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PREFACE

This book is a development of two lectures delivered at the Harvard
Tercentenary Conference of Arts and Sciences in the fall of 1936. The first
of these was published in Vol. 44 of the American Mathematical Monthly,
and is reprinted here, as Lecture I, without change. The second has
expanded gradually until it fills the rest of the book.

I have given many lectures on Ramanujan’s work since 1936, isolated
lectures to a number of universities and societies in America and England,
and connected courses in Princeton and Cambridge. Lectures II-XII
contain most of the substance of these courses, with the rearrangements
and additions required to fit them for publication. In this sense they are
genuine lectures, and they are written throughout in a lecturer’s style.

The contents of the book are described quite accurately by its title. It
is not a systematic account of Ramanujan’s work (though most of his more
important discoveries are mentioned somewhere), but a series of essays
suggested by it. In each essay I have taken some part of his work as my
text, and have said what occurred to me about its relations to that of
earlier and later writers. But even when I digress furthest, when I am
writing, for example, about Rademacher’s work in Lecture VIII, or about
Rankin’s in Lecture X1, ‘ Ramanujan’ is the thread which holds the whole
together.

Dr R. A. Rankin has read the whole of the book both in manuscript and
in proof, and has made a very large number of important suggestions and
corrections. 1 have also to thank Dr W. N. Bailey, who helped me to
revise Lecture VII; Mr F. M. Goodspeed, who read and criticised several
lectures, and in particular Lecture XI; and Prof. G. N. Watson, without
whose aid I could hardly have written Lecture XII. The photograph of
Ramanujan was given me by Dr S. Chandrasekhar, formerly Fellow of
Trinity College: I regrot that I cannot state the name of the actual
photographer. A considerable part of the bibliography was compiled for
me by Dr V. Levin, But my first thanks are due to Harvard University,
to whose invitation the book owes its existence.

G. H. H.
July 1940
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THE INDIAN MATHEMATICIAN RAMANUJAN

I have set myself a task in these lectures which is genuinely difficult and
whieh, if X were determined to begin by making every excuse for failure,
1 might represent as almost impossible. I have to form myself, as I have
never really formed before, and to try to help you to form, some sort of
reasoned estimate of the most romantic figure in the recent history of mathe-
matics; a man whose career seems full of paradoxes and contradictions, who
defies almost all the canons by which we are accustomed to judge one
another, and about whom all of us will probably agree in one judgment only,
that he was in some sense a very great mathematician.

The difficulties in judging Ramanujan are obvious and formidable
enough. Ramanujan was an Indian, and I suppose that it is always a little
difficult for an ¥Englishman and an Indian to understand one another
properly. He was, at the best, a half-educated Indian; he never had the
advantages, such as they are, of an orthodox Indian training; he never was
able to pass the “First Arts Examination’ of an Indian university, and
never could rise even to be a ““ Failed B.A.”> He worked, for most of his life,
in practically complete ignorance of modern European mathematics, and
died when he was a little over thirty and when his mathematical education
had in some ways hardly begun. He published abundantly—his published
papers make a volume of nearly 400 pages—but he also left a mass of un-
published work which had never been analysed properly until the last few
years. This work includes a great deal that is new, but much more that is
rediscovery, and often imperfect rediscovery; and it is sometimes still
impossible to distinguish between what he must have rediscovered and what
he may somehow have learnt. I cannot imagine anybody saying with any
confidence, even now, just how great a mathematician he was and still less
how great a mathematician he might have been.

These are genuine difficulties, but I think that we shall find some of them
less formidable than they look, and the difficulty which is the greatest for
me has nothing to do with the obvious paradoxes of Ramanujan’s career.
The real difficulty for me is that Ramanujan was, in a way, my discovery.
1 did not invent bim--like other great men, he invented himself-~but I was
the first really corpetent person who had the chance to see some of his work,
and I can still remember with satisfaction that I could recognise at once
what a treasure I had found. And I suppose that I still know more of
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2 The Indian mathematician

Ramanujan than any one else, and am still the first authority on this
particular subject. There are other people in England, Professor Watson in
particular, and Professor Mordell, who know parts of his work very much
better than I do, but neither Watson nor Mordell knew Ramanujan himself
ag I did, I saw him and talked with him almost every day for several years,
and above all I actually collaborated with him. I owe more to him than to
anyone else in the world with one exception, and my association with him
is the one romantic incident in my life. The difficulty for me then is not that
I do not know enough about him, but that I know and feel too much and
that [ simply cannot be impartial.

I rely, for the facts of Ramanujan’s life, on Seshu Aiyar and Rama-
chaundra Rao, whose memoir of Ramanujan is printed, along with my own,
in his Collected Papers. He was born in 1887 in a Brahmin family at Erode
near Kumbakonam, a fair-sized town in the Tanjore district of the Presi-
dency of Madras. His father was a clerk in a cloth-merchant’s office in
Kumbakonam, and all his relatives, thongh of high caste, were very poor.

He was sent at seven to the High School of Kumbakonam, and remained
there nine years. His exceptional abilities had begun to show themselves
before he was ten, and by the time that he was twelve or thirteen he was
recognised as a quite abnormal boy. His biographers tell some curious
stories of his early years. They say, for example, that soon after he had begun
the study of trigonometry, he discovered for himself “ Euler’s theorems for
the sine and cosine’ (by which I understand the relations between the
circular and exponential functions), and was very disappointed when he
found later, apparently from the second volume of Loney’s T'rigonometry,
that they were known already. Until he was sixteen he had never seen a
mathematical book of any higher class. Whittaker’s Modern analysis had
not yet spread so far, and Bromwich’s Infinite series did not exist. There
can be no doubt that either of these books would have made a tremendous
difference to him if they could have come hiz way. It was a book of a very
different kind, Carr’s Symopsis, which first aroused Ramanujan’s full
powers.

Carr’s book (A4 synopsis of elementary results in pure and applied mathe-
matics, by George Shoobridge Carr, formerly Scholar of Gonville and Caius
College, Cambridge, published in two volumes in 1880 and 1886) is almost
unprocurable now. There is a copy in the Cambridge University Library,
and there happened to be one in the library of the Government College of
Kumbakonam, which was borrowed for Ramanujan by a friend. The book
is not in any sense a great one, but Ramanujan has made it famous, and
there is no doubt that it influenced him profoundly and that his acquaintance
with it marked the real starting-point of his career. Such a book must have
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had its qualities, and Carr’s, if not a book of any high distinction, is no mere
third-rate textbook, but a book written with some real scholarship and
enthusiasm and with a style and individuality of its own. Carr himself was
a private coach in London, who came to Cambridge as an undergraduate
when he was nearly forty, and/was 12th Senior Optime in the Mathematical
Tripos of 1880 (the same year in which he published the first volume of his
book). He is now completely forgotten, even in his own college, except in
so far as Ramanujun has kept his name alive; but he must have been in
some ways rather a remarkable man.

I suppose that the book is substantially a summary of Carr’s coaching
notes. If you were a pupil of Carr, you worked through the appropriate
sections of the Synopsis. It covers roughly the subjects of Schedule A of the
present Tripos (as these subjects were understood in Cambridge in 1880),
and is effectively the ““synopsis’ it professes to be. It contains the enuncia-
tions of 6165 theorems, systematically and quite scientifically arranged, with
proofs which are often little more than eross-references and are decidedly
the least interesting part of the book. All thisisexaggerated in Ramanujan’s
famous notebooks (which contain practically no proofs at all), and any
student of the notebooks can see that Ramanujan’s ideal of presentation
had been copied from Carr’s.

Carr hag sections on the obvious subjects, algebra, trigonometry, calculus
and analytical geometry, but some sections are developed disproportionally,
and particularly the formal side of the integral calculus. This seems to have
been Carr’s pet suhject, and the treatment of it is very full and in its way
definitely good. There is no theory of functions; and I very much doubt
whether Ramanujan, to the end of his life, ever understood at all clearly
what an analytic function is. What is more surprising, in view of Carr’s own
tastes and Ramanujan’s later work, is that there is nothing about elliptic
functions. However Ramanujan may have acquired his very peculiar
knowledge of this theory, it was not from Carr.

On the whole, considered as an inspiration for a boy of such abnormal
gifts, Carr was not too bad, and Ramanujan responded amazingly.

Through the new world thus opened to him (say his Indian biographers),’
Ramanujan went ranging with delight. It was this book which awakened his
genius. He set himself to establish the formulae given therein. As he was without
the aid of other books, each solution was a piece of research so far as he was
concerned. . . .Ramanujan used to say that the goddess of Namakkal inspired
him with the formulae in dreams. It is a remarkable fact that frequently, on

rising from bed, he would note down results and rapidly verify them, though
he was not always able to supply a rigorous proof. . ..

! Quotations (except those from my own memoir of Ramanujan) are from Seshu
Aiyar and Ramachaundra Rao.

1-2



4 The Indian mathematician

I have quoted the last sentences deliberately, not because I attach any
importance to them—I am no more interested in the goddess of Namakkal
than you are—but because we are now approaching the difficult and tragic
part of Ramanujan’s career, and we must try to understand what we can
of his psychology and of the atmosphere surrounding him in his early years.

I am sure that Ramanujan was no mystic and that religion, except in a
strictly material sense, played no important part in his life. He was an
orthodox high-caste Hindu, and always adhered (indeed with a severity
most unusual in Indians resident in England) to all the observances of his
caste. He had promised his parents to do so, and he kept his promises to
the letter. He was a vegetarian in the strictest sense—this proved a terrible
difficulty later when he fell ill—and all the time he was in Cambridge he
cooked all his food himself, and never cooked it without first changing into
pyjamas,

Now the two memoirs of Ramanujan printed in the Papers (and both
written by men who, in their different ways, knew him very well) contradict
one another flatly about his religion. Seshu Aiyar and Ramachaundra
Rao say

Ramanujan had definite religious views. He had a special veneration for the
Namakkal goddess....He believed in the existence of a Supreme Being and in
the attainment of Godhead by men....He had settled convictions about the
problem of life and after. . . ;

while I say

... his religion was a matter of observance and not of intellectual conviction,
and I remember well his telling me (much to my surprise) that all religions
seemed to him more or less equally true.. ..

Which of us is right? For my part I have no doubt at all; I am quite
certain that I am.

Classical scholars have, I believe, a general principle, difficilior lectio
potior—the more difficult reading is to be preferred—in textual criticism.
If the Archbishop of Canterbury tells one man that he' believes in God,
and another that he does not, then it is probably the second assertion which
ig true, since otherwise it is very difficult to understand why he should have
made it, while there are many excellent reasons for his making the first
whether it be true or false. Similarly, if a strict Brahmin like Ramanujan
told me, as he certainly did, that he had no definite beliefs, then it is 100 to 1
that he meant what he said.

This was no sufficient reason why Ramanujan should outrage the feelings
of his parents or his Indian friends. He was not a reasoned infidel, but an

* The Archbishop.



Ramanujan 5

“agnostic’ in its strict sense, who saw no particular good, and no particular
harm, in Hinduism or in any other religion. Hinduism is, far more, for
example, than Christianity, a religion of observance, in which belief counts
for extremely little in any case, and, if Ramanujan’s friends assumed that
he accepted the conventional doctrines of such a religion, and he did not
disillusion them, he was practising a quite harmless, and probably necessary,
economy of truth.

This question of Ramanujan’s religion is not itself important, but it is
not altogether irrelevant, because there is one thing which I am really
anxious to insist upon as strongly as I can. There is quite enough about
Ramanujan that is difficult to understand, and we have no need to go out
of our way to manufacture mystery. For myself, I liked and admired him
enough to wish to be a rationalist about him; and I want to makeit quite clear
to you that Ramanujan, when he was living in Cambridge in good health
and comfortable surroundings, was, in spite of his oddities, as reasonable,
as sane, and in his way as shrewd & person as anyone here. The last thing
which T want you to do is to throw up your -hands and exclaim “here is
something unintelligible, some mysterious manifestation of the immemorial
wisdom of the East!” I do not believe in the immemorial wisdom of the
East, and the picture which I want to present to you is that of a man who
had his peculiarities like other distinguished men, but a man in whose
society one could take pleasure, with whom one could drink tea and discuss
politics or mathematics; the picture in short, not of a wonder from the East,
or an inspired idiot, or a psychalogical freak, but of a rational human being
who happened to be a great mathematician.

Until he was about seventeen, all went well with Ramanujan.

In December 1903 he passed the Matriculation Examination of the University
of Madras, and in the January of the succeeding year he joined the Junior Firat
in Arts class of the (fovernment College, Kumbakonam, and won the Subrah-
manyam scholarship, which is generally awarded for proficiency in English and
Mathematics. . .,

but after this there came a series of tragic checks.

By this time, he was so absorbed in the study of Mathematios that in all
lecture hours—whether devoted to English, History, or Physiology—he used to
engage himself in some mathematical investigation, unmindful of what was
happening in the class. This excessive devotion to mathematics and his conse-
quent neglect of the other subjects resulted in his failure to secure promotion to
the senior class and in the consequent discontinuance of the scholarship. Partly
owing to disappointment and partly owing to the influence of a friend, he ran
away northward into the Telugu country, but returned to Kumbakonam after
some wandering and rejoined the college. As owing to his absence he failed to
make sufficient attendances to obtain his term certificate in 1905, he entered



6 The Indian mathematician

Pachaiyappa’s College, Madras, in 1906, but falling ill returned to Kumba-
konam. He appeared as a private student for the F.A. examination of December
1907 and failed.. .

Ramanujan does not seem to have had any definite oceupation, except
mathematics, until 1912, In 1909 he married, and it became necessary for
him to have some regular employment, but he had great difficulty in finding
any because of his unfortunate college career. About 1910 he began to find
more influential Indian friends, Ramaswami Aiyar and his two biographers,
but all their efforts to find a tolerable position for him failed, and in 1912
he became a clerk in the office of the Port Trust of Madras, at a salary of
about £30 a year. He was then nearly twenty-five. The years between
eighteen and twenty-five are the critical years in a mathematician’s career,
and the damage had been done. Ramanujan’s genius never had again its
chance of full development.

There is not much to say about the rest of Ramanujan’s life. His first
substantial paper had been published in 1911, and in 1912 his exceptional
powers began to be understood. Tt is significant that, though Indians could
befriend him, it was only the English who could get anything effective done.
Sir Francis Spring and Sir Gilbert Walker obtained a special scholarship
for him, £60 a year, sufficient for & married Indian to live in tolerable
comfort. At the beginning of 1913 he wrote to me, and Professor Neville
and I, after many difficulties, got him to England in 1914. Here he had
three years of uninterrupted activity, the results of which you can read in
the Papers. He fell ill in the summer of 1917, and never really recovered,
though he continued to work, rather spasmodically, but with no real sign
of degeneration, until his death in 1920. He became a Fellow of the Royal
Society early in 1918, and a Fellow of Trinity College, Cambridge, later in
the same year (and was the first Indian elected to either society). His last
mathematical letter on ‘“Mock-Theta functions”, the subject of Professor
Watson’s presidential address to the London Mathematical Society last
year, was written about two months before he died.

The real tragedy about Ramanujan was not his early death. It is of course
a disaster that any great man should die young, but a mathematician is
often comparatively old at thirty, and his death may be less of a catastrophe
than it seems. Abel died at twenty-six and, although he would no doubt
have added a great deal more to mathematics, he could hardly have become
a greater man. The tragedy of Ramanujan was not that he died young, but
that, during his five unfortunate years, his genius was misdirected, side-
tracked, and to a certain extent distorted.

I have been looking again through what I wrote about Ramanujan
sixteen years ago, and, although I know his work a good deal better now than
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I did then, and can think about him more dispassionately, I do not find a
great deal which I should particularly want to alter. But there is just one
sentence which now seems to me indefensible. I wrote

Opinions may differ about the importance of Ramanujan’s work, the kind of
standard by which it should be judged, and the influence which it is likely to
have on the mathematics of the future. It has not the simplicity and the
inevitableness of the very greatest work; it would be greater if it were less
strange. One gift it shows which no one can deny, profound and invincible
originality. He would probably have been a greater mathematician if he could
have been caught and tamed a little in his youth; he would have discovered
more that was new, and that, no doubt, of greater importance. On the other
hand he would have been less of a Ramanujan, and more of a European pro-
fessor, and the loss might have been greater than the gain...

and I stand by that except for the last sentence, which is quite ridiculous
sentimentalism. 'There was no gain at all when the College at Kumbakonam
rejected the one great man they had ever possessed, and the loss was
irreparable; it is the worst instance that I know of the damage that can be
done by an inefficient and inelastic educational system. So little was wantec
£60 a year for five years, occasional contact with almost anyone who had
real knowledge and a little imagination, for the world to have gained another
of its greatest mathematicians,

Ramanujan’s ietters to me, which are reprinted in full in the Papers,
contain the bare statements of about 120 theorems, mostly formal identities
extracted from his notebooks. I quote fifteen which are fairly representa-
tive. They include two theorems, (1.14) and (1.15), which are as interesting
as any but of which one is false and the other, as stated, misleading. The
rest have all been verified since by somebody; in particular Rogers and
Watson found the proofs of the extremely difficult theorems (1.10)~(1.12).

(1.1) 1—-(%2"@95%-(5%@4—...

- (1+(—1x!~)§+(—§)_3+...) (1—(—xm+—(-§;§-...).
(1.2) 1-5(%)3”(;—:2)3—13(%2)3 —7—2,
(L3) 1+ 9(%)4 + 17(%—2)4+ 25(%8?-_2%)4+ = h"*{;;%S}_*'

(1.4) 1_5(%‘)5+ QG_‘;:)BHI?’(%?Z:_Z)HM = {Tf?)}‘*'
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® z \2 x \2
(1.5) 1+(b‘"_1).1+(m) do = T+ HI'o+1)I'b~a+})

vode = 4m
z)* z \? T@) I+ Ib—a+1)
0 1+(£_l) 1+(a+1)
@ dw T
08) [ o v 157859 . = 7 e AT

(L.7) If aff = n2, then

- © ge—ox 4 xe—ﬂw’

@ e 1 2 3 4
1.8 —a? = t_ _ en .
(1.8) j.oe do = gm 20+ a+ 20+ a+ 20+ ...
(1 9) 4 uoxe—;m/E . 1 12 12 92 92 m;ﬁ g2
) o coshe 14+ 14+1+14+1+1+14+.."
r b 10 gl xt x a? 28
1.10) If o L N
10 I v =y ysis. o "SiFirisit..
then 5_ul—2u-{~4u2—3u"+u4
= 14 8u + 4ul + 2ud + ut’
1 —27 —4r 5 5 5 1
(1.11) Loetm et [ (BB BT
1+ 1+ 1+... 2 2

1 e—27V8 g—4nVi
(1.12) e e

L _ [ o) _¢5+1]
I+ 14+ 1+.. s /T aafAB= 1\ 2
) -
(113) Tf F(k) = 1+( ) k+(1 3) ... and F(1—k) = J(210) F(k),
then
= (V2= 1)} (2= 4/B)* (T —/6)* (8 = 3/7)? (10~ 3)*
X (4—4/16)% (/15 — \/14)% (6 — ,/35)2.
(1.14) The coefficient of 2" in (1 —2z+ 2x*—-22*+...)1 is the integer

nearest to 1 ( ginh 77 Jn)
—\{coshmn———-X—},
4n N

(1.15) The number of numbers between 4 and x which are either squares
or sums of two squares is
T dt
K| ——+——+0),
J s oga -

where K = 0-764... and 6(x) is very small compared with the previous
integral.
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1 should like you to begin by trying to reconstruct the immediate reactions
of an ordinary professional mathematician who receives a letter like this
from an unknown Hindu clerk,

The first question was whether I could recognise anything. T had proved
things rather like (1.7) myself, and seemed vaguely familiar with (1.8).
Actually (1.8) is classical; it is a formula of Laplace fitst proved properly
by Jacobi; and (1.9) occurs in a paper published by Rogers in 1907, I
thought that, as ar expert in definite integrals, T could probably prove (1.5)
and (1.6), and did so, though with a good deal more trouble than I had
expected. On the whole the integral formulae seemed the least impressive.

The series formulae (1.1)~(1.4) T found much more intriguing, and it soon
became obvious that Ramanujan must possess much more general theorems
and was keeping a great deal up his sleeve. The second is a formula of Bauer
well known in the theory of Legendre series, but the others are much harder
than they look. The theorerus required in proving them can all be found now
in Bailey’s Cambridge Tract on hypergeometric functions,

The formulae (1.10)~(1.13) are on a different level and obviously both
difficult and deep. An expert in elliptic functions can see at once that (1.13)
is derived somehow from the theory of ‘‘complex multiplication”, but
(1.10)-(1.12) defeated me completely; I had never seen anything in the
least like them before. A single look at them is enough to show that they
could only be written down by a mathematician of the highest class. They
must be true because, if they were not true, no one would have had the
imagination to invent them. Finally (you must remember that T knew
nothing whatever about Ramanujan, and had to think of every possibility),
the writer must be completely honest, because great mathematicians are
commoner than thieves or humbugs of such incredible skill.

The last two formulae stand apart because they are not right and show
Ramanujan’s limitations, but that does not prevent them from being
additional evidence of bis extraordinary powers. The function in (1.14) is
a genuine approximation to the coefficient, though not at all so close as
Ramanujan imagined, and Ramanujan’s false statement was one of the
most fruitful he ever made, since it ended by leading us to all our joint work
on partitions. Finally (1.15), though literally “true”, is definitely mis-
leading (and Ramanujan was under a real misapprehension). The integral
has no advantage, as an approximation, over the simpler function

K

a— ‘—_‘-_x

\(logz)’

found in 1908 by Landau. Ramanujan was deceived by a false analogy with
the problem of the distribution of primes. I must postpone till later what

(1.16)
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I have to say about Ramanujan’s work on this side of the theory of
numbers,

It was inevitable that a very large part of Ramanujan’s work should
prove on examination to have been anticipated. He had been carrying an
impossible handicap, a poor and solitary Hindu pitting his brains against
the accumulated wisdom of Europe. He had had no real teaching at all;
there was no one in India from whom he had anything to learn. He can have
seen at the outside three or four books of good quality, all of them English.
There had been periods in his life when he had access to the library in Madras,
but it was not a very good one; it contained very few French or German
books; and in any case Ramanujan did not know a word of either language.
I should estimate that about two-thirds of Ramanujan’s best Indian work
was rediscovery, and comparatively little of it was published in his lifetime,
though Watson, who has worked systematically through his notebooks,
has since disinterred a good deal more.

The great bulk of Ramanujan’s published work was done in England.
His mind had hardened to some extent, and he never became at all an
“orthodox’’ mathematician, but he could still learn to do new things, and
do them extremely well. It was impossible to teach him systematically, but
he gradually absorbed new points of view. In particular he learnt what was
meant by proof, and his later papers, while in some ways as odd and in-
dividual as ever, read like the works of a well-informed mathematician.
His methods and his weapons, however, remained essentially the same. One
would have thought that such a formalist as Ramanujan would have
revelled in Cauchy’s Theorem, but he practically never used it,! and the
most astonishing testimony to his formal genius is that he never seemed
to feel the want of it in the least.

It is easy to compile an imposing list of theorems which Ramanujan
rediscovered, Such a list naturally cannot be quite sharp, since sometimes
he found a part only of a theorem, and sometimes, though he found the
whole theorem, he was without the proof which is essential if the theorem is
to be properly understood. For example, in the analytic theory of numbers
he had, in a sense, discovered a great deal, but he was a very long way from
understanding the real difficalties of the subject. And there is some of his
work, mostly in the theory of elliptic functions, about which some mystery
still remains; it is not possible, after all the work of Watson and Mordell, to
draw the line between what he may have picked up somehow and what he
must have found for himself. I will take only cases in which the evidence
seems to me tolerably clear.

* Perhaps never. There is a reference to ‘“‘the theory of residues™ on p. 129 of the
Papers, but I believe that I supplied this myself.
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Here I must admit that I am to blame, since there is a good deal which
we should like to know now and which I could have discovered quite easily.
I saw Ramanujan almost every day, and could have cleared up most of the
obscurity by a litile cross-examination. Ramanujan was quite able and
willing to give a straight answer to a question, and not in the least disposed
to make a mystery of his achievements. I hardly asked him a single question
of this kind; I never even asked him whether (as I think he must have done)
he had seen Cayley’s or Greenhill’s Blliptic functions.

