve is the curve réself.

14°4. Illustrative Examples.

Ex. 1. Find the pedal of the parabola y*=4ax with respect to the

vertec.
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The condition that Xcosa+Ysina=p will touch the parabola

.y*=4az is obtained by comparing the cquation with the equation

of the tangent at (z, 7) to the parabola, «e¢., with Yy=9a (X+2)

or, —28aX+ Yy=2axr. Hence

24 y Qa2 ;
cos asin a pt y 2a tan a, 2 p 8eC a.

Bince y?=4az, .". 4a7 tan’a=—4a. p seca. Honce the reqd.

eondition of tangency is p-#a sin a tan a=0,

.*°. the polar equation of the pedal is

r+a sin @ tan 6=0Q,

or, 7*+ar sin 6 tan 6=0.

Writing r?=277+ 4", r sin 0=y and tan 6=y/2, we get the cartesian

equation of the pedal as

a(c7 +4") +ay? =0.

Alternatwely :

y=ma+alm --- (1) is a tangent to the parabola y? = 4ax

y= —(1/m) x --- (2) is the equation of the perpendicular

from the origin on the above tangent.

the locus of the point of intersection of (1) and (2), é.¢., the

locus of the foot of the perpendicular, 2.e., the equation of the pedal

is obtained by eliminating m between (1) and (2).

2

From (2), m= — 7 ; substituting in (1), y= -4 oN

4.€., xy?+2%+ay7=0,. Hence the result.

Ex. 2. Show that the pedal of the circle r=2acos @ with respect

to the orwin ws the cardvorde r=a(1+ cos 6).

Since the given equation is r=2a cos 6, es» (1)

“. tan g=r/ 7, on sind cot @=tan (47+ 6).

. o=drt+. ase ese (2)

Let (r,,0,) be the foot of the perpendicular; then as in (ii) of

§ 14°, 0=0,+hr—p=0, +40—(gr+6);.°. O=80, -*- (8)

' Again, r, =r sin ¢=2a cos 6. sin (}r+8) [ from (1) and (3) J

=2a cos*6= 2a cos*40, =a(1+c08 @,).

Hence the required locus is r=a (1+ 008 6).
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Ex. 3. Show that the inverse of the straight lins ac+by+c=0O és

a crcle. 4 :

eas k? aWriting ote at and iia for 2, y in the given equation of the

straight line, the equation of the inverse is

ke ty
o+y 3+ b-> Fey? atc=0,

or, e(z*+y")+ak*x+bk*y=0

which obviously represents a circle.

Ex. 4. Find the inverse of the parabola r=1{(1+ cos 6).

Writing k?/r for rin the equation of the parabola, the equation of

the inverse is

od t 
x?

y i+cos 0°" rae (1-+cos 6)=a (1+cos 4) | where ant],
which represents & cardicide.

"x. &. Pind the polar recyprocal of the parabola y*=4ax with
regpaet to the vertex.

The pedal of the parabola with respect to the vertex is

a

w(2?2 + y*) + ay? =0. [ See Hz. 1]

Its inverse is

Hef Mot 4g Mut deg Ht mo
wv? hy? (aw? +)? (2? + y?)* (as? + 47)# '

or, Watay?=0, ie, y2=—(k7/a)e,

which represents a parabola.

Ex.6. Find the polar reciprocal of the curve p=f(r).

a

By Art. 14'1(v), the pedal equation of its pedal is r=f (~ ):

a a

Noty, to obtain its inverse, writing « for r and ae for p

[ See § 14°2(iv) ], we get

en 7 (He)y’ i (55 kp’

Hence on simplifying and dropping the dashes, the pedal equation

of the polar reeiprocal is

to(8)
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Examples XIV

1. Find the pedal of

(i) the ellipse 7 m+ 53 =] with respect to the centre,

and focus ; )

(ii) the parabola y* = 4axz with respect to the focus.

2. Find the equafions of the pedals of the following

curves with respect to the origin :

(i) a +ty"=a”. (ii) 2 + /%=1.

Gi) @ amt ve = 1.

3. Show that the first positive pedal of the rectangular

hyperbola ¢*—y?=a" with respect to the centre ig the

lemniscate 7” =a” cos 26. .

4. Find the pedals with respect to the pole of the

curves :

(i) r? cos 20=a?, (ii) +? =a? cos 26.

(iii) r=a(1 + cos 6). (iv) r=ae? cote,

(v) rTM=aTM cos mé.

5. Show that the pedal of a circle with respect to any
point is the curve r=a+bcos 0, where a is the radius

of the circle and 6 the distance of the centre from the

origin.

6. Find the inverses of the following curves with

respect to the origin :

G) 2? +y2=a?, (ii) @?/a? + 47/6? =1.

(iii) r = a(1+ cos 6). (iv) r= ae? cote,

23
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7 Show that the inverses of the lines 22+S8y=4

and 32 —-2y=6 are a pair of orthogonal circles. .

bt
1+e cos 6

with regard to the focus is a curve of the form

r=atb cos 0.

8. Show that the inverses of the conic r=

9. Show that the inverse of a rectangular hyperbola

is a lemniscate, and conversely.

10. Find the polar reciprocals with regard to a circle

of radius & and centre at the origin, of the curves :

(i) 2/a* + y?7/b? =1. (ii) y* = 4ae.

(iii) r =a cos 0. (iv) r=a(1 +cos 8).

(v) +” =aTM cos mé.

ANSWERS

1. (i) (ce? +97)? =a2a7? +b2y? 3 eo? +y2=a?. (ii) «=O.

2. (i) aTM(aTM +4) = (2?-+y2)", where m=n/(n—1).
(ii) (2? + y?)(ax+ by) = abey.

(ini) (ax)"+ (by)" = (2? +47)", where n= m/(m-—1).

4. (i) r? =a" cos 20, (ii) ri =as cos $8. (iii) = (2a)2 cos 46.

(iv) r=a,e9 ©°8*, where a, =a sin ae@TM ~%) cote,

(v) r®=a" cos n8, where n=m/(m+1).

6. (i) (ce? +y?)=k*/a?. (11) (vw? +y7)2?=k* (~2/a? + y7/b?).

eeu _ db , = 2
(iii) + it-cos 6 where b=k?/a.

(iv)Fr=a,e7? cota, whore a, =k?/a 10. (i) a®x2?+d2y2—h*t,

(ti) ay?+ 22 =0, (in) r= _-°.—s where b= 2k?/a.
1+cos @

(iv) a cos 40 = (%2/2a)8. (v) 7" cos n0=(k?/a)", where n= m/(m-+ 1).
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CONCAVITY AND CONVEXITY

POINT OF INFLEXION

15°1. Concavity and Convexity (with respect to a

given point).

P T

> T

A A
Fig. (i) Fig. (ii)

Let PT be the tangent to acurve at P. Then the curve

at P is said to be concave or convex with respect to a point

A (not lying on PT), according as a small portion of the

curve in the immediate neighbourhood of P (on both sides

of it) lies entirely on the same side of P7 as A[ asin

Fig. (i)], or on opposite sides of PT with respect to A

[ as in Fig. (ii) J.
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Thus, in Fig. (iii), the curve at P is convex with respect
to A, and concave with respect to B or C. The curve at Q:
is concave with respect to A. Again, the curve at # is
convex to B and concave to C.

Note. A curve ata point P on itis Convex or Concave with res-

pect to a given lane according as it is convex or concave with respect to

the foot of the perpendicular from P on the line.

15°2. Point of Inflexion.

P

A

Fig. (iv)

In some curves, at a particular point P on it, the tangent

line crosses the curve, as in Fig. (iv). At this point, clearly
the curve, on one side of P is convex, and on the other side

it is concave to any point A (not lying on the tangent line).
Such a point on a curve is defined to be a pont of inflexion

(or a point of contrary flexure).

15°8. Analytical Test of Concavity or Convexity

(with respect to the x-axis).

"| pR

¥
Q2 oN

R

Fig. (i) Fig. (ii)
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Let P be a point (z, y) on the curve y=f(x), Q a neigh-

ebouring point whose abscissa is «+h (h being small, positive

or negative). Let PZ be the tangent at P, and let the

ordinate QM of Q intersect PT at R.

The equation to PT is

Y-y=f'(@(X— a)

and abscissa X of & being x +h, its ordinate

RM=YV=yt+hf'(a).

Also the ordinate of Q is

QM=f(a +h)

= fla) + hf’ (x) + , , f'(et+oh),0O<e< 1,

4 a

QM-RM=") f"(w+ 6h). vs we i)

Now assuming f’(2) to be continuous at P and x» 0

there, f’'(2+6h) has the same sign as that of f(z) when

{| is sufficiently small.

Hence from (1), QM—- RM has the same sign as that of

f'(z), for positive as well as negative values of h, provided

it is sufficiently small in magnitude.

Firstly, let the ordinate PN or y be positive.

2

Then if f(x) (or a4 at P) 2s positive, from (i) QM> RM

for Q on either side of P in its neighbourhood, and so the

curve in the neighbourhood of P (on either side of it) is

entirely above the tangent, 7.e., on the side opposite to the

foot N on the wg-axis of the ordinate PN, as in Fig. (i).

Hence the curve at P is convex with respect to the x-axis.
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Again, 2f f(x) is negative, QM < RM on either side of

P,and so the curve near P is entirely below the tangent;

on the same side of N, as in Fig. (ii), Hence the curve at

P is concave to the x-acis.

Secondly, let y or PN be negative.

NM, Oo

y’ Y’
Fig. (iii) Fig. (iv)

If f(x) 18 positive, from (i), as before, QM > RM on

either side of P, and as both are negative, QM is numeri-

cally less than RM, as in Fig. (iri). The curve therefore,

at P lies on the same side as N with respect to the tangent

PT. Hence the curve at P 18s concave with respect to the

©-AX2S. .

If f(x) is negatrve, we similarly get the curve at P convex

wath respect to the x-axis, a8 in Fig. (iv), Combining the

two cases, we get the following criterion for convexity or

concavity of a curve at a point with respect to the c-axis :
2

Ti y ot is positive at P, the curve at P is convex to

the ©-aaws.

a2

If y rea is negative at P, the curve at P is concave to

the £-ax7ts.
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Note. At a point where the tangent is parallel to the y-axis, ay is

infinite, At such a point, instead of considering with respect to the

v-axis, we investigate convexity or concavity of the curve with respect

to the y-axis. The criterion, as obtained by a method similar to above,

is as follows:

The curve at P i8 convex or concave with respect to the y-axis
2

according a8 x a is positivé or negative at P.

15°4. Analytical condition for Point of Inflexion.

¥ aT

PAIR

Le
0 N M

In the above investigation, let f’(a)=0 at P, and

f'" (x) ¥ 0.

Then QM=f(ath)=f (x) +hf’ (a) + ee f'" (2+ 6h).
3

QM-RM=" f” (e+ 6h),

and the sign of this for sufficiently small | h | is the same
8

as that of ' f'" (z), which has got opposite signs for positive

and negative values of kh, whatever be the sign of f’” (a) at

P, Thus near P the curve is above the tangent on one

side of P, and below the tangent on the other side, as in

the above figure. Hence P is a point of inflexion.
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Thus the condition that P is a point of inflexion on the

curve y=/f(x) is that at P, ‘

a*y
da®

a*y
dz” O and ¥ 0.

Note. If oy is infinite at P, the condition that P is a point af

inflexion is that, at P, ‘

d?a d*a
dy2° and ay? x 0.

15°56. A more general criterion.

Suppose that at P, f’(a)=f'" (a) =-+-++-=f""* (2) =0,

and f” (x) =f 0.

Then QM =f (a +h)=f (a) +hf’ (x) + uf (x + Oh).

1

QM -RM= a tf” (x + 6h), which for sufficiently small
"

values of ||, has the same sign as that of m f” (a).

If n is even, h” is positive and the sign is the same as
n

that of f(x) or a4 at P for both positive and negative

values of 2. Considering both the cases when y of P is

positive and negative, we find that the curve at P is convex
b/ 2

or concave with respect to the wx-aris according as y ao
is positive or negative.

%

If n ts odd, a f" (x) will have opposite signs for positive

and negative values of h, whatever be the sign of {” (2).

Hence @Q lies on opposite sides of the tangent for positive

and negative values of h. Thus P is a point of inflexion.
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2

Note. Since from (i) Art. 15°3, QM@— ru=? et Oh), if f’ (a+ Oh)

” has opposite signs for opposite signs of % when || is sufficiently

amall, QM > RM on one side, and QM < RM on the other side of P on

the curve in the immediate neighbourhood, and thus the tangent at

P crosses the curve at P, and so P is a point of inflexion. Thus, since

6 is positive and numerically less than 1, an aliernatwe criterion for

a point of mflexion ws that St’ (2th) should have opposite sugns for

oppostte signs of h when h is numercally sufficiently small; in other

words, f(x) changes in passing through P from one side to the

other.

15°6. Illustrative Examples.

Ex.1. Hzamone the curve y=suna regarding tts convexity or

concavity to the x-axw, and determane rts pont of enflexion, tf any.

da? a? uAs y=sin zo, a = 008 © and es —-sing. Hence Y an? = —sin?a,

which is negative for all values of x excepting those which make

sin 2=0, 1.e., for c=kr, k being any mteger, positive or negative.

Thus, the curve is concave to the x-axis at every point, excepting

at points where it crosses the x-axis.

At these points, given by w=hr, t-=0, and o y 4 = —~cos a x 0.

Hence those points where the curve crosses the 2-axis are points of

inflexion.

Ex. 2, Show that the curve y° =8xz? 1s concave to the foot of the

ordinate everywhere except at the orien.

From the given equation, y= an8,

_ dy 4-3, du _4 -$, . du 8 -§ 8
-* de 37 ' det 9” 7 Y gga 9® ont

Thus, excepting at the origin, at being positive for all values of x,

Y dw

Hence the curve is concave everywhere to the foot of the ordinate

excepting at the origin.
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Ex. 8. Prove that (a—2, ~—2/e") is a point of unflemon of the curve

y= (2 — a)e*~*.

Here, at points on tho curve,

BY p-3.4 (nn -a _ 7) otade® +(a—a) e (1+2—a) e*-*,

dy Gu @ 1 Co Tmodg? = @ +(1+a—-—a) e*-*°=(2+2—2) €

es a4 =aand similarly dat” (8+a”—«a) e*-*. ‘

2 3

Hence at r=a—2, (where y= —2e~?), “120 and ne 7x 0.

Hence the point (a — 2, —2/e") is a point of infloxion.

Ex, 4. Fond wf there 1s any pout of «anflexion on the curve

y~8=6 (2 —2)5,

dy _9\4, OU _o\8
Here dz 30 (2 — 2) "dp? = 120 (2 — 2).

3

Thus, on 0 when 2=2 (and so y=8).

In the heighbourhood of this point, where c=2+ (kh numerically

small, positive or negative),

3

a4 = 120h", which has opposite signs for positive and negative
y e

values of h. Hence on changes sign in passing through «=2.

Thus, (2, 8) is the only point of inflexion.

Alternatively.

8 4 °Hore % = 360 (7-2), 4 %=720 (r-2),9 Y=720, Thus at =2,* dx* ada*

d74_ d*y_d*y_ a*y . =
dn? de®” dx , = 0, and dx® (which is of odd order) #0. Hence r=2

gives the point of inflexion.

Examples XV

1. Prove that the curve y=e" is convex to the r-axis

at every point.
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2. Prove that the curve y=cos “x is everywhere con-

"cave to the y-axis excepting where it crosses the y-axis.