I am gorry about this now, but it does not really matter very much, and
it was entirely natural. In the first place, I did not know that Ramanujan
was going to die. He was not particularly interested in his own history or
psychology; he was a mathematician anxious to get on with the job. And
after all I too was a mathematician, and a mathematician meeting Rama-
nujan had more interesting things to think about than historical research.
It seemed ridiculous to worry him about how he had found this or that known
theorem, when he was showing me half a dozen new ones almost every day.

I do not think that Ramanujan diseovered much in the classical theory of
numbers, or indeed that he ever knew a great deal. He had no knowledge
at all, at any time, of the general theory of arithmetical forms. I doubt
whether he knew the law of quadratic reciprocity before he came here.
Diophantine equations should have suited him, but he did comparatively
little with them, and what he did do was not his best. Thus he gave solutions
of Euler’s equation

(1.17) 34y 2t = wd,
such as
(1.18) {x = 3a®+ bab —bb2,  y = 4a%—4ab + 6b?,
' z = Ba?— bab - 362, w = Ga®— 4ab+ 4b%;
and

z = m?—3m4(1 + p)+m(2+ 6p -+ 3p?),
(1.19) ¥ == 2m®— 3m3(1+ 2p)+ 1+ 3p+ 3p2,
z=m'—1=3p—3p% w=m"—3m*p+m(3p2—1);

but neither of these is the general solution.
He rediscovered the famous theorem of von Staudt about the Bernoullian

numbers:

1 1 1 1

, —1 B, = G F ottt -

(1.20) (=1 By = Gty et
where p, ¢, ... are those odd primes such that p—1, g—1, ... are divisors of

2n, and @, is an integer. In what sense he had proved it it is difficult to say,
since he found it at a time of his life when he had hardly formed any definite
concept of proof. As Littlewood says, ‘“the clear-cut idea of what is meant
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by a proof, nowadays so familiar as to be taken for granted, he perhaps did
not possess at all; if a significant piece of reasoning occurred somewhere,
and the total mixture of evidence and intuition gave him certainty, he
looked no further”. I shall have something to say later about this question
of proof, but I postpone it to another context in which it is much more
important. In this case there is nothing in the proof that was not obviously
within Ramanujan’s powers.

There is a considerable chapter of the theory of numbers, in particular
the theory of the representation of integers by sums of squares, which is
closely bound up with the theory of elliptic functions. Thus the number of
representations of n by two squares ig

(1.21) r(n) = 4{dy(n) - dy(n)},

where d,(n) is the number of divisors of # of the form 4%+ 1 and dy(n) the
number of divisors of the form 4k + 3. Jacobi gave similar formulae for
4, 6 and 8 squares. Ramanujan found all these, and much more of the
same kind,

He also found Legendre’s theorem that % is the sum of 3 squares except
when it is of the form

(1.22) 498k +T),

but I do not attach much importance o this. The theorem is quite easy to
guess and difficult to prove. All known proofs depend upon the general
theory of ternary forms, of which Ramanujan knew nothing, and I agree
with Professor Dickson in thinking it very unlikely that he possessed one.
In any case he knew nothing about the number of representations.

Ramanujan, then, before he came to England, had added comparatively
little to the theory of numbers; but no one can understand him who does
not understand his passion for numbers in themselves. I wrote before

He could remember the idiosyncrasies of numbers in an almost uncanny way.
Tt was Littlewood who said that every positive integer was one of Ramanujan’s
personal friends. I remember going to see him onee when he was lying ill in
Putney. I had ridden in taxi-cab No. 1729, and remarked that the number
seemed to me rather a dull one, and that I hoped that it was not an unfavourable
omen. “No,” he replied, “it is a very interesting number; it is the smallest
number expressible as a sum of two cubes in two different ways.”: I asked him,
naturally, whether he could tell me the solution of the corresponding problem
for fourth powers; and he replied, after a moment’s thought, that he knew no
obvious example, and supposed that the first such number must be very large,

In algebra, Ramanujan’s main work was concerned with hypergeometric
series and continued fractions (I use the word algebra, of course, in its old-

11729 = 128413 = 10°% + 98,
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fashioned sense). These subjects suited him exactly, and here he was un-
questionably one of the great masters. There are three now famous identities,
the * Dougall-Ramanujan identity ”

MW (x-+y+z+u+2s+1)" iy
1.23 — 1) 2 LT
( ) Z ( ) (s + n) 1) (x+y+z+u+8)<n) e (T8 + 1)
- 8 Tets+ DIy +ztutstl)
s+ V) Ie~y+z+ut+s+1)ryzn I'z+u+s+1) ’

where a™ = aa+1)... (a+n-1), aqy=a@—-1)..(a—n+1),

and the “Rogers-Ramanujan identities”

1+ -_;_477q‘;l + q° 4
S - T~ (1 -¢)
1

ST =g (=g (1—g...

R ; ( 4q>< ¢ ... (1= (1-¢"

e e L (e (TS T
1

~ (=) (=g (=g (=9

in which he had been anticipated by British mathematicians, and about
which T shall speak in other lectures." Asregards hypergeometric series one
may say, roughly, that he rediscovered the formal theory, set out in Bailey’s
tract, as it was known up to 1920. There is something about it in Carr, and
more in Chrystal’s Algebra, and no doubt he got his start from that. The
four formulae (1.1)-(1.4) are highly specialised examples of this work.

His masterpiece in continued fractions was his work on

1 e &

T+ 14+ 0420

which includes the theorems (1.10)-(1.12). The theory of this fraction

depends upon the Rogers-Ramanujan identities, in which he had been

anticipated by Rogers, but he had gone beyond Rogers in other ways and

the theorems which I have quoted are his own. He had many other very

general and very beautiful formulae, of which formulae like Laguerre’s
(@+l)r—(@-1)» n n*-1n?-2?

(1.26) @I @1y~ ot 3o+ Bt

(1.25)

are extremely special cases. Watson has recently published a proof of the
most imposing of them.,

See Lectures VI and VIL
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Tt is perhaps in his work in these fields that Ramanujan shows at his very
best. I wrote

It was his insight into algebraical formulae, transformation of infinite series,
and so forth, that was most amazing. On this side most certainly 1 have never
met his equal, and T can compare him only with Euler or Jacobi. He worked,
far more than the majority of modern mathematicians, by induction from
numerical examples; all his congruence properties of partitions, for example,
were discovered in this way. But with his memory, his patience, and his power
of calculation he combined a power of gencralisation, a feeling for form, and
a capacity for rapid modification of his hypotheses, that were often really
startling, and made him, in his own peculiar field, without a rival in his day.

I do not think now that this extremely strong language is extravagant.
Tt is possible that the great days of formulae are finished, and that Rama-
nujan ought to have been born 100 years ago; but he was by far the greatest
formalist of his time. There have been a good many more important, and 1
suppose one must say greater, mathematicians than Ramanujan during
the last fifty years, but not one who could stand up to him on his own ground.
Playing the game of which he knew the rules, he could give any mathe-
matician in the world fifteen.

In analysis proper Ramanujan’s work is inevitably less impressive, since
he knew no theory of functions, and yon cannot do real analysis without it,
and since the formal side of the integral caleulus, which was all that he could
learn from Carr or any other book, has been worked over so repeatedly and
so intensively. Still, Ramanujan rediscovered an astonishing number of
the most beautiful analytic identities. Thus the functional equation for the
Riemann Zeta-function

it §
&(s) = n§1 ne’
namely
(1.27) L1 —s) = 2(2m)* cos yam I'(s) §(8),

stands (in an almost unrecognisable notation) in the notebooks. So does
Poisson’s summation formula

(1.28)  ab{}B(0)+p(@) +B(2a) +...} = SR (0) + ¥ (B) + ¥ (26) + ...},
where Y(xz) = A/(%)J: B(t) cosatdt

and af = 27; and so also does Abel’s functional equation

(1.20) L(x)+ L(y) + Lizy) + L{”T(l_—_x?} + I{lﬁ_‘—x?} — 3L(1)

xr x* af
for L(x)=ﬁ+§2+—33+....
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He had most of the formal ideas which underlie the recent work of Watson
and of Titchmarsh and myself on “Fourier kernels” and ‘““reciprocal
functions”; and he could of course evaluate any evaluable definite integral.
There is one particularly interesting formula, viz.

? e mp(—$)

(1.30) L 2 Hp(0) —ad(1) +2%p(2)— ...} da = “snar
of which he was especially fond and made continual use. This is really an
“interpolation formula’’, which enables us to say, for example, that, under
certain conditions, o function which vanishes for all positive integral values
of its argument must vanish identically. I have never seen this formula
stated explicitly by anyone else, though it is closely connected with the
work of Mellin and others.

I have left till last the two most intriguing sides of Ramanujan’s early
work, his work on elliptic functions and in the analytic theory of numbers.
The first is probably too specialised and intricate for anyone but an expert
to understand, and I shall say nothing about it now." The second subject
is still more difficult (as anyone who has read Landau’s book on primes or
Ingham’s tract will know), but anyone can understand roughly what the
problems of the subject are, and any decent mathematician can understand
roughly why they defeated Ramanujan. For this was Ramanujan’s one
real failure; he showed, as always, astonishing imaginative power, but he
proved next to nothing, and a great deal even of what he imagined was
false.

Here I am obliged to interpolate some remarks on a very difficult subject:
proof and its importance in mathematies. All physicists, and a good many
quite respectable mathematicians, are contemptuous about proof. I have
heard Professor Eddington, for example, maintain that proof, as pure
mathematiciansunderstand it, isreally quite uninteresting and unimportant,
and that no one who is really certain that he has found something good
should waste his tirae looking for a proof. It is true that Eddington is in-
consistent, and has sometimes even descended to proof himself. It is not
enough for him to have direct knowledge that there are exactly

136 . 2256

protons in the universe; he cannot resist the temptation of proving it; and
I cannot help thinking that the proof, whatever it may be worth, gives him
a certain amount of intellectual satisfaction. His apology would no doubt
be that ‘“‘proof” means something quite different for him from what it
means for a pure mathematician, and in any case we need not take him too

* See Lecture XI1.
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literally. But the opinion which I have attributed to him, and with which
I am sure that almost all physicists agree at the bottom of their hearts, is
one to which a mathematician ought to have some reply.

I am not going to get entangled in the analysis of a particularly prickly
concept, but T think that there are a few points about proof where nearly
all mathematicians are agreed. In the first place, even if we do not under-
stand exactly what proof is, we can, in ordinary analysis at any rate, re-
cognise a proof when we see one. Secondly, there are two different motives
in any presentation of a proof. The first motive is simply to secure con-
viction, The second is to exhibit the conclusion as the climax of a con-
ventional pattern of propositions, a sequence of propositions whose truth
is admitted and which are arranged in accordance with rules. These are the
two ideals, and experience shows that, except in the simplest mathematics,
we can hardly ever satisfy the first ideal without also satisfying the second.
We may be able to recognise directly that 5, or even 17, is prime, but nobody
can convince himself that 9127 __ ]

is prime except by studying a proof. No one has ever had an imagination
8o vivid and comprehensive as that.

A mathematician usually discovers a theorem by an effort of intuition;
the conclusion strikes him as plausible, and he sets to work to manufacture
a proof. Sometimes this is a matter of routine, and any well-trained pro-
fessional could supply what is wanted, but more often imagination is a very
unreliable guide. In particular this is so in the analytic theory of numbers,
where even Ramanujan’s imagination led him very seriously astray.

There is a striking example, which I have very often quoted, of a false
conjecture which seems to have been endorsed even by Gauss and which
took about 100 years to refute. The central problem of the analytic theory
of numbers is that of the distribution of the primes. The number 7 (z) of
primes less than a large number « is approximately

x .
logz’
this is the “Prime Number Theorem ™, which had been conjectured for a
very long time, but was never established properly until Hadamard and
de la Vallée-Poussin proved it in 1896. The approximation errs by defect,
and a much better one is

(1.32) liz =

(1.31)

- di
ologt'

I

In some ways a still better one is
(1.33) liz—3lict—Lliat —$liwt Lliad —Lliat+ ...
* The integral is a ‘principal value’. See § 2.2.
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(we need not trouble now about the law of formation of the series). It is
extremely natural to infer that

(1.34) m(x) <liz,

at any rate for large x, and Gauss and other mathematicians commented
on the high probability of this conjecture. The conjecture is not only plaus-
ible but is supported by all the evidence of the facts. The primes are known
up to 10,000,000, and their number at intervals up to 1,000,000,000, and
(1.34) is true for every value of x for which data exist.

In 1912 Littlewcod proved that the conjecture is false, and that there
are an infinity of values of  for which the sign of inequality in (1.34) must
be reversed. In particular, there is & number X such that (1.34) is false for
gome « less than X, Littlewood proved the existence of X, but his method
did not give any particular value, and it is only very recently that an
admissible value, viz.

X1 01010“’

was found by Skewes, I think that this is the largest number which has
ever served any definite purpoge in mathematics.
The number of protons in the universe is about

1089,
The number of possible games of chess is much larger, perhaps
jQlese

(in any case a second-order exponential). If the universe were the chess-
board, the protons the chessmen, and any interchange in the position of
two protons a move, then the number of possible games would be something
like the Skewes number. However much the number may be reduced by
refinements on Skewes’s argument, it does not seem at all likely that we
shall ever know & single instance of the truth of Littlewood’s theorem.
This is an example in which the truth has defeated not only all the
evidence of the facts and of common sense but even a mathematical imagina-
tion so powerful and profound as that of Gauss; but of course it is taken
from the most difficult parts of the theory. No part of the theory of primes
is really casy, but up to a point simple arguments, although they will prove
very little, do not actually mislead us. For example, there are simple
arguments which might lead any good mathematician to the conclusion

X

of the Prime Number Theorem,® or, what is the same thing, to the conclusion

! f(x)~7(x) means that the ratio f/g tends to unity.
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that
(1.36) Pp~nlogn,

where p,, is the n-th prime number.
In the first place, we may start from Ruler’s identity
1 1 1 1 1 1
AN Iy = s s =55 .. Bioter "Iy

This is true for s > 1, but both series and product become infinite for s = 1.
It is natural to argue that, when s = 1, the series and the product should
diverge in the same sort of way. Also

1 1 1 1 1

I-p= = “pr T \2p
and the last series remaing finite for ¢ = 1. It is natural to infer that
hoks
p
diverges like log ( 2 %) 7
or, more precisely, that
1
(1.39) > l~log( b _)~loglogw
p=zDP nsx
for large ». Since also
é}x py o ~loglog x,

formula (1.39) indicates that p,, is about » log n.
There is a slightly more sophisticated argument which is really simpler.
It is easy to see that the highest power of a prime p which divides 2! is

GG
pl Lp*] Lp*l 7"
where [y] denotes the integral part of y. Hence

z! = [T pelzmPt..
=X

o a3 [ 5o

The left-hand side of (1.40) is practically alog z, by Stirling’s Theorem. As
regards the right-hand side, one may argue; squares, cubes, ... of primes are
comparatively rare, and the terms involving them should be unimportant,
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and it should also make comparatively little difference if we replace [x/p]
by x/p. We thus infer that
ogp

logp 1
mpgm » zlogz, IEZ » log x,
and this again just fits the view that p, is approximately log .

This is broadly the argument used, naturally in a less naive form, by
Tchebychef, who was the first to make substantial progress in the theory of
primes, and I imagine that Ramanujan began by arguing in the same sort
of way, though thers is nothing in the notebooks to show. All that is plain
is that Ramanujan found the form of the Prime Number Theorem for
himself. This was a considerable achievement; for the men who had found
the form of the theorem before him, like Legendre, Gauss, and Dirichlet,
had all been very great mathematicians; and Ramanujan found other
formulae which lie still further below the surface. Perhaps the best instance
is (1.15). The integral is better replaced by the simpler function (1.16), but
what Ramanujan says is correct ag it stands and was proved by Landau in
1909; and there is ncthing obvious to suggest its truth.

The fact remains that hardly any of Ramanujan’s work in this field had
any permanent value. The analytic theory of numbers is one of those
exceptional branches of mathematics in which proof really is everything
and nothing short of absolute rigour counts. The achievement of the
mathematicians who found the Prime Number Theorem was quite a small
thing compared with that of those who found the proof. It is not merely
that in this theory (as Littlewood’s theorem shows) you can never be sure
of the facts without the proof, though this is important enough. The whole
history of the Prime Number Theorem, and the other big theorems of the
subject, shows that you cannot reach any real understanding of the structure
and meaning of the theory, or have any sound instincts to guide you in
further research, until you have mastered the proofs. It is comparatively
easy to make clever guesses; indeed there are theorems, like ““Goldbach’s
Theorem ”," which have never been proved and which any fool could have
guessed.

The theory of primes depends upon the properties of Riemann’s function
$(s), considered as an analytic function of the complex variable s, and in
particular on the distribution of its zeros; and Ramanujan knew nothing
at all about the theory of analytic functions. I wrote before

Ramanujan’s theory of primes was vitiated by his ignorance of the theory of
functions of a complex: variable. It was (so to say) what the theory might be if
the Zeta-function had no complex zeros. His method depended upon a wholesale

I “Any even number groater than 2 is the sum of two primes.”
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use of divergent serics. . . . That his proofs should have been invalid was only to
be expected. But the mistakes went deeper than that, and many of the actual
results were false. He had obtained the dominant terms of the classical formulae,
although by invalid methods; but none of them are such close approximations
as he supposed.

This may be said to have been Ramanujan’s one great failure. . .

and if I had stopped there I should have had nothing to add, but I allowed
myself again to be led away by sentimentalism. T went on to argue that
“his failure was more wonderful than any of his triumphs”’, and that is an
absurd exaggeration. It is no use trying to pretend that failure is something
else. This much perhaps we may say, that his failure is one which, on the
balance, should increase and not diminish our admiration for his gifts, since
it gives us additional, and surprising, evidence of his imagination and
versatility.

But the reputation of a mathematician cannot be made by failures or by
rediscoveries; it must rest primarily; and rightly, on actual and original
achievement. I have to justify Ramanujan on this ground, and that I hope
to do in my later lectures.

NOTES ON LECTURE 1

p. 1. This lecture is a reprint of one delivered at the Harvard Tercentenary
Conference of Arts and Sciences on August 31, 1936, and published in the American
Math, Monthly, 44 (1937), 137-155.

Pp. 7-8. For (1.1), seo Preece (2); for (1.2)and (1.3), Hardy (4, 8); for (1.4), Hardy (4),
Whipple (1) and Watson (7). All these formulae are special cases of much more general
formulae discussed in Bailey’s Cambridge Tract Generalised hypergeometric series
(no. 32, 1935). See also Lecture VII.

For (1.5) and (1.6), see no. 11 of the Papers, and Hardy (5, 6).

There are formulae of the same type as (1.7) in a paper by Hardy in the Quarterly
Journal of Math. 35 (1904), 193—-207. The formula (1.7) itself is proved by Preece (2).
See also no. 11 of the Papers.

For (1.8), see Watson (2); for (1.9), Preece (4); for (1.10)—(1.12), Watson (4, 6);
and for (1.13), Watson (8),

As regards (1.15), see Landau, Archiv der Math. und Physik (3), 13 (1908), 305-315,
and Stanley (1). Miss Stanley shows just how Ramanujan’s statement is misleading.
See also Lecture IV (B).

p. 10. The Librarian of the University of Madras has very kindly sent me a copy of
the catalogue published in 1914, which makes it plain that the library was better
equipped than I had supposed. For example it possessed two standard French
treatises on elliptic functions (Appell and Lacour, Tannery and Molk) as well as the
books of Cayley and Greenhill, It seems plain from other evidence that Ramanujan
knew something of the English books but nothing of the French ones.

p. 11. Euler found the general rational solution of (1.17), and his solution was
afterwards simplified by Binet and other writers. See, for example, Hardy and
Wright, 198-202. A number of special solutions similar to (1.18) will be found in
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Dickson’s History, ii, 500 et seq. The solution (1.19) is substantially the same as one
found by J. R. Young (Dickson, History, ii, 554).
The simplest known solution of
1 + ?Jd =z4 + A
is Euler’s 158% + 594 = 134* + 133* = 635318657,

See Dickson, Introduction, 60-62, and History, ii, 644-647. Euler gave a solution
involving two paramoters, but no ‘general’ solution is known.

There is a proof of von Staudt’s theorem, due to R. Rado, in Hardy and Wright,
89-92.

The quotation from Littlewood is from his review of the Papers.

p. 12. The general theory of the ropresontation of numbers as sums of an even
number of squares is diseussed in Leoeture IX. For Legendre’s ‘three square’
theorem see Landau, Vorlesungen, i, 114-122.

p. 13. Laguerro’s formula (1.26) is formula (18) of Ch. xX11 of the ‘second edition’
of Rammanujan’s notel.ooks. See Watson (10), 146.

For ‘the most imposing’ formula see Watson (14).

p- 14. Tho equation (1.29) was rediscovered by Rogers, Proc. London Math. Soc.
(2), 4 (1907), 169-189, and is attributed to him in the Papers, 337; but it is to be
found in a posthumous fragment of Abel ((uvres, i1, 193).

p- 16. For (1.30) see Lecture XI.

p. 17. Skewes, Jowrnal London Math. Soc. 8 (1933), 277-283. Skewes assumes
the truth of the Riemann Hypothesiy, but he has since found a (much larger) value
for X independent of the hypothesia. This work is still unpublished,

p. 18. For (1.40) see, for example, Hardy and Wright, 342; Ingham, 20; Landau,
Handbuch, 75-76.



II

RAMANUJAN AND THE THEORY
OF PRIME NUMBERS

2.1. T shall begin by discussing Ramanujan’s work in the “analytic”
theory of numbers, and particularly on its most famous problem, the pro-
blem of the distribution of the primes. I told you that his work in this field
has little permanent value, but I am not afraid that you will find what I
have to say the less interesting for that. The problem is one of the most
fascinating in the whole of mathematics, and Ramanujan’s attack on it
wag conceived in a thoroughly interesting way; and I have unpublished
manuscripts to refer to, and can explain to you for the first time just where
and how he failed.

Ramanujan wrote about the problem in both of his first two letters. He
did not write at length, and I can quote what he says in full.

16 Jon. 1913
In p. 36" it is stated that ““the number of prime numbers less than « is

z dt

. @“P(w),z

where the precise order of p(») has nat been determined”.

I. T have found a function which exactly represents the number of
prime numbers less than z, “‘exactly” in the sense that the difference be-
tween the function and the actual number of primes is generally 0 or some
small finite value even when x becomes infinite. I have got the function in
the form of infinite series and have expressed it in two ways.

(1) In terms of Bernoullian numbers. From this we can easily calculate
the number of prime numbers up to 100 millions, with generally no error
and in some cases with an error of 1 or 2.

(2) As a definite integral from which we can caleulate for all values.

T have observed that p(e2™®) is of such a nature that its value is very small
when x lies between 0 and 3 (its value is less than a few hundreds when
2= 3) and rapidly increases when z is greater than 3.

II. T have also got expressions to find the actual number of prime
numbers of the form An+ B.

' Of my Cambridge Track Orders of infinity (no. 12, ed. 2, 1924).

* T have altered the sign of the second term so as to agree with Ramanujan’slater
asgertions.



Prime numbers 23

The difference between the number of prime numbers of the form 4n—1
and which are less than z, and those of the form 4n + 1 less than z, is infinite
when x becomes infinite. . .

29 Feb. 1913
1. The number of prime numbers less than x is
) yi
2.1.1 SN A= '}
(21.1) fo EernIEe >
where
1 1
(2.1.2) L+ 1) = 5 g o
and y = logz.

2. The number of prime numbers less than z is

logx 4 (logx\* 6 (logx\®
e19 G ()R tss(5) )

where B, = £, B, == 3%, ..., the Bernoullian numbers,
3. The number of prime numbers less than x is

(2.1.4) ‘/mdt 1x‘/zi¢_l{‘/x£+lf{/w£_
flogt 2], logt ﬁfc logt 5fc logt " 6J, logt 7

where ¢ = 1:45136380 nearly ....... ;
I have also found expressions for the number of prime numbers of a given
form (say of the form 24n + 17) less than any given number.
Primes of the form 4n 4+ 1 = primes of the form 6n+1,
........................ dn—1 = ..ol =1,
........................ B+l =i 2041

Those of the forms 87+ 3, 8n+5, 8n+7, 12n+5, 120+ 7, and 12n+ 11
are all equal.

But
(primes of the form 47 —1)— (those of the form 4n+ 1) 00,
(cervininie 61— 1) — (o 6n+ 1) -> 00,
. R ) el (R 8n+1)—>o00,
(e e 1204 5) = (ceereiernnnnininnnnes 12n+1) - oco.

¥ Ramanujan procesds to explain the law of formation of the series. It is of course
(m) g

m ), logt’

where p(m) is the Mébius function which is (—~1)? when m is “quadratfrei’” (a
product of p different primes) and 0 otherwise.

He continues with instructions concerning computation from the series (see
Papers, 351).

(2.1.5) ol
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I have not merely shown that the difference tends to infinity, but found
out expressions (like those for prime numbers) for the difference, within
any given number..........

We must read the second letter in the light of the first; the formulae
(2.1.1), (2.1.3) and (2.1.4) are naturally not exact.” Ramanujan defines
three functions, the integral (2.1.1), which I will call J(x), and the two
series (2.1.3) and (2.1.4), which I will call G(z) and R(x) respectively, and
asserts that they differ boundedly from z(z): if F(z) is any one of the three
functions, then

(2.1.6) 7(x) = F(x)+ O(1).

The series R(x) is a famous series which occurs in Riemann’s work, and a
series much like G(x) was found by Gram. The integral J(x) had never, so
far as I know, appeared before; and in any case I am sure (for reasons which
I will state later) that Ramanujan had found all three functions for himself.

Ramanugan’s series and integral
2.2. The series used by Gram is not G(x) but

(log )"
nln+1)I'(n+1)’
and G(x) is twice the sum of its odd terms.? This series can (as no doubt
Ramanujan knew) be shown to be identical with R(x).

We require some preliminary observations about R(x), which I will
write in the form (2.1.5).3 It is known that

(2.2.1) glx) =1+ E

(2.2.2) 2"(’”) 0
and
5 #m) -
(2.2.3) = logm 1

(though even the first of these equations is as “deep’” as the Prime Number
Theorem). It follows from (2.2.2) that the value of ¢ in (2.1.4) is immaterial
(so long as it is not 1). In particular, if we define the logarithm integral
liz, when 2> 1, by

1—¢
e ol )i

! Since m(x) is discontinuous.
zu 17,.2k
? Sinee E(2k) = — —Bak

(I follow Ramanujan’s notation for the Bernoullism numbers, writing B,, where
B, is more usual.)

3 Bee the footnote to p. 23.
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(a “principal value” in Cauchy’s sense), then we may write (2.1.5) in the
more usual form

(2.2.4) Rx) =% 'L%@ Ii gtim
It is known that
(2.2.5) liz =y+log 1ogx+}] y, (108 ,)—,

where 7y is Euler’s constant. Hence
2, (log x)"
I n.nlm®

(2.2.6) Liz¥m =y +loglogz —logm+ 3

= ~10gm+'y+loglogx+0(ﬁ)

when m->c0, and the convergence of (2.2.4) depends upon that of (2.2.2)
and (2.2.3).

If we substitute from (2.2.6) into R(x), and remember the formulae
(2.2.2) and (2.2.3), we obtain

1 n
Rs) = (y+ogloga) B0 - 20 10g 4 5 100 5 (B
_ (log )™ (., u(m)  (oga)» x

=1 +§‘ nonl z“m"+1 En‘g(n-i- HItn+1) 9(=),

80 that the sums off Riemann’s and Gram’s series are the same. Also, if we
write logx = y and

g(x) = h(logx) = h(y)~1+2

n

W?(iﬁ:i)
then G() = hiy)=h(=y),
and it is not difficuit to show that
(2.2.7) M—9)—=0
when y—>00.*> Hence G(x) = B(x)+0(1),

and Ramanujan’s series is equivalent to Gram’s.
We can also prove that
(2.2.8) J(x) = G(x)+o(1);
but the proof, which depends upon the formula
® g+l 0 e—ax gy
dT = e o e
w Dx+1) fo af{m® + (log x)%}
is a little more difficult. If we may take this for granted, we can conclude
that Ramanujon’s three approximations are equivalent. I may therefore
confine myself, in what follows, to the most familiar function, R(z).

T All suinmations are from 1 to co.
* See the notes at the cnd of the lecture.
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The series R(x)

2.3. Ramanujan’s assertions amount to this, that

(2.3.1) m(x)— B(z) = O(1),
Le. that m(x)— R(x) is bounded. In this case
(2.3.2) m(x) — R(x) = O(«?)

for every positive 8, so that the error is less important than any term of
BR(z). It would be an easy deduction that

(2.3.3) m(x) = liz+ O(xtte),
(2.3.4) m(x) = liz—~§lHat+ O(xt+?),

and so on, for every positive 8. In particular it would follow that
(2.3.5) mx)—liz—>—-0

when z->c0, I may as well say at once that, of these assertions, (2.3.1),
(2.3.2), (2.3.4) and (2.3.5) are certainly false, while (2.3.3) stands or falls
with the Riemann Hypothesis.

Ramanujan’s main thesis is false, but it is astonishing how well it fits the
facts. The primes are tabulated up to 10,000,000: and the value of m(x) has
been found for & number of much larger values of z. The table shows some
of the values of 7(z), and the errors of liz and R(z) by excess or default.

z 7n(x) liz R(x)
100,000 9,692 + 38 - b
1,000,000 78,498 + 130 +30
2,000,000 148,933 + 122 -9
3,000,000 216,816 + 1585 0
4,000,000 283,146 + 206 + 33
5,000,000 348,513 + 125 —64
6,000,000 412,849 + 228 + 24
7,000,000 476,648 + 179 —38
8,000,000 539,777 + 223 - 6
9,000,000 602,489 + 187 - 53
10,000,000 664,579 + 339 +88
100,000,000 5,761,455 + 755 +97
1,000,000,000 50,847,478 + 1758 —23

The largest error known in R(x) is + 228 for @ = 90,000,000. The agree-
ment is very striking and (though Ramanujan had not facts on this scale
to mislead him') it is not at all surprising that he should have been misled.

He quotes only results for quite small @; errors —0-1, —0-1, +0-2 for z = 50, 300,
1000 (Papers, 351).
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The carly history of the theory of primes

2.4. Ramanujan, of course, had not merely ““guessed’ his theorems; no
flight of pure imagination could carry any man so far. He had a “proof”,
a definite, and very ingenious, train of reasoning. This I intend to explain,
but it is essential that I should give first a rapid sketch of the history and
structure of the “ clagsical” theory.

The Prime Number Theorem,

x

(2.4.1) m(x) ~logz’
was conjectured independently by Legendre and by Gauss. Gauss gave
the approximation li z, now known to be more accurate, but neither author
is very explicit about the degree of accuracy which they claimed for their
formulae. As I said in my first lecture, (2.4.1) is equivalent to p, ~nlogn.

The first definite progress was made by Tchebychef. Tchebychef proved
that

Cx
(2.4.2) foga <T@ )<ﬂ—
or (what is the same thing) that
(2.4.3) Cnlogn < p,< Cnlogn.
He also introducec the functions
(2.4.4) Hz) = 3 logp, ¢lz)= ¥ logp?
pET ’”‘ =z

These functions are in some ways more naturcl than m(x). Thus

9(e) = log  I1 7|

PEX
(and the most natural operation to perform on a set of primes is to multiply
them); and y(x) is the logarithm of the least common multiple of the num-
bers up to z. It is the more complex function (), as we shall see, which
presents itself most naturally in the analytic theory. The number of
squares, cubes, ... of primes up to « does not exceed

atpad at+ .. = O(xtlogx),’

! Tuse C gencrally for an ““absolute constant” (a number such as 7 or 7). The various
C’s are naturally not equal.
* Count log p for every p, p?, ... up to x. Thus

Y(10) == log2+log 3+log 2+1og 8 +1log 7+log 2 +log 3
== 3log 2+ 2log3 +log 5+log7

(log 2, for example, arising from 2, 22 = 4, 2% = 8).
3 Since p™ >z if m > log z/log 2, we need take only O(log ) terms of the series,
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which is insignificant compared with functions whose order is about .
Hence powers of primes are comparatively unimportant in the theory, and
we may think of 9(x) and yr(x) as, for our present purpose, substantially
the same.

1t is natural to expect that

(2.4.5) logz.m(x)~ ~Yr(x),

since (i) $(x) and () are “much the same”, and (ii) $(x) contains m(x)
terms in most of which log p is nearly logx. Tchebychef gave an accurate
proof of (2.4.5), and inferred that

x

= lim =)
x

(2.4.6) lim 19&;-7@

if any one of the three limils exists, and that the Prime Number Theorem is
equivalent to either of

(2.4.7) Ha)~wx, - Plx)~2.

Finally, he proved that the only possible value of the limits is 1; but he
could not overcome the fundamental difficulty, the proof of the existence
of the limits.

The proof of the Prime Number Theorem

2.5. The Prime Number Theorem was finally proved by Hadamard and
de la Vallée-Poussin in 1896. The analytic attack upon the problem depends
on Euler’s identity

1
2.5.1 5) = Nn = l+——,
(2.5.1) o) = T = Tl
where Rs>1. It follows from (2.5.1) that
1 1
lOg C(S) 2 logl p—s = E mp'ms 4

the summation being over all primes p and all positive integers m. Hence

_Es) logp
2.6.2 — a,ns,
(252 @) " T
where a, =logp (n=p™),
a, =0 (otherwise).

Here a, is the arithmetical function usually denoted by A(n), and the
“sum function”

Ax) =2 ay,

nse

of a, is Yr(z)
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We now require a general theorem in the theory of Dirichlet’s series.
Suppose that s = o +it, and that
f(g) = Zann_s
is absolutely convergent for > 1. Then
1 c+io g8
___‘f y_ds
2m J i 8
is 0, 4,1
in the three cases O<y <1,y = 1, y>1;' and it is easily proved that
1 ., x\*ds ,

where A*(z) differs from A(x) only in that, when x is an integer, the last
term «,, in A(x) is to be multiplied by 4. In particular

e+ico
where ¢> 1 and f(8) = —%((j))

This formula contains the ““analytic set-up’’ of the prime number problem.
In what follows I shall give two approximations to the solution, the first so
rough that, in the present state of knowledge, it cannot be carried through.
It is known that {(s) is an analytic function of e, which has a simple pole
of the type 1
—

s—1
at 8 = 1, but is otherwise regular. Tt satisfies Riemann’s equation
81 —8) = 2(2m)~* cos Lem I'(s) §(s).
It has simple zeros (the ““trivial”’ zeros) at
§=—=2 —4 6, ..,

and an infinity of complex zeros p for all of which 0 < & < 1. The *“ Riemann
Hypothesis” is the hypothesis that all the p have the real part L
The function (2.5.2) has also a pole of type

' The integral is a principal value at infinity (i.e. the limit of an integral from
¢c—iT to ¢+4T") when x = 1.
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at the zeros of {(s). Let us assume that the Riemann Hypothesis is
true, and that the behaviour of f(s), when o>} and |t| o0, is “not too
bad”. Then it is natural to suppose that we can move the contour of in-
tegration in (2.5.3) across the pole at s = 1, and deduce

2.5.4 * L[ d d

(2.5.4) v (x)r_m+2m: Y_mf(s)g 3,

where } <y < 1. The  is the residue arising from the pole at ¢ = 1. Further,
since every element of the integrand is of order ¥ in 2, it is natural to suppose
that the integral is of much the same order, and that

(2.5.5) P*(x) = z + O(xF)

for every /> }. Since the difference between yr*(x) and ¥ (x) is at most log z,
this gives the Prime Number Theorem (and a good deal more). The argu-
ment cannot be developed accurately on quite the simple lines which I have
sketched, but (2.5.5) is actually a correct conclusion from the Riemann

Hypothesis.
Tt is easy to deduce from (2.5.5) that
(2.5.6) m(x) = liz+ O@F),
again for any £ > }. For (2.5.5) is equivalent to
(2.5.7) HMNx) = x + 0(xP).
s zd9() "
Also mzx) =1+ { th‘
o [P0 (e
and so m(x) =lix = L Tog? =), lout o)
_ [Fad) -1}
- [ +ow
_ )~z log2-2 zH(t)—1
T logaz log 2 L t(log t)2dt+0(1)
_of Py +ol[" L von
B (10g w) * U 2 (log t)2} +ot)
which is (2.5.6).
The function
(2.5.8) IT(x) = m(x) + dm(xt) + dm(at) + ...

I 1t is convenient to use the notation of the Stieltjes integral: #(w) is the step-function
with jumps log p at the points z = p.
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is related to y(z) much as is 7#(z) to H(x). Since

dmah) +ia(ah) 4. satdat L = O(at log ),
we have also
(2.5.9) H(z) = liz+ Oat).

Second approximation to the proof

2.6. This is the ““first approximation” to the proof of the Prime Number
Theorem, but it is essential that we should get a little closer to the truth if
we are to understand Ramanujan’s attempt. In my second approximation
I shall digcard the unproved Riemann Hypothesis; but that will not be the
most important improvement.

The main difficulty in my first ““proof” lay, not in the agssumption of the
Riemann Hypothesis, but in the naive argument about the “order” of the
integral in (2.5.4). The fundamental difficulty is that the integral is not
absolutely convergent, and that we cannot be sure that its order is not
much greater than that of any of its elements. We avoid this difficulty by
considering not y*(x) itself but an average of ¥r*(z) or ¥(z), and finding
an asymptotic formula for this average. We have then to infer back from
the average to the function itself, and this introduces a new element, a
“Tauberian” element, into the proof.

It is most convenient to state the argument in terms of general Dirichlet’s
series, and I shall prove the following general theorem. Suppose

(1) that

(2.6.1) f(&) = Za, ne
is absolutely convergent for ¢ > 1;

(ii) that f(s) is regular on the line o = 1, except for a simple pole, with
residue 1, at s =1

(iif) that
(2.6.2) flo+in = O(|t]*),
where a <1, for o2 1 and large ||;
(iv) that
(2.6.3) a,> —K,
where K is a constant. Then
(2.6.4) A(z)~a.
We write
(2.6.5) 4@ = Ay - Jrarway

' A(y) and A*(y) differ only at isolated points.
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From 1 f“’iw

@ =] feTd (>

¢~1w

it follows by integration that

2.6.6 A 1 ct+im a8+l ds
(2.6.6) @) =g | o), s
We h 1 1 c+ico x.sd'9 .
e have also prer) B §(s)-§ = z+ 0(1),
1 ¢+ico 81l
= - ds = 1x2
(2.6.7) i) i s P l)ds 32+ O(x).

Subtracting (2.6.7) from (2.6.6), we obtain
1 c4foo s+l

(2.6.8) Ay(x)— 322+ O(x) = o7l R g(s)s—(mds,
where
(2.6.9) 9(8).= F(8) = &ls);
and a simple continuity argument enables us to take ¢ = 1. Thus
1 1+iw 8+l
(2.6.10) Ay(x)—Ya? + O(x) = E;;if1~ico g(s)émscl&'.2

Now it is easy to prove that
E8) = O(| t}=)3
where 0 <a <1, i.e. that §(s), and therefore g(s), satisfies condition (iti) of
the theorem. Hence the integral in (2.6.10) is of the form

2" o TN gy
—w \14122 ’
the product of 22 by an integral of the type
" H() et18e gt [  H(tyewd,

—w

where f | H(t) |dt<co. Such an integral tends to 0 when £ = log 2 — co,*

and therefore A,(z)—3a? = o(x?),
or
(2.6.11) Al(x)“"%xz.

' Exactly, [#] if  is not an integer, z— } if it is.

* We must subtract (2.6.7) from (2.6.6) before putting ¢ = 1, since f(8) and {(s) each
have a pole at s = 1.

3 In fact {(s) = O(log [¢]): see Ingham, 27, or Landau, Handbuch, 169,

4 Bythe *‘Riemann-Lebesgue theorem * for trigonometrical integrals: see, for example,
Titchmarsh, Fourier integrals, 11 (Theorem 1).
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27. We have now to pass from (2.6.11) to (2.6.4). This requires a
“Tauberian” argument, here of a very simple kind. If

(2.7.1) b, =a,—1,
then B(x) = 3 (a,—1) = A(x) -z +0(1),

n=r

By(z) = f “Bly)dy = Ay(o) - 127+ O@),

and so
(2.7.2) By(x) = o(x?);
and
(2.7.3) by>~K—1=—1,
say, by (2.6.3) and (2.7.1). We have to prove that
(2.7.4) B(x) = o(x).

Suppose that (2.7 4) is false, Then there is a positive & such that one or
other of
(2.7.5) B(z)>dx, Blz)< -z

is true for arbitrarily large values of .
Take, for example, the first hypothesis, and suppose that B(£)> 8. Then

B(x)— B(§) =£<§£xbn > — Lx—§£)

and B(x) > 05— L(x—§) > }0¢
for §<x<§'=(l+—2%)§.
Hence B1(§ + %) — B,(&) >f:'§6§dx = f%gz,

But this contradicts {2.7.2), since each term on the left is o(£2).

We can deduce a contradiction similarly’ from the second hypothesis
(2.7.5), and the two contradictions prove (2.7.4).

In order to deduce the Prime Number Thecrem we must show that the
function (2.5.2) satisfies the conditions (ii), (iii) and (iv) of §2.6. The last
condition is satisfied because A(n)2 0. Condition (ii) is equivalent to

(2.7.8) L(1+4t)+0,
and (iii) asserts rather more. It is the verification of these conditions that
is the main difficulty of the proof.

! But now using an interval (£, £) to the left of £,
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Later developments

2.8. There are two chapters in this proof (and in all other proofs) of the
Prime Number Theorem. The first part of the proof is properly function-
theoretic. We show that {(s) has certain properties, and deduce an asymp-

totic formula for
Ynix) 1 f «
= "z O;b(t) dat

or for some other average of {(x). The second part is ‘“Tauberian”. The diffi-
culties are divided differently, in different proofs, between the two chapters.
In the “classical” proof, which I have sketched to you, the first chapter
is difficult and the second easy, only a very simple Tauberian theorem
being required. Later proofs simplify the first chapter at the expense of
the second.

The most important of these more recent developments is due, in essen-
tials, to Wiener. Wiener and his followers have shown that we may simply
strike out the condition (iii) in the general theorem of §2.6. We still
need (ii); in particular, in the application to primes, we must still prove
(2.7.6); but we do not require to know anything at all about the behaviour
of {(s) at infinity. It had for long been said, a little vaguely, that “the
Prime Number Theorem is equivalent to the assertion that {(s) has no
zeros on ¢ = 17, but Wiener has enabled us how to interpret this statement
literally, and this is naturally a very important contribution to the logic of
prime number theory.

What is relevant now, however, is not Wiener’s generalisation, the ““true”’
generalisation of the theorem, but a half-way generalisation made by Little-
wood and myself in 1915. This half-way theorem has lost its significance
since its supersession by Wiener’s, but it is just what is wanted for the
comprehension of Ramanujan’s work,

Littlewood and I found ourselves in possession of a powerful Tauberian
theorem: ¢f

(2.8.1) Za, e~™ ~§
when y -0, and

(2.8.2) 4,20,
then Ax)~a.

This has an immediate application to the Prime Number Theorem, since, if
we can prove that

(2.8.3) §A(n) e"”’~1,
2 Y
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it will follow that ¢(z) ~2. Since
(I—e¥)2ae™ = (1-e VPR Xag+ay+... +a,) e~

_AO)+A(L)e v+ ...+ Am)e v 4 .,
T 142Vt (n et .

and 1—e ¥ ~y, we can regard
yla,e ™

a8 a kind of average of A(n)/n. Hence a function-theoretic proof of (2.8.3)
will Jead to a proof of the Prime Number Theorem conforming to my
general description.

Littlewood and T, then, proceeded as follows. In the first place, we proved
an extension of the general theorem; we showed that condition (iii) of § 2.6
may be replaced by

(2.8.4) Sflo+it) = O(edithy,

for any positive constant A. This of course has no importance now (since
in fact no condition of this kind is wanted). Secondly, we deduced (2.8.3);
and finally we applied our Tauberian theorem. It is on (2.8.3) that I want
you to fix your attention, since this was also Ramanujan’s first objective.

Ramanujan’s argument

2.9. I can now pass to Ramanujan’s actual “proof”, which he showed
me some time after his arrival in England. I shall be able to make the points
of it clearer if I allow myself to misinterpret his object a little.

Ramanujan was trying to prove, not merely the Prime Number Theorem,
not even merely a result like (2.5.6), which is true on the Riemann Hypothesis,
but & much more precise result which we know to be false. He committed
a definite, and a very curious, fallacy: his argument is not merely “un-
rigorous’’ but in a more drastic sense “unsound”, and I want to make
his mistake quite plain. I can do this more easily, and without doing him
the slightest injustice, by talking as if his aims had been limited to the proof
of the Prime Number Theorem.

Ramanujan writes

(2.9. 1) ¢(‘//) = 2 logp E e—pmy — Iog 2 Z 2??19—-27”1]
D m=1 m=1

= $(y) — Paly),

and sets out to prove, first, that
1
24 D —~—
(2.9.2) &, (y) v

32
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He does not use the notation A(n), but actually
(2.9.3) Puly) = 22‘./1(7%) e,

so that the Prime Number Theorem would really follow from (2.9.2).
Next, he writes

(2.9.4)  D(y) = dly)— H(2y) + $(3y) — ... = Dy(y) - Dy(y),
where @, and @, are the functions related to ¢, and ¢, as @ is to ¢. Then
_pn’ly

p ny
(2.9.5) Dy(y) = Zlogp E 1 +er™ 2A(”)He-m"

and

w0 2m6—27"y ey
(2.9.6) Dy(y) = log 2 2 ATeu = = 2log 2 et
. . 2 4 8 2
by the elementary identity e 10 i +om 1 Foe =g

2.10. Ramanujan now makes a transformation of @,(y). We have

(2.10.1) D,(y) = Vyily) - 2¥,(2y),

where
; e Y

But

(2.10.3) Pily)= 3 Am) E eT™ = 3 g e,

n=32 m=] 2

where

(2.10.4) ¢ = X An).

nik

Also, if k = I1p?,
> A(n) = Talogp = Ylogp® = logk.
vk »lk

nik

Hence Y.(y) = § log ke—*v
g
and
(2.10.5) Dy(y) = Xloghke* —2 3 log ke2kv
2 2

= E} logke-kv—2 §‘, log 2k e~?kv 4. 2log 2 §] e~y
2 2 )

=eVlogl—e-*log2+e]og3—...+2log2

1—e o’

! Since we must count log p for each of the divisors p, p?, ..., p®.
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Combining (2.9.6) and (2.10.5), we obtain

(2.10.6) B(y) = evlogl—e]og2+e Wlog3—....
Ramanujan now infers that
(2.10.7) D(y) 1"
or
(2.10.8) $ly)— P(2y) + pBy) — ... >,

for some I. He gives no reason, but the conclusion is correct and easily
proved.* Up to this point his argument, though expressed in & less con-
venient notation than that which I have used, is quite sound.

Next, Ramanujan infers from (2.10.8) that

(2.10.9) Bly) 1.

All that would be necessary, if he were aiming at the Prime Number Theorem
only, would be the milder conclusion that

1
.10.10 =gl b
(210.10) s =l ).
and we may continue his argument as if he asserted no more than this.
He then states that

(2.10.11) Po(y) = log 23, 2me=2" ~;,
1
and from (2.10.10) and (2.10.11) he deduces that
|
(2.10.12) Pi(y) = ¢(7J)+¢g(y)~y,

which is (2.8.3). What he actually says and professes to derive from (2.10.9)
is that

1
(2.10.13) Pily) = §+0(1)‘,
or at any rate
1
(2.10.14) Py(y) = 7t Oy™)

for every positive §

Now (2.8.3) is true; it is, as I said, the half-way stage in the “Hardy-
Littlewood”’ proof; and from (2.8.3) we can deduce the Prime Number
Theorem in an “‘elementary’’ manner, that is to say by arguments which
make no use of the notion of an analytic function of the complex variable.

T T nge ! for “alimit® (not necessarily the samo in different contexts).