8. - Prove that the curve y=log x is convex to the foot

of the ordinate in the range 0 < ¢ <1, and concave where

«> 1. Prove also that the curve is convex everywhere

to the y-axis. é

4. Show that the curve(y—a)* =a*® — 2a?7+az?, where

a > 0, is always concave to the z-axis. How is it situated

with respect to the y-axis ?

5. Show that the origin is a point of inflexion on the

curves :

(i) y=a? log (1-2). (ii) y= cos 2x.

6. Eind the points of inflexion, if any, on the curves :

. = x . os 2 2
(i) y (e+)? +1 (ii) y? =a2(r+1)?.

(iii) c?y=(a@-a)*. Gv) 2=aeSTM”,

7. Show that the points of inflexion on the curve

y* = (x2 —a)?(z —b) he on the line 32 t+a= 4b.

8. Show that the curve y(7*7+a7)=a*z has three

points of inflexion which he on a straight line.

ANSWERS

4, Ooncave where 0 < a < a, convex everywhere else.

6.) (-2, —1), (1+ 3, vant), (1- V3, ~ 12),

(i1) 4, &$ 8. (iii) a, 0. (iv) +4, ae7?.
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Miscellaneous Examples

1. A function f(z) is defined as follows :

F(z) =0, for x=0 ;

fix)=4-2,for0O<a<4:

fix)=%4 for x=4 ;

f(c)=$-a2 fort<a2<1;

F(x) =1 for x=1.

Show that f(z) is discontinuous at z~0, $ and 1.

[ C. H. 1965 ]

2. A function f(x) is defined as follows :

f(x) = 2+(@—1)?/* in the interval (0, 2).

Is Rolle’s theorem applicable to f(x) ?

3. In-the Mean Value Theorem

f(b) - fla) =(b-a)f'(, ax E<b,

if f(a) = a(x — 1)(a — 2) and a=0, 0=43, find &é.

4. If w=e“+e”, y=e “—e", and if 2 be a function of

x, y, show that

Oz Oz_ ee - Oz
——— ee

du ov “dx Voy

5B. If V=(e7+y7+ 3°) 2, show that
nov OV, oV_

aa ty Yay + “O02

6. If V=log J/(v2? +y? + 27), show that

2 a

(x? + y? +0 (7 +o + oo = |}=1.

-V.
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7 If w=log r where

r® = (7 —a)* +(y — b)? +(2—c)*, show that

8. If w=2" tanTM*y/xe—4y* tan” *z/y, show that

sai = iy [ C. H. 1964]

9. If av® + Qhay + by? + Q29x+ 2fy+c=0, prove that

d*y A.
de® (hx+by+f)°

where A=abe + 2fgh— af? — bg? — ch’.

10. Show that the points of intersection of the curve

ey(x® — y?) + c%y? + d2n? — c2d? =0

with its asymptotes le on an ellipse.

11. Show that the value of °

ad\" 2° np ,Fa st] for =O, is 0 if » is even and is

—n lif nis odd and > 1. [ oO. H. 1968 |

12. Establish the formula

a {aay _ ay | (2x)
dy* da* da Sag da [ C. H. 1968 |

ANSWERS

2.No, 8 1— (7/19).
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ON SOME WELL-KNOWN CURVES

16°1. We give below diagrams, equations, and a few

characteristics of some well-known curves which have been

used in the preceding pages in obtaining their properties.

The student is supposed to be familiar with conic sections
and graphs of circular functions, so they are not given

here.

16°2. Cycloid.

The cyclord is the curve traced out by a point on the

circumference of a circle which rolls (without sliding) on

a straight line.

, A

\
‘

: !
Ou mM D Oo’ x

Fig. (i)

x=a(#—sin 6). y=a(1—cos 6).

Let P be the point on the circle UP, called the genera-

ting circle, which traces out the cycloid. Let the line OMX

on which the circle rolls be taken as z-axis and the point 0

on OX, with which P was in contact when the circle began

rolling, be taken as the origin.

Let @ be the radius of the generating circle, and C its

centre, P the point (a, y) on it, and lee, ZPCM=96. Then
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6 is the angle through which the circle turns as the point

f traces out the locus.

-. OM=are PM~ ae.

Let PZ be drawn perpendicular to OX.

-. 2=O0L=OM-LM=a0-PN=aé—a sin 6

=@(@—sin @).

y= PL=NM=CM-CN=a~-—a cos 0

=a,(1— cos 6).

Thus, the parametric equations of the cycloid with the

starteng point as the origzn and the line on which the circle

rolls, called the base, as the x-axis, are

x =a(@—sin 6), y =a(1— cos 6). eee (4)

The point A at the greatest distance from the base OX

is called the vertex. Thus, for the vertex, y 2e., @(1—cos 6)

is maximum. Hence, cos @= —1 1.6., 0=n.

AD=a(1-—cos 2)=2a. .. vertex is (ax, 2a).

For O and O’, y=0, . cos O=1. .. O@=0 and Qn.

As the circle rolls on, arches like OAO’ are generated

over and over again, and any single arch is called a cycloid.

Since the vertex is the point (az, 2a) the equation of

the cycloid with the vertex as the origin and the tangent
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at the vertex as the z-axis can be obtained from the previous

equation by transferring the origin to (ax, 2a) and turning.

the axes through z, 2.¢., by writing

axt+ex’ cosz—y' sin and 2a+z2’' sin azty’ cos 2

for x and y respectively.

Hence, a(@—sin 0)=an-2’,

or, 2 =a(xn—6)+a sin 0=a (6’+sin 6’),

where 6’=2—0

and a (1—cos 6)=2a-y/’,

or, y' =2a-a+a cos 6=a+t+a cos 0

=a—a cos (x— 0)=a (1—cos 6’).

Hence (replacing 0’ by 6) the equations of the cycloid

with the vertex as the origin and the tangent at the vertex

as the 2-axrts 18

x=~a(6@+sin 6), yTMa(i-cos 6). -- (ii)

In this equation, 9=0O for the verter, @=a for O,

and @= —z for O’.

The characteristic properties are

(i) For the cycloid «=a (6— sin 6), y=a (1 — cos 6), radius

of curvature =twice the length of the normal, (the centre

of curvature and the x-axis being on the same side of the

curvature).

(ii) The evolute of the cycloid is an equal cycloid.

(iii) For the cycloid x=a(6+sin 6), y=a(1—cos 6),

y= 40 and s* = 8ay, s being measured from the vertex,

Note. The above equations (ii) can also be obtained from the

Pig. (i) geometrically as follows :
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If (2’, x/) be the co-ordinates of P referred to the vertex as the

grigin and the tangent at the vertex as the #-axis,

oe’ = U1 D=OD—-OL=-ar—x=a(r—0)+a sin 4,

y = AD— PL =Ia—y=2a— a(1—cos 6)=a(1+cos 6).

Hence, writing 6’ (or 6) for r—9@, etc.

16°38. Catenary. 4

The catenary is the curve in which a uniform heavy

string will hang under the action of gravity when suspended

from two points. It is also called the chainette.

Its equation, as shown in books on Staties, is
x x

=-_ xX . £& 0 ~ey=c cosh . 73 (c +e

Y

Oo N *X

C is called the verter, OC=c, OX is called the directriz.

The characteristic properties are

(i) The perpendicular from the foot of the ordinate upon

the tangent at any point is of constant length.

(ii) Radius of curvature at any point=length of the

normal at the point (the centre of curvature and the z-axis

being on the opposite sides of the curve).

iii) y? = c? +87, s being measured from the vertex C.

(iv) s=c tan Y, y=c sec ¥.

(v) z=c log (sec y + tan y).

24
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16°4. Tractrix.

Its equation is

—g- =a, &, a fa*®-y?= 2 a4 - —— ed

Ja*—y 9 1B gaa yi
v

A

Pp

O| T x

or, w=a(cos ¢+log tan $t), y=a sin t.

Here OA=a.

The characteristic properties are

(i) The portion of the tangent intercepted between the

curve and the x-axis, is constant.

(ii) The radius of curvature varies inversely as the

normal (the centre of curvature and the z-axis being on the

opposite sides of the curve).

(iii) The evolute of the tractrix is the catenary

y =a cosh (2/a).

16°5. Astroid.

Its equation is x3 + ys = a’,
or, xTMa cos*d, ya sin76.

Here OA = OB= OA'= OB' =a.

The whole figure lies completely within a circle of radius

a and centre O. The points A, A’, B, B’ are called cusps.

It is a special type of a four-cusped hypo-cycloid.

[ See § 26°6 ]
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Y

B

oO AX

B

The characteristac property of this curve is that the

tangent at any point to the curve intercepted between

the axes is of constant length.

16°6. Four-cusped Hypo-cycloid.

$ %
. . {XxIts equation is (=) +( x} =-1,

or, XTMa cos°d, y=b sin®?.

Y

B

AY O A x

B’

Here OA=OA'=a; OB=OB'=b.

‘The astroid is a special case of this when a= b.

16°7. Evolutes of Parabola and Ellipse.

(i) The evolute of the parabola y? = 4az is

2lay? = A(x — 2a)?,
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This curve is called a semi-cudical parabola.

Y

Transferring the origin to (2a, 0), its equation assumes

the form y?=—ke® where k=4/27a, which is the standard

equation of the semi-cubical parabola with its vertex at the

origin.

Hence, the vertex C of the evolute is (2a, 0).

Gi) The equation of the evolute of the ellipse

v*/a* + y7/b? =1 is

(ax)? + (by)? = (a? -b2)3
Y
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which can be writien in the form

° $ 4

(3) +(5) -2
where aTM(a*? — 67)/a, B =(a? — b*)/b.

Hence it is a four-cusped hypo-cycloid.

16°8. Folium of Degcartes.

Its equation is x*+y® = Saxy.

It is symmetrical about the line y=.

YI

ON

The axes of co-ordinates are tangents at the origin, and

there is a loop in the first quadrant.

Zz

Tt has an asymptote «+y+a<O and its radii of curva-

ture at origin are each = §a.

16°9. Logarithmic and Exponential Curves.

¥

— Le

(i) y=log x. (ii) y=e*.
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(i) « is always positive; y=0O when 2=1, and as xz

becomes smaller and smaller, y, being negative, becomes’

numerically larger and larger. For «> 0, the curve is

continuous.

(ii) a may be positive or negative but y is always positive,

and y becomes smaller and smaller, as 2, being negative,

becomes numerically larger and largtr. The curve ts contt-

nuous for all values of «x.

16°10. Probability Curve.

The equation of the

x probability curve is
y=e

ZINK The #-axis i8 an asym-
tote.

x! 0 x ?
The area between the

Y’ curve and the asymptote 1s

-3)’ oe" da = 2.4 Jn = Jn.
16°11. Cissoid of Diocles.

Its cartesian equation is Y

y" (Qa—a2) =a,

OA = 2a ; x= 2a is an

asymptote. x’ Oo A xX

Its polar equation is

2a sin*@
cos 6 Y
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16°12. Strophoid.

The equation of the
Y

curve is

yt mgr tf. :

OA=OB=a. * BN I [A *

OCBP is a loop.

x=ais an asymptote.

—m. ...

The curve y* =2? nee is similar, just the reverse of
x

strophoid, the loop being on the right side of the origin and

the asymptote on the left side.

16°13. Witch of Agnesi.

The equation of the curve is

xy? =4a? (2a — 2).

Here OA = 2a.

This curve was first discussed

by the Italian lady mathematician 0 A X
Maria Gactaua Agnesi, Professor of

Mathematics at Bologna.

16°14. Logarithmic (or Equi-

angular) spiral.

Tts equation is rae’ °°'*( or, r= aeTM?)

where cot a or 7 is constant.
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Characieristic Properties :

(i) The tangent at any point makes a constant angle ,
with the radius vector, (¢ =a).

Gi) Its pedal, inverse, polar reciprocal and evolute are

all equiangular spirals.

(iii) The radius of curvature subtends a right angle at

the pole,

Note. Because of the property (i), the spiral is called equiangular.

16°15. « Spiral of Archimedes.

}) <
ee

Its equation is r=ad.

Its characteristic property is that its polar subnormal

is constant.

16°16. Cardioide.

Its equation is (i) rTMa(1+-ees @), or (ii) r=a(i-ecos 6).
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In (i), 2=0 for A, and 6=2x for O.

In (ii), @=2 for A and 6=0 for O.

Y Y

@&

oO A * A Oo x

(i) r=a(1+ cos 6). (ii) r=a(1—cos 6).

In both cases, the curve is symmetrical about the initial

line, which divides the whole curve into two equal halves

and for the upper half, 6 varies from 0 to z, and OA = 2a.

The curve (ii) is really the same as (i) turned through

180°.

The curve passes through the origin, its tangent there

being the initial line, and the tangent at Ais perpendicular

tio the initial line.

The evolute of the cardioide is a cardioide.

Note. Because of its shape like human heart, itis called a car-

dioide. The cardioide r=a(1+ cos 6) is the pedal of the circle r= 2a cos 6

with respect to a point on the circumference of the circle, and inverse

of the parabola r=a/(1+ cos 6).

16°17. Limacon.

The equation of the curve is

r=a+b cos 6.
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When a > b, we have the outer curve, and when a < }, we

y have the ‘inner; ‘curve’

with the loop. 1+”

When a = 6, the curve(| co reduces to a cardioide.
«. [See fig. in §16°16 ]

x’ / oO xX
— Limacon is the pedal

of a circle with respect

to a point outside the

. circumference of the

Y circle.

16°18. Lemniscate.

Its equation is r? =a? cos 26,

or, (27 +y7)*? =a7(x? —y”).

It consists of two equal

loops, each symmetrical

about the initial line, which

divides each loop into two ° A x

equal halves.

Here OA=OA'=a. r? =a? cos 20

The tangents at the origin are y= +2.

For the upper half of the right-hand loop, 6 varies from

0 to tx.

A characteristic property of it is that the product of

the distances of any point on it from (+a/ /2, 0) is constant.

The lemniscate is the pedal of the rectangular hyperbola

r* cos 20=a7, The curve represented by r?=a” sin 20 is
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also sometimes called lemniscate or rose lemniscate, to distin-

.Suish it from the first lemniscate,

which is sometimes called lemmis- Y A

cate of Bernoulls after the name of

the mathematician J. Bernoulli,

who first studied its properties.

The curve consisfs of two f
equal loops, situated in the firat

and third quadrants, and symme- AY

trical about the line y=2. It is the

first curve turned through 45°. vi=a* sin 20

The tangents at the origin are the axes of w and y.

16°19. Rose-Petals (r=a sin n@, r=a cos n@).

Lhe curve represented by r=a sin 36, or, r=acos 30

is called a three-leaved rose, each consisting of three equal

loops. The order in which the loops are described is indi-

cated in the figures by numbers. In each case OA = OB=OC

=a,and Z AOB= Z BOC= ZCOA=120".

Y
C(s)

C(s) A(1)

O x A(1)

jo

B (?) B(r)

r=a sin 86 r=a cos 30

The curve represented by r=a sin 20, or, r=a cos 20 is

called a fowr-leaved rose, each consisting of four equal loops.
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In each case OA=OB=O0C=OD=a and ZAOB= ZBOO

= £COD= ZDOA=90". |

The class of curves represented by r=asin 76, or,

r=a@ cos 28 where n is a positive integer is called rose-petal,

there being » or 2n equal loops according as ” is odd or even

¥

(+)

A(3)

160)

Y= sin 20 r=a cos 20

all being arranged symmetrically about the origin and

lying entirely within «a circle whose centre is the pole and

radius a.

16°20. Sine Spiral (r"= a" sin nO or r°=a" cos ng).