* For example, the series
logl—log2+logd—...

is sumwmable {C, 1), The sum is — }log {m.
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It follows that, if Ramanujan really had proved (2.10.12), he would have
found an elementary proof of the Prime Number Theorem, a proof involving
no function-theory at all. In particular, he would never have needed (2.7.6);
and this is of course enough to convince any reader who knows the subject
that the proof cannot possibly be correct. And in fact Ramanujan has
deduced the true conclusion from two false propositions, the proposition
(2.10.11), and the proposition that (2.10.8) implies (2.10.10).

2.11. T had better show the falsity of these propositions at once. In the
first place, (2.10.8) does not imyply (2.10.10), and still less (2.10.9). Suppose,
for example, that

X(y) =y
Then  x(y)—x(2y)+ x(8y)—... = y 1721 = 271-% 4 3-1~0i— )
= (1-2"%) {1 +ar) y—1~%,
which is 0 if a.= —2£7£;
log 2

but y x(y) oscillates, in contradiction to Ramanujan’s statement. It is true
that x(y) is not a power-series in ¢ ¥, as is Ramanujan’s ¢,(y), but we can
find such series which mimic the behaviour of y(y) as closely as we please,
and the statement cannot be rehabilitated by any such reservation.

It is only natural that Ramanujan’s argument should contain flaws like
this, where his instincts misled him about the validity of difficult general
theorems. There are true Tauberian theorems which have some superficial
resemblance to the one which I have just refuted, and a good deal of ex-
perience and subtlety is needed to distinguish the true from the false. His
second error is much more surprising, since one would have expected him
to be right about the behaviour of a special function like ¢,(y).

He seems to have been deceived by an “integral analogy”’. The integral
analogue of the series (2.10.11) is

(2.11.1) log 2f 2%~ dy,
0
@ 1 © e~V 1
20 —2%Y — -1z —
and jo 226—2" da oz 2L eV dy 7log? " ylog2’

so that (2.11.1) behaves in the manner which he attributes to (2.10.11).
But (2.10.11) itself behaves differently, having “wobbles” of order 1/y.

We can refute Ramanujan’s assertion in numerous ways. In the first
place, if (2.10.11) were true it would follow (by the Hardy-Littlewood
Tauberian theorem) that

x
N
oo 2 log2*
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This is plainly false, since the series is practically doubled when 2 passes
through a value 2.
A more direct srgument is as follows. The function ¢,(y) satisfies the
eanation $a(y) ~ 2(2y) = 26 log 2,
It may also be verified at once that

_ ) (__ 1)1'yr or+1
Yra(y) = —log 2 % R B v

satisfies Valy) — 2¢05(2y) = 2e~1og 2,
and therefore h(y) = a(y) = ¥aly)
gatisfies h(y)—2h(2y) = 0.
Also yh(y) is not a constant.’

If now we write yh(y)="Hlogy),
then H(logy) = H{logy +log 2),

so that H is periodic and not constant. Heunce yh(y) does not tend to a limit,

nor does y ¢y(y).
Finally we can, if we please, exhibit the “wobbles” in a formula. We

can prove that

oo(__]_)ryr or1 1 m,P(1+2kﬂi

1 .
9 gy — — A S R O —2kmijlog 2
(2'11' ) ¢2(.’/) g 10g2§ 9,! 2?+1_1 y_zm 10g2 )?/ >

where the dash exclucles the value & = 0; and the last series shows the
wobbles, of order 1/y, explicitly. It converges rapidly, and the wobbles are
small compared with the dominant term.

The genesis of Riemann's series

2.12. It will be plain by now that Ramanujan’s proof of the Prime
Number Theorem was quite wrong. His errors were fundamental; he was
wrong not merely because he could not supply the necessary *rigour”,
but because the path which he followed did not follow the facts. I should
like to say that “rigour apart, he found the Hardy-Littlewood proof”, but
I cannot.

Ramanujan could not prove the true Prime Number Theorem, and
naturally he could not prove the false (2.3.1) or (2.3.2). Ishall say something
later about the way in which he professes to derive them from (2.10.13),
but I must first make a few remarks about the status of the series B(x) in
the orthodox theory.

T r,(y) is & meromorphic function, while ¢,(y) has a barrier along the imaginary axis.
The point could also be settled by calculation.
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There are two goals in the theory. One is to prove the Prime Number
Theorem, or some refinement upon it. The other is to find an ezact analytical
expression for 77(x), or one of its associated functions; an expression which
may incidentally provide an approximation for 7(z), but is sought as an
end in itself. Riemann (who never even mentions the Prime Number
Theorem) attacked the second problem.

It is easy to see how such identities may be derived from the integral
(2.5.3). It is natural to suppose that the integral is equal to the sum of the
residues at all the poles to the left of the line of integration. These are easily
calculated, and we find the formula

) 1
(2.12.1) YH) =a—X p—m~§log(l—§2).

P

Here the first term arises, as in (2.5.4), from ¢ = 1, and the last from the
“trivial” zeros. It is fairly easy to deduce a formula for the function /1(x)
defined by (2.5.8). If IT*(x) is related to [l(z) as yr*(x) is to ¥(x), then

(2.12.2) IT*(@z) = 1ix-21ixp+f du
p

L P )ulogn 8%

The definition of 1iz must be extended appropriately to cover complex z.
We pass from II{z) to 7r(z) by one of the *‘inversion formulae’ associated
with the Mébius function. If

R (4 )
9= % 1{2);
then (subject to certain reservations about convergence)

1® = £ nimg2).

n

It follows from this and (2.5.8)" that

18

(2.12.3) (a) = P%’”) (),

=

and, if we ignore the difference between [I and IT*, and replace II(x¥*) in
every term of (2.12.3) by liz'/*, we obtain E(x). This involves neglecting
every term in (2.12.2) except the leading term, that is to say, substantially,
ignoring the complex zéros of {(s).

The exact proof of (2.12.1) and (2.12.2) is given in the textbooks. Riemann
(whose proof is not exact) argued rather differently. He observed first that

(2.12.4) f:ﬂ(x) 2-9-1dx = Slfwm—adﬂ(m) _1 3 __l_ _log ()

0 8 pom MP™ - 8

' Take f(£) = &m(ef), g(£) = EMI(ef).
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for o> 1. From this it follows, by ‘“Mellin’s inversion formula”, that

. _ 1 fevielog£(s)

(2.12‘0) H(CL‘) = %J‘cﬁim }Tx ds
ife>1"

If

(2.12.6) 8 =4+1z,
then

(2.12.7) £2) = 4s(s— 1) I'(3s) &s)
is an integral funection of z. Its zeros are given by

(2.12.8) s=p, z=—i(p-hH=1.

They lie symmetrically about the origin, and are real if the Riemann
Hypothesis is true; and

(2.12.9) £(z) = E(O)TT ( 1 _jZ)

T

From (2.12.7) and (2.12.9) we obtain
(2.12.10) log{(s) = —log(s—=1)=log I'(}s+ 1)+ Jslogm
(8—%)2}.

T2

+10g£(0)+210g=1+

and Riemann substitutes from (2.12.10) into (2.12.5) and evaluates the
terms of the resulting series separately. The dominating term of (2.12.2)
results from the term —log (s —1).

There are gaps in the argument, of which the most important is the Jack
of any sufficient proof of (2.12.9). This was only made possible much later
by Hadamard’s work on integral functions. But what I want you to notice
particularly is that there is nowhere any explicit use of Cauchy’s Theorem.
Riemann’s formal machinery, his term by term integrations of series,
his use of Fourier’s Theorem in the proof of (2.12.5), and his evaluations of
particular definite integrals, would all have been intelligible, and highly
sympathetic, to Ramanujan.

213. 1 return to Ramanujan’s argument. We can write (2.8.3) or
(2.9.2) ag
1

(2.13.1) f"”e,g,zd,/,(z)_,__

0 Y

! Riemann put 8 = ¢4, and expressed (2.12.4) as a Fourier intogral with a factor

—itl
e—# 0B E

then appealing to the Fourier formulae. The two arguments are formally oquivalent.
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(though Ramanujan does not use this notation), and from these propositions
we can deduce the Prime Number Theorem. Ramanujan thought that he
could prove much more, viz, (2.10.13) or (2.10.14), which may be written as

(2.13.2) f :e“”zdl,/f(z) - ?1/ +0(1),
or

(2.13.3) f " e v dy(z) =+ 0ly-?).

0 Y

From these he deduced

(2.13.4) Y(x)—z = 0(1) (or O(x%))
and the passage to

(2.13.5) m(x)~ Rx) = 0(1)  (or O(z%))

was easy. But his argument here is unsound beyond any possibility of
restoration. Not only are all of (2.13.2)-(2.13.5) demonstrably false, but
the passage from (2.13.2) or (2.13.3) to (2.13.4) is also fallacious. There are
no Tauberian theorems which permit us to make inferences like this. And
I do not think that it is worth while to probe more closely into the details
of Ramanujan’s reasoning. There is one reproach at any rate that cannot
be made against it. Unsound as it is, it:is not *“dim”’; Ramanujan was never
dim. It contains a very interesting idea, and one which, when properly
pruned, fits into its place in the theory.

The question of Ramanwjan’s originality

2.14. Whatever you may think of Ramanujan’s argument, you will
agreo that his formal ideas were fine, and you are sure to wonder whether
they were all his own. In particular, did he really discover the Riemann
series himself?

My own opinion is that he did. There is, however, just one book in which
he might conceivably have seen the series. There was a copy of Mathews’s
Theory of numbers in the Madras library, and this book contains a (rather
uncritical) reproduction of Riemann’s analysis. It seems worth while to
consider for a moment what books, of importance to him and accessible in
Madras, Ramanujan may have consulted.

There were five books which would have been particularly important to
Ramanujan: Whittaker’s Modern analysis (published in 1902), Brom-
wich’s Infinite series (1908), Mathews (1892), and Cayley’s and Greenhill’s
treatises on elliptic functions. My own opinion is that he had seen one at
least, and possibly both, of the last two books, but none of the other three.
I have no idea how this may have happened, and my opinion is based on
internal evidence only, but no other hypothesis seems to fit.
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In the first place, Ramanujan cannot have seen Whittaker, since he did
not know Cauchy’s Theorem. For the same reason, of course, he cannot
have seen Forsytl’s Theory of functions. This is iinporta.nt because it
shows that there were ‘“obvious’ books which Ramanujan had never seen
although they were certainly accessible in Madras.

The evidence about Bromwich is not so conclusive, but I cannot believe
that Ramanujan had seen the book. He was keenly interested in divergent
series, about which he had a ““theory’” of his own. Bromwich has a long and
very interesting chapter on the subject, which would have fascinated
Ramanujan; but Ramanujan never showed any knowledge of Cesaro or
Borel summability, or of any of the standard work. It seems plain indeed
from passages in his letters that he had no idea that any scientific theory
of divergent series existed.

I do not think, then, that Ramanujan had seen either Whittaker or
Bromwich; but it seems plain thathe had read some book on elliptic functions,
and I agree with Littlewood in thinking that it was probably Greenhill’s.
He never refers to books, but he never refers to any of the standard theorems
of the subject as though he thought them his own. He claims to have ex-
tended the theory in different directions, as he had done, but not to have
invented elliptic integrals, theta funetions, or modular equations. All these
things he treats as parts of common knowledge. His own knowledge was
remarkable both fcr its extent; and for its limitations, and both the extent
and the limitations fit excellently with the hypothesis that it was based on
Greenhill’s stimulating but eccentric book.!

These theorems about prime numbers, on the other hand, Ramanujan
claimed quite definitely as his own (though of course he recognised his
mistakes later, and learnt the outlines of the established theory). This, to
anyone who knew Ramanujan well, is conclusive; but the hypothesis of
Ramanujan’s complete independence is also the only one which seems to
me to fit the facts.

In the first place, if Ramanujan had ever seen Mathews, how could he
have heen as ignorant as he was of the classical theory of quadratic forms,
which Mathews discusses elaborately and which fills nearly half his book?
The series for the eclags-number, in particular, wonld have fascinated
Ramanujan, and it is certain that he would have studied them intensively.

But the most conclusive evidence is Mathews’s chapter on primes itself.
This, whatever its defects, contains a fairly adequate description of Rie-
mann’s memoir. It lays all the proper emphasis on Riemann’s great dis-
covery, that the theory of primes depends upon the “complex” properties
of {(s), and in particular on the location of its zeros. The complex zeros of

! In which we learn first: on p. 258 that the elliptic functions are doubly periodic.
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¢(s) dominate the analysis, as they must in any account of Riemann’s work.
Ramanujan had no accurate ideas about analytic functions, but he knew
quite well that an equation could have an infinity of complex roots, and he
could have followed the argument without difficulty. It is incredible that,
after seeing this chapter, he should have proceeded to construct a theory
in which “all the zeros of {(s) were real”’.

My conclusion is, therefore, that all this work of Ramanujan, with its
flashes of inspiration and its crude mistakes, was an individual and un-
assisted achievement. There is no other hypothesis which seems to me to be
tenable, or to make any sort of mathematical or psychological sense.

In conclusion T may say this. No one before Riemann, so far as I know,
had written down R(z), and if Ramanujan found the series himself it may
seem a very astonishing performance. Even Gauss stopped at liz.

There is, however, a certain danger of exaggeration. If we see that

H(z) = mx) + dm(@t) + tn(x?) + ...

plays a more “natural” part in the theory than 7{(x) itself, as r(x) plays a
more natural part than 9(x); if we realise that it is I7(x) which “* corresponds
naturally” to liz; and if we are familiar with the inversion formula of
Mébius; then, when we pass back from [I(x) to m(x) by this formula, the
series R(x) presents itself inevitably. All these ideas were familiar to
Tchebychef, and there was no reason at all why he should not have written
down R(x), though he never seems to have done so. Ramanujan knew all
these things too, as the argument which T have presented to you shows quite
clearly, and everything that he did, however we may judge it, is thoroughly
intelligible,

NOTES ON LECTURE II

This lecture is a revised and enlarged edition of one given to the London Mathe-
matical Society on February 18, 1937.

§ 2.1. The letters are those printed in full in the Papers, xxiii-xxix and 349-352.
About the time when the letters were written, Narayana Aiyar (1) published
Ramanujan’s prineipal assertions in the Journal Indian Math. Soc.

I have altered Ramanujan’s notation for the sake of convenience of referchco: he
hag e® for  and a for y in (2.1.1), n for z in (2.1.3) and (2.1.4), and x for ¢ in (2.1.4).
He also writes S,,, for {(z+1).

Ramanujan implics that p(x) oo when x>0, which is false, as Littlewood proved
in 1914, Littlewood’s proof, which is difficult, will be found in Ingham, ch. 5 or
Landau, Vorlesungen, ii, Kap. 11. The similar assertions about primes in arithmetical
progressions, at the end of the passage quoted from the second letter, are also false.

§ 2.2. For the series (2.2.1) see Gram, Skrifter d. K. Danske Videnskabernes
Selskab (8), 2 (1884), 185-308 (212, 295).

For the history of (2.2.2) and (2.2.3) see Landau, Handbuch, 587-574. That the
Prime Number Theorem could be deduced from (2.2.2) by ‘elementary’ reasoning
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(that is to say by roasoning independent of the theory of functions of a complex
variable) was first proved by Landau, Wiener Sitzungsberichte, 120 (1911), 973-988;
the Handbuch containg only a deduction from (2.2.3).

According to Soldner, li # = 0 for # = 1-4513692346..., and it seems probable that
this is the real value of Ramanujan’s c.

For (2.2.5) see Bromwich, Infinite series, ed. 2, 334,

To prove (2.2.7) wo »bserve that

M hmy=145 20 _1+zﬂ@:zﬂ(ﬂ)"

'§n+l m m g, n.n! \m

Yyl g
=1_2Mf "1
m Jo U

yim | — g-4
- _Zﬂ@([ ! ue du+logm)
Jo

say, by (2.2.3). Now
L m

0y — %(, 00+ L e 22 T du—1
x(#m) — x(y,m+ 1 f u~log =

yfim+1y ¥
ylm e¥
= f —du = w(y,m),
ullmt1) Y
m
say. If we write Z&%—) = g(m),
1

and transform the last series in (1) hy partial summation, we obtain

M —y) = Z g(m) oy, m).
Now it is known that

(2) gim) = O{M—Lm)—z};
and 0<w(y,m)= m(ﬂf’ﬂ_ 1) m;‘ 1 w/<m+1>§i.
Hence the series is majorised by a multiple of
.1
milog m)>’

and is uniformly convergent for all y. Finally, all of its terms tend to 0.

For (2), and much stronger results, seo Landau, Handbuch, 594-597.

For the proof of (2.:2.8) see Hardy (3).

§2.3. For (2.3.3), which is true on the Riemann Hypothesis, see Ingham, 83
(Theorem 30) or Landau, Handbuch, 378-388, For the falsity of (2.3.4), which is
much easier to prove than that of (2.3.5) or the other false assertions of § 2.3, see
Ingham, 90 (Theorem 32) or Landau, Handbuch, T11-719.

To deduce (2.3.4) from (2.3.2), observe that

Rx)—liz+tliat = 0{ S _(M,}
m=3My_1p.p!m?

=O{10ga‘: o —-§ 1 (}O‘;' )} O(at log z).
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The table is extracted from the much more comprehensive one in D. N, Lehmer’s
List of prime numbers from 1 to 10,006,721 (Washington, 1914), except for the values
of 1i 108 and Ui 10%, which ¥ have taken from Ingham. The values of 7r{x) are less by 1
than Lehmer’s, sirice he counts 1 as a prime. Those beyond the range of the factor
tables were found by Meissel in a series of papers in the Math. Annalen of which the
latest appeared in vol, 25 (1885), 251257, and afterwards confirmed by Bertolsen.
Meisgel’s method is an elaboration of the ‘sieve’ of Kratosthenes: see Mathews,
ch. 10. There is an account of Bertelsen’s work in a paper by Gram, Acta Math. 17
(1893), 301-314.

There is a long and interesting essay on these topiecs in the introduction to
J. Glaisher's Factor table for the sixth million (London 1883). Torelli’s monograph
Sulla totalita dei numersi primi fino ad un limite assegnato (Naples 1901) also contains
much interesting information.

§ 2.4. There are proofs of Tchebychef’s theorems in Ingham, in both of Landau’s
books, and in Hardy and Wright, ch. 22.

§8 2.6-2.7. There is no proof of the Prime Number Theorem anywhere in this
book, though §§ 2.6--2.7 contain a sketeh of Landau’s proof, which is simpler than the
original proofs of Hadamard and de la Vallée Poussin, To complete it, we must
prove that
¢{L+1t)
1) Tt

faai |- o

for an a less than 1. This naturally presupposes (2.7.6), which is proved, in two
different ways, in Lecture IV (A). The stronger proposition (1) can be proved by a
development of the first proof (Hadamard’s) of (2.7.6).

Both Ingham’s tract and Landau’s Handbuch contain (a) the simplest proofs of
the Prime Number Theorem (apart from Wiener’s proof referred to in § 2.8) and
(b) more elaborate proofs of much stronger theorems.

A ‘Tauberian’ theorem may be defined as the corrected form of the false con-
verse of an ‘Abelian’ theorem. An ‘Abelian’ theorem asserts that, if a sequence or
function behaves regularly, then some average of it behaves regularly. Thus

Ax)~w
x
implies Ay(z)= f A(t) dt ~3a?:
0

this Abelian theorem is true for any 4(x) and in particular for the A(x) of the text.
The converse is false, but becomos true when we subject A(z) to an appropriate
additional condition, here implied by (2.6.3).

The first Tauberian theorem was Tauber’s converse of Abel's theorem on the con-
tinuity of power series: see, for example, Bromwich, Infinite series, ed. 2, 256. Since

_gg+(a0+a1)x+)(a0+a1+ag)m2+...
- Ldwtz?+ ..,

Qo+ 0, T+ A2+ ... ,

the limit of the series is the limit of a certain average of a,, @y +ay, a;+a,+ay, ...

§ 2.8. What is here called Wienor’s proof of the Prime Number Theorem is the
‘Wiener-Ikehara’ proof, contained in §§ 19 et seq. of Wicner’s The Fourier integral
(Cambridge 1933). There is a quite different proof in §§ 17-18.

The proof has been much simplified by Bochner, Math. Zeitschrft, 37 (1933), 1-9
and Landau, Berliner Sitzungsberichte (1932), 514-521. Landau’s version embodies
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the shortest extant proof of the Prime Number Theorem, but has not yet appeared
in any book. The version in my lithographed lectures on ‘Ramanujan’s work’
(Institute for advanced study, 1936) is substantially Bochner’s,

For the ‘Hardy-Littlewood’ proof see Quarterly Journal of Math. 46 (1915),
215-219 or Acta Math. 41 (1918), 119-196 (127-134). The simplest proof of our
Tauberian theorem is vhat given by Karamata in Math. Zeitschrift, 32 (1930), 319-
320.

§ 2.10. For the summability of log 2—log 3+ ... see Bromwich, Infinite series,
ed. 1, 351.

§ 2.11. The argument towards the end of the section was suggested to me many
years ago by Prof. Maclagan Wedderburn, See Hardy, Quarterly Journal of Math.
38 (1907), 269-28% (277).

The formula (2.11.2: may be deduced by differentiation from the last formula on
p. 283 of this paper (in which the sign of the last term should be changed).

Ramanujan, when ] disputed the truth of his statement, produced the amended
formula

‘ Yy 7?/2 937 _1
Paly) 4 log 2<1"3.1z+7.2: 15.3!+"')"y+F(y)’

loj
where yF(y) = -0000098844 cos (271'0;’%—3’ + -872811)

correct to 10 places of decimals’. This takes account explicitly of the terms in which
k=+1

§ 2.12. The proofs of the ‘explicit formulae’ are given in Ingham, ch. 4 and
Landau, Handbuch, Kap. 19, Riemann’s own argument is reproduced in Mathews,
ch. 10,

For the Mobius inversion formulas see Hardy and Wright, 234-237, or Landau,
Handbuch, 577-580,

§ 2.14. Ramanajan seems to have started his own theory of divergent series with
geries of pogitive terms, such as

1~ 21430, (s<])

and to have ‘defined’ the sum of such a series as the constant of the Euler-Maclaurin
sum formula. But he was not in the habit of giving strict ‘definitions’,
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ROUND NUMBERS

3.1. A number is described in popular language as round if it is the
product of a considerable number of comparatively small factors. Thus
1200 = 24.3.5% would certainly be called round. The number 2187 = 37 is
even rounder, but this is obscured by the decimal notation.

It is a matter of common observation that round numbers are very rare;
the fact may be verified by anyone who will make a habit of factorising
numbers, such as numbers of motor-cars or railway carriages, which are
presented to his attention in a random manner. Both Ramanujan and I
had observed this phenomenon, which seems at first a little paradoxical,”
and were curious about its mathematical explanation,

We therefore proposed to ourselves the problem of determining the
“normal degree of compositeness’’ of a number n. How many prime factors
may one expect to occur in a random large number n?

3.2. It is natural to measure the “‘compositeness” of a number by the
number of its prime factors; and we may count this in two different ways,
according as we count multiple factors multiply or not. Suppose that

(3.2.1) n= plip .. pi = I por,
1
where P <Py < .ee <D,y
is the standard expression of n as a product of primes. Then
(3.2.2) Sy =v

is the number of different prime factors of », and
(3.2.3) F(n)=3Ya,

is the total number of prime factors when multiple factors are counted
multiply; and either of these functions may be adopted as a measure of the
compositeness of n. We shall find that it makes no important difference which
measure we adopt, and for the moment I consider f(n).

* “Half the numbers are divisible by 2, one-third by 3, one-sixth by both 2 and 3, and
go on. Surely then we may expect most numbers to have a large number of factors?
But the facts seem to show the opposite.”
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3.3. It is clear that f(n) cannot be ““very large”. The worst, or roundest,
numbers, those for which f(n) is largest compared with », are the numbers

n=2.3.5..p,
which are products of the first v primes. For these numbers

f(n) =V =m(p,),

and logn = ¥ logp, = Hp,).
Now T;v
(3.3.1) Avlogv<p,< Brlogv,
for constant 4 and B, and so
logp, ~logv.
Hence
oy m(p,) . logn logn
(3.3.2) v =fin) = lognﬂ(pu) fogp, " Togv’
and . Jlogn
loglogn

Thus a large number n cannot have more than about this number of prime
factors. A number about 107, the limit of the tables, cannot have more than
about 6 or 7, and a number about 10%, i.e, about the Eddington number,
cannot have more than about 30.
The total number of prime factors may be a good deal larger; thus 1089

has 160, and n = 2* has

logn

log2’
Here there is a big difference between f(n) and F(n), but we shall see that
this is exceptional.

3.4. The theorem just proved about f(n) is a theorem about all numbers,
and we are concerned with (in some sense) “almost all”’. The function

log»
loglogn

increases slowly, but by no means so slowly as to explain the facts. We
find, if we try numbers at random from near the end of the factor tables,
that f(n) is usually not 7 or 8 but 3 or 4; and we should find, if the tables
could ke extended to the liraits of the Eddington number, that it was usually
not about 30 but about 5 or 6. A number like the Skewes number® would
generally have about the Eddington number of factors (and that may help
us to form some image of its size).

! 8ee Locture I, p. 17.
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We need a definition of “almost all”’. Suppose that P is a property of
a number » expressed by a proposition P(n); that N(x) is the number of
numbers, up to x, for which P(n) is false; and that

N(z) = o(z).
Then we say that ‘‘almost all numbers possess the property P”. Roughly,
the proportion of exceptional » is infinitesimal.

The answer to our problem is that almost all numbers n have about log logn
prime factors. More exactly, given ¢, then almost all numbers have between
(1 —e)loglog n and (1 +€) log log n prime factors. The theorem is true which-
ever way we measure the number of factors, and, as we shall see, it can
be stated still more precisely.

3.5. The function log log n is suggested in another way. We have
2fn)=F¥ X1= %1}

nse nEx nin pPmEL
the summation being extended over all primes p and positive integers m
satisfying the inequality; and when we sum with respect to m we obtain

w61 z/e2f)

(3.5.2) S f@) =2 % 4+ 0(),

nE&r sz P

or

since the removal of a square bracket involves an error of 1 at most. But

(3.5.3) p 12 loglogx+ O(1),
p=zp
and therefore
(3.5.4) > f(n) = zloglogx + O(x).
n=ax
Also SFPn)=3 Xl= X 1
n=x n=z phn pPmEx

(the summation extending over primes p and positive integers x and m),
and 8o

0s9 g [5]- 3 (L))
d
“os0 2[5 ) rxGpe) im0

! p|n means ‘p divides »’, 80 that ¥ 1 implies counting 1 for every prime divisor
nln
of n. Similarly ¥ 1 implies counting 1 for every prime or power of a prime which
p¥ln
divides n.
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Hence we have also

(3.5.7) 3 F(n) = zloglogz+ O(x).
n=x
In particular
(3.5.8) 3 f(n)~zloglogz, ¥ F(n)~zloglogx
n&T n=L

Now if ¢(n) is some gimple increasing function, and
9(2)+g(3) ... +9(n) ~H(2) + E(3) + ... + ¢(n),*
then it is natural to say that *the average order of g(n) is ¢(n)”’. And since
loglog 24 ... +loglogn ~nloglogn,
the average order of both f(n) and F(n) is log log n.

3.6. This is an interesting theorem, but quite different from the one we
want to prove. We want to prove that f(n) and F(n) are usually about
loglogn. Ifg(n)is logp loglog p when = is a prime p, and 0 otherwise, then

2 g(n) = ¥ log p loglogp ~xlog log x,?

niz pE=r

and the average order of g(n) is still loglogn; but g(n) is usually 0 (since
“almost all”” numbers are composite), so that the normal order of g(n) is 0.
In our problem the average and the normal orders happen to be the same,
but that is a peculiarity of the problem.

3.7. There are two proofs of our theorem, our original proof and another
given much later by Turan. Turan’s proof is very simple and elegant, and
I will give it later; but I insert first a sketch of the original proof, which is
in some ways more suggestive.

We need only consider one of the two functions, say f(n). For F(n) 2 f(n)
and, by (3.5.6),

ZF)—fu} = & ( [p%] + [:;%:I + ) < Cz,

for some C. If N(x)is the number of numbers up to = for which
F(n)--f(n)> @,

N@x) C
LT
P Or g+ 4 gn)~@()+... +@(n). Wo start from 2 here bocause loglogn is not
defined for n = 1.
? Since Hay= X logp~n
pEx

and the factor loglog p adds an additional loglogz.
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which is small when G is large; and the number of numbers for which
F(n)—f(n) > x(n), where y(n) is any function of » which increases to infinity,
is o(z). In this sense ““ F(n)—f(n) is almost always bounded ™.

We coufine our attention, then, to f(n). Suppose that o,(x) is the number
of numbers, not exceeding x, for which f(r) = r. Then

x
(3.7.1) w(x) ~7m(x) ~ic7g70'
More generally, it is known that

x (logloga)y—

(3.7.2) w,(x) ~ Togs (=D
Now

(3.7.3) [#] = wy(x) +wy(x) + ... + o (2)+ ...
and

(374) — x logloga - _ 1+g+ .,{_ - gr - +.. )

T = logz® ]ogw( (r—1)!

where

(3.7.5) & = loglogx;

and (3.7.2) indicates a certain similarity between corresponding terms of
the two series. The similarity cannot, of course, be too close, since the first
series terminates; but corresponding terms of fixed rank are asymptotically
equivalent when - co.

The largest term in the series

€2 A ) gr—l
1+§ + - 21:' (r—1)
is that for which r = [£]+1." We write (3.7.4) as
z gr-1 x getu-1

G716 =g ¥ -1 " loge s (RFa=1)1

4 assuming both positive and negative values. By Stirling’s formula
gEr+u-1 e
([E)+p—D)1 |(2nE)

if u is fairly small compared with £. Hence the right-hand side of (3.7.4)
may be compared with

(3.7.7)

e—HI%

Se—n2k

i lo ..1_
Togz' &% J(2nE)

or with e e dt = x;

Jem)..

T There are two equal terms when £ is an integer.
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and the part of this integral for which ¢ is of higher order than JEis negligible.
Thus practically all of the sum of (3.7.4) is contributed by the terms for
which u is O(,). It is natural to suppose that the same must be true of the
series (3.7.3); that practically all of its sum comes from the terms in which

[r—&| = |r—loglog x|
is O(,€) = O{y/(log log x)}.

This, as we shall see in a moment, would prove our theorem and a good deal
more.

The argument is, as it stands, rough and inconclusive. We have to prove
that we can neglect most of the terms w, () in the series (3.7.3), and for this
we need inequalities instead of asymptotic equalities. But these can be
found without much difficulty, and the conclusion is that, if xX(@) is any
SJunction of x such that

J(loglogx) "
then almost all numbers not exceeding x have between
loglogz + y(x)

prime factors. Since logloga and loglogn are practically indistinguishable
over most of the range (1,x)," it i3 the same thing to say that almost all
numbers n have between

loglogn + y(n)
prime factors.

3.8. There is one remark to add before I pass to Turan’s proof of the
theorem. The asymptotic formulae (3.7.2) are corollaries of the Prime
Number Theorem but the final proof is “elementary”. We have to show
that the *“‘tails” of the series (3.7.3) are negligible, and for this we use an
inequality oo oy

z (loglogx 4 ()Y~

(3.8.1) w (x) < A Ic;g—:v( & (Tg_"l)"l_)"‘*’

where 4 and € are independent of both  and ». The proof of this depends
on Tchebychef’s inequality
x

n(x)<Al—0g—w,

and does not require the Prime Number Theorem,
If 0 <e <1 and 2° < n<uw, then loglogn lies betwoen

log (cloga) = loglogx—log(1/c)
and log log z.
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3.9. Turan’s proof of the theorem depends on the identities (3.5.1) and
(3.9.1) S{fm)pPE= X

nsz pp' La, p'Ep
To prove (3.9.1), we observe that the left-hzmd 51de is

2(2121)= S 1= ¥ 1+ %L
om

n<z \pln pn =p'm'sx PHD, PO UET pmEL

p<z

Here p, p’ are primes, m and g any positive integers, and the ranges of sum-
mation are indicated by the subscripts. Summing the last sums first with
respect to # and m, we obtain the result.

Now we have seen in § 3.5 that

(3.9.2) > f(n) psw[ ]_ xloglog z + O(x).

n=a
x 1
Y [“—, = > —+ O(x
pp'sa,pie LPP o< PP’ (@)
we may drop the restriction p=p’ becanse Zp~2 is convergent. But
1\2 1 1\2
3.9.3 ( —) é 7 é( ﬁ) 3
( ) pgz\:/xp pngxpp pgmp
since p £ \Jx and p’ £ Jr imply pp’ £ 2, and pp’ <x implies p <x and p' = x;
and each of the two extreme terms in (3.9.3) is
{loglog z + O(1)}? = (loglog z)*+ O(log log ).

Also

Hence
(3.9.4) [ :| = z(loglog x)?+ O(x loglog x);
»p Sx ¥+
and it follows from (3.9.1), (3.9.2) and (3.9.4) that
(3.9.5) ¥ {f(n)}? = z(loglog x)2+ O(xloglog ).

Finally, writing £ for loglogx, as in (3.7.5), we have
(3:96) T () -& = T P -2 S fm}+£ 3 1

B{E2+ O(E)) — 26a(E + O(V)} + 2w + O(1))
= O(zf),

by (3.9.2) and (3.9.5). But if
| f(n)~E£]> x()

for more than dz of the n less than z, then
Z {f(n) - §}2 > &UXZ,
nsx

which contradicts (3.9.6) if x is of higher order than 4/&; and this proves the
theorem.
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3.10. There is a curious corollary about d(»), the number of divisors of n.

It is familiar that
d(1)+d(2)+... +d(n) ~nlogmn,

80 that the average order of d(n) is log n. What is its normal order?
If n = phpge ... p%, then

(3.10.1) fm) =v, F(n)=Za, d(n)=I1I(1+a,).

Also 221 4+as529,
Hence

(3.10.2) 2 < JI(1 4 a,) < 2%,
or

(3.10.3) 21m) < d(n) £ 27,

Since f(n) and F(r) are both usually about loglogn, it follows that d(n) is
usually about

(3.10.4) uoglogn — (log )982 = (log n)08--.

We cannot quite say that ‘“the normal order of d(n) is 2108187 gince the
inequalities which we prove for d(n) are of a much less precise type than
those which we prove for f(n),' but we can say, more roughly, that the
normal order of din) is ““about 2'gloes’,

In this case the normal and average orders do not agree; d(n) is usually
much below its average order. The explanation is simple; d(n) is too irregular.
Most numbers have about 298127% divisors, but some have a very much
larger number, so much larger that these abnormal numbers dominate the
average of d(n). The irregularities of f(n) and F(n) are not strong enough to
produce a similar effect.

Tt is natural to put the same question about »(n), the number of repre-
sentations of # as a sum of two squares; but in this case the answer is
immediate. Since

r(1)+r(2)+ ... +r(n)~mn,
the average order of r(n) is 7. The normal order, on the other hand, is 0,
since most numbers are not representable.?

! Of the type Qloglog n—x(n) < (n) < Dloglog n+xM),
The normal order of logd(n) is
log 2 loglogn.
Ax
# QOnly about e
v Jioga)

of the first x numbers are representable. See Lecture IV (B). For the average order,
see Lecture V, § 5.1,
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3.11. I conclude by mentioning a conjecture which I made in 1936 and
which has since been proved, independently, by Erdés and Pillai.

The asymptotic formula (3.7.2) is true for every fixed r, and it is natural
to suppose that it is also true when r is a function of x which tends to infinity
sufficiently slowly. If it held for

r = [loglogz],
then a simple application of Stirling’s theorem would give

1 x .
“l=)~ 75 J(log log 2)

and at any rate we might hope to prove that

Ax
(3.11.1) wr(m)>m
for some positive 4. The opposite inequality
Aw

@) < J(oglogz)
(for some A) is a trivial corollary of (3.8.1). All that I could prove, however,
when I made the conjecture, was that

Az
orle)> (loglog )t

Erdos and Pillai have now proved (3.11.1), and indeed that the inequality
is true for

loglog z— B \/(log log z) < 7 < loglog = + B \/(log log x);
and Pillai has proved a good deal more, viz. that, if 0 <k <e, then

z (loglogz— C)-1
(@) >logx (r—1)!

for r=k(loglogx— ),

where € depends only on k. The truth of (3.11.1), for the range of values of
r stated, is a simple corollary.

NOTES ON LECTURE III

The main theorem of the lecture was proved by Hardy and Ramanujan, Quarterly
Journal of Math. 48 (1917), 76-92. This paper is no. 35 of the Papers, no. 32 being a
preliminary account.

Turan’s proof, given in § 3.9, was published in his paper 1. We have incorporated
a simplification suggested by Mr Marshall Hall. The proof is algo reproduced in Hardy
and Wright, § 22.13. Turan (2) has proved several generalisations of the theorem.
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§ 3.3. The inoqualities (3.3.1) and tho asymptotic relation

can be proved by ‘olementary’ roeasoning. See for example Hardy and Wright,
ch. 22, and Lecture II.

For (3.5.3), and sharper results, see Hardy and Wright, ch. 22; Ingham, 22-24;
Landau, Handbuch, 100-102, The slightly sharper result

1
Y —=loglogz+ .4 +o0(l1)
p=aP

(with the proper value of 4) is equivalent to Mertens’s theorem

1 eY
1 _— Ty
Z)Iélr( p) log =

It is almost as easy to prove the more precise equations

where v is Euler’s constant.

T x
= v A e =
ngmf(n) zloglog x+ Az + O(log m) : néxF(n) z log log z+ Bz + O(log x) ,

where B=A4+X AT .
»p-1)

These equations are stated in § 1.2(3) of the joint paper referred to in the first of
these notes.

§ 3.7. For (3.7.2) sve Landau, Handbuch, 203-213.

§ 3.10. The maximum order of d(n) is roughly

logn
gloglogn

This was first proved by Wigert : see Landau, Handbuch, 219-222, Wigert and Landau
use the Prime Number Theorem in the proof, but Ramanujan (Papers, 85-86)
showed that this was unnecessary.

§ 3.11. See p. 5 of my lithographed lectures referred to in the note on § 2.8 (p. 47).

The proofs of Erdés and Pillai have not yet been published.



IV

SOME MORE PROBLEMS OF THE
ANALYTIC THEORY OF NUMBERS

4.1. In this lecture I return to the classical problems of the analytic
theory of numbers. Its contents are miscellaneous and rather disconnected,
but have a thread of unity because most of them are suggested by those of
Ramanujan’s letters. I begin by a digression on a topic about which
Ramanujan said nothing, but to which I referred in Lecture LI.

A
The proof that {(s) has no zeros on o = 1

4.2, The prime number theorem is “equivalent’ to the theorem that
(4.2.1) &1 +t) %0,

in the sense that no deeper properties of {(s) are required for the proof.
The strict equivalence appears only when we use Wiener’s method, but
(4.2.1) is essential in any version. The standard proof of (4.2.1) is
Hadamard’s, but there is an' alternative proof, due to Ingham, which
is interesting in itself and relevant here because it depends on one of
Ramanujan’s formulae.

Hadamard’s proof depends on a simple trigonometrical inequality, viz.

(4.2.2) 8+ 4cosf+cos20 = 2(1 4cos6)2z0

(for all real #). We use this as follows, By Euler’s formula

1
log §(s) = ZIOgj”_p—s

= Zp~*+f(s),

where f(s) is regular for oz 1 (and indeed for o> 3). Hence
log|&(o+it)| = REp o #+g(o,t)
= Yp~cos(plogt)+g(o,t),

for o> 1, g(o, ) being bounded, for any fixed f, when o> 1.
It follows that, if we write

X(o,t) = log | £3(0) {40 + it) E(o + 2i¢) |,
and continue to use g(o, ) in the same sense, then

x(o,t) = Zp~7{3+ 4 cos (tlog p) + cos (2t log p)} + g(o, 1);
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and therefore (since the terms of the series are positive)

(4.2.3) x(o, t)> — A(t),
where A(t) is independent of o, when o -> 1.
We now fix ¢, If §(1+41) = 0,
then Lo+it) =¢Ll+it+o—1) = (og—1)kh(o,1),

where k is a positive integer and logh(o,t) is bounded when o—1; and
therefore

1
log | {(o+1it) | < —klogaﬁnpA(t)

when o—1. Also log | &(a + 2it) | < A(t)

1
o—1

and log | §(o) | <log +4,

where A4 is constant. Thus
1
x(0, t) < (3—4k)log iRt A(t)—— o0,
in contradiction to (4.2,3).

4.3. Ingham’s proof depends on a formula published by Ramanujan in
1915, viz.

: _ w T n)oy(n) L&) E(s—a)l(s—b)L(s—a—b)
(4.3.1) f(s)_z_—ﬁ%?'-’-—_ E ¢(3s —ab) ,

where o,(n) is the sum of the a-th powers of the divisors of n, and
Hs, R(s—a), R-b), Res—a-—>)
are all greater than 1. In particular

d¥(n) _ L4s)
f (4.3.21) 2 =
oro>1.

To prove (4.3.1) we observe that
x(n) = oy (n) oy(n)
is “multiplicative”, i.e. that
x(nn') = x(n) x(n')
for coprime n and »". Hence
(4.3.3) f(s) = I1fp(s),
»
where p runs through the primes,

. 2o (PA)U’b(pR)
8) =14 ¥ L2021
Io®) =1 pre
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and s has any value for which the product is absolutely convergent. But
) p(/\+1)a —1 p(/\—l ]

fp(8) = A§0 =1 “}J”— 1 -8
1 Pt pe P ]
Tt =) (P 1) |T—patts T T—pe e T—pﬂﬂ“_p‘?s
1 —-pa+b—2s .
= (1<) (L= pi-*) (1 = ghs) (1 Zpavi-sy’
1 ._pa+l)~2a

so that fls) = 1;1 (L—p=5) (1= p%) (1 — po=#) (1 — pa+o-9)
_ §(3)§(s—-—a,)§(3—b)§(s——a-—b)‘

{(2s—a—b)
Let us now suppose that

€(1 +1‘C) = 09
for a positive ¢. If we take @ =icand b = —ic in (4.3.1), we obtain
= plou@|® _ L) E(s— ic) (s +ic)
(4.3.4) fay=2% i T e .

This formnla is valid, in the first instance, for o> 1. But f(s) is regular for
o > %, since the double pole of {*s), for s = 1, is cancelled by the zeros of
{(s—ic) and (s +ic); and the coefficients in the series are positive. Hence,
by & well-known theorem of Landau, the series is convergent, and represents
f(s), for o>}, and in particular when s =%+ 6> 4. Thus

[oa(m) |?
fE+48)= 2——7;”—5 o>1
for § > 0. On the other hand
{(28) = £(1+28) >0
when &0, and all three factors in the numerator of (4.3.4) are bounded;
8o that 1(3+8)-»0.
The contradiction shows that £(1+ ic) + 0 for any positive ¢.
B
The number of numbers which are sums of two squares

4.4. Theassertion which T numbered (1.15) in my introductory lecture was

“the number of numbers between 4 and a which are either squares or

sums of two squares is
Kfz b +0(x)
44/(logt) ’

where K = 0-764... and 0(z) is very small compared with the integral .
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It is immaterial whether we include actual squares or not. Ramanujan
later (i) gave the exact value of K, viz.

o 2

where r runs through the primes 4m 1 3, and (ii) stated that 0(x) is of order

M)

We shall see that this last assertion is false.

4.5. 'This problem was solved by Landau in 1908. The solution is very
interesting because it depends on the application of the classical methods
of prime number theory to a function with an algebraical singularity.

We denote primes 4m -+ 1 and 4m + 3 by ¢ and r respectively. In order
that 7 should be a sum of two squares it is necessary and sufficient that

n = 2001

where g i3 a product of primes g and v a product of primes r. 1f we define
b, as 1 when n i3 a sum of two squares, and 0 otherwise, then b, is 1 when

n = 220 [Ir%,

-l b'lb — 1 TS
and f(‘?):}.iﬁ_;_‘ 1_’?511 q_sII r‘“'
I 1 1
Also te) = 5= 11y —q~s Iy ==
1 1 1

and L(s) = gt _II — i o
8o that

(4.5.1) {fl)}? = Yris) 4(s) Lis),
where

) 1 1
(4.5.2) 7)[/(8) = 1;_QT;H1_:;—_'ZS'

It is plain that y(s) is regular, and has no zeros, for o > }. As regards the
other factors in (4.5.1), L(s) is an integral function, whose value for s = 1
is 1, while {(s) is regular except for its pole at s = 1. It is also known that
neither ¢(¢) nor L(s) vanishes in a region D, stretching to the left of o = 1,

of type
o>1— - fl——
{log (| ¢]+2)}
Finally, {(s) and L(s) are O{(log | £ ])1}
for large ¢ in .
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It follows that J(8) = (s—1)"tg(s),
where g(s) is regular in D and

O e

—'r_'

2):* = K\/m.

4.6. If B(x) = Z bn)

nsz
then B(x) is the number of representable numhers up to xz; and
] c+io 8
(4.6.1) B*z) = 3 b, = --—f 16 ds

nsr 2mi J oo

for ¢>1." We have to treat this integral (or
some derived integral) as we treated the
integral for ¥r*(x) in Lecture 11.

I give a rough sketch of a proof, which may
be compared with the “first approximation”
(§ 2.5) to the proof of the Prime Number
Theorem. Thereare twoimportant differences.
The integral (4.6.1) is much simpler in one
way, since there is no zeta-function in the
denominator; but the integrand has an alge-
braic singularity instead of a pole. Hence
B*(x) will be approximated not by a residue
but by a loop integral round s = 1. We must
transform the path of integration into a path
of the type C (Fig. 1), and our approximating
function will be

1 z
(46.2) 5. f ) s

Fig. 1
N (A _ Kyn
—27_75.[1‘(8—“1)*8 ds = 2mf (s—1)3 h(s)ds
where
(4.6.3) h(s) = 1+a(s—1)+ay(s—1)2+...

near 8 = 1, and L is the lacet from 1 - round 1 shown in the figure.
If we treat h(s) as 1, we obtain

IxJ‘ 2% _ Kz ’ie—"l"“d
N7 1oy 1-—3)gr Jﬂ BV b
Kz
which is practicall Gy e
P v Jog7)

* The star and dash havo the same meanings as in §2.5.
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And the argument, when properly developed, will show that

Kx a a
4.6.4 Bz)= — {14 ., T2
(864 = floga gz * togar
the series being an usymptotic series in Poincaré’s sense. This is effectively
Landau’s result, though he does not push the analysis so far.

4.7. Now p
T dl K L B

610 K[ i = T g Goga )
the geries being again asymptotic. Thus Ramanujan’s result is, apart from
the 8(x), of the same form as (4.6.4); but the coeflicients in the two series
are not the same.’ Those in (4.6.4) depend, in a rather intricate way, on the
coefficients a,, a,, ... in (4.6.3). 'Lhe integral (4.7.1) has no advantage as an
approximation over the first term of the geries (4.6.4), and Ramanujan’s
assertion (15), though true as it stands, is definitely misleading. He was
misled, not unnaturally, by the analogy with the Prime Number Theorem,
in which the logarithm integral liz is a significant and a particularly good
approximation,

It remains true that

Kz
B(x) ~—— -—,
@~ Tog =)
and it would be very interesting to know just how Ramanujan came to this
conclusion. It seems clear, from the form of K, that he used the formula

(4.5.1). The rest of his argument was no doubt highly speculative.

4.8. Ramanujan made a similar mistake later in an unpublished manu-
script which was cxarnined after his death by Miss Stanley, Watson, and
myself. Ramanujan’s function 7(n)? is “almost always’ divisible by 5.
More precisely, if £, = 0 when 7(n) is divisible by 5, t, = 1 otherwise, and

T(w)= 3 b,
x
then T@)~C (_ISg 5??

for a certain C. Yere again Ramanujan was under the misapprehension
that

¢ f noa
Jalogt)}
was u much better approximation.

! In fact 4, . * Seo Lecturo X.
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C
A note on the Mdbius function pu(n)

4.9. Itiswell known that cortain theorems concerning Mébius’s function
#(n) are “of the same depth” as the Prime Number Theorem; they are
equivalent to it in the sense that they can be deduced from it, or it from them,
in an ‘“elementary”’ manner. In particular this is true of the theorems

(4.9.1) zf‘gi) =0
and
(4.9.2) M(x) = n%:rﬂ(n) = o(x);

and these two theorems are naturally equivalent in the same sense. That
(4.9.2) follows from (4.9.1), indeed, is trivial, since the convergence of

5%
n

implies A, =t+a,+...+a, =o(n),

whatever ¢,,. The deduction of (4.9.1) from (4.9.2), while technically *ele-
mentary”’, is much less immediate, and depends upon a rather delicate
theorem of Axer and the special properties of u(n).