The class of curves represented by (i) r”=a” sin 76, or,

(ii) r® =a" cos 16 is called szne spiral and embraces several

important and well-known curves as particular cases.

Thus, for the values 7= —1,1, ~2, +2, —% and 4, the

sine spiral is respectively a straight line, a circle, a rectan-

gular hyperbola, a lemniscate, a parabola and a cardioide.

For (i) 6=n8 ; for Gi) 6=4n+70.

The pedal equation in both the cases is
p= t/a”,



APPENDIX

SECTION A

INFINITE SEQUENCE

1. Sequence: An endless succession of numbers

arranged in a definite Stder

is called an infinite sequence, and is denoted by {sn}. By

@ sequence we shall mean an infinite sequence.

Thus, 1, 4, §, d,...... is an infinite sequence. Again, 2, —1, 4, —8,

6, —5,... [ ss=n+1 if n is odd, and —(n—~1) if mis even] is another

infinite sequence.

Monotonic sequence: If in the sequence {sn}

(1) sn41 > Sn for every n,

or else (1i) sni1 <& Sn for every %,

the sequence is said to be monotonic or monotone.

In case (i), it is called monotonic increasing (or strictly,

monotonic non-decreasing) ; it would be strictly monotonic

increasing if the equality sign be omitted in (i), 2e., if

Sn+1 -> 8m for every n.

In case (ii), it is monotonic decreasing,

Thus, if sy Foe’ {sn} is a monotone increasing sequence.

1\3
lf sa= (3 + i » {sa} is & Monotone decreasing sequence.

Bounded sequence : If corresponding to the sequence

{sut, we get @ finite number K such that s, < K for all values
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of n, the sequence is said to be bounded above, or, ‘bounded

on the right’.

Again, if we get a finite number & such that sn > k for

all values of n, the sequence jsp} is said to be bounded below,

or, ‘bounded on the left’.

If a sequence is bounded both above and below, it is said
to be bounded.

Thus, if $s = a ’ 8, is bounded both above and below.
7%

+1

Upper bound: If a sequence {s,} is bounded above,

then we can prove by Dedekind’s Theorem that there exists

a number JW, such that no member of the sequence exceeds

it, but given any pre-assigned positive quantity «, however

small, there is at least one member of the sequence exceed-

ing M-e.,

This number M is called the upper bound or ‘exact upper

bound’ of the sequence.

Any number > M is called a rough upper bound.

Lower bound: Ifa sequence {sn} is bounded below,

then there exists ® number m such that no member of the

sequence < m, but given any pre-assigned positive quantity

£, however small, there is at least one member of the

sequence <m+eé. This number m is called the lower bound

of the sequence or ‘exact lower bound’.

Convergent sequence: A sequence {sn} is called con-

vergent, and is said to have a limit 1, if Zt snx=l.
1t-P OQ

Analytically, a sequence {sn} is said to be convergent and

to have a limit l, if corresponding to an arbitrary positive
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number «, however small, there exists a positive integer NV,

, such that

ls,-l| <eforn >N

4.6, b-& < gs, <ltefor > N.

Thus, if onTM » the sequence {s,} is convergent, having the
+1

limit 1. ?

Divergent sequence: The sequence {sq} is called diver-

gent, if Lt s,= + © or — ©,
7-7 oO

If s,=7”, or s.= —n, the sequence {s,} is divergent.

Oscillatory sequence: If a sequence neither con-

verges, nor diverges to + © orto — ©, then the sequence

is said to be osczllatory.

In this case, if it is bounded, it is said to oscillate

finitely. ,

If on the other hand it is unbounded (in any direction),

it is said to oscillate infinitely.

If s,»=(— 1)", the sequence {s,} oscillates finitely.

If s,=(—1)" n?, the sequence {sy} oscillates infinitely.

2. Examples :

(i) 2+1, 2-4, 2+4, 2-4, 2+4,..., 2+(-1)""*- pees

The sequence is convergent ; limit 2; bounded ; upper

bound 8, lower bound 3; both the bounds are members of

the set here.

Gi) 1, 4, d, 4,...

Convergent sequence, with limit 0; bounded; upper

bound 1, lower bound 0, which is also equal to the limit ;

the lower bound here does not belong to the set.
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Note. A convergent sequence with limit 0 is also sometimes

called a null sequence.

(iii) 1, 2, 3, 4,......

Divergent sequence, — + © ; bounded below, but not

above ; lower bound 1.

(iv) -—5, —5*, —5?,......

Divergent, --— © ; bounded above, upper bound being

- 5; not bounded below.

(v) 2-1, —8+4, 2-4, —-38+2, 2-4, -3+4,......... :

. 1 . .8, being 2- 2 OT 3+ 2 according as 7” is odd or even.

Oscillates finitely ; upper bound 2, lower bound — 38, both

not belonging to the set.

(vi) 1, —2, 8, —4,...,(-—1)”"7m,......

Oscillates infinitely, between +o and — ©,

(vii) 1+1, -2, 1+4, —4, 1+%, —6,1+4, —8,........ .

Sn being 1+ ‘ or —%” according as 7” 1s odd or even.

Oscillates infinitely, between 1 and — © but upper bound

is 2, no lower bound existing.

3. Theorems on sequence.

I. A convergent sequence must be bounded, and the limit

must lie between the upper and the lower bounds (may be

equal to one of these, or not).

Let the sequence {s,$ be convergent, having limit l.

Then by the definition of limit, given any pre-assigned posi-

tive quantity «, however small, we can determine a definite

positive integer N, such that

t-e<s,<l+efor alln > WN.
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Now let K be the biggest of the numbers s1, sq,...8y and

Y+e. Then evidently s, < K forall. Hence the sequence

{sn} is bounded above, having K for a rough upper bound.

Similarly, k, being the least of s,, So,...sy and Jl-~e, is

a rough lower bound.

Thus the sequence i@ bounded. Hence it has an exact

upper bound M and an exact lower bound m. Hence the

theorem. Now 1 can be easily proved to he between YM

and TM. "

II. A monotone increasing sequence which 1s bounded

above is convergent.

Similarly, a monotone decreasing sequence which is bound-

ed below is convergent.

The result can be proved with the help of Dedekind’s

theorem.

Let {s,} be a monotonic increasing sequence, bounded

above, so that sn-1 < sn < JM for all values of n.

Divide the whole set of real numbers into two classes DL

and #, such that a number belongs to L-class provided it is

exceeded by at least one member of the given sequence, and

to #-class otherwise. Hvidently, members of both classes

exist, for any number less than s, (say) belongs to the

Z-class, and the number WY belongs to the #-class. Also,

as defined, every member of the D-class is clearly less than

every member of the #-class. Hence by Dedekind’s theo-

rem, there exists a real number J which divides the two

classes from one another.

Now, however small a pre-assigned positive quantity «

may be taken, /—«e being a member of the Z-class, there

25
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is at least one member of the given sequence, say sv, such

that 1—-« < sy, and as the sequence is monotonic increasing,

l-« <8, for every nm > N. Again, /+e being a member of

the R-class, s, <lteforevery Hencel—e< sn < ite,

i.¢., |l—sn | < € foreveryn > N. Hence Li sa=l, 1.€., {srt

is convergent. c
4

Similarly, the other case can be proved.

Note 1. A monotone increasing sequence must either tend to

a definite finite limit, or to +0 ; it cannot oscillate.

For if it is not bounded above, it +0.

Note 2. A monotone sequence must have all its terms, after

at most e@ finite number of terms, of the same sign.

III. If fant and {bnt be iwo convergent sequences having

A and B as their respective lamits, then

(3) The sequence fan+bn} 2s also a convergent sequence,

having A+B as the limit.

ii) The sequence fandnt is also convergent having AB

as the lumit.

(iii) The sequence jan/bn} 1s also convergent having A/B

as the limit, provided B ¥ 0.

The proofs of these are similar to the corresponding

limit theorem on functions.

[ See Appendix, Section D, § 1]

IV. If fant, font, fen} ave three sequences such that

(i) an < bn < cn for» > m1 s+ (1)

and (ii) Lt fant = Lt {en} =1, asn > ©

then Li ton} =1, as n>,
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Let ¢ be any positive number.

Since fan}—1,as— ©

lL—-e<an<l+e, when n > mz. -+- (2)

Similarly,

l-e<t, << Il+2#, when » > ms. ss» (3)

The inequalities cf, (2) and (3) hold when » 3 m where
m is the greatest of the numbers m1, mg, Ms.

From (1) and (2),

bL-& <i da < bn, when n S> m.,

From (1) and (3),

bn < Cn Sl +e, when n > m.

l-~-e<b,<l+e, whenn >mTM

lbyn —1| < ¢, when » > TM

Hence, Lt b,=1. °
NF 0O

[ For ellustrateon see Ex. 2, Art. 6, worked out J

V. If an < Yn when n > M1,

then Lt frat < Lt fynt, when they exist.
noo N->Co

Let Li Sent = li; and Lt Syn = Lae
WOONM co

We are to prove that 1, < l,.

Tf possible suppose 1, > 1, ; choose «= 4(1, —1,), a posi-«

tive number.

Since, {rn} 71, asa ©

ly -ée@<ay,<1l, +e forn>m,

2.6, 1, —-3(l1-—1,) < an forn > mz

ie, Mls +1,)< an form > mg. |
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Since, {yn} > 1, as n> ©

wv. bdg-e<y,<lgte forn>ms;

Yn <1gt+h(li-—1,) forn > msg,

.6., Yn < 4(1, +1.) for n > ms. s+ (Q)

The inequalities (1) and (2) hold where » > m, where

m is the greatest of the numbers my, Mo, Mz.

from (1) and (2),

fn > ly +12) > yn,

t6., Ln > Yn when » > m.

This contradicts our hypothesis that an < Yn.

Hence our assumption 1, > 1, is incorrect.

ly > le 1.€., Ls < Lo.

Illustratsons. Consider the sequences {> \ tat” ;
4

Flere 1 < 1 when n > 1
n n

i.e., every member of the second sequence except one is less than that

of the first but the limits of the two are equal.

: 1 1
Again for the sequences ‘aot? {2 +)

every member of the second sequence is greater than that of the first

and the limit of the second 1s greater than the limit of the first.

VI. Necessary and sufficient conditions that a sequence {sp} may

be convergent.

(i) Either, the sequence 1s monotonic and bounded

(increasing and bounded above, or decreasing and bounded

below),

(ii) or else, the sequence satisfies Cauchy’s condition,

namely,
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“Given any pre-assigned positive quantity «, however

» Small, we can determine a positive integer N, such that

| Snip —8n | <&, whenever » > N,

p being any positive integer’.

The proof that Cauchy’s condition is necessary is similar

to the corresponding case for the existence of the limit

of a function. ° [ See Appendix, Section D, § 3]

4. An important inequality (Bernoulli's Inequality) :

For every positive unteger n > 2, and p > —1(p # 0),

(i+p)" > 14+np.

When = 2, (1 +p)? =1+2p+p? > 1429p.

Thus the relation holds for »=2. Suppose it holds

for n= k > 2.

(1+p)*>1+kp;

(1+ p\1+p)* > (1+ p)(1+kp), since l+p > 0,

te, (l+p)*** >14+(k+1)pt+hp* >1+(k+ 1p.

the relation assumed for »=k is true forn=K+1.

It holds for »=2 ; hence 16 holds generally, for m > 2.

Note. The above inequality is true forn > 1, even if n be not

@ positive integer. The proof of this depends upon the well-known

inequality in Higher Algebra, namely (a"—1)/n > a—1 for n> 1,

a > 0, by putting a=1+> p here.

5. Some important limits on sequence.

(I) Lt (1+ >)".
n> oo n

We shall prove that the above limit exists finitely, and

lies between 2and 8. This hmit is generally denoted by e.

By Binomial theorem for a positive integral index,
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nn -1)(n—-2) 1 1" 1(1+ 3) mitn,t 4 mmr D1, port oy*” 2! n? 3

witit 2, (1 »)+ + gi (1- »)(- ae.
tart a) a)" S4) ©

The number of terms is n+1,‘and each term is clearly

positive. If now m be increased (keeping it always a

positive integer), since each of 1— 1 »1- 2 sore te nt
n ” "

is evidently positive, and increases with n, each term of

the right-hand series of (1) after the first two increases,
%

and the total number of terms also increasing, (1 4+- *]

monotonically encreases.

Again, from (1), ( " each of 1- 1 »j{- 2 ' 1- n~1
% n n

is positive and <1 ), it follows that

1 1,2, .41(1+ 3 \’<itit gs Feyto tay
1,1... J< 141+ DO toat ton

Lo. wr f=1.9.8......9¢ > Qt? J

1.6. <i+(1-4 x) /(1- 1) <r4i/(1- Liar <s.
Hence the sequence (1 + 4) » being monotonic increas-

ing and bounded above, is convergent, 1.€., tends to

a definite finite limit, which is <8, and from (1) eyvi-

dently > 2.

As mentioned before, this limit is denoted by @.
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1,1 1, .
(II) If sy +s itait + Lt Sn e.

Evidently here s, is a monotonic increasing sequence.

Also, as shown 1n I above,

S89 <1+1t ; + oot ok ei < 3.

Thus s, tends to a definite finite limit < 3, and evi-

dently > 2. Call this limit A.

Let us denote (1 + "| by an, ( ” @ positive integer ).

Then, as we have seen in I above, @n < Sn.

Hence Ltan < Ltsn;: “.@< ih. ++ (i)

Again, let m be any integer greater than ”. Then from

(1) of I above, it easily follows that

2 |

+ hb-2)he-g}-G-"3}
( several terms of right side of am which are all positive

being left out here )

Qm > 1t 1, i (1 - i) te
1! TMm

Now, keeping 7 fixed, let m —> ©.

When m — ©, @m — e, and the right side > sy.

6 => sm for all values of a.

Thus Lt sn t.e,4< @. vee ++ (ii)

From (i) and (ii), it is clear that 1=e,

4.€., Lit Sn = é.
nm-p0o
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(III) Lt 8/x=1, when n> © (2@& > 0), (n a positive

integer).

For z=1, the result is obvious.

Let «>1; then %/a > 1, so that we may put

R/a= 1+ hy where hn > 0... 2=(L+hn)” >1+nhn > nhn,

wo In <aln ww OM < a/n. Since when n—> ©,

z/n — 0, hence hn — O and thereforé %/2 > 1.

If « <1, we write z=1/y, so thaty > 1. 2. War=1/R/y

which > lasn—~ ~.

Hence the result.

(IV) Lt 8/n=1, when n > ©, (na positive integer ).

Forn >1,%/n > 1. Let %/n=1+hn where hn > 0.

n=(1 + hay” =1+("} ha + (") ha? + avec ovccceen + hn”

> tn (n—1) hn”, since all the terms are positive.

0 < hn < ./2/(n—-1). Asn —©, since right side > 0,

"> In > OL ow. Rn >.

(V) As n> -, Lt nx®>0, |a2l/<1, ( a postive

integer ).

For 0</[c2!<1, |[x]|=1/1+y), where y is a finite

quantity > 0.

1" —_ ~~

bane

= Thy ln to. n\y” < Fay forn > 1

1+(f)u+ (Shure + (3) (3)
since in the denominator each term is positive.

2 .” ~—— — 9 .| na I< Dy? which > Oasu—-

7. ne ~—>Oasn— ~,
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(VI) Asn ©, en —0, (p > 0), (na positive integer ).

Sincee>landy>O, .. e? > 1, hence 1/e? < 1.

If g denotes the characteristic of log n,

g<logn<gtl. .«. On.

log n
nm?

g+1 g+1
. forn>1,0< < (29)? < eP (gio

When n> ~,(¢+1) > © . and hence right extreme — 0
[ by V, wreting x for 1/e” J.

(log n)/n®? >~Oasn—> &.

(VII) If isnt is a sequence such that Lt ;
noo |

Sait = l, where
n

0O<cl<l, then Lt s,=0 asn— ©,

From the given condition it follows that we tan deter-

mine &@ positive integer % such that when n>,
lSn41/8n| <Ut+e, te, <k, where O<k<1 [choosing

e<ii-2].

[sm [ =) 8% -Fm-4 2, SOFT gl KM" sno || Sn—1 Sn—@ Sno ‘

4.0.5 <k” A[sno | /k 2 0

since k” —> 0 when 7 —> ©, and the other factor is finite.

es Sn 7Oasn>o,

Note. If {sp} be a sequence such that sa > 0, and Di (sa+i/sn)=1,

where 1 > 1, then Lt sn=co a3 m-> &,

Similarly if {sn} be a sequence such that s, <.O and

Li (sn+1/sn)=1, where! > 1, then Lt s,=—- ©, asn—> ©,
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Ls]

Titus. (i) Lt x =0 for all values of 2.
noo n!

Denoting the given oxpression by s,, we have here

| Suty | = 1Lt | = Dit | ne '=0O for all values of 2.

Hence Lt s, =O for all values of 2.

ii) Lt “820: . ,(ii) at no al 0Oiflal]<l

Sati | | "Here Lt | c | alt; 44% me ape ‘ci =([oa {.

Thus if | «| <1, Dt s,a=0; when | «| =1, since Lt 1/n=0, we get

the reqd. result.

m(m—1)...(m—n+1) ng 3 Ja} <1.
oe Lt

(iii) n=» 00 ni!

Denoting the given expression by sn», we have here

Lt |Srnjett 1m” a j= Lt imin— 1 =|a|.
1->00 | ny n->oo | n+1" noo 1+ I/n

Hence if |z| < 1, Lt sna=0.

(iv) By the above theorom we can also easily show that

Lt x®=0 and Lt nx®=0 when | 2z| <1.

(VIII) If Li sn=0 as n— ©, then

Lt 2 sata FS eg,

n->0o

Since Lt s,=0, for a given ¢ > 0, m can be so chosen

that for » > m, we have |s,|/ < ¢e. For these »’s we

have

|Sa | + Sgt + -| 28s < Isatsets:s+oml , 8. de
| m N

+8g t+Isatsetotoml 4 4,<
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Since the numerator of the first fraction on the right

» Side now contains a fixed number of terms, we can deter-

mine a number #, such that for > uw, the fraction remains

< te. Let N be the number greater than both m and uz;

then for ~ > N, | Ssn/n| < e+e, 2.¢., < «.

Hence the result follows.

(IX) If Lt sn=lasn— ©, then

Lt Sit8otFSn
a .

noo

Let sy=lt+ita, then Lt (s,—1)= Lt tn =0

o. Dt 220,10, Lt Br 56. Lt (75*- 1) =o.
nooo 72 N-P0O % m=>OO nr

Hence the result.

This is known as Cauchy's first theorem on limeés.

=0, since lim. 1/1=0.Illus: Lt 1+ 1/2++-»+1]n
° n=>co n

Lt Lt N24 N84 +n gince lim. Yn=1.
> 00 Tt

(X) The following important theorems regarding limits

of sequences are added without proof :

(i) If {bn} cs a@ monotoncally increasing sequence such

that bass > by and if by > © and fay} be any sequence,

then,

t an _ An =an-1,

it Dn Ut Dn —Dn-1
provided the limit on the right exists, whether finite or

infinite.
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(ii) Tf the sequences {an}, {bn} tend to zero and if {by} és

a monotonically decreasing sequence such that bn > bn4. > 0,«

then

an @n TM An-1
t s = Lt aLt Da noo Da - Dn -4

provided the hmit on the right éxists whether finite or

infinite.

(iii) If fa,} be a sequence of positive terms, then

[ome )ou* 9-200 n->0co An

provided the limit on the right exists whether finite or

infinite.

This is known as Cauchy's second theorem on limits.

14 +24 +--+ 4 n*- (i) Z ° — = Lt — Ye Te

1 +177 ay=c I. t n =I.

I I

(iit) Te Matt (” y =2e. Anti) t nt
1-> CO nm>co \n" m->co (n+1)"t'n!

n \" 1\-*_ 1

on (73) alt (1+ ») “ e-

6. I[lustrative Examples.

Ex. 1. Show that the sequence {in} 1s monotone ascending

1 n

where Crn= (1+ ) *
nN

. 1\" 1 \"-2

La > Xy-, If (1+ *) > (1+,,7;) 8
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1 )

1+ mi ~<

" BE. if = > 1+ 1 4.0, > n= 1 helos > 1 _1,
1 n—i1 n "

1+ -1_
n—-1

2 n n

Ub ay jf ” a 1 - 1— 1 Dlay if 1— i > l— 1
T% "1 nm 7%

which is true by Bernoulli’s inequality.

Note. That the above. sequence is monotone ascending has been

proved by a different method in Art. 5 (1).

T 1 1. 2. t Lt | - fe eee .Ex. 2. Evaluate Z aa it ln? 4-3 + 7 |

Let {bn} be the sequence where

1 1 1
= -- bh

bn /n?+1 Jne+a* + J/n2+n

and {an} be the sequence where aa= Sn? in

and {ca} be the sequence where c,a= ,” -
teal “4 /n? +1
Qn < bao < Cy

Also Lt {an}= Lt i =]

Ji+ 47

1
and Dit {en}= Lt = = 1.

af 1+,

.". by theorem (IV) of Art. 3, Lt {bas=1.

Ex. 3. Assuming that the followung sequence of positwe terms

possesses finite lamat, find wt.

2, n/ 2+ a/2s /2+ a/2.4- n/Qy.0-

Here an ,/2+an-,. ses (1)

Let 2 be the limit of the above sequence.
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Lt Qn= Lt Anu, =i, en (2)
7-P 00 M->ao

Squaring (1) and taking limit, we have

17-—1—9=0, .°. (1—2)(14+1)=0.

l=2, since 7 cannot be —1, every term of the sequence being

positive.

required limit of the sequence = 2:«

Section A—Examples

1. Discuss the behaviour of the following sequences

{r,t as n—> ©, where

. sIn 7” . 1
Gi) wta= Jn. (ii) an = cos 4nx + a

Gii) wn, =(./n) cos nm

2. Show that the sequence {a,} is monotone ascending

where

1 1 1
= + --- vee af )

Gn et nto Ton

and show also that it is bounded.

3. Show that the sequence {a,} is monotone decreasing

where

=(1 + a [ C. H. 1955]

4. Show that the sequence {b,} where

G1 tdat-+an
by ot Aa 2 > an - 0

is monotone ascending or descending according as the

sequence {ant is so.



Ex, Sec, A ] INFINITE SEQUENCE 899

5. If feat, iynt denote two positive sequences such that

9 1,1
Cn-y = Hint d -"- == +5NEL 4(n Yn) an Vax, fn Un

show that the sequences are monotones, the former des-

cending and the latter ascending.

Cy tr, te +key

"

the sequence {yn} converges, although {an} does not do so.

6. If at_=(-1)" dnd yn = : prove that

7. Ifan > 0 and if a, >~a( > 0), then show that the

sequence {bn} > a where

Da *
Lilia]

1 Ag An

8. Ifan > 0 and if a, - a( > 0), then show that the

sequence {bn} —> a where

bn =a, As ‘eee On.

[ Use A.M. > G.M. > HM. and apply (V) of Art. 3]

ANSWERS

1. (i) Convergent : mit is 0. (11) Oscillates finitely.

(iii) Oscillates infimitely.



SECTION B

INFINITE SERIES

1. Definitions.

An endless expression of the form

Uy + Ue +%s3 + wee + tin + vee

WhELC Wi, Ugyeceees have definite values (positive or negative,

constant or variable) is called an znfinite series, and is

denoted by Stun.

For such a series, let sn = uy tug t's +%, be the sum

of first » terms of the seres. Then considering the

sequence {sn},

(i) if sn > S (a definite finite hmit) as n> ©, the

series Dtin.is said to be convergent, and S is called its sum,

(ii) if s, > +, or to- ~,asn>@,

the series St, is said to be divergent,

(iii) if sv oscillates (finitely or infinitely) as 7 ©, the

series Dts 18 said to be the oscsllatory.

If a series Sun consisting of positive as well as negative

terms, be convergent, but the same series, when all the

terms are taken with positive sign, 7¢., the series J | uw, |

be divergent, then the original series Sw, is said to be sems-

convergent.

If on the other hand, S| uw, | is convergent, it can be

shown by Cauchy’s condition for the convergence of a

sequence, that Su,, (no matter what the signs of 1, Us

etc. may be), is also convergent. In such a case Duy, is

said to be absolutely convergent.
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Divergent and oscillatory series together will sometimes

be referred to as ‘non-convergent’.

Hzramples :

G) 1+4$+4+4+-°: is convergent, sum 2.

1-36 2
For here, 805 yp TM 2 5+pa-1 > 2 as noo,

~ 3

1,i1,1
12°93 +3 ‘is convergent, sum 1.4

For here, n= (1- 3) + +(5 -3)+(3- ite -+(3- ati

1
=] yhi tas.

Similarly, 1 — ; + ja — as + --- is convergent, sum #.

(i1) 1+24+3+4+--- 15 divergent, >+ ©.

Qii) —5—57-—5* —--- is divergent, > —- —.

Gv) 1+2-34+1+2-34+1+2-3+-:---- is oscillatory,

oscillating finitely between 3 and 0.

(v) 1-2+3-—-4+5-6+-> is oscillatory,

oscillating infinitely between — © and + ©,

Here, s,= ~— $n or 4(n+ 1) according as n is even or odd.

(vi) 1-14+2-2+3-3+ -- is oscillatory,

oscillating infinitely between O and ©.

(vil) 1-$+4—-—24+4%-4+-°° is semi-convergent.

[ See § 2, (222) below. J

(viii) The geometric series

Ltaotartt+ar+--

26
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is convergent if |x| <1, divergent if « > 1, oscillatory

if c= —1 (oscillating finitely), and oscillatory if «<< —1,

(oscillating infinitely).

Note. The word sum in connection with an infinite series is

not a sum m tho ordinary sense of theterm. It does never represent

the actual sum of any number of terms of the series, but only

represents a limiting value which is never actually reached. Sum of

an wmfinite serves 1s a matter of definition or conveniion, and has no

other existence in any previous notion.

2. Tests of convergence: In order to ascertain the

convergence of infinite series, it is not always very conveni-

ent to find the limiting value of spn as m > ©. So various

methods and rules have been devised for testing the con-

vergence. We give below (without proof) a few important

of these tests. For proofs, see any book on Higher Algebra

(e.g., Barnard & Child).

(i) A necessary condition for convergence of Zt, is

that Li tm, =0.

(ii) If a series Nun of positeve and decreasing terms

be convergent, then Lit nu, =0. [ Prongshewm’s theorem |

For the harmonio serics D(1/n), since nu,=1, 50 Lt nun ~ 0, and

hence the series 1s not convergent. Thus (s, being monotone increasing

here), the series is divergent. Similarly the series 21/(2n—1) 1s

divergent.

(i) In the alternating serves u,—ug +u%3—--, in which

the terms are alternately positive and negative, if uy, > Unser

for all values of », and if uw, 70 as n> ©, the series is

convergent.

Consider the series 1—-$+4—3+----

Here, ug=1/0 3 tne =U (n+1). 2°. tn > Ung,

Als0 un —> O88 n-> oo. Hence the series is convergent.
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From (ii), it follows that

1—4+4—3+--- is semi-convergent.

Similarly, the series 1—3$+}3-—3-+--- is semi-conyergent,

(iv) Comparison Test: If Su, and Svan be two infinite

series of positive terms, and if Lt (un/un)=p, e being
N->coO

a finite quantity, then the series are either both convergent
or both divergent.

Note An important series used very often for comparison is

1 1 1 1yet get get wee + et seeeee

which is convergent 1f p > 1, and divergent if p < 1.

For proof, see any book on Higher Algebra.

(v) D’ Alembert’s Ratio Test: If Sw, be a series of

positive terms, and if °

U .
Lt “"t! <1, Sun is convergent,
noo thy

>> 1], Su, is divergent,

= 1, the test fails,

In the last case some other method must be devised

to test the convergence of the series. In this case (vi)

may be tried.

(vi) Raabe’s Test: The series Su, of positive terms

is convergent or divergent according as

Lt {nf tin -1)}>10r <1,
Noo ln+1

The test fails if the limit =1.
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(vii) Gauss’s Test: If for a series Su, of positive

terms, %n/t%n+, be expressed in powers of 1/n, so that

tn oa 1Un+1 1* n * O(,:
then Sv» is convergent if «> 1, and divergent if u < 1.

Note. The notation O(1/n7) denotes suph a function f(n) that for

every 1 > No (& definite positive integer), | f(n) | < % a where & is

# finite quantity independent of n.

(viii) Cauchy’s Root Test: If Su, be a series of posi-

tive terms, and if

1

Lt (thn)” < 1, Sun 18 convergent,
MP co

> 1, Suv, is divergent,

‘ = |], the test fails.

(ix) Tests for absolute convergence: If for a

series 2 tin,

Un+1

% '

Lt
2m-? CO

< 1, Du», 18 absolutely convergent,

> 1, Su, 18 non-convergent,

= ], the test fails.

For other properties of infinite series, any book on

Higher Algebra may be consulted.

8. Illustrative Examples.

Ex. 1. Prove that the series

Jat SB SB+ NE+

és divergent.
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Here, tu, = ” m1/4/1+ 1_+iasn—> oo,
ntl "

As Lt un, ~~ 0, the necessary condition for the convergence of the

series is not satisfied.

Again, the terms here being all positive, the sum 3, of the first

nm terms evidently monotonically increases with nm.

Henoe the series, being, non-convergent here must be divergent.

Ex. 2. Test the convergence or dowvergence of the serves whose nTM

term is Jn?2+1—n.

Here, un=./ni’+1—-n. Assume vg= .

n.{(27+ 1) — 27}Then “"=2(./n2+1—n)=Un (ain /v+tl+n
1

/ 1+ ttl
nr

Thus, 2%, and Sv, are either both convergent, or both divergent.

—> ; (a finite quantity ) as m-> oo,

®

But Zv,=E) 18 divergent. Hence Zu, is divergent.

Ex. 3. Bund whether the serves

3a? 4z° n+1, .
22+ 8 + O7 + see + ne et

is convergent or dwergent, (2% > 0).

Unt m+ aay x n> 1
Here, ln, = (n+1)3* n+1 0"

2
1+

_n® (n+2) _
=“(n+1)4 "Get 2 —> 2 2S 2 —> OO.

n

.. by D’ Alembert’s test, the series is convergent if « <1, and

divergentifx > 1. For 2=1, the test fails.

Tf c=1, for the series u,= avi
“

Take tatty > then Zv, is known to be convergent.
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Now tin ae De . — 1(a finite'quantity ) as ~ — ©,
n

-". ZU, is also convergent.

Thus the given series is convergent if « < 1, and divergent

ifa> iil.

Ex. 4. Test the convergence or otherwise of the series

eo, Llw* 180@5 1.3577. .