There are assertions in Ramanujan’s first letter to me which imply his
familiarity with (4.9.1) and (4.9.2). There is of course no question of his
possessing a real proof. It is immediate that

/t(n) lim 2
S =M=
and he would hardly have dlstmgulshed between this and (4.9.1).

The assertions are those numbered (2) on p. xxiv of the Papers. If uis a
number which is the product of an odd number of different prime factors,
and U(z) the number of such numbers up to z, then

3x
(4.9.3) U)~5,
1 9

(£.0.4) = o
L1 15

(4.9.5) 2.&] =53

The last two theorems are easy, We write g for a quadratfrei number,
u in the sense just explained, and v for a ¢ which is not a «. Then

:u(u) =-1, F’(v) =1
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and 2% = %zl_/‘_(l”)li;_ﬂﬁ)
But 2/_‘5;1) _ C—(l.s—)
.

for s>1, and (4.9.4) and (4.9.5) are particular cases.
The theorem (4.9.3) lies deeper, and depends on (4.9.2). If we define
@(x) and V(x) as we detined U/(x), then

Q) = Ulx)+ V(x)
and M(z) = Vix)— Uz).
It is quite easy to prove that

and (4.9.3) then follows from (4.9.2). Thus Ramanujan’s assertion here is
just of the same “dopth” as the Prime Number Theorem.

NOTES ON LECTURE IV

§ 4.2, Hadamard’s proof can be developed so as to show that {(s) has no zeros,
and indeed

) >
{og ([ 2]+ 24
. . A
in a rogion o>1

" {log (| 2]+ 2"
Here tho A are appropriate positive constants. See Landau, Handbuch, 169-180.

Ingham’s proof wag published in his paper 2. It can be applied to all Dirichlet's

* L-funetions”, and in particular to
Ls)=1-"— 32450 — . ;

but it cannot be developed in the same way as Hadamard’s.

§ 4.3. The formula (4.3.1) is stated in the Papers, 135 (15), There is a proof in
B. M. Wilson (1).

For (4.3.3) see, for example, Hardy and Wright, 247-248,

Landau’s theorem was published in Math. Annalen, 61 (1905), 527-550, The proof
is algo given in the Handbuch, 697-698.

§ 4.4. See the notes on p. 10 (printed on p. 20).

For Ramanujan’s actual nssertions sce Papers, xxiv and xxvii. It is plain that,
if his staterment about tho order of 6(x) wore correct, it would be important whether
we counted actual squares or not.

HR 5
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§ 4.56. The properties of {(s) assumed here are included among those proved by
Landau in the part of the Handbuch referrod to in the note on §4.2, For the extensions
to L-functions, and in particular L(s) = 1-¢—3~*+ ..., see Handbuch, 459-464.

§ 4.8, The argument here is a little less unsophisticated than that of § 2.5, since
there I assumed the truth of the Riemann Hypothesis, wheras here I agssume nothing
about the zeros of {(s) and L(s) which has not been proved (and have for that reason
to use a curvilinear contour). In other respects the argument is as rough as in § 2.5.

§ 4.8. Seo Stanley (1). The function 7(») has many curious congruence properties:
for example 7(n) = 0 (mod 691) for almost all . For these, see Mordell (1), Watson (23},
and Lecture X.

§ 4.9. See Landau, Prac. Matematyczno-Frzycznych, 21 (1910), 87-177 (180-137),
and the note on § 2.2.

For the asymptotic formula for @(z) see Hardy and Wright, 267-268; Landau,
Handbuch, 604-609, The theorem is due to Gegenbauer.
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A LATTICE-POINT PROBLEM

5.1. Suppose that D is a bounded region in the plane of  and v, including
the origin O inside it; and that D(x) is the result of magnifying D about O in
the linear ratio 2t : 1 or the areal ratio :1. About how many lattice-points
(i.e. points with integral coordinates) are there, inside or on the boundary
of D(x), when x is large?

The most familiar of such “lattice-point problems” is Gauss’s “circle
problem . Here D is the unit circle and D{z) is the circle

wr+ v s,
It is easy to show that, if N(x) is the number of lattice-points in D(z), then

(56.1.1) N(z) = me+ O(xt)

(the area of the circle, with an error of the order of the circumference).
This theorem is almost intuitive, but is very far from expressing the final
truth, more profound analysis of the problem having shown that the § in
(5.1.1) can be replaced, first by %, and then by various smaller numbers,

We can also state the problem in a less geometrical form. If r(n) is the
number of representations of an integer n as the sum of two squares (repre-
sentations which differ in the order or sign of the bases of the squares being
reckoned separately), then r(n) is the number of lattice-points on the circle
u?+ 9% =n, and

N(x) =r(1)+r(2) +... +r(x]) = Qéj r(n);
n=e
so that (56.1.1) may be written as
(5.1.2) 3 r(n) = mx + O(xt),
n=z
and becomes a theorem about the “average order” of the arithmetical
function r(n).

There are many generalisations of the problem, to ellipses, and to

hyperspheres and hyperellipsoids in space of any number of dimensions.

5.2. Another famous lattice-point problem is ““Dirichlet’s divisor
problem”. It is convenient to state this in a slightly different form. The
circle of §5.1 was symmetrical in all four quadrants, and we might have
stated the problem for one quadrant only, If D(z) is now defined by

u=0, vz0, ur+evise,
then N(z) = }mz+ O(xt).
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We could equally well define D(x) by
u>0, v>0, ut+vigz,
discarding the points on the axes; and we shall see that this modification
18 essential in the divisor problem.
In the divisor problem D(z) is defined by
>0, v>0, uvse,

8o that N(x) is the number of lattice-points between the axes and the
rectangular hyperbola uv = , counting those, if any, on the hyperbola but
not those on the axes. There are an infinity of points on the axes, so that it
is essgential to exclude them.

It was proved by Dirichlet that in this case

(6.2.1) N{z) = zlogz+ (2y — 1) + O(xt),
where y is Euler’s constant. This theorem corresponds to (5.1.1), though
its proof is not quite so trivial. As in the circle problem, the theorem has
beenrefined by modern writers, the results being much the same. Alternative
statements are (i) that

(5.2.2) > d(n) = xlogx+ (2y— 1)z + O(xt),

nsx

d(n) being the number of divisors of n, and (ii) that

(5.2.3) [x]+ [g] + [g] +.oo=aloge +(2y — ) a + O(xt).
The last form is that used in Dirichlet’s proof.

5.8. T do not know how much Ramanujan had thought about these
problems in his early days. He was familiar with the dominant terms

xloge+(2y—-1)x
of Dirichlet’s approximation, and had probably found them by an argument
of the same kind. In this case he should have known (5.2.1). But he was
unlikely to make any substantial contribution to the subject, since the sting
of all these problems lies in estimates of error, about which his early ideas

were quite vague,
Thus in his first letter to me he says

“d()+d(2)+...+d(n) = nlogn+ 2y~ 1)n+ 3d(n)”.
We should infer (if we took this statement at all strictly) that the order

of the error in Dirichlet’s formula does not exceed that of d([x]), and in

particular that
N(z) = zloga+ (2y — 1) x + O(x*)
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for every positive €. This is false (indeed with ¢ = }), though not very easy
to disprove. It is however much more likely that Ramanujan inserted
the term }d(n) merely as a recognition of a quite sound formal principle.
When we are investigating the *sum-function”

.A(SC) = ZA ay
n=r
of an arithmetical function a,,, it is usually not 4(x) but
A¥(x) = X' a,,
n:e
with the last term a;; multiplied by } when z is an integer, which presents
itself naturally in the analysis.’
Later in his life, of course, Ramanujan was interested in these problems
in a more sophisticated way, though his contributions were not important.

5.4. Here, however, 1 am not concerned with either of these classical
problems, but with one connected with another of Ramanujan’s assertions.
This also is in his first letter to me, and runs

*the number of numbers of the form 2#3¥ less than n is

log 2n log 3n”

2log2 log 3
The formula is of course intended as an approximation, and there is no
evidence to show how aeccurate Ramanujan supposed it to be.

It will be converient to write

p=1logn, w=log2, ' =log3.

Then Ramanujan’s assertion is that the number of solutions of the in-
equalitics

(5.4.1) uz0, v20, wutwv=y
2 9 1
e . 1v" [/ z
is “approximately 2wa)’% 2w+2m’+2

The } at the end, of course, is not to be taken too seriously; and we shall
see that, if any constant has a right to stand there, it is not 1,

1 propose in this lecture to give a short account of some of the very curious
and interesting analysis which can be made to hang upon Ramanujan’s
assertion.

' As in Porron’s formula

A , 1 [etie (5"d8
[ = T‘ e K, _
(=) f\;.-“;xa" 2mi .‘.c—ir»f(q) s

where f(s) = Za,e~d2. See Hardy and Riesz, The general theory of Dirichlet's
series, 12, Here the List term is to be multiplied by 3 ifzisa A,,.
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5.5. Let us suppose then that w and ' are any positive numbers, that
N(ﬂ) = N(%ws a)')

is the number of solutions of (5.4.1), i.e. the number of lattme -points in a
certain right-angled triangle, that

A
(5.6.1) 20 = 5,0 T30 T 207
and that
(5.6.2) N(n) = 2(n)+ R(n).

The problem is that of finding the best bounds that we can for R(y). It has
been considered, in different forms, by a number of writers, and in particular
by Hardy and Littlewood and by Ostrowski. Hardy and Littlewood, in
two papers published in 1921 and 1922; consider it in the form in which it
is stated here. Ostrowski considers a slightly different problem, super-
ficially more special but substantially equivalent, and obtains, by different
methods, very much the same results.

The problem is not changed materially if we disregard lattice-points on
the axes. The horizontal and vertical sides of the triangle are y/w and »/w’,
and the number of lattice-points on them is

W N

where |j| =1, Hence, if we denote by M(y) the number of lattice-points
inside the triangle or on its hypotenuse, then

where r(y) differs from R(y) by 1 at most.
It is plain first that

(6.5.3) N = ZW +0(1)

(the area of the triangle, with an error at most of the order of its perimeter).
Beyond this everything depends upon the arithmetic nature of

0 = wjw'.
Since N(@n,w,0') = N(kn, ko, k'),
it is only the ratio # that is really relevant to the problem.
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Rational 0

5.6. The simplest case is that in which @ is rational. Then (since only
the ratio of w and «’ is relevant) we may suppose that

w=a, © =0b,

where a and b are positive coprime integers,
The number of solutions of

(5.6.1) au+bv =n

is [:b +&
where ¢ is 0 or 1.' It follows that N (%) has a jump of order 5 when 7 passes
through the value %, so that the equation
R(7) = o(7)
is false, R(7) being effectively of order 7.

5.7. We can calculate N(7) explicitly as follows. If A, is the sequence of

numbers
au+ by (u,v=0,1,2,...)

! See for example Bachmann, Niedere Zahlentheorie, ii, 129. The proof is simple,

that
Suppose tha n=mab+r  (0=r<ab),

and write u=bU+p, v=al+ta (0=Sa<a, 050<b);
80 that (5.6.1) becomes
(5.6.2) mab+r = (U+V)ab+af +ba.

Consider the set of ab numbers
afl +ba O=a<a, 0S4<b).

All these numbers are loss than 2ab and incongruent (mod ab), Hence they can be
written as

p, ab+p’,
where p and p’ together fun through
0,1, ..,ab—1,
If aff +ba = p,
then (5.6.2) implies UV =m.

There is one pair a, § satisfying the first equation, and m + 1 pairs U, V satisfying
the second, and each set U, V, a, £ gives a solution of (5.6.2), On the other hand, if

aff + b = ab+p’,
then (5.6.2) gives UtV =m=1,

and in this case there are m solutions only.
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arranged in order of magnitude, and with each A, counted as often as it

occurs, and Fs) = Ze-he,

. N+ - 1 ¢tiw eqsd
then ) 25151, = %) i fls ) ds.
Here ¢ > 0 and the dash has the meaning explained in § 5.3. But

1
— ~{autbv)s —
f(s) u,z,'ve (1 _ e—ae) (1 - e—bs)’
8o that
1 e+iw end dS
®
(5.7.1) N (77) zﬂ@fc—-'im (1 _ e_as) (1 _e_bg) 8

We calculate the integral as a sum of residues. The integrand has
(i) a treble pole at the origin, with residue
7, n..q , 0*+3ab4b?
(5:7.2) PO = 5a5*2qt 26 12ab
(ii) double poles at the points
8= ki,

where k is an integer, with residues
e2kqni

okabmi (’7 s do+ %b)

(iii) simple poles at the points

ks 2k
8= — (atkh), 8=m(b*k),
a
1 e2kni(y+ib)a 1 e2knily+ia)d

with residues S Fbnja)’ 4w sin (ke b)

respectively: and it is not difficult to show that the integral is equal to
the sum of all these residues.3 A straightforward caleulation then leads to
the formula

(5.7.3) N*(n) = P(y)+ Q(n)+ T1(n) + Taln),
where P(y) is defined by (5.7.2),
6.4 Q)= -1 0y - -,

' By Perron’s formula alrcady guoted on p. 69,
* xty means ‘z is not a divisor of y’ (the contrary of z|y).
3 'We apply Cauchy’s theorem to a rectangle
c—iT, c+iT, —E4:2T, —E—4T,
where T is 80 chosen that the horizontal sides of the rectangle do not pass within a
fixed distance ¢ of any pole, and then make 7' and £ tend to infinity.
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2k
| eos ) L cos 2 (n+ da)
(6.1.8) Ty = - 22" ———pm— Tel) =~ 22—
ksm—&f ksm—b—

the k in the last two series running through all integral values which are
not multiples of @ and b respectively.
It is plain that

Q) =~ (1= 1= +0(1),
and T,(n) and T,(y) are periodic (with periods ¢ and b respectively), and so

bounded. Hence
(5.7.6) N*() = Pn)— (1~ [1] = 1)+ 0(1)

for large 5. The second term has a discontinuity
n
ok +0(1)

when 9 passes through an integral value », in accordance with our con-
clusions in § 5.6.

Irrational 0

5.8. The problem is naturally more difficult when 0 is irrational. It has
been proved, in the first instance, that

(5.8.1) R(n) = of)
for all irrational 4, so that
o
(5.8.2) () = 2w T 2w T 2

is a genuine approximation to N(7); and there are sharper results for special
classes of 4. These depend upon the nature of the rational approximations
to 6, or (what is the same thing) on the behaviour of the quotients a, in

the expression

1 1
0 =ap+————..
al—l— a2+

of 6 as a continued fraction. If the a, do not increase very rapidly, then

(6.8.3) E(n) = O(y=),
for an « between 0 and 1; and if the a, are bounded, then
(5.8.4) R(n) = O(log ).

In particular (5.8.3) is true for all algebraic and (5.8.4) for all quadratic 4,
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The @ of Ramanujan’s problem is transcendental. Its irrationality is

trivial, since log2 a

log 3 b
would involve 8¢ = 20, That it is transcendental follows from the theorem

of Gelfond and Schneider, that
af

is transcendental whenever « and £ are algebraic and g irrational. For 3 and
30 =2

are rational, and therefore 8§ cannot be algebraic.
The most that we can prove about R(y), in Ramanujan’s case, is that

—of N
(5.8.5) E(y) = O(log ?7) .
This I prove in § 5.15. The slightly less precise equation
fir ¢/
(5.8.6) Ry = 0(10”),

which I prove in § 5.12, is substantially one of Ostrowski’s theorems.

5.9. There is an ‘“‘identity” for N*(y), when 6 is irrational, which is
similar in form to (5.7.3) but involves series which are not convergent in
the ordinary sense, I shall not use this, but I shall give a proof of (5.8.1)
and (6.8.6) which is due substantially to Heilbronn. Heilbronn’s argument
is the same in principle as Ostrowski’s, but simpler. It is effective when we
have to prove R(y) “only a little less than 5, as it is in (5.8.1) and (5.8.6),
but does not lead, in this simple form, to the more precise results which,
like (5.8.4), are true only for very ‘“simple” 6.

We define {x} by {a} =x—[x]-4.

This function has the analytic representation

1 in 4
{x} = —;(sin27m:+sm by ),

2

but we shall not use this here.
The ordinate 4 = n cuts the hypotenuse of the triangle in the point
7 —ne

H 1 s

w

and the number of lattice-points on it is

1)
W
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— N - 1 -
o - 3 (<[4 2 057 2.0

nEglw nEglw nEg/w

It L-[2]+s

then the first sum is
()5
() w 2/ 21w W W

R A R [ PR

Hence
(591) Ny = 1o+ 21 8+ 0(1) = Q)= Sn) +0(1),
where
(5.9.2) soy= 5 {0
nzpjw (W
and the proof of (5.8.1) is reduced to & proof that
(5.9.3) S(7) = o().
Ostrowski, in his paper referred to on p. 70, is concerned with the sum
A

a series of much the same type as (5.9.2), and his arguments may be applied
with equal effect to (5.9.2),

5.10. If P _ Pm
7 Im
is a convergent to the continued fraction for #, then g, tends to infinity
with m and
0_P _g_Pm_(~ %)m ,
q 9 Im9m+y
where Tt = Gnrrdmt Ina

and a,,,; is the complete quotient corresponding to a,,.,. We suppose
that ¢ < #/w and

I:g)—:|=7‘q+s (rz1,0=s8<gq).

Then
rg-1
(5.10.1) S(y) = ’fgn {w.”_ -—nO} +0(s) = §*() + O(s).
If we write

n = pq4v (=01, .,r—1;,v=0,1,...,¢—1),
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then
r-1
(5.10.2) S*(n) = Z 2 {———(,uq-i—v) }: Y Sp(ﬂ)»
#=0y=0 p=0
where
g-1
(5.103) 8, =% {a~10}, a=a,= T —up0.

We prove in the next section that
(5.10.4) 8,(n) = 0O(1),

7
uniformly in «. If we assume this for a moment, then (5.10.1), (5.10.2),
and (5.10.4) will give

(5.10.5) 8(n) = O(r)+ O(s) = 0(5”—) +0(q,).

Proof that S,(5) is bounded

5.11. Let us suppose, to fix our ideas, that m is even. Then

0<f-2 < lz .

q 4

Also o = g—!— 8,
q
where a is an integer and 0=2d< c_—;
Thus a-v@—a_VP=6—v(0-z—))
q q
is less than 1/g and greater than —1/g, so that
(5.11.1) R il A
q q

If m is odd, so that 6 is less than p/q, then we define a by
a=2_s (0§8<l),
q q
and (5.11.1) is then still true. Hence in any case

(5.11.2) a—vo, 22

differ by less than 1/g. But (p,¢) = 1, and therefore
a—vp

=13,47,
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where 4, is an integer and 7, runs, in some order, through the values
12 qg—1

36, q LAERS ] q

The integral parts of the numbers (5.11.2) can differ only if there is an
integer between the numbers, and this can happen only if r, = 0, and
therefore once only. In this case the difference

| &P
o]

is 0 or — 1. We call this difference e.
It follows that

0

7—1 g-1 —
Ya-vw]=3X% a4 Vp]—l—e
0 0 q

q—=1,4 __ —
= o vp-—l'—g—'...—"q'_‘l'l"e
0 q 9 9 q

=a—§(p+1)(g—1)+e¢,
g—1 =1 -1
8,(q) = %_‘, {o—v0} = 20‘, (e—v0—3)— 20 [oe —v8]
=gla—3})—-i9(g—-1)0—-a+4(p+1)(g—1)—ec
— o — A =Py
= go—a—4q(g 1)(9 q) 3—¢,

- 1
l‘ p(9)|§|43|+%q2.;l§+%+1<3
This completes the proof of (5.10.4) and so of (5.10.5).

5.12, We have thus
8n) = 0(}) +0(gn).

Given any positive 8, and any sufficiently large 5, we can choose m so that

% <G < 07,
7 + < 207
T
Hence 8(y) = o(») for all irrational 0; and this, as we have seen, is equivalent
to (5.8.1).
Suppose next that J has Ramanujan’s value, Then
(6.12.1) [2¢—37| =1

for all p, g. This is | 1 —eplogd-gqlog2| > 9—q
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from which it follows that
(5.12.2) [gf—p|>A2—

for a constant 4 and all g.
If p and q are p,, and ¢, then

1
IQmO_.pm|<q ’

m+l

and 8o Gy < A2Tm < e4m !

We can choose m go that

i e <

Ay L_
Then edm > @y > Tog7’

qm>Alogy,

7 i
q,,,+q"'<A1—"ogo7'

and this proves (5.8.6).
Proof of (6.8.5)

5.13. It remains to prove (5.8.5). This is a very small improvement on
(5.8.6), and no doubt says very much less than the final truth, so that it
may seem odd to insist on it. But the proof depends on a very interesting
theorem of Pillai, and it is for the sake of this theorem that I include it.

We write down the sequence

2, 3, 4, 8 9, 16, 27, 32, 64, 8I,...,

formed by the powers of 2 and 3 arranged in order of magnitude, and call
the n-th term of the sequence u,,. Then Pillai’s theorem asserts that u,,  , —u,,
the n-th gap in the series, tends to infinity nearly as rapidly as u,. More
precisely, given any positive 4,
| 22— 8V | > 2082
for all integral x and y with x > xy(d).
It follows in particular that the equation

(5.13.1) 22 —3v=F

can have only a finite number of integral solutions for any given k. This is
easier to prove. A very well-known theorem of Thue says that

(5.13.2) AX$_BY3 =1

' The various A’s aro naturally not the same.
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(with any integral A, B, ) has only a finite number of solutions. If we
now put
€T e 3_E+P, y=377+0- (P,0'=0:1s2);
we obtain nine equations
2°(26)3 —3°(37)3 =k
of the form (5.13.2). Each of these has only a finite number of solutions,
and so therefore has (5.13.1).

5.14. Pillai proves, more generally, that if m,n,a,b are given positive

integers, am® — bt 40

Jor any integral x and y, and & is positive, then
| am® —bn¥ | > m-d=

Jor all x > z4(8). Here z,(3), of course, depends on m, n, @ and b as well as on 6.
Similarly, a K which appears in the argument may depend on m, n, a and b,
as well as on any parameter indicated specially.

We use one deep theorem of Siegel: if £ is an algebraic number of degree r,
then there is an A(£), depending only on &, such that

a4 B!

Jor all integral p and q. There is a familiar theorem of Liouville in which
r stands in the place of 274, Thue showed that r could be replaced by any
number greater than }r+1, but neither Liouville’s nor Thue’s theorems
would be strong enough for Pillai’s application. What is essential is to have
an exponent of lower order of magnitude than r.

Suppose now that « and v are positive integers, that a/b is not a perfect
r-th power, and that jaur < bo < aur.

ir
If w = (g) u = au,

then « is an algebraic number of degree r at most, and

aur —bv" = b(w —v*) > brvtYw—v)

> K(ryw-Y(w—v) = K(r) u’(a-—%) .
Hence
(5. 14, ].) au’ — bvf > K(T)ur—ﬂr*’

by Siegel’s theorem. Tt is obvious that this is also true if 0 < bv* < Jau', so
that it holds whenever aw" —bv" is positive. Similarly

(5.14.2) bo' —au > K(rpr—2t
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whenever it is positive, and a moment’s consideration shows that we can
unite (5.14.1) and (5.14.2) in the form
(56.14.3) | aur —bvr | > K (r) 22,

u and v being any positive integers, and z being u or v at our discretion.’
Here K(r) of course depends on @ and b as well as on .
We can now prove Pillai’s theorem. We take ¢ small and positive and

i6

r = ‘3? 3

and write z=s8r+h (0Sh<r), y=1tr+l (0=5l<r),
u=m, v=n.
Then |am®—bnv | = |amh w ~bnf.or | > K(r, b, I w2,
by (5.14.3); and so | am® —bnv | > K (8) ur-2rt,
since the number of values of /# and I concerned depends only on r, and
r only on 4.
Also u" = mE > K(0)m*,
wr-2rt = PHOES L) BN K(a) m—10z,

and so | am® —bn¥ | > K(8) m(1-i9=,

From this it follows that
| am® < bn¥ | > mi==

for x> x(d), and this is Pillai’s theorem.
5.15, Pillai’s theorem ig just sufficient to improve (5.8.6) into (5.8.5).
Returning to the argument of § 5.12, we can replace (5.12.1) by
| 29—3P | z 200D
(for any positive & and sufficiently large p,q); and (5.12.2) by
|g0-p|>27% = ¢,
where ¢ = 8log 2. It follows that
Tn1 < €7

for sufficiently large m. We choose m so that

Im <Gmi1:

< 20

“logy
1 1 1

Then Tn> logqp1> . (log 7 —loglog % +1log 2¢) > o logn

! Since a/b is not an r-th power, aw” — bv" cannot be 0. If it is of smaller order than
u” or v", then » and v are of the same order.
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for large » and m, and n e

—_— < —,
m logn
_ A"
80 that S(n) = 0(log ?’)
We have thus replaced the O of (5.8.6) by o. It may seem rather dis-
appointing that the use of such powerful weapons should lead to so small

an improvement in the final result, but such disappointments are common
in this kind of analysis.