1ta'steasteagrvt

Unter _ 1.3.5...(2n —1) 2?"TMt* | 2.46 - -(2%—2) 2n—1

Here, 1, 2.4.69 "On-+1TM 1.3.8-+-(9n—3) 228"

(2 —1)? 2 2
~ 9n(an+ 1) Oe BE BB —® Oe

... by D’ Alembert’s test, the seres is convergent if 2? <1

é.e., | 2 |< 1, and divergont, if a? > 1, 2e., | « | > 1.

If s=1, the test fails. Let us apply Raabe’s test here.

9

Here, n1 an _ i} = 1, none _ 1}

‘ 16 -— -

=aC aro 7 _—> te WE , = which is > 1,

(2),
Hence, the series is convergent in this caze.

If «=-I1, all the terms being reversed in sign as compared to

the case when x= 1, the series remains convergent.

Thus the given series is convergent when | « | <1, and divorgent

when | « |> 1.

Ex. 5. Prove that the serzes

1+2, (2+2\2 8+2\5 ("+ 2)" .

2.1 + (717) +( ao) tert Vo) Ft
és convergent.

n

Here, w= (5 -+- *)

1

os Lt us" = Lt (342 )=3 < 1.
g-P OO n-»co \ 2

.’. by Oauchy’s root test, the series is convergent.



SEOTION O

POWER SERIES

1. Definition.

A series in which the successive terms are in ascending

positive integral powers of a variable, say x, of the form

me %
Ag tayxtage” +e +ane +s:

or shortly, Sanz”

where the coefficients do, @,, @,,... are independent of z,

is called a power series in v, and the numbers an are called

the coefficients of the different powers of 2.

By a power series we shall mean an infinite power series

and the study of such series is of great importance in

Calculus. Jt is clear that in the discussion of infinite power

series, the mere statement ‘convergent’ (as in the case of

constant-term power series, ¢.g., S1/n") is of little signi-

ficance unless it is stated for what values of x, the series is

convergent.

Let us consider the most important and simplest power series

(viz., the geometric series)

Later tei ct cece to ©,

Hore, ss=1l+et+a?+--+a"-!

_1—2" -~ 2 _ 2.

yng (fore A 1)=)" 4,

Now, Di sa= Lt . 1 a” ] = 1 1 e Lt a”,n>coll—z 1—x) 1-2 1—a ys00

Since for |z]< 1, Dt a*=0, .. Lt = t for |r| < 1.
m->co 1l—z

Thus the geometric sories is convergent (also absolutely conver-

gent) for| «| <1 «ae, -l<2 <1,
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For ¢«>1, spn. .. Sas>® OO aS n—-® CO; 4.6,, the series

diverges to -++ co. ;

For «= —1, s,=1or O according as n is odd or even 4.é., 8» does

not tend to a definite limit,

For « < —1, Lt s—>+°° or —oco according as 1 is odd or even.

Every power series is convergent for x=0. A power

series Sanz” is convergent either ‘for all values of ©, or

for a certain range of values of z, or for no value of 2

except 0.

2. Interval of convergence.

If a power series Sanz” converges for every |2/<r

(indeed absolutely) but diverges for | a| > 7, then (-7, 7)

is called the interval of convergence of the given power series.

Note 1. ris very often called the radius of convergence.

Note 2. Ifa power series is convergent for all values of 2, its

interval of convergence 18 sometimes written as (~0oo, +0oo) and in

such cases the series is said to be everywhere convergent.

Note 3. Every power series is absolutely convergent in fhe open

interval (~—r, 7), the interval of convergence.

Note 4. The behaviour of the series at the end-povnts of the

interval of convergence (1.¢e.,. for c=rand —r) has to be studied sepa-

rately in every individual case, for there may be diverse possibilities,

the series may be convergent at one end-point, and divergent (or oscil-

latory) at the other, or convergent at the both end-points, or divergent

at both end-points, and so on.

Note 5. Although by actual division, we get

i -eLtet ett? + ooo to oo
1l~—a

it must not be supposed that the series represents the function from

which it is derived for all values of wx.
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For putting «= 2, we get

Lm 1 2 224 28 pees

‘which i is evidently absurd.
The serves represents the function only for those values of x for

which the serves 18 convergent.

We know

_1.8 58 . =HK 4y) 717 eats, 4x" “a 46" Bop sense is convergent for c=1.

If we multiply the series by itself and rearrange it in powers of

xy, we get

1
i¢z 717 ek? — 8 + corse .

which is obviously not true for c= 1.

This happens because the original series is not absolutely conver-

gent for r=1.

Again, if we differentiate term by term

log (1+) =a2—$2°+$2? —fr4 +-0-

for c=1, we get

$=1-1+1—-14+1-14+----

which is obviously absurd.

Herein lies the supreme importance of knowing beforehand the

conditions under which a power series, whenever it is being used in

any investigation, is convergent, and also under what conditions, the

mathematical operations, performed on the series, are valid ; otherwise

we would be led to absurdities as above.

3. Determination of interval of convergence.

For the series Zanx”,

(i) if Lt | ont | a finite quantity 4 (A ¥ 0),
noo

1

(ii) if Lt | an E =A (A » 0),
92-200

then the interval of convergence of the series is (- 7, 7)

where r= 1/4.
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For the first case, using D’ Alembert’s ratio test to the
series (omitting the first term), we have for ‘any fixed value:

of x,

' MeL |

Le Uttt Te | ImtiT =Dt +1). |x|
noo tn noo ann” nm->oo an |

=Ala|

which is less or greater than 1, according as | «|< or

> 1/4. Hence the result.

If A4=0, the test 18 satisfied for all values of 7. Hence

in this case, the series is convergent for all values of 2, and

the interval of convergence is (— ©, + ©),

When however | x ]=72.e., 1/4 (2.e., for the end-points

of the interval of convergence), the limiting value of the

ratio being 1, the test fails. In such cases we must use

some other constant term series test to determine whether

the series is convergent or not for these values of 2.

For the second case we can similarly use Cauchy’s test.

Illustrative Examples.

Find the interval of convergence of the following series :

2 8 ”T +4 af wae cee -++ SS eee ( 2.¢., eX).Ex. 1. l+at | 3 | nl

( n—-1

Here, Lt “ett; are; 2 @ are? [a
TlPoo! tn, lou! (2 —1) t "”

=0, for all values of x.

the series is absolutely convergent for all values of x.

Here the interval of convergence is (— oo, +00).

r®
Ex. 2. cm. ite — scenes (2.¢., sin x ).

we? ot
1 aitain sanece (2.e., cos x ).
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For the 1st series

Se | ete ag (OU ate (may eae
n>2 | Un (Qn+1)! ° (Qn—1)!

um. @= Tt On (2n+1) = 0, for all values of z.

.". the series 18 absolutely convergent for all values of a.

Similarly, the cosine sefies is absolutely convergent for all values

of 2.

The interval of convergence in cach case is (— °°, oo).

mn? as

Ex.3. s— 9 + 3 — ceeeee , %C., log (1+x).

| (—1)"*aTMt! | (—1)""* o* | mLt Unt = a4) - ; — ntHero, so Us | = Lt nti 7 n ;= Dt | x |

1
= |x] Dt 1+1)n~ Jaf.

Hence the sories is absolutely convergent for |x] < 1, 1.¢.,

—-l<a2<l. :

The series 18 divergent for |x| > 1, 2.¢., for’ > lands < —1.

For |x] =1, the tost fails.

Putting «= —1, in the same serias, we havo

—(1+44+34+44 --) which tends to —oo,

Putting s=1, we have

1-34+3-2+--

which is convergent. [ See Sec. B, § 2, Appendaz. }

Thus, the interval of convergence is (—1,1); the sories is also

convergent for v7 =1.

5 5

Ex. 4. e-", pe eee 2.e., (tanTM1 x).
5

Li ‘Unt = ly "oe ta/ _— 1\"- 1 tent _ 2n-~1 3

n>co 8 Un Lt | ( 1) Qn+1 (—1) 2n—1 | Lt on41%

= Dt 2 Un pag,
2+i]n
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Hence the series is absolutely convergent for #* <1, t.e., for

—-1 << land divergent for x? > 1, 4.e,2> land a < —1. .

When #=1, and —1 the series becomes

(1—44+3-—---) and —(1—4+3-—---) respectively,

both of which are convergent. [See Sec. B, § 2, Appendiz }

Hence for this series, tho interval of convergence is (—1, 1) the

series being alao convergent at both end points 1, —1.

Lie? 1.3 2 1.3.5 27 . -1
Ex, 5. at, 3 to4 5 to46° 7 bee 4.e., (sin ‘x ).

3.5 - (2m = —1) og ?mt2 ,Here Ung, = oo -
your 2.4.6...2n In+1

, Lt ss (2n - 1)? ge? | ay?
" * moo It | On -(8n+1) * .

.". the series is absolutely convergent forc? <1,4e, -l<a<l1

and divergent for 2? > 1,%e,2>1landa < —1.

When 2=1, the series becomes

11,131,185 1

2°37%9.45 194.67

non, = OUD CBEY(a2)'=(e4s)(td)
=(1+,, ){r+2- 2+3(4t) + seseee }

3 1ms 1 Font O (2):

Unt
Un

S=1+

Hence by Gauss’s test, this series is convergent since here n.=§ > 1.

When z= —1, the series becomes —S and hence convergent.

Thus, the series is also convergent for r= +1.

. . 1
_ 3 —_ & eutvene a eEx. 6. (i) l—w+a7 —xv'+ (se, 3)

(ii) L~2?+a* —7o +. (ive ree)
> 14x

04 13 eg 185 ey oes (< —t):(iii) 1+ 50 +540" +5462 + $8, == “s
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Interval of convergence (i) -l<2 <1. (ii) -l<o9 <1.

(iii) ~l< a2 <1.

Ex. 7. (i) oe ae seeeve (¢.e., sinh x).

(ii) 1+” e+e + wseeee (+.¢e., cosh x ).

As in the case of sine and cosine series the above two series are

absolutely convergent for all Values of «.

e-3, 1 (#—3)?,, 1 (w—-3)*

2 33

Lt | Unda = ea - (@—3)" | _ 75? | -—-~m->co | Un é (n+ 1)3"t? ° m3" it ti
=| %735

Thus, the series is convergent if | 28 | <i,

i.e. for -1< es <1,

ae, -S3<a-3<380r0<-2 <6.

The series is also convergent for x—3=—3, +6, c=O but not for

2—-3=3, 2.¢., for 2=6.

Ex.9. Lla+2!w?+3!a%-+---+a! t+

n+

Unt |= =1t| (n+1) I x. ” =I (n+1).|a]itHere on nia

=0, if c=0, and —,co if « x 0.

.*. the series is convergent only for 7=0.

4. Properties of power series.

We give below certain statements (without proof) regard-

ing the properties of infinite power series, which are often

used in obtaining many new series.

(i) Two power series, as long as they converge, may be

added and subtracted term by term.
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Thus, if f(z) =Zaqu", O(2) = Zbav", f(x) £O(x) = Danv" + Shan"

= Zan + i) x.

(ii) Two power serres in x can be multiplied out term by

term for values of x in the anterior of the intervals of conver-

gence of both the series.

Thus, if f(x)=Zanx", o(v)=Zbac", then f(x) . $(v)=Zanz" . Dbax®

= B(aobat aybn-y Heres + andy) 2", provided x 28 enterior to the intervals

of convergence of both the serves. The product series is absolutely con-

vergent in the same range (i.e., in the common part of the intervals of

convergence).

Cor. Evory power serics may be multiphed (any number of times)

by itself, within its interval of convergence. Thus, if f(x)=Zanc",

{f (x)}? = (Sanav")? = (Lane").(Lane”) = B(aodin t+ @1An-1 + °° Hanto)x” 3 B1mi-

larly for (Zaqx")*, etc.

(iii) The quotient of two power serves Sanz”, Sbna”

(bo #0) 28 another power serves Scnu”, provided x remains

within a cufficiently small enterval in which the denominator

does not vanish and both numerator and denominator are

convergent serves.

Agta THA, c bees
Thus, bot b e-+b nto =Cot CU Cyt? bee

Since Dann" = Shae. Tear”,

tg =lolg, 4, =Coby +6,0o, etc.

from which ¢o, Cys Cas--0e- . can be easily calculated.

As & particular case, we have under the same conditions

L

bot bobby? 11 COTE BH CE? +++ (bo 0)

the coefficients co, Cyy--- «s , being calculated as before.

Note 1. For the expansion to be valid it is necessary that

= b, ‘ l Bs 2

r pie +] pte
whence the required condition follows.
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Note 2. The coefficients ¢o, ¢,, Cg)...... are the same as those

found by long division.
a

Note 8. If some of the initial terms in the denominator happen

to be zero, the quotient may still be found as a power series together

with a rational fraction.

Thus, suppose bp =0, b, =0 but bg ~~ 0; then we write

Dane” _ — BtaeTM

baz” 6,24 (let Byx-+ Bax? +--)

where B,=bd./b,, Ba =b,/ba, otc.

(iv) Limits, term by term, are permissible in case of power

series within rts enterval of convergence.

Thus, if f(7)=XNane", Lt f(e)=Lt Sann”.
na xa

Note. Strictly speaking, 16 involves an inversion of limiting pro-

cess. The above relation really means

Lt [ze Sq | Zt Lt sg.
zea tno NIO Ta

Although the limit of the sum of a finite number of terms is always

equal to the sum of the limit of cach term, in case the number of terms

is onfienite, the equality holds only under certain condition.

(v) A function represented by a power series viz., f (x)

= Zane” is continuous and differentiable (any number of

tomes) at every point x, wnterior to the enterval of convergence,

and tts differential coefficient may be obtarcned by term by

term differentiation.

Thus, we have, f(2,)=Zrtanv,"") 5 f"(w,)=Zn(n—1) ane,"*7? : ote.

Note. By taking the nth derivative of f(z)=Zanz" and putting

x=0, we obtain an= f"(0). Elence generally a power series in its

interval of convergence is the Maclaurin’s series of the function which

it represents.

(vi) The integral of a function f(a) represented by the

power series Danx”, over every interval inside the interval of

convergence, can be obtawned by term by term integration.
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Thus \. Ff (x) dom | “a Lage" dx = Z—"8— (x.*t? ~ yg, *+4)
, ®, ay m+1 ‘3 ,

provided «, and x, are both interior to the interval of convergence.

Note 1, The point 2, may be taken at the boundary of the inter-

val of convergence, provided that the integrated series converges there,

whether the original series does so or not.

Note 2. The series obtained by the derivation or integration of

® power series term by term, has the same radius of convergence as of

the original series.

(vii) Zf two power serves Sanz” and Sbyx” both converge

in the same wnterval (—r, 7) and both represent the same

function f (x), then they are identical, i.e., Qn=bn is true

for all values of n.

Note. A function f(z) oan be represented by a power series in

only one way, 1f at all.

(viii) If y=f (x)= Zane”, and F(y)=Zbay", then

FUf(a)t =bo +b1 (Sanx") +b, (Sanx”)? +--+

=bo thy (Go + a12 +492" +°°-)

+ by (€g tart)? +°-

=Cotc E+ Cot +o:

for every value of x for which S]a,a”| converges and has

a sum less than the radius of convergence of DbnyTM.

Note, As & particular case, if Zbay" is convergent for all values

of y, then the theorem holds for every w for which Za,z" converges

absolutely.

Thus, in the series =” »» we may substitute y==an" for | «| <1
nv}

"

or y= | for every 2, and then re-arrange in powers of a.

This is the case of the substitution of a power series for another

power series.



SHOTION D

PROOFS OF SOME IMPORTANT THEOREMS AND

RESULTS ON LIMITS, CONTINUITY, ETC.