Im+

NOTES ON LECTURE V

§ 5.1. There aro two proofs of (5.1.1) in Hardy and Wright, 268-269.
Tho essential difficulty of the circle problem is that of determining @, the smallest
value of £ such that N(z) = pw -0t ¢)

for every positive €. It follows from (5.1.1) that @<}, Sierpinski proved in 1906
that ©@<}, van der Corput in 1928 that &<}, Littlewood and Walfisz in 1924 that
®=<+%%. In the other direction, Hardy and Landau proved independently in 1915
that @z }. Thore is a profound study of the problem, up to this stage, in Landau,
Vorlesungen, ii, 183-3C8.

The results have been improved since by Nieland, Titchmarsh, and Vinogradov.
The best result is Vinogradov’s O = %{.

‘Fuller reforences will be found in Bohr and Cramecr, Enzykl, d. Math, Wiss.11¢ 8
(1922), 823-824, and in two papers by Titchmarsh, Quarterly Journal of Math.
(Oxford), 2 (1981), 161-178 and Proc. London Math. Soc. (2), 38 (1935), 96-115 and
555, The paper by Littlewood and Wallisz is in Proc. Royal Soc, (A), 106 (1924),
478-488.

§ 5.2. For Dirichlet’s proof of (5.2.1) see, for example, Hardy and Wright,
262-263.

The history of this problem is very similar to that of the circle problem, though
recont writors have tended to concentrato on the latter. In this problem 8 is the
smallest § for which

N(x) = z log x+ (2y ~ 1) x4 O(xt+s).
It follows from (5.2.1) that @=<3}. Voronoi proved in 1903 that 0 =4, Hardy and
Landau in 1916 that ©@=1}, and van der Corput in 1922 that 0<%, For fuller
references see Bohr and Cramér’s article quoted above, 815822,

The best known result hore seems to be & £ 4§, proved by van der Corput in a later
paper in Math. Annaler, 98 (1928), 697-717.

§ 5.3. One example is the formula

2 _~(n) 2 _rn)
1 _ A emnimran) — vV petwv{indbia),
@ 2 Tt a) PN

Here @ and b are positive and r(n) has the meaning of §5.1,
1t is easy to prove (1) by writing the series on the left as

1 [= de 1 [*®
— e—oe~nbis{ Fip(n) g~ P} — = ﬂf g—os—m2ble §2(
. e E T )

where Hw) = 14+ 2e 2+ 2e7 4%+ ..,

HR b

9%,
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and using the functional equation

(o) = A/ (g) 19(”;“).

There is a generalisation for the ellipsoid, which I quote in the Quarterly Journal
of Math. 46 (1915), 283.

The formula remains valid so long as & and /b have positive real parts. If we put
a = ze'l, where 0 < <7, and z is positivo and non-integral, make 8-, take the
imaginary parts, and then put & = 0, we obtain

r(n)

05n<z\7(~z_"'/)

(2) = 2mjr+ E 71:—) sin {2mr./(nz)}.
i

A/
This is also the result of putting « = —} in a formula for Z(z—n)2r(n) which 1
proved (for a > 0) in a paper in Proc. London Math. Soc. (2), 15 (1916), 192-213 (205).
Neither of these deductions, of course, is a proof of (2), and I do not know that
there is any proof standing in the literature. The formula is of the same type as the
identity
T rin) = me fEE L
O=n=x 1 \/"
(first proved in my paper in the Quarterly Journal quoted above).
I imagine that the series on the right of (2) is summable by Cesaro or Rieszian
means of any positive order, so long as @ is not an integer.

Ji{2my(nx)}

§ 5.4. Papers, xxiv (3).

§ 5.5. The principal papers by Hardy and Littiewood are in Proc, London Math.
Soc. (2), 20 (1922), 15-36 and Abh. math. Semin. Hamburg, 1 (1922), 212-249; and
that by Ostrowski in Abh. math. Semin. Hamburg, 1 (1922), 77-98 and 250-251.
There is an account of these problems, with an exhaustive bibliography, in Koksma,
“Diophantische Approximationen”, Ergebnisse der Math. 1v 4 (1936), Kap. 1x.

§ 5.8. The problem of proving the transcendentality of af, under the conditions
stated, was the seventh of the problems propoesed by Hilbert in his address *“ Mathe-
matische Probleme” to the seventh international congress of mathematicians in
Paris in 1900, This address was published in German in Géttinger Nachrichten (1900),
263-297, and in French, under the title “Sur les problémes futurs des mathé-
matigues”’, in the official report of the congress (Paris, 1902). See Koksma, l.c. supra,
Kap. 1v, especially pp. 6465, where there are references to the papers of Gelfond
and Schneider.

§ 5.9. For the “identity’ see Theorem 4 of the second of the papers by Hardy
and Littlewood referred to under § 5.5,

Dr Heilbronn communicated his proof to me personally.

§ 5.10, The notation for eontinued fractions is that of Hardy and Wright, ch. x,

§§ 5.13-14. Pillai’s theorem was proved in Journal Indian Math. Soc. 19 (1931),
1-11.

Polyn, Math. Zeitschrift, 1 (1918), 143-148, proved a general theorem from which
it follows, as a very particular case, that (5.13.1) has only a finite number of solutions.
Herschfeld, Bull. Amer. Math. Soc. 42 (1936), 231-234, has proved that there is at
most one solution when k is sufficiently large. There are further results of thig kind
in another paper by Pillai, Journal Indian Math. Soc. (2), 2 (1936), 119-122 and 215.

For Thue’s and Siegel’s theoroms seo Landau, Vorlesungen, iii, 37-56. Siegel’s
theorem is Satz 691, It is stated there in a slightly different form, and for rz=3,
but it is trivial when r = 2.



VI
RAMANUJAN’S WORK ON PARTITIONS

6.1. A partition of n is a division of » into any number of positive integral
parts. Thus
4=34+1=242=2+1+1=1+1+1+1

has 5 partitions. The order in which the parts are arranged is irrelevant, so
that we may think of them, if we please, as arranged in descending order.
We denote the number of partitions of » by p(n); thus p(1) = 1 and p(4) = 5.
It is convenient to define p(0) as 1.

A partition of n may be represented graphically by an array of dots or
“nodes”. Thus

represents the partition 6 +3+ 342+ 1 of 15. We could also read the graph
vertically, when it would represent; the partition 5+4+3+1+1+1. Two
partitions so related are called conjugale,

The largest part in either of these partitions is equal to the number of
parts in the other. Generally, & graph with m rows represents, when read
horizontally, a partition into m parts, while read vertically it represents a
partition into parts the largest of which is m. It follows that the number
of partitions of » intn m parts is equal to the number of partitions into parts
of which the largest is m; and that the number of partitions into at most
m parts is equal to the number of partitions into parts which do not exceed m.

6.2. There are many less obvious theorems about partitions which can
be proved by a direct study of their graphs. I choose as an example
F. Franklin’s beautiful proof of a famous identity of Euler.

Euler’s identity is

(6.2.1) (1—z)(1-2a?)(l-a?)...=1-z—a?+a’+a’— ..
The right-hand side is

1+ E (— 1)e{hCah—1) L dk(3E D) — % (— 1)k hk@k+D,
k=1

k=—o0

6-2
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@
It may also be written as 14 Xe,a™,
1

where ¢, is 0 unless n = }k(3k £ 1), and then (— 1)k
Let us write (1—2z)(1—2?) (1—=%)... = Xy(n)z",

and multiply out the product so as to obtain an arithmetical interpretation
of the coefficient y(n). There is a term in 2 corresponding to every partition
of n into unequal parts: thus the partition 6 = 3+2+1 gives rise to a
term (— 1)3z%. Generally, a partition of » into 4 unequal parts contributes
(—1)* to y(n), so that
y(n) = pn) —Po(n),

where p,(n) and p,(n) are the numbers of partitions of » into an even and
an odd number of unequal parts. We try to establish, as far as we can,
a one-to-one correspondence between partitions of these two types. The
correspondence cannot be complete, since a complete correspondence
would show that p,(n) = p,(n) and y(n) = 0 for every n.

We take the graph G; which represents (read horizontally) any partition
of n into any number of unequal parts, in descending order. We call

(&)

A B

the lowest line A B the base f of the graph. From the extreme north-east
node, we draw the longest south-westerly line possible in the graph; it
might of course contain one node only. This line CDE we call the slope o
of the graph. We write <o when (as in graph G,) there are more nodes
in ¢ than in 8, and use a similar notation in other cases. Then there are
three possibilities.

(i) f<o. We move f# into a position parallel to and outside 7, as shown
in graph G,. This gives a new partition into decreasing unequal parts, and
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into a number of such parts whose parity is opposite to that of the number
in G,.

We call this operation O, and the converse operation (removing o and
placing it below 8) 2. It is plain that £ is not possible, when £ < o, without
violating the conditions of the graph.

(ii) # = o In this case O is possible (as in graph G,) unless § meets o
(as in graph G,), when it is impossible. £2 is not possible in either case.

(iii) B> o. Inthiscase Oisalwaysimpossible. 2is possible (asin graph Gs)
unless # meets ¢ and = o+ 1 (as in graph Gg). 2 is impossible in the
last case because it would lead to a partition with two equal parts.

To sum up: there is a (1,1) correspondence between the two types of
partitions except in the cases exemplified by (G,) and (Gg). In the first of
these exceptional cases n is of the form

o (k1) + (k+2) 4 ... + 2k — 1) = $(3k2— ),

and in this case there is an excess of one even or one odd partition according
as k is even or odd. In the second case n is of the form

(k+ 1)+ (k+2)+ (k+3)+... + 2k = §(3k2+ k),

and the excess is the same, Hence y(n) is 0 unless n = }(3k*+ k), when
y(n) = (— 1)¥. That is to say, y(n) = ¢,, and this is Euler’s theorem.

6.3. Franklin’s proof is a very striking example of what may be done
by elementary ‘combinatorial” arguments; but most of the theory of
partitions requires a more analytical setting.

The analytical theory was founded by Euler, and rests, like the analytical
theory of primes, on the idea of a generating function. But the generating
functions of the theory of partitions are power-series

F(x) = Xf(n) 2™
The function F(n) is called the generating function of f(»), and is also said
to enumerate f(n).
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It is easy to find the generating function of p(n). This is the function

1

Flay = I=2)(1-2%) (1—a%) ...

(a function fundamental in the theory of elliptic functions). In fact,
expanding each factor of F(z) by the binomial theorem, we have

Flr)=(1+x+a?+a%+...)(1+a?+at+ab+ .. )1 +a3+ab+2°+...)...,

and a moment’s consideration shows that every partition of # contributes
just 1 to the coeflicient of x*. Hence

F(x) = Zp(n)zr.

It is equally easy to find the generating functions which enumerate
partitions of » into parts restricted in various ways. Thus

1
(1=z)(i=2%(1—2..

enumerates partitions into odd parts;

A+2)Q +2%) (1 +23)...
partitions into unequal parts; and

(1+z)(L+x¥) {1428 ...
partitions into odd and unequal parts. Euler’s product

(l—-2) (1 —a?) (1 —29)...

enumerates the function y(r) of § 6.2, the excess of the number of partitions
of » into an even number of unequal parts over that of its partitions into
an odd number,

Similarly (I take examples which I shall want to refer to later)

1
(1-z)(1—=z%)...(1—am)

enumerates partitions into parts not exceeding m or (what we have seen
to be equivalent) into at most m parts;

N
(I—2)y(1-a%)...(1—27)
enumerates the number of partitions of n — N into at most m parts; and
N
(I—a?) (1—a%)... (1-2?m)
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the number of partitions of n— N into at most m even parts, or of (n— N)
into at most m parts of any kind. Finally

1
(1-z)(1—2% (1 —2% (1—=2%...°

where the indices of x are the numbers 5m + 1 and 5m + 4, enumerates the
partitions of » into parts of these two forms.

Ramonujan’s congruences

6.4. Very little is known about the arithmetical properties of p(n); we
do not know, for example, when p(n) is odd or even. Ramanujan was the
first, and up to now the only, mathematician to discover any such properties;
and his theorems were discovered, in the first instance, by observation.
MacMahon had caleulated, for other purposes to which I shall refer later,
a table of p(n) for the first 200 values of %, and Ramanujan observed that
the table indicated certain simple congruence properties of p(n). In
particular, the numbers of the partitions of numbers 5m +4, Tm + 5, and
11m + 6 are divisible by 5, 7 and 11 respectively: i.e.

(6.4.1) p(bm+4)=0 (mod 5),
(6.4.2) p(Tm+8)=0 (mod 7),
(6.4.3) p(1lm+6)=0 (mod 11).

Thus p(4) = 5 and p(6) = 7.

6.5. Ramanujan found comparatively simple proofs of (6.4.1) and
(6.4.2). These depend on two formulae which belong properly to the theory
of elliptic functions, Euler’s formula (6.2.1) and Jacobi’s formula

(6.6.1) {(1-x)(1—-a)(1—2%)..8 =1-3x+523—Tab+...,

where the indices on the right are the triangular numbers 3(k + 1), We have
proved (6.2.1), but there is no equally simple proof of (6.5.1). We may also
write (6.5.1) as

((1~a) (1—28) (1=2%)..}3 = } 3 (= 1)% (2k-+ 1) ahksD,

Ramanujan now argues as follows. We have
a{(l-a) (1-2?) . P =a{(l-2)(1-a?) ..} {1-2)(1-2%..}
=2(l—x—22+a5+ ... ) (1 -8z 4 528 — Tab+...),
by (6.2.1) and (6.5.1). We write this as
(6.5.2) 2{(1 -z} (1—~2%) ..} = JIZ(— 1)r+(2p 4 1) 21 H@ut Db D),
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both x and v running from — co to oo, and we consider in what circumstances
the index of « is divisible by 5. This demands that
Au+ 172+ (2v+1) = 8{1+ bu(Bu+ 1)+ fv(v + 1)} - 1042 —
shall also be a multiple of 5. Now
2(p+1)2=0,2,0r3 (mod 5)
and (2v+1)2=0,1,0or4 (mod 5),
as we can see by enumerating the possible cases; and the sum of one residue
from each set can be 0 or 5 only if each is 0. Hence, if the index in (6.5.2)

is a multiple of 5, the coefficient 2v + 1 is also a multiple of 5, and therefore
; 6m-+-5 g

the coefficient of x in o{(1—2)(1—22).. )8
18 a multiple of 5.

Next, in the binomial expansion of

1
(I~}

all the coefficients are divisible by 5 except those of 1, x5, 219, ..., which have
residue 1 (mod 5). That is to say

1 I .
(———il _x)s = v—~—w—1 Lis (mod 5)
oS §
or &:%55 1 (mod 5),

Hence the coefficient of x5+5 in

(1—2%(1 —ocm) .
(1—2)(1—a?)..
is a multiple of 5, and so therefore is that in

x5) ( wl())

{(1 2) (L—a?) .. }.5

= z{(l-2)(1-2a%).. }4

ol .
(1—-2)(1—22)(1—23)...°
and this coefficient is p(5m + 4).
We can prove (6.4.2) similarly. In this case we write
e¥{(1—z) (1 —2%)...}% = a%(1 ~ 3w + 523 — Tab +...)*
= izz( - 1)/‘+”(2,u + 1) (2V+ 1)x2+lﬂ(/¢+1)+iv(v+1),

and observe that
e+ 124204 1) = 812+ Lu(p+ 1)+ (v +1)} - 14
can be divigible by 7 only if 24+ 1 and 2v+1 are both divisible by 7. The

proof may then be completed on the same lines as before. There does not
seem to be any equally simple proof of (6.4.3).

' Corresponding coefficients are congruent (mod 5),
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6.6. Ramanujan went a good deal further. He proved congruences with
moduli 52, 72 and 112, that for 52 being

p(20m+24)=0 (mod 5?),

and put forward a general conjecture: if

& = 547011¢
and 24A=1 (mod 4),
then pimd+A)=0 (mod J)

Jor every m. It would be sufficient to prove the congruence for the special
moduli 5%, 7% and 11¢, the general congruence being a corollary.

This conjecture has led to a good deal of work, and it has been found
that Ramanujan generalised too far. Gupta, extending MacMahon’s
calculations of p(n) up to » = 300, found that

P(243) = 133978259344888,
a number not divisible by 7%; and 8. Chowla observed that, since
24.243=1 (mod 73),
this contradicts Ramanujan’s conjecture. On the other hand Kre¢mar has
proved the congruence
P(126m+99)=0 (mod 53),
and Watson the congruence for general 5%; and D. H. Lehmer has verified
the conjecture, in certain special cases, for 113 and 11%, Lehmer’s work
involves the calculation of some particular very large values of p(n) by
a method which I shall explain in Lecture VIII: the largest is
(6.6.1) p(14031) = 92 85303 04759 09931 69434 85156 67127 75089
29160 56358 46500 54568 28164 58081 50403
46756 75123 95895 59113 47418 88383 22063
43272 91599 91345 00745,

a number divisible by 114,

6.7. There is another proof of (6.4.1) which is much more difficult than
the one I quoted, but which says much more and led Ramanujan much
deeper into the theory of elliptic modular functions. In the same paper
in which he proved (6.4.1) and (6.4.2), Ramanujan stated without proof
the two remarkable identities

5 — 10 _ 15 5

©TD o) +p@zrp(azts... = 51l TN CEEIOE N




90 Ramanujan’s work on partitions

and

1—a7) (1 —al4) (1 —a21)...}3

6.7.2 2y =7l

(6.7.2)  p(5)+p(12)x+ p(17) 2+ 7 (=2 (1= (1.}
{(1=a7) (1—a1) (1=a?) .}’

A T (=) (1=29)..

These make (6.4.1) and (6.4.2) intuitive, and also provide proofs of the

congruences to moduli 52 and 72, Thus, if we assume (6.7.1), we have

p4)x+p(9)2*+ K (1—a8) (1 —219) ...
5{(1—x%) l_x“’) }4 (I-z)(1—2?) ... {(1-2)(1—~2%...}5
x
E(1~—-ac)(1—:vz)... (mod 5).

Hence (after what we have proved already) the coefficient of 25m+5 on the
left-hand side is a multiple of 5; and frem this it follows that

p(2m+24)=0 (mod 52).
Similarly (6.7.2) leads to
p(49m+47)=0 (mod 72).

Ramanujan never published a complete proof of (6.7.1) or (6.7.2); but
proofs have been found by Darling and Mordell.

The Rogers- Ramanujan identities

6.8. I come next to two formulae, the ‘‘ Rogers-Ramanujan identities”’,
in which Ramanujan had been anticipated by a much less famous mathe-
matician, but which are certainly as remarkable as any which even he ever
wrote down.

The Rogers-Ramanujan identities are

x ! am*
O P ey e AR s vy g e By
1
T (l—x) (1 =28 ... (I-2% (1—2°) ...
and
6.8.2) 1+-2 @ o+ 2 .
( T Ry ) ST g v g g
1

T (-2 (1=7).. (=2 (1l -2f)...

The exponents in the denominators on the right form in each case two
arithmetical progressions with the difference 5. This is the surprise of the
formulae; the ““basic series”” on the left are of a comparatively familiar type.
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The formulae have a very curious history. They were found first in 1894
by Rogers, a mathematician of great talent but comparatively little
reputation, now remembered mainly from Ramanujan’s rediscovery of his
work. Rogers was a fine analyst, whose gifts were, on a smaller scale, not
unlike Ramanujan’s; but no one paid much attention to anything he did, and
the particular paper in which he proved the formulae was quite neglected.

Ramanujan rediscovered the formulae sometime before 1913. He had
then no proof (and knew that he had none), and none of the mathematicians
to whom I communicated the formulae could find one. They are therefore
stated without proof in the second volume of MacMahon’s Combinatory
analysis.

The mystery was solved, trebly, in 1917. In that year Ramanujan,
looking through old volumes of the Proceedings of the London Mathe-
matical Society, came accidentally across Rogers’s paper. 1 can remember
very well his surprise, and the admiration which he expressed for Rogers’s
work. A correspondence followed in the course of which Rogers was led to
a considerable simplification of his original proof. About the same time
1. Schur, who was then cut off from England by the war, rediscovered the
identities again. Schur published two proofs, one of which is “com-
binatorial” and quite unlike any other proof known. There are now seven
published proofs, the four referred to already, the two much simpler proofs
found later by Rogers and Ramanujan and published in the Papers, and
a much later proof by Watson based on quite different ideas. None of these
proofs can be called both “simple” and “straightforward”, since the
simplest are essentially verifications; and no doubt it would be unreasonable
to expect a really easy proof,

6.9. MacMahon and Schur showed that the theorems have a simple
combinatorial interpretation. I take the first. We can exhibit a square m? as
1484+5+...+(2m—~1),

or in the manner shown by the black dots of (G;). If we now take any
partition of n — m? into m parts at most, with the parts in descending order,

- . o . . . [v] Q Q o
. . . . . 0 o o
@)
. - . ] [} Q

and add it to the graph, as shown by the circles of (G;), where m = 4 and
n = 4*+11 = 27, we obtain a partition of # (here

27 = 11+8+6+2)
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into parts without repetitions or sequences,® or parts whose minimal
difference is 2. The partitions of n of this type, associated with a particular
m, are enumerated by

xm®

(I-2)(L—a?)...(1—am™y’

the general term of the series on the left in (6.8.1); and the whole series
enumerates all such partitions of ».

On the other hand the right-hand side enumerates partitions into numbers
6m+1 and 5m+4. Hence (6.8.1) may be restated as a ““combinatorial”
theorem: the number of partitions of n with minimal difference 2 is equal to
the number of partitions into parts 5m+1 and 5m-+4. Thus when n = 9
there are 5 partitions of each type;

9, 8+1, 742, 6+3, 5+3+1
of the first kind, and

9, 6+1+1+1; 44441, 4414+1+14+141,
T+ 1+ 1414141 4+1+1+1

of the second. There is a similar combinatorial interpretation of (6.8.2).
These forms of the theorems are MacMahon’s (or Schur’s); neither Rogers
nor Ramanujan ever considered their combinatorial aspect. It is natural
to ask for a proof in which we set up, by “combinatorial” arguments, a
direct correspondence between the two sets of partitions, but no such proof
is known. Schur’s ‘combinatorial” proof is based, not on (6.8.1) itself,
but on a transformation of the formula which I will mention in 2 moment.*
It is not unlike Franklin’s proof of (6.2.1), but a good deal more complicated.

6.10. The proofs given ultimately by Rogers and Ramanujan are much
the same, but Rogers’s form is a little easier to follow.
We can write the right-hand side of (6.8.1) as

1 _ H{(l — xbm) (1 — fm+2) (1 _x5m+3)}.
H{(l—x5m+1)(1—x51n+4)}_ (1—z) (1—22) (1 —23)... )

and the numerator on the right can be transformed, by a standard formula
from the theory of the theta-functions, into

1—2?—af 4ot al— ..,
where the indices are the numbers

£(6n® + n) (n=0,1,2..).

' Parts differing by 1.
* (6.10.1), with cach side multiplied by (1 —x) (1 —=2%)....
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We have therefore to prove that

xt ‘. 1—w2-—7x3+m9+x11—~ .
—x (1 z)(1~2%) Tl—x)(1—a?)(1—a?)...

Similarly (6.8.2) is equivalent to

(6.10.1) 147

x? at 1—g—at+a’+at?—...
tiTe (= T (I—e) (1= (I- 7).

the indices in the numerator on the right being the numbers §(5n2 + 3n).