1. Proof of Fundamental Theorems on _ Limits

(Art. 2°8). °

We are given Lt f(x)=1, and Lt ¢(@)=1’, where / and
xZ?a Ca

l’ are finite quantities.

(i) Since Li f(x) =1, Li ¢ (n)=1', we can, when any

positive number ¢ is given, choose positive numbers 43, de,

such that

| f(a)-t | < $e when 0 <|x-al< 6, ees (1)

| d(w)-l' | < de when 0 <|2-al<idg. - (3)

Let 5 be any positive number which is stnaller than

both 6, and 6, ; then the inequalities (1) and (2) both hold

good when 0 <|z2-al< 6.

Now |{f(a) — i} + foe) — UF] < Ae) - 11 + 6@) -

l{flx) + o@)} -—(L+ 1) |< te + te 20, <¢,

when 0 <|x-al <6.

by definition, 7+1’ is the limit of {A(z)+¢(z)} as

c-? a.

Similarly, it can be shown that J—Jl’ is the limit of

{f(x) - ¢(a)} as @ > a.

Hence Lt {N(x) + O(x)} mf + 1’,
>a

(ii) We have, f(x) d(x) — 11’ = tf (x) — IH (w) - 15
+ U'§ f(a) — + Ud (@) - UY

27
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“LF @)dla)—’ lel F@)—-Ule@-—l |
+1 U IF @)—114+] Uld(@)-? |

Now e being any pre-assigned positive quantity, and

choosing any other positive quantity k,

kf & 2

"Slit Biv’ | 38k

are known positive quantities, ond since Lt f(x) =],
xct?a

Lt d(x)=1' we can choose positive numbers 61, do, ds, Sa;
aa

such that

| f(z) -t |< hk when 0 <|e2-al< 6,4,

ld(x)-—l’ |< 3h when 0 <|z2—-a|< da,

I f(@-lIl< 3]7 | when 0 </z-al < 6s,

and | ¢(@)-VJ< when 0 <|[x2—al < dy.
g

3] 2 |

Hence, if 6 be the least of the positive mumbers 4,, 62,

dg, 6,4, all the above four inequalities hold when

0<|r-al<,

and so from (1),

IF @)d@)-Wl< he oF Ig FLU gry

1.6., < 3 + 3 + 3 2.6., <€¢ when 0 <|[x-al<o.

by definition, Lt (x) (x) = 7’,

| ‘a _— _ —_— Md(iii) We hav oe) 7 ! | AS 2 ae (a) - H
e_ (EU A@—T +I TI @)— Ut

lvild@| = @)
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Now since Lt ¢(z)=1', there exists a positive number
2a

6, such that | ¢(2)—1’| < 4/l’| when 0 <|2-a/< 4;,

for 1’ x 0.

Vi -Ile¢@l<lé@-Vil< 3 lll

or, |d(@)| > ]l'| when 0 < /[z-al]<6,. - (2)

Also, there exist positive numbers 62, 63, such that

l\f(~)-lt|<« forO0 < |z-al< dg,

| d(x) -—U' | < e’ for 0 < |a-al <6; --» (8)

where «’ is any chosen positive number.

If 6 be the smallest of 6,, 53, 63, then it follows from

(1), (2), (3) that when 0 < | z-al <4,

f(x)_ 1 {PU + iit’,
¢ (x) |< at la’ is?

Now e being any pre-assigned positive number, if we

choose e/= ef] l’|}2?/f]21+]u' 1 t, we get

F (a) Y |< e when 0 <|z-al < 6.
(x)

: ut '@)Hence xa PR) fl

(iv) Let w=f(z) ; since F(u) is continuous for u=1,

| F(u)—- F()) | < e when | w-l | < 64

a.e., when | f(z)—1 | < 6,. eee (1)

Again, since f(z) > las x > a,

| f@)-1] <6, whenO<|[e-al<oé. - (2)

Combining (1) and (2),

| Fifa@t-FO | <ewhenO0<l/a2-al <é

Lt Fif(x)}=F().
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(v) Assume that the inequalities (7) < f(x) < v(x) are

satisfied when 0 < |a-al < 6,. e

Since Li d(x)=1,|4(4)—-1| << ¢ when 0 < [a2-al <6,
wa

4.é., l-~e<d(xr) << 1+ when0<|]ae-al < dg.

Similarly, 2-¢ < p(x) << 1+ when 0 </2-a| < dg.

If 6 be the smallest of the numbers 6,, 62, 63, then all

the above inequalities are satisfied when 0<|r-al < 6.

Under these conditions 1—« < ¢(z) < f(z).

' Also L+te>ya)>f(z), ©. lL-ex<fle)<Ilte

2.é., |f(z)-1| < ¢ when 0< |2-al] <6.

“. F(z) > 1 as @ > a,

“2. Lt (1+ 4)*=c. [ Art. 2°9(i8), (b)
xX + 50

We have already seen [See Appendix, Sec. A, § 5(1) }
%

that Lz (1 + , =e(na positive integer ).
9-200

Now, let x be any large positive number. Then we

can get two consecutive positive integers n,n+1, such that

11 1 _,neao<ntl. .’. 1+ 72> 1+ elt

and each being > J, andasnaz+1 >a >»,

nt+1 x

(1+ 3) > (1+ | > (1+ 1_\",
nN x mt

1 1 17 1 «& _1- NEL ( 1

or, (1+ *\(1+ 2) > (1+ i) >(1+545) /+ a5)
Now when z— ©, n> © also, and being positive integer,

1 ” R+t1

both (1 + ‘| and (1+ —>e as proved before.ta}mati
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Also 1+ Zt > landl+ 4 — 1. Hence the two extremes
. n n+]

in the above inequality tend to a common limit e, and
&

ee (1+ | — 2.

Lastly, suppose «= —p, where p is a large positive

number ; then as p > ©, 7 >— ©,

Feb 3)"2y be hyThen, (1+ 2) =p p-1 p= 1
1 \¢t?

= (1+ 2] ( where g=p-1)

Now, if p 7 ©,q— © and hence

aqt1 @

f+ 3) -(u 2) (4 Zoeg g g

1 x

Thus, (1+ *) —~eéasrr-—-o,

x

Hence, we see that Lt (1 + | =¢,
re? +00

x Leing not confined to be integral here.

Cor. Replacing y by 7m as 2£—>+o,y—->0, and we

get

1
x

1

Lt (1+y)¥ =e, or Lt (1+x)* me,
yv>0 x>0

_& Cauchy’s necessary and sufficient condition for
the existence of a limit. [ Art. 2°10 ]

To prove that the condition is necessary. Let Lt f(a)
cra

exist, and bo finite, and =1 (say).
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Then given any pre-assigned positive number e, we can

find a positive number 4, such that °

| f(x) -1] < te

when 0<|a-al<é. If now a, and 2#, be any two

quantities satisfying 0 <|2-—a|< 6, then

| F(x) —f(z_)| = l {f(x3) —i- { f(x9) — i}

< | f(e1)—-1| +1 fle.) —- 1

< te+te, i.e, <e.

Hence the condition is necessary.

To prove that the condition is sufficient is beyond the

scope of the present treatise.

4. An important theorem on limit.

Theorem: If Li d(r)=1, and Li v(z) =1, and if (x)

< (zx) in a certain neighbourhood of a except a, then li & le.
Let us suppose that the inequality 4(x) < y(x) holds good

when 0 < /x-al< 61, #.e., in the neighbourhood

a-61 <x<atd,,2 # a. “++ (1)

If possible, suppose 1, > lg.

Let us choose ¢= 4(1, —1,), a positive number.

Since Lt d(r)=1,,

. | d(n) — 1, |< 2, when 0 <|z-al< 6,

1.6, l,-exi_d(x) <1, +2, whena-6, <2 Qatdg.

2. ,-4(0,-1,) < daz), whena-6, <@ QZ ats,

i.e., (ly +l.) < d(a). eee © eee (9)

Again, since Dt v(x) =a,
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l,-ex< ya) <1l,+e, whena-d3 2& GZatds.

v(a) < let 4(2, - lg)

i.e, waz) < $(1,+1,.), whena-—63 — ae catds.°: (3)

Let 6 be the smallest of 51, 69, 63 ; then the inequalities

(1), (2), (3) hold good in the interval a-é6 <a <M até.

from (2) and (3), dv) > 41, +12) > v(x),

i.e., (2) > yr) ina-S<axcate

which contradicts our hypothesis that $(7) < y(z) in that

interval. Hence our assumption 1, > 1, is incorrect.

1, P 1, te, li <q.

*5. Proofs of some properties of continuous func-

tions. [ Art. 3°4]

(iv) Since f(x) is continuous at x=a, from definition, if

e be any chosen positive number, we can get.a positive

quantity 6, such that

| f(x) -fla)| << e2¢, fla)—ex<fiz)<fa)te + (1)
for all values of x satisfying a-~-6d< x«< ate.

As f(a) ¥ Ohere, if f(a) be positive, choose «=4/f(a):

then from (1), f(z) > f(a)—«7ie., > $f(a), and is accordingly

positive when a-6 <2 <até.

If f(a) be negative, choose «= — $ f(a), and then we have

from (1), f(z) < f(a) +e 2.6, <fla)-tf(a), ¢¢, < f(a) and

is accordingly negative when a-é6 <2<atd.

Thus whatever be the sign of f(a), we can find 6 such

that f(z) has the same sign as that of f(a) in the range

a-d<e27< ate.

(v) Let OA=a, OB=b. Bisect the interval AB at Ci.

Tf f(x) be not zero at C,, it must be opposite in sign to one
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of f(a) and f(b) which are given to be of opposite signs.

Suppose f(x) has opposite signs at OC, and B. Bisect C,B

at O,. If f(x) be not zero at C,, it must have opposite

signs at the extremities of one of the intervals C,C. or

C.B. Bisect that particular interval at Cs. Proceeding in

this manner 7 times, unless f(z) is zero at one of these

points of bisection, we can get an interval Cn- 1, Cn (say)

within AB, at the opposite extremities of which f (#) will

have opposite signs. This interval Cn 1, Cy is clearly 1/2”

of the interval AB, 2.2, =(b-—a)/2”, and | taking n large

enough, can be made as small as we like.

But f (x) being a continuous function for every value of z

within the interval AB, corresponding to any point Cy in it,

given by w=c say, if f(c) be not zero, it must be possible

[ by (¢v) above J] to get a positive quantity 6 such that f (a)

will retain she same sign, namely that of f (c), in the interval

(c—6, c+éd). Now whatever 6 we may choose, (6-a)/2”

can be made less than 6 by taking » large enough, and it

has been shown that at the extremities of the interval Cy-1,

On, which falls within (c—6, c+6), f(z) has got opposite

signs. We are thus led to a contradiction if f(z) 1s not

zero anywhere within the interval AB. Hence there must

be some point in the interval, given by x=é (say) where

Sf (€)=0 under the circumstances.

(vi) Let & be any quantity intermediate between f (a)

and f(b) which are given to be unequal. Let ¢ (@)=f (x) —k.

Then since f (2) is continuous in the interval (a, b), @ (x) is

also continuous. Also @(a)=f(a)—k and ¢(b)=f(b)—k

are of opposite signs, since & lies between f(a) and f (0).

Hence by (v) above, there is a value 2=€ in the interval,
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for which ¢(@)=0, ie. f(2)=%. In other words, f(z)

“assumes the value & at some point in the interval.

(vii) Let the function f (2) be continuous through-

out the closed interval (a, b). Let us divide all the real

numbers in the interval into two classes L, R, putting

a number é in Z if f (x) is bounded in (a, €), and in R other-

wise. Members of L-class exist in this case, since f (2)

being continuous at a (to the right), corresponding to any

pre-assigned positive number &, we can get a positive

number 6 such that f(a)—e < f(x) < f(a) +e (and accord-

ingly f (2) is bounded) in the interval (a, a+6), so that a+é

belongs to L-class. If now numbers of #A-class also exist

in the interval, then by Dedekind’s theorem, there exists

a definite number c (say) in the interval, which represents

the section. [ To include all real numbers in the classifica-

tion, we put all numbers less than a in JZ, and alj, numbers

greater than } in & here. |

Now since f (x) is continuous at c, for any given positive

quantity €, we can determine a positive number 6 such that

f(c)—e < f(x) < f(c)+e within the interval (c—6, c+),

z.e., f (2) is bounded therein. Also c— 6 belonging to L-class,

f (z) is bounded in (a, c— 6). Hence f(x) is bounded through-

out the interval (a, c+6). But c+6 belonging to R-class,

f(x) is not bounded in (a, c+6). This contradiction shows

that no number of the #-class can exist in the interval

(a, b); in other words, f(z) is bounded throughout the

interval (a, d).

(viii) and (ix) Let f(a) be continuous in the closed

interval (a, b), and let M and m be its upper and lower

bounds in the interval. If possible, let there be no point in
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the interval where f(z)=M. Then M-—f(a#) > 0 for all

points in the interval. Now, since f(a) is continuous, ”

M-f (x) is also continuous, and so 1/){M—f(az)t} is also

continuous in the interval. Thus 1/{M@—/f(x)} is bounded

in the interval, i.e, 1/{M—f(a)} < k, where k is a fixed

positive number.

M-f(z) > i or, f(c) <M- a

This contradicts the assumption that M is the upper

bound of f (x) in the interval.

Hence f (x) must assume the value M at some point in

the interval.

Similarly it may be proved that f(«) assumes the value

m also in the interval.

Tt now follows from (vi) that f(z) assumes every inter-

mediate value between M and m.

67f _ 6%t

Oxdy dy 6x

If fa, fv, fey; fyx all exrst, and fyx (or fry) is continuous,

then fay =Fyx-

*6. Proof of the equality [ Art. 9°3 ]

Proof: Let ¢ (a)=f (a, y+kh)—-f (ce, y). + (1)

Now applying Mean Value Theorem to ¢ (a), we get

d (ath)— (2) =hdz (x + 6h), Oo<ée< il,

=Alfa(a+ Oh, y + k)— fa (2+ 6h, y)]

=h[ Fy +k)—- Fly)] say
[ where F'(y)=f. (a+ 0h, y) J

=h[kF, (y+eh], O<0’ <1,

by Mean Value Theorem

= hk Ufye (a+ Oh, y + 6’R)]. (9)
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Again from (1), 6 («@t+h)=f(eth, y+h—-f (ath, y).

'. b(@+h)-d(@)=f(ath, yth—flath, y)

—f(a,yt+kh)+f(e,y) - (8)

aT, Syt+h—-fle,y)Fy (a, y) Li, iNow,

and fay (a, y) = Lt fula +h, v “Sule, 0)

= Dt Li [Ze + ytk)—-fleth, y-fl@, yt+k) +f (a, a .
h->0 k>0 hk

~ Lt Lt tet he o@) L from (8) ]
= Di Lt Fux (w+ 6h, y + 6’k) | from (2) ]

=fyx (x, y), since fyz 18 continuous .

Illus.: If fla, y)=ay TM ao

=0, when x=0, y=0,

show that at (0, 0), be hy fi bbs » 4.0.5 fay (0, 0) +? fyx (6, 0).

When 2 #0, y #0

2

ye when x 70, or y x0,

Sa (a, yy=Y fat tera") ae ew an}

2. 2 4 9,,2

pte oO
we a Ap21?

Similarly, fy (x, y)=2 (regan (ere ynya} eee (2)

fe (0, 0) = Lt | f(r, 0) i (0, 0) <0, Similarly, f, (0, 0) =0

From (1) and (2), we see that

fz (9, y) = —~y (y £0), f, (x, 0) = x(x x 0).
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i az Lt Sy (h, 0) — fy (0, 0) tf h =Again, fey (0, 0) Dt. , Lit) 51

ex Dy Js (0, k) —Sx (0, 0) — the _
Si 4 (0, 0) ke at 0 k Lit 1.

ko0 k

fay (0, 0) + fyz (0, 0).

ok chord PQ _ .7. On the proof of it, “are PQ. 1. [ Art. 10°8]

Let PP,, PiPo,.-., Pn-1Q be the sides of an open

polygon inscribed in arc PQ of the curve y=f (x). If the

sum of the » sides SPP, tends to a definite limit when

m —> © and the length of each side tends to zero, that lemit

as defined as the length of the arc PQ.

P2 P

?% 2

Pr a

_F \

Let 0,, 65, ... 9, be the angles which the sides make

with the chord PQ, and let f’ (x) be contenuous throughout

PQ.

Projecting the sides on PQ, we have

PQ=pro}. PP,+ proj P1P,+-::+ proj. Pn-1Q

= PP, cos 0, + P,P, cos @, +-:*'+ Pn_1Q cos On.

it follows that PQ < PP,+P,P,.+:::+Pn-i@Q

and > (PP, + P3P,+-:'+ Pn-1Q) cos 6

where 6 is numerically the greatest of the angles 0,, 0a,...0n.

_ Pe
PP, +P,P,++Pn1Q~ 1.

Since the chords PP,1, P,Pg, ... Pn-1Q a8 well as PQ

are parallel to tangent to the arcs at points between their

Hence cos 0 <
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respective extremities (by the Mean Value Theorem), it

follows from the continuity of f’(z), that the numerical

value of 6 can be made as small as we please by taking

@ sufficiently near to P, and in the limiting position,

cos 6 > 1 and SPP, — are PQ,

.« 8. A Theorem on curvature.

If a circle be drawn touching a curve at P and cutting

at at another point P,, then as Py — P, the circle tends to

the circle of curvature. ( Art. 113) _

Let C be the centre of curvature at P, and let y=f (a)

be the equation of the curve, where /’ (x) and jf” (a) exist.

Let O (€, 7) be the centre of a circle touching the curve

at P and cutting it again at P,, and let r be its radius ; also

let Q (2, y) be any point on the arc PP, of the curve.

0Q? =(€-2)? +(n-y)? =F (a).

Since OP? =OP,2=r?, it follows that / (2) has the

same value both at P and P,. Hence by Rolle’s Theorem,

there exists a point Q, (@,, 41) between P and Py, such

that F” (v7,)=0, 26, (-2,)+(n-y;) (2%) =( which is

evidently the condition that OQ, is normal to the curve
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at Q:. Now let P,; > P, then @Q,; also > P and hence

by Art. 11°7, O, the point of intersection of the normals

at @, and P, tends to C, the centre of curvature and thus

ry also tends to CP i.¢., p.

Thus, the circle tends to the circle of curvature.

9. Contact.

1. DEF. Two curves y=¢ (a2), y=y (zx) are said 'to have

a contact of nth order at x=a, if

¢ (a) = (a), 6’ (a)=y" (a), 4” (a), =" (a), -, $" (@) = 9" (a)
and $"*2 (a) * p"t+ (a),

Illus :

Find the parabola y=a+bx+cxz" so that tf shall have a contact of

the second order urth the curve y=x* at the point (1, 1).

For the curve y= 2*, values of y, 71, Y¥_ at (1, 1) are 1, 4, 12.

For the ,parabola, y=a+be+cx?, values of 7, 41, Yq at (1, 1) are

at+b+c, 6+2c and 2c. Hence for a second order contact at+b+c=1,

b+2c=4, Ice 12. .*. a=3, b= —8, c=6. .*. the reqd. parabola is

y= 3—82+6n7,

Obviously values of y, for the two curves at {1, 1) are not the

same.

2. The circle having a second order contact with a given

curve:aé a given point is called the osculating circle.

To find the equation of the osculating circle of the curve

y =f (x) at (2, y). “1 “+ (1)

Let the equation of the osculating circle be

(X—a)*+(Y-p)? =r’. “s+ (2)

Since (2) has a second order contact with (1) at (2, y),

the values of y, 71, ¥2 must be the same for the two curves

when X=@.
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Differentiating (2) twice and putting X=a2, Y=y, we

obtain (w@-a)? +(y—p)?=r?, @—a)tly— By. =0, 1+."

"+(y—B)¥a =0, where ¥, ¥1, Ys are equal to f(z), f’ (x), F"(@).
These equations give

a

gag Ml tMs), poy gt, p-GaN,
y Yo Ys

Thus the centre and radius of the osculating circle of

@ curve at a point being the same as those of the circle of

curvature at the point, the two circles are the same.

SECTION E

PARTIAL FRACTIONS

We shall not here enter into a detailed discussion of

the theory of partial fractions for which the student is

referred to treatieS on Higher Algebra, but we shall briefly

indicate the different methods adopted in breaking up an

algebraical fraction into partial fractions according to the

nature of the factors of the denominator of the fraction.

Let 7 (x)
b (a) be a rational algebraic fraction [ 2.¢., f(a) and

(a) are polynomials] in which the nwmerator is of lower

degree than the denominator. We know from the Theory
of Equations that d(x) can always be broken up into real

factors which may be linear or quadratic and some of

which may be repeated.

Case I. When the denominator contains factors, real,

linear, but none repeated.

T> each non-repeated linear factor of the denominator

such as @—a, there corresponds a partial fraction of the
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form in g' Where A is constant. The given fraction can

be expressed as a sum of fractions of this type and the
unknown constants A’s can be determined easily as shown

by the following example.

Ex. 1. Resolve into partial fractvons

_

(x—1)(~—2)(2—8)

B CcHo A

Let (a ~1)(2—~ 2) -3) “2-17 2-2 te-3

Multiplying both sides by (#—1)(~—2)(x— 38), we get

x= A (x —2)\(x~-8)+ B(x—1)(e~—8)+Cle—1)'a—2). --- (1)

Furst Method :

Since (1) is an identity, the coefficients of the different powers

of z on both sides must be equal.

Equating coefficients of x7, « and constant terms on both sides,

we get

A+B+C=0; —(64+4B+38C)=1; 64+3B+20=0

whence we can determine the values of 4, B, C.

Otherwese :

-Since (1) is an identity, it must be true for all values of «. Hence

putting «1, 2, 3 respectively on both sides, we get

1=9A, 2=—B, 3=20C,

.. A=s, B= —-2, C=.

.". the given expression

1 1 1,38 1

= o'g—1 7 eat 2’ 2—3"

CASE II. When the denominator contains factors, real,

linear, but some repeated.
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To each p-fold linear factor such as (x-—a)” there will

correspond the sum of » partial fractions of the form

Ay- AAp PT e cenase 1

(e—a)?* (@-a)?-* * (a)
where the constants Ay, Ap-1,...--.4, can be evaluated as

follows.

Ex. 2. Resolve wento partial fractions
7

(2+ 1)?(a+ 2)"

ch hUtC«CA + B + Cc.

(e+1)?(a+2) (a+1)2 (w+1) (2+2)

Multiplying both sides by (x+1)?(a+ 2), we get

et=A (~+2)+ B (x+1)(2+2)+C (x+1)?.

Putting r= —1,—2, successively we got A=1, C=4, and equating

coefficients of x? on both sides, we get B+C=1,, °. B= —3.
%

1 838 , 4,

(a+1)? 2+1° 2+2

Let

.. the given expression =

Note. The partial fraction in the above case can also be obtained

in the following way.

Denote the first powor of the repeated factor +.¢e., c+1 by 2; then

1 e- 1)?.

27 zg+i

minator of the 2nd fraction after writing them in ascending powers

of z, till the highest power of the repeated factor viz., 2? appears in the

remainder. Thus the fraction

1 43? 1 3 4

2” (1 Betty) =e 2 tite"
Now replace 2 by x+1 and the required partial fractions are

obtained.

the fraction= Now divide the numerator by the deno-

CASE III. When the denominator contains factors, real,

quadratic, but none repeated.

To each non-repeated quadratic factor such as

2*+nr+q (or 2*+q), q ¥ 0, there corresponds a partial

28
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#

Agz+B-

g? + pxet+g

tants 4 and B can be determined as follows.

fraction of the form ’ where the unknown cons-

Ex. 8. Resolve wvto partsal fractions

A 4 Ber,

(o— iyet+4)TM a—-1it oi +4
os w= A(x? +4)+(Bat+C)(2—1).

Putting «=1, on both sides, we get A=}.

—ee x -_ wot @
(cc — 1) (a? + 4)

Let

Hquating coefficients of x? and x on both sides, we get

A+B=0and C—B=1; hence B= —}, C=t.

. 1 1 1 _@ 4. 1 .
-’., the given fraction = 5 e-l 5 tart 6 at+4

Ex. 4. Resolve wnto partial fractions 1.
e*+1

1 1 _ A , Br+C

Let a? +17 (+M(e*—2+1) atl 22-241

os L= A(x? —2+1)+(Brt C)(x+1).

Putting a= —1, we got A=.

Equating coefficients of 2? and the constant terms, we have

A+B=Oand 4+C=$1. “. B=—t, C=4.

. ; 1 _ 1, 1 _ 1. r—-2 .

°° ee+1l Saxtl 38 2?—z+1

CaSEIV. When the denominator contains factors, real,

quadratic, but some repeated.

To each quadratic factor («* + px+q)", repeated r-times,
there will correspond the sum of r partial fractions of the

form °

Dyer M, + Ly-12 + Mr-1 eseecee of Lyet My,

(a®+pe+Q)" | (a2? +px+q)"* a? +pntg

where we may proceed to obtain the coefficients Lr, M

Dy-1, eto. as in the previous examples.
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Actual error, 110 mean value theorem, 147

Aggregate, 9 root test, 404

Alternating series, 402 second theorem on limita, 896

Angle between two curves Cauchy's form of remainder, 148

cartesian, 241 in binomial expn., 146

Polar, 257 in logarithmic expn., 146
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Approximate Oalculation, 110 Chainette, 369
Approximate value, 110 Characteristic points, 883

Archimedes’ Spiral, 876 Chord of curvature, 269

Argument, 11 through the origin (pole), 278

Arithmetical continuum, 6 Circle of curvature, 269, 290
Associated Loci, 843 Oissoid of Diocles, 374

Astroid, 370 Closed interval, 9

Asymptote, 300, 416 Comparison test, 408

not parallel to y-axis, 300, 303 Complex numbers, 6
of alg. curves 302, 306, 307 Compound indeterminate forms, 208

Concavity and convexity, $55

analytical test, 356

criterion, 358

Constant, 10

of polar curves, 310

parallel to y-axis, 805

special case, 304, 309

Average curvature, 268
Contact, 430

Continuity, 46, 210

Bernoulli’s inequality, 389, 397 Continuity of

Bounded fn., 18 elementary fn., 52

Bounded sequence, 381 exponential fn., 54

Bounds, 18 inverse circular fn., 53

Logarithmic fn., 54

Oardicide, 376 On one side

_ Catenary, 369 polynomial, 52

Cauchy's condition for the exis- rational alg. fn., 58

tence of limit, 36, 421 trigonometric in., 53



436 DIFFERENTIAL CALCULUS

Continuity on one side, 48

Continuous fn.,

properties, 49, 423

Continuous variable, 9

Continuum

arithmetic, 6

linear, 6

Convergence, 163

of geometric series, 407

Convergent sequence, 382

theorems, 384

Converse of Kuler’s theorem, 226

Oritical value, 177

Ourvature, 268

a theorem, 429

at the origin, 275

Oycloid, 866

D’ Alembert’s ratio test, 403

Darboux’s theorem, 146

Dedekind’s theorem, 5

De’ Moivre’s theorem, 122

Dependent variable, 11

Derivative, 59

infinite, 60

left hand, 60

partial 210

sign, 104, 106

Derivatives of arc length

cartesian, 243

polar, 256

Determination of the coeff. of f(x)

and f(x+h), 161

Different classes of

discontinuity, 48

infinite, 49

Different classes of

ordinary, 48

oscillatory, 49

removable, 48

simple, 48

Different def. of asymptote, 300, 316

Differentials, 109, 222

exact, 223

Differential coeff., 59, 109

of some standard cases, 61

Differentiate, 59

partially, 211.

Differentiation, 59

from first principle, 70, 71, 72

of implicit fn., 219

Discontinuity, 47

Divergent sequence, 883

Division by zero, 12

Domain, 9

Envelope, 323

of curves, 331

of normals, 326

of tangent, 325

of two parameter family, 3834

system of-parabolas, 336

2 2

Equality of ashy ae 1912, 426

Equation of

normal, 240

tangent, 235

Equiangular spiral, 375

Euler’s theorem on

homogeneous fn., 218, 225

converse, 226

Byaluation of certain limits, 193

indeterminate forms, 193-198

using power series, 198
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Evolutes, 293, 326

of ellipse, 871

of parabola, 371

properties, 293

Exact differential, 223

Expansion of fn., 137

in infinite power series, 157

Expansion in powers of x

binomial fn., 160

cosine fn., 158

exponential fn., 159

logarithmic fn., 159

sine fn., 158

Exponential curve, 373

Extremal, 177

Extremum, 177

Farmat’s principle, 184

First principle, 71

Folium of Descartes, 378

Four cusped hypocycloid, 371, 873

Functions, 8, 11, 13

bounded, 18

graphical representation, 13

hyperbolic, 82

monotone, 19

multiple valued, 11

of a function, 79

single valued, 11

several variables, 209

Fundamental theorems

on differentiation, 66

on limit, 30

Gauss’s Test, 404

Generalised mean value theorem,

140
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Geometrical interpretation

of the derivatives, 107, 237

of s=f(x, y), 210

Gradient, 108, 238

Graphical representation of fn., 13

Homogeneous fn., 218

Hyperbolic in , 82

Increment, 58

Independent variable, 11

Indeterminate forms, 193

Infinite

derivative, 60

discontinuity, 49

limit, 29

sequence, 381 ,

Integer, 1

Interval of fn , 9

closed, 9

length, 10

open, 9

Interval of convergence, 163, 408

radius, 408

determination, 409 °

of binomial fn., 412

of cosine fn., 410

of exponential fn , 410

of hyperbolic fn., 413

of inverse fn., 411

of logarithmic fn., 411

of sine fn., 410

Inverse circular fn., 80

Inverse curve, 347

from Cartesian, eqn., 347
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Inverse curve

from pedal eqn., 349

from polar eqn., 348

properties, 848

Inverse of the pedal, 350

of a parabola, 352

of a straight line, 352

Involute, 298

Important

inequality, 389

limits, 32, 39, 41

theorems on limit, 422

Irrational numbers, 2

Lagrange’s form of

remainder, 142

Law of refraction, 184

Left-hand

dorivative, 60

limit, 29

Leibnitz’s theorem, 129

Lemniscate

of Bernoulli, 378

Length of an arc

of an evolute, 294

L’ Hospital’s theorem, 147

Limacon, 877

Limit, 28

of a function, 23, 29, 30

of product of two fn., 31, 418

of quotient of two fn , 31, 419

of sum of or difference of two

fn , 31, 417

Limit of a function of a function,

$1, 419

Limit of nooo

Linear continuum, 6

as Q—> P, 428

Logarithmic curve, 873

Logarithmic spiral, 875

Lower bound of a sequence, 382

Maclaurin’s Series

finite forms, 143

infinite forms, 158, 163

Maxima and minima, 172, 176

necessary and sufficient condi-

tion, 173

determination, 174

working rule, 175

Mean valuo theorem, 183, 142

geometrical interpretation, 189

aay 264

Methods of expansion, 161, 163

Monge’s notation, 212

Monotonic funcvion, 19

Monotonic sequence, 381

Monotonically

decreasing and increasing, 19

Multiple valued fn., 209

Meaning of

Necessary and sufficient

condition for the

convergence of @ seq., 388, 402

existence of a limit, 421

Newton’s formula,

for curvature, 275

mth derivative of

some special function, 120

Null sequence, 384

Numbers, 1

On some well-known

curves, 866

Open interval, 9

Operator, 130



Ordinary discontinuity, 48

Oscillatory discontinuity, 49

Osculating circle, 480

Parameter, 323

Partial

derivative, 210, 224

differentiation, 209

fraction, 122, 431

Pedal curves, 348

from Cartesian Eqn , 343

from pedal Eqn., 346

from polar Eqn., 344

properties, 345

Pedal Eqn., 260

from Oartesian, 260

from polar, 260

of ellipse, 263

of parabola, 262

of rose petal, 263 *

Percentage error, 110

Perfect differential, 223

of two fn., 224

generalisation, 224

Perpendicular from pole

on tangent, 259

Point of inflexion, 356

analytical condition, 359

general criterion, 360

Polar reciprocal, 349

of parabala, 352

of polar reciprocal, 350

of p=f(r), 352

Positive integers, 1

Power series, 407

properties, 413

Pringsheim’s theorem, 402

Probability curve, 374

INDEX 489

Properties of contns. fn., 49, 423

Raabe’s Test, 408

Radius of curvature, 269

from Cartesian Eqn., 270

from implicit Eqn., 272

from parametric Eqn., 271

from pedal Eqn., 273

from polar Eqn., 272

from tangential polar Eqn., 274

Radius of curvature of evolute, 298

Rate measurer, 104

Rate of change, 8

Rational

number, 1

point, 1

section, 8, 4

Real number, 5, 8

properties, 6

Relative error, 110

Remainder

Lagrange’s form, 142

Cauchy’s form, 148

Remarks on fn., 18

Removable discontinuity, 48

Right-hand

derivative, 60 °

limit, 25

Rolle’s theorem, 137

Rose lemniscate, 879

Rose petals, 379

Section, 3, 4

of rational number, 3, 4

Semi-cubical parabola, 872

Sequence, 381

convergent, 382
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Sequence

divergent, 388, 384

null, 384

oscillatory, 383

Set, 9

Sign of the derivatives, 104, 106

Significance of derivatives, 104

Sine Spiral, 380

Single-valued fn., 11, 209, 213

Slope, 108

Small error calculation, 110

Some wellknown curves, 366

Strophoid, 375

Subtangent, Subnormal

cartesian, 242

polar, 258

Successive differentiation, 119, 211

Sum of an infinite sories, 402

Symbol of infinity, 28

Symbolic opetation, 130

important results, 130

Taylor's series

finite form, 140

infinite form, 157
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Tangent and normal, 235

Tangent at the origin, 238

Term by Term

differentiation, 415

integration, 415

Test for convergence, 402

Test for absolute

convergence, 404

Theorems on

sequence, 384

curvature, 429

differentiations, 66

Total differential, 221

Total differential coeff., 220

Tractrix, 370

Transcendental number, 3

Turning value, 177

Variable

dependent, 11

independent, 11

Witch of Agnesi, 375

Working rule for finding

asymptote of alg. curve, 306

max. & min., 176, 177



UNIVERSITY QUESTIONS

1967 (Pass—C. UD.)
1. (a) Explain what is meant by the linear continuum.

(b) Define the differential coeficrent of a function f(e) at =a.

Prove that if f(x) has a finite and definite differential cocfficient at

w=a, f(z) must be continuous at x=a.

(c) Explain what is meant by the continuity of f(a, y) ata
point (a, d).

2. (a) Find from first principles the differential coefficient of sin z.
(b) Prove any two of the following :

dy sin? (a+y) se os gm ai
(2) ion ana if sin y= sin (a+¥4)/).

(0) Wad, if y=sin-(83X—4X*), 2=se07* ~~ axe

(221) ogee y st =0, if w=sin7} 7 + tanTM* 7 .

(iv) OP u Oru
Ondy dydax

3. (2) State (without proof) Lagrange’s mean value theorem and
in the case when the function is representable graphically, give the

geometrical interpretation of the theorem.

(b) State (without proof) Leibnitz’s theorem.

If yet 10** © show that

9if w= a,

dTMtiy rts, d"y _

(1—a?) dxTMt2 (Qn+ 1)x dat! _ (n? +a?) dn® = O°

4. (a) Show that the angle of intersection of the curves
g?—y?=aq?

x? +y? = a? J2

is 7/4,

(t) Prove that the radius of curvature at the point ¢ on the
curve r=a cost, y=b sin é is

(a? sin? +67 cos? t)*
ab

5. (a) Find the asymptotes of the curve

y? —e2y — Qary? + Qn? — Try + By? + a2 4+ Qat+ Qy+1=0.

(b) A tank, open at the top, has a given volume V, a square base
aud vertical sides. If the inner surface is the least possible, show that

the ratio of the depth to the width is 1: 2.

1968 (Pass—C. U.)

1. (a) Define the symbol

lim f(z)=b (a finite and definite number),
xa
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and apply your definition to show that

(0) Define the continuity of a function f(z) at «=a.

=: 22" lim _!
If f(z) wv t¢>0 sin aint

show that f(x) is continuous at 7=0,

2. (a) Find from first principles the differential coefficient of cot x.

(b) Prove any two of the following :
_ 7 a 2

(0) Me armas, it ya tae 2 gins 2,
dY_, , 4, On =sin-! -27..(01) dX 1, if Y=tan yg" X=sin ” T4+93

2

(i22) a ote — mry, if y=sin (m sin7}2).

. 24 07%(iv) eet aay’ if u=2 log ¥.

8. (a) State Rolle’s Theorem.

Deduce the mean value theorem of Lagrange.

(b) Find Lagrange’s form of the remainder aster n terms in the
expansion of log. (1+) in Taylor’s series (0 < « < 1) and show that

this remainder tends to zero as » tends to infinity.

4. (a) Find expressions for the intercepts which the tangent to the

curve y=/(x) at the point (x, y) cuts off from the axis of ¢ and from the

axis of y.

If for the curve c=a cos*é, y=b sin*6, 2, and y, be the parts of

the axes of x and y intercepted by the tangent at any point (x, y) on the
curve, show that

(t) Prove that the envelope of the system of circles (x7 —a)? + y?
mdois y?—42—4=0,

5. (a) Prove that in the curve

c=a cos*é, y=a sin*é

the radius of curvature is 3a sin @ cos 0.

(6) Find the values of « for which z(1—2?) has a maximum or
@ minimum.

1969 (Pass—C. U.)

1. (a) If fiz) = tim (3 tan7? py find f(z) in the interval (—1, 1).

Examine the continuity and differentiability of f(x) at 2 =0.
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(b) Find the geometrical interpretation of oy .

¢ c

In the curve y=c +

if y be the angle which the tangent at any point of the curve makes

with the axis of x, show that y=c sec yj.

2. (a) Find from first principles the differential coefficient of cosec 2.

(b) Prove any two of the following :

dy 1, ap yetan-? ~—2— » w=sec-? -—-—
(3) a gq’ uf yatan Fis? see“? 5

3

(27) (1-2?) gt — 24% + my =D, if y=sin (m sin~" 2).

(202) oi es —tan t, if s=a cos*t, y=a sin*é.

‘O7y ans Oty ; _ ;(1) Syn 5ady if uw=o sin yt+y sin fe

8. (a) State (without proof) the mean value theorem of Lagrange.

If f(b) —f(a) =(b—a)f'(e), a < « < b and

f(a) = a(x — Ile —2), a=0, b=4, show that

e=]— / 2. . e
12

(b) State (wathout proof) Leibuitz’s theorem.

Differentiate 1 times the equation
2

(1-2) oo —2 at + a?y= 0.

4. (a) If p=x cos a+y sin a touch the curve
aTM y”

aTM? pTM =1,

TM

prove that pTM-*=(a cos a) 14-(p sin ay@—},
(b) Show that the asymptotes of the curve

y* —bxy? + 8a? y — 42° — By? + Ory — 6x" + Qy—Az=1

are y=r, y=Qet1, y=2a+2.

5. (a) Prove that the radius of curvature of the cycloid

e=a(@+sin 6), y=a(1—cos 4)

: 0
is p=4a cos 2°

. = xz ~o oy

is finite, find it and determine the values of a,, Am as.
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1967 (Pass—Burdwan University)

1. (a) Explain the meanings of the symbols

Lt J(z)=1 (where 7 is a definite number) and f(c),
r-Pe

and point out the difference between them.

Lt i= i 1 aEvaluate at ¢(z), where o(x)=sin z cos x

Is ¢(z) continuous at x=0? Give reasons for your answer.

(b) Find any one of the following limits:

Lt 8/1 8 It 1-—tan x

() a=boo (/(e+1) A/a) (>) art 1—cot xz

(c) Find au, where y= 7810 z,

2. (a) State and prove Leibnite’ theorem on successive differentiation

of the product of two functions.

a os
(b) Ify on* a Send find y,(O), the symbol having its usual

e

meaning.

8. State and prove Lagrange’s First Mean Value theorem of Diffe-

rential Oalculus.

Tf f(z)eOinl<a< 8 and if f(2)=2, prove that f(x)=2 through-

out l< cc 8.

4. (a) State and prove Euler’s theorem on homogeneous functions.

x

‘ (b) Show that the maximum value of (=) is e¢.

5. (a) Prove that the pedal equation of the curve whose polar equa-

tion is r? =a" cos 26 is r*>=a"p.

(b) If p, and pe, be the radii of curvature at the extremities of

any chord of the cardioide r=a (1+cos 6) which passes through the

pole, then show that

Pi * + py? = 45a”.

(c) Find the asymptotes of the curve
3(x? +7? — 221) — 27? —3y? cs 0,

parallel to the line r= y.
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1968 (Pass—B. U.)

1. (a) Explain what is meant by the symbol

y=f(z), a eb.
Define the continuity and differentiability of f(x) at an interior

point in its interval of definition.

(b) If the derivative of a function f(x) exists at a point, prove

that it is continuous at that point.

(c) Find au where y=logsin x (cot 2).

2. (a) If y=sin (m sin-'z), show that

(1—2")y. —zy, +m? y=0
and deduce that

(L—2x?)ynta — (20+ Laas, +(m? —n7)y, 9.

(6) Establish Maclaurin’s series for a function f(z). Apply it to

find the series expansion for sin x.

8. (a) State and explain Rolle’s Theorem.

(b) Verify Rolle’s Theorem for the function

x(a —1) (2 —2) in (1, 2].

(c) Show that a ~sin x18 steadily increasing in O< a << 3 .

4, (a) Evaluate any one of the following :

(i) Lt (cos x) col? ; (2) Lt (1—sin 2) tan 2.
a->0 T

>

(b) Ifu= = + + 25 show that
ys &

bat Y ay? 597° |
(c) Prove that 25 —5z*+52°—1 has a maximum for z=1 and

a menvmum for «=3.

5. (2) Show that the curves

r=a (1+cos @) and r=d (1—cos @)

cut orthogonally.

(0) Show that the chord of curvature parallel to the axis of y for

the curve y=a log sec (2) is constant,

(c) Find the asymptotes of the curve
oy? =a? (22+ 47),



446 DIFFERENTIAL, CALCULUS

1969 (Pase—B. U.)

1, (a) Explain the meaning of the symbols

Lt f(xz)=l, and Lt f(zj=m
t>a+ >a -

where 1 and m are two finite numbers, What happens if }=m ?

(6) Evaluate Li (x) ’
x0

where ¢(z)=sin 2 cos : - Is g(x) continuous at 7=0, if o(0)=1 ?

(c) Given y= ,/z, find ay, ab Initio.
dx

2. (a) State Leibnitz theorem on successive differentiation. Given

y=e° cos (bz+c), a, b, c being constants, find yp.

(b) State and prove the First Mean Value Theorem of Lagrange.

8. (a) State and prove Euler’s theorem regarding homogeneous func-

tions of two variables.

(b) If u is a homogeneous function of » and y of degree n, show

that

2 2 2

3? ot +any mate’ seamen —1)u.

(c) Find the extrema of sin?z,0 < x < 7.

4. Prove Taylor’s theorem for the expansion of a function with

Lagrange’s remainder after n terma.

Find Lagrange’s remainder for the function e* in [0, x] and show

that it tends to zero as — oo.

5. (a) Find the radius of curvature at the point 6= 4 on the curve

4¢=6+sin 0, 4y=1—cos 6.

(b) Find the asymptotes of the curve

23(e? + y? — Qcy) — 22? —2y? =0

which are parallel to the line x= y.
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1968 (Pass—Gauhati University)

, 4: (a) Explain what is meant by the statement ‘f(w) tends to J as

a tends toa’.

(b) Evaluate (any two) :—

—eoe welim S22, iy Jim 22° 22? + 8n—3.Qo (i) eo Ba*— Bae—2

(iii) Him Oe
x

(c) If lim f(x)=1 and lim &x)=m,
ta z>a

how that lim f(z) + A(x)} =2+ m.
a>e

2. (a) A function is defined as follows :

pia) =f x when x> 0

—z when 2g < 0,

Sketch the curve.

Examine whether the function is continuous and differentiable at

zs=Q andat 2=2,

(6) Find dy + where

(i) y=tan7? Vitara}, (ii) a=a (é+sin é), ya (1—cos é).

8. (a) If y=e** cos bx, prove that 7, —2ay, +(a*+ b")y=0.

(b) State and prove Leibnitz's theorem for the nth derivative of

& product of two functions.

(c) Find the nth derivative of e7 log a.

4. (a) State Maclaurin’s theorem, giving a form of the remainder

after n terms.

Expand e” in ascending powers of x, giving the remainder after

n terms.

(2) I a Bu, OPw ang Ouwn jatey 994 oe’ tat 4 aaa
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5. (a) Show that of all rectangles of given area, the square has the

smallest perimeter.

(b) Show that the portion of the tangent to the curve
e218 218 ox 4

intercepted between the axes, is of constant length.

(c) Write down the expression for the radius of curvature at a

point of a curve whose equation is given by

(2) y=/(z). (xi) r=f(8).

1965 (Pass—North Bengal University)

1. (a) Define a rational number and give an illustration of an

irrational number.

Explain what are meant by limit and continuity of a function

f(x) at c=a.

Show that f(2)=2? is continuous at r= 1.

Ja

(b) Evaluate Jim 1 (me 2)",

2. (a) State Rolle’s theorem and apply it tc prove Cauchy’s Mean

Value Theorem of the Differential Oalculus.

(t) If the derivative of f(x) vanishes at every point of an

interval, show that f(x) is a constant function of ¢ in that interval.

8 (a) If y=2 sin @ cos 2, find ou.

(s) Find two positive numbers such that their sum is 10 and

their product is maximum.

4. (a) Expand log, (1+z) in a Taylor’s series, when |x| < 1.

(b) Find the formula for radius of curvature of # plane curve in

rectangular coordinates.

5. (a2) Prove Euler’s theorem that, if U be a rational homogeneous

function of degree n in 2 and y, then

a 00 380
c. +y 9 =nU.

(6) If U=sin-* Te * a =» prove that

2 30aval +u5e Uh ten U.

wr