(6.10.2) 14—

6.11. We use the auxiliary function

(6.11.1) O = Gyla,z) = X (= 1)ravrainemin=in(i —akyt) O,

n=0
where k is 0, 1, or 2 and
_ _(1—a)(1-ax).. (1 —aa™?)
Go=1, Gy = A=) (i) ... (L—a")
Thus

(6.11.2) G = (1--a¥) C,— o> ¥(1 — aFx?) O 4 atzt—2k(1 —akxtk) Co— ...
If a+ 0 then G, = 0 for all z. Also

(6.11.3) Gy, x) = 1=z —2t o’ + 2% —
and
(6.11.4) Gy, ) = 1?2’ +all—

are the series which occur in (6.10.2) and (6.10.1).
If the operator 7 is defined by

”f(a’: (L') = f(axs x)r

then
~ _(-ax)... (1-az") 1-—ax"
(6.11.5) 1on = (1-z)...1—a l-a "
and
(l—az)... (1 —az™1) 1-—an
(6.11.6) Mo =gy (T ~ 1oa O
Hence
(6.11.7) (1—2a)C, = (1 —a)7C,_y, (1—-ax™) C, = (1—a)9C,,
and in particular 7Cy = Cp = 1.
If kis 1 or 2, then

oD
Gk —_ Gk—-l = 2 ( — 1)na2nxin(5n+l)—kn{1 _ akxzkn — x"(l - ak«lzz(k—l)n)} On
=

o)
— ak——l(l _ (L) + Z ( — ]_)n aznxin(5n+1)»—kn{(1 _ xlc) + ak_lx&k-—l)n(]_ — azn)} Cu
n=1

— ak—l(l _ a) 7700 . (1 _ a) ): ( ~1 )n aznxin(sn+1)—kn{770n_l + a"*lx@"“”"nCn},
n=1
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by (6.11.7). When we rearrange this series in terms of 7G,, 7Cy, ..., the
coefficient of 9C, is
( - ]_)n (1 — a) {a2n+k—1x}’n(5n+l)+(k—l)n — a2'n+2xé(n+1)(5n+6)7k(n+l)}

= (= 1)*(1 — @) a2n+k-lginGrtDik-Dnf] _ g3-kg@-k@n+1},

Hence
Gk _ Gk~1 — (]_ o a) ak—1 Z ( _ l)na2nwiﬂ(5n+1)+(k—-1)n{1 _ aa——kx(a—lc)(Zn-{»l)} 77011
n=0
But Gs-wk = ( -1 )n aznxin(5n+1)—(3—k)n{l — as—kx(a—fc)Zn} On,

0

8 =
P48

and so ﬂGaik =3 (=1 a2ﬂx‘}n(5’n+1)+(k—1)n{1 — aa—kx(s—k)(zm»l)} C,;
n=90

and therefore

’ (6.11.8) Gk"" Gk—l = (1 —a) ak_l"]G3_k (k = 1, 2).
6.12, If now

S Gk(a’J .L‘)

(1=a)(l—ax)(l—ax?)...

H, = Ha,z) =

(so that Hy = 0), then (6.11.8) becomes

Hy—Hpy = d7'H; 4.
In particular

(6.12.1) H, =9yH, H,—H, =anH,
and so
(6.12.2) H, = nH,+an’H,.

Suppose now that H, =1+¢,a+ca+ ...,
where the coefficients depend on z only. Substituting into (6.12.2), we
obtain
1+c¢,a+cpa+ ... = 1+eax+cpa?a? + ... +a(l +caa® +cpa?xt +...).
Hence, equating coefficients,

[ ! C il c [ w
= =T = 30, 4+
1 1_m3 2 l_xz 1 3 1—(1:3 P

d wn(n—l)
an = 1) (1 -2 ... (1 —any
and hence
Gz(“:x) _ _ a alx?
(1-a)(l—ax)... Hya,@) = 1+ =2 (=) (1=

adx6
+(1__x)(1_x2)(1_x35+....
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Also

G\(a,2) az
(1-a)(1—ax)... = Hy(a,z) = 1Hy(a, z) = 1+

alxt adxd
ST e rEr yree
Finally, putting a =2 in these two formulae, and using (6.11.4) and
(6.11.3), we obtain (6.10.1) and (6.10.2),

This proof is elementary, and reasonably simple; but it is undeniably
rather artificial. It is a “verification”; we verify that the series (6.11.1)
satisfies a functional equation, and the argument gives no explanation of
our choice of this particular series.

6.13. There is another proof by Rogers which seems to assume a little
more but is really more illuminating.*
We shorten our formulae by writing
Xy = 1—=2t wl=mu,. . x,

and begin by expanding the function

f(a) = 11(1 +az")
1
in powers of a. The function satisfies

fla) = (1 + az) f(az).

Substituting a power series in a for f(a), and equating coefficients, we find
without difficulty that
ity
fla) = l+~-~a+——a2+ cF
Replacing a by ae”® and ae~, and multiplying the resulting series, we
find that

o
(6.13.1) &d(z,0,a) = H(l+2aw"cosl9+a2x2")
3
} +A—ae“9+ aze‘“’“’—i— )(1+iae'w+3—aze—2i”+
1! xy! ) xy ! xg!
= l+):, )

'IL

! The argument of §§ 10-12, if regsuded as a proof of (6.10.1), assumos nothing, though
some knowledge of theta-funetions is required to identify (6.8.1) and (6.10.1). In
tho proof here we use formulae from the theory of theta- funcmons in tho proof.
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where
B. (B pn+Y)
(6.13.2) —2"—('—) == '(1 Tn_ 9 008 20+ —2E171 9t 003 40 + ..
wZn M Ly x'n - wn+1 xn+1xn+2
FnTa10 %1 9gmieoq 2n0);
Tni1¥ni2 - Tan
B g gin+1)? x
(6.13.3) ——2"‘—““—:‘(—|—) = (2 cos 0 + - 222 cos 30
Lapt1' Tp'Tpyr: Tptg
X, %, N T
4 —270=L 06 008 5O 4 ... A —— b BTLUEL ggnintl) gog (20 + 1) 0).
Tnt2Tnig Trtaluss o Tong1

Finally, we replace a in (6.13.1) by 7%, and use a standard formula from
the theory of the theta-functions, viz.

Dz, 0,27%) = IT(1+ 2zt cog O + x21)

_ 14 22t cos @+ 22t 00826 + 22% cos 36 + ...
A (l—a)(l—29)... :

We thus obtain

1+ 2x* cos 6 + 22% cos 26 + 2x% 08 20 +- ... ® B,(6)
L Dal’) oy
(6.13.4) (=) (1) (1~ ) ... LR

6.14. If we replace B, (0), in (8.13.4), by its explicit expression (6.13.2)
or (6.13.3), and rearrange the right-hand side as a trigonometrical series,
we obtain an equality between two convergent trigonometrical series. Such
an equality must be an identity, the coefficients of cosnf in the two series
being the same. It follows that we may replace

1, 2cos @, 2cos 26, 2c0s 30, ...

by any numbers for which the series remain convergent.

If we replace
1, 2cos 26, 2cos40, ..., 2cos2nd, .

by 1, —(1+x), (1 +2?), ..., (— L)raire-D(1 4 27), ...
and all the odd cosines by 0, then B,,(0) becomes
x,%

Tn z(1 +x)+mn_lk—_1,m5(1 +22)— ...
n+1 xn+1wn+2

(6.14.1) By, = ‘xn(”“){l ~

..z,n

F (=) L T N

xin(an—d)( 14 xn)}
Tnt+1¥niz -+ Tan ’

and we obtain

Be Ba 1—22—a® o ot —
14 P21 Pagey o
RPN A S Al § ey ey e

(6.14.2)
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where the right-hand side is the same as in (6.10. 1). On the other hand,

if we replace
2080, 2cos830, ..., 2cos(2n+1)0, ..,

by (1—), —(1=2), ..., (= D)natnrn-D(] — g2n+1),
and the even cosines by 0, then By, ,(0) becomes
(6.14.3)
z x
Bopig = 20 al DN ] T () g8) Fnfn 271 —a8)— ...
an .’E 'x +1' xn+2 xﬂ+2xn+3
+(— 1)n R R W @] — g2nanyl |

Tyt 2xn43 w2n+1

Multiplying by z-%, we obtain

/)’1 l—w—xt+a? +aB—

(6.14.4) w“+ x"“’ =) (L=t (= 29) .

where the rlght«hand side is the same as in (6.10.2). It remains to prove
that the series on the left in (6.14,2) and (6.14.4) are the same as in (6.10.1)
and (6.10.2).

6.15. We can do this by evaluating £, in an elementary manner. But
before doing this I observe that the substitutions of §6,14 correspond to
linear analytical trausformations, Thus if # = e~ then

f e~20% 003 6.2 cos 2n6 . dO =fw e~2%%{cos (2n— 1) 6 + cos (2n+ 1) 6} dO

= J(}m8) {e-4@n-17s . gmdEnIAY N (3nd) at pinin1)(] 4 gn),

Hence the first substitution of § 6.14 corresponds to the result of (i) replacing
0 by 0+ 47 and (ii) operating with

J(E) x‘*fm e~20% 0o 0 ... dO.
70 —®

Similarly it may be verified that the second is the result of (i) replacing
8 by 0+ im and (ii) operating with

J( 2 )x ﬁf e~20%5 gin 26 ... do.
70 —w

6.16. We now write
6.16.1 le! n(n-+1) = a’2n+1_!. (n-+1)2
(6.16.1) fy, = — & Yons  Ponyr = Zz Yen+1,
x,lz,! X!z, !
and prove that

(6.16.2) Yan = Zals Vansr = Tl
HR 7
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We shall then have

_— 1 — 1)2
(6 16. 3) ﬂ% - wn(n-lv )xn+1xn+2  Logs ﬂ2n+1 - m(n+ ) €L +1xn+2 re x2n+1)

and it may be verified at once that the series on the left of (6.14.2) and
(6.14.4) reduce to the Rogers-Ramanu]an series.

To prove (6.16.2) it is enough to prove that
(6.16.4) YVant1t = Tpt1Vens  Venve = Vonstr

Now

z o L, Ly 1Ly
Yop = 1 =2 (1 42) +—" 2= ad(1+2%) — ZnTn-1Tn-2 qan(3 4 o8)+ ..,
Ly+1 Tpt1%n+2 Ty 1%n+8%n+3

x X, Ly X, X, . H
=(1—x—’i~) —p2 (1 —p3n 1)+ o u(l_xs_,n_z)_
L | Tn+1 Tpta Lp1Pnia Tn+s

= %(1_70)_%2“"&_(1_x3)+x7_‘”_ﬁﬁ;1__(1_w5)_

1 Lp41 %48 L r1%n+a¥ns
— Yan+1
- )
Tpt1
and
x R
Yons = (1=2) == a¥(1—a%) 4 4271 ~a?)
Lpig Lprolnia
X, X, 1%, —
T2 Gas() gy L
Lry2lp43 Tn+4a
T, _ €, 8, X,
=1 x(1+x____)+x5 (1+w2_ﬂ_]_‘)_w12iil_(1+m3_n_z)+.“
Tpie Lpio Lnia Lo i2%n13 Lyva
x €, 1% L, 1Ty L,
= 1" (] 4 ) 4 LT a6(] +m2)__n+_1Ln_,Lx12(1 +a3%) 4
Tpie Tpi2¥nis Tp+2¥n+3Tnid
= Yanta-

These are the relations required.
The equations (6.16.2) are

(1 —am) (1 —2m 1)
(1 —gn ) (1 — 2 tE)

— (1=2)(1—2?)... (1—2")

1-—-

x5(1 + %) - ..
and

(6.16.6) (1 —x)— (1 — ) (1- —gn1)

(1— x“+2)(—13:7+—35

= (1—2)(1—2?)... (1 —an+).

—pn
x“‘(l - w3) +

1
Tt 2'(1—a)~

Each of them reduces, when n—- o0, to

l—z—22tabta’—... = (L—z)(1—2?)(1-2%)...,
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Euler’s identity; and the argument of this section gives a particularly
simple proof of the identity. We shall be led to the formulae (6.16.5) and
(6.16.6) in a different manner later.’

6.17. It follows from (6.12.2), or may be verified directly, that
aw o

Fla) = Hya,2) = 14+~ 1

[p g ey g

satisfies the functional equation
F(a) = F(ax) +ax F(ax?).
From this it follows that

PO g g P, e
F(ar) ~ Flax) F(ax3)
1axd——2
(ax?)
= 1+ S
BT 1 5 5

In particular

2 3
1+ x ax? F(

1+ 1+ (4. F(x)
(-2 (1 =a”) ... (1-2®)(1-2°)...

T (l=z)(d=a®) ... (1—a)(1—2?)...

l—z?—ad a4 alt—...
T lex—attal i,

is a quotient of elliptic theta-funetions, which may be evaluated for certain
special values of . This formula is the key to Ramanujan’s evaluations of
the continued fraction for special values of x, which I quoted in my first
lecture.

NOTES ON LECTURE VI

This lecture contains a good deal of the substance of Hardy and Wright, ch. 19,
and there is inevitably a certain amount of repetition; but the account here is
naturally less systematic. There is nothing in Hardy and Wright corresponding to
§§ 6.13-186,

§ 6.2. See Hardy and Wright, § 19.11, or MacMahon, Combinatory analysis, ii,
21-23. Franklin’s proof was first publishod in Comptes rendus, 92 (1881), 448-450.

Both Hardy and Wright and MacMahon give other examples of ‘graphical’
proofs.

§ 6.3. For a more ngorous proof that F(xz) enumeratos p(n), see Hardy and
Wright, § 19.3.

§§ 6.4-5. Compare Hardy and Wright, § 19.12, where however there is no proof
of (6.4.2). There are alternative proofs of (6.4.1) and (6.4.2), and a proof of (6.4.3),
in no. 30 of the Papers. Darling (3) gave further proofs of (6.4.1) and (6.4.2),

* Soe Lecture VII, § 7.8,
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There are intoresting remarks on the parity of p(n) in MacMahon’s paper 2. Mac-
Mahon does not prove any general theorem, but gives recurrence congruences (mod 2)
by which it is possible to calculate the parity of p(n), for quite large n, very quickly.
Thus he proves, in ‘about five minutes work’, that p(1000) iz odd,

One of the standard proofs of (6.5.1) is reproduced in Hardy and Wright, § 19.9.

§§ 6.6-7. Ramanujan’s proofs of the congruonces for moduli 52, 7% and 11% are
contained in an unpublished manuseript now in the possession of Prof. Watson.
Darling (2) gave a proof of (6.7.1), and Mordell (1) much shorter proofs of both
(6.7.1) and (6.7.2).

The references relevant to the work of Chowla, Gupta, Kreémar, Lehmer, and
Watson are 8. Chowla (1); Gupta (1, 2, 3); Kretmar (1); D. H. Lehmer (1, 3); and
Watson (24).

§ 6.8. Rogers (1): the identities are formulac (1) and (2) of §5. Rogers also
anticipated ‘Tdlder’s inequality’ (and is quotod by Hélder), but without writing
it in the standard form or recognising its fundamental importance. See Hardy,
Littlewood, and Polya, Inequalities, 25 and 311.

Roger’s two later proofs are in his papers 2 and 4: tho latter contains the proof
given in §§ 6.10-6.12, the former that given-in §§ 6.13-6.16.

For Ramanujan’s own proof sco no.-26 of the Papers. Schur’s two proofs appeared
in Berliner Sitzungsberichte (1917), 301-321, and Watson’s in Watson (3).

Ramanujan does not seem to have statod the formulae explicitly in his letters to
me, but formulae 1X, (4)~(7), of his first letter depend upon them. See Lecture I,
formulae (1.10)—~(1.12); Papers, xxvii; and Watson (4). Ramanujan proposed the
formulae as & problem in Journal Indian Math, Soc. 6 (1914), 199; seo Papers, 330.

§ 6.9. See Hardy and Wright, § 19.13, and MacMahon, Combinatory analysis, ii,
33-36.

§§ 6.10-6.12. See Hardy and Wright, § 19.14. The theta-function formulae required
at the beginning of the proof are proved in §§ 19.8-19.9 (Theorems 355 and 356).

§ 6.13. The expansion of f(a) in powers of @ goes back to Enler. The theta-function
formula is proved in Hardy and Wright, § 19.8, or in any of the standard treatises
on elliptic functions,

§ 6.17. Seo Lecture I, formulao (1.10)-(1.12). Proofs were given by Watson (4).



VII

HYPERGEOMETRIC SERIES

7.1. Ramanujan’s work on hypergeometric series is contained in two
chapters of his notebook which I analysed and edited after his death. This
analysis has since occasioned a small flood of papers, by Bailey, Watson,
Whipple and others, in the publications of the London Mathematical
Society. There is an excellent account of the results of all these researches
in Bailey’s tract.

The problem which dominates Ch. 10 of the notebook is that of the
summation of the series

&y, Oy, “3) ey %% ay(og -+ 1) otg(otg + 1) (s + 1)

(7.1.1) F( ) ,

LA T 12 BT DBy at1) T

and the chapter contains practically everything known about this series
before 1922, When £, = a4 the series reduces to an ordinary hypergeometric
series, and its sum is given by (auss’s formula

(7.1.2) |
ay, %g) oy iy (“1‘?‘ 1)“2(“2“‘“ 1) P(ﬂ F(ﬂ1—°‘1 %) |
F( i )_ H gy + C2. 44 /’71"'1) ¢ = ﬁ1 Oy F(ﬂx—“o

It will be necessary to use hypergeometric series of higher order, and
T must begin by explaining the standard notations. We write

a® =glat1)...(a+n=1), au=a@=-1)...(a—n+1),

Oy gy vne OCp -~ L] oc(")a (n) d(n)
and QJE q(ﬂl, ﬁz, ﬁ ’U) = "ZO nl ﬂ(’n)/)) (n) ﬂ(n)
The series is generally convergent for all « if p<q, and for || <1 when

p=q+1. When p>q+1 it is divergent for all x unless one of the « is 0 or
a negative integer. We shall usually omit the argument 1 when z = 1. Thus

F(a,l’ a2:‘“3) =.F (OLI, Ay, “3) F (061, Aoy O‘a 1)
/)’1’/)2 e ﬂpﬂz ﬂl)ﬂz

I Here and elsewhere I ignore questions of eonvergence. The reader should be able
to supply the conditions for the validity of any formulae which I quote or prove.
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7.2. The key formula of the chapter is

i §(x+y+2z+u+ 25+ 1)" T
7.2.1 1) 2n s
( ) n§0( ) (8+ ) n'(w+y+2+u+8)(n) ’g,u(x+s+1)(n)
8 I IFx+s+1)'y+2+u+s+1)
s+ ) Iz+y+z+u+s+1) 550 I'z+u+s+1) ’

where one of the five arguments
(7.2.2) Z, Y, 2 U ~x—Y—2—u—25—1

is a positive integer. If this condition (which is essential) is satisfied, then
the series terminates, and the formula is an algebraical identity. The whole
chapter, indeed, is essentially a chapter in elementary formal algebra; we
are concerned, at bottom, with identities between polynomials. From these
we deduce identities between infinite series, but the passages to the limit
which are necessary, though some of them have points of interest, do not
present any serious difficulty to a-competent analyst.

Ramanujan seems to have found the formula about 1910 or 1911, but
he had been anticipated by Dougall. The formula looks formidable, but
Dougall’s proof is very simple. Iimagine that Ramanujan argued similarly,*
but there is nothing in the notebooks to show.

If we observe that a,y = (= 1)%(—a)®

(14 1s)®  s+2n
(%8)("‘) & s ?

we can write (7.2.1) in the form

and

8,14+3s, —2, ~y, —2, —u,x+y+z+u+2s+1
(7.2.3) Fy, i1
6, x+8+ L y+s+1,z4+8+1,u+9+), —x—y—2z—u—s
_ 1 m IFe+s+ 1) My+z+u+s+1)
S+ )@ty +ztuts+1)eyon I'z+u+s+1)
If we write —v for z +y+2z+u-+2s+1, so that
(7.2.4) r+y+z+u+v=—2s~1,
then the formula becomes
s 1438, —2, —y, —2, —u, —v
7.2.5) F
(7.2.5) (%s z+s+l,y+s+1l,z+s8+1,uts+1, v+s+1 )
1 INz+s+1)Iy+2z+u+s+1)
Ps+1)Mx+y+z+u+s+1)eyzu I'z+u+s+1)

' By such verifications in particular cases as, when associated appropriately, yield
a rigorous proof.
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The left-hand side here is obviously symmetrical in =, y, 2, u, v. The right-
hand side is symmetrical in the four arguments «, y, z, u, and, since the five
arguments are connected by the symmetrical relation (7.2.4), it is sym-
metrical in the five.

One of the arguments is to be a positive integer. If, say,

x=m,
then the series terminates, and the right-hand side becomes

($+ 1) (z+u+s+1)™ (u+y+5+ 1) (y+2+84 1)

7.2.6) J——-0 .
( ) (Y+s+1)"™(z+s+1)™ (u484+1)™ (y+2z+u+s+ 1)

And if we multiply both sides by
(y+s+ 1) (y+2+u+s+ 1),
then the formula asserts the identity of two polynomials in y, each of
degree 2m.
We assume the truth of the formula for
2=0,1,2,...,m—1,

and prove it for = == m. It is sufficient, after our last remark, to prove that
it iy true for 2m + 1 different values of .
Now the formula is true for
y=0,1,2,...,m—1
from the inductive hypothesis and the symmetry in z and y, and for
v=20,1,2 ... ,m-1,
i.e. for
Yy=—28—2—~u-m—1, —28—2—u—m-2, ..., -28—z—u—2m,
from the inductive hypothesis and the symmetry in # and v. Hence it is
true for 2m values of y, in general different, and it is sufficient to verify its
truth for one more value. We choose the value
Y =—s—m.

This value of y is a pole of the last term only of the series (7.2.5); and it is
sufficient to prove that the residue of this term is equal to the residue of
the product (7.2.8). It is easily verified that each residue is

(s+1)™ (s+z+u-+1)™ (z—m+ 1) (y —m + 1)

(= ym-1e gt ,
(m=1)! (s+z+1)M™(s+u+ 1) (z4+u—m+1)m

and this completes the proof.*

I T give a little more detail in §7.7, where I prove a more general formula which
includes (7.2.3) as # particular case.
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7.3. There is a whole crowd of striking particular cases. If we suppose
that @, y or z is a positive integer, divide by s, write ¢t —wu for s, and then
make u— 00, we obtain

—x, —Y, ~2
(7.3.1) F(t+l,—w—:i/y—z-t)
_Tt+) Ny +e+t+ ) Me+a+i+ ) Ma+y+i+1)
Fe+t+ 1) IMy+t+ ) I'z+t+ ) N +y+z+t+1)
which gives the value of (7.1.1) when
ayt+ogtag=fi+pf—1
and one « is a negative integer. This result was found by Saalschiitz in 1890.

If on the other hand we suppose that u is a positive integer, divide by s,
put z = — 1s, and then make 00, we obtain

(7.3.2)
F( —&, =Y, 8 ) I'(3s+ D @+s+ D (y+s+ 1) Me+y+3s+1)
s+l y+s+l) Do+ T@+is+ DIy + s+ DI @+y+s+1)
This formula, due to A. C. Dixon, gives the value of (7.1.1) when
=ty dfy =yt 1,
It includes F. Morley’s formula
1+ = 3+ mm 1) 3+ (1 gm) cos ma
1 1.2 T{Ia—imp

for the sum of the cubes of the coefficients in the binomial series for (1 —x)~™,
The formulae (7.3.1) and (7.3.2) are two of the three most important in
the theory of the series (7.1.1), The third is

I'e+y+s+1) (—a, —b,x+y+s+ 1)
Fie+s+1)I'(y+s+1) r+s+1,y+s+41

_ I'a+b+s+1) —w,uy,a+b+s+l)

S Ta+s+ 1) I'(b+s+1) a+s+1,b+s+1
This formula of Thomae’s was also rediscovered by Ramanujan, It is not
a consequence of the Dougall-Ramanujan identity, which is my main
subject here, but I give Ramanujan’s proof.! By Gauss’s formula

I'e+y+s+n+1) I F(—x,—y)
Fe+s+n+1)(y+s+n+1) Is+n+1)" \s+n+1
_ 1 = I—asmI(-y+m)
I(—2)(—y)m=o m!'I(s+m+n+1)

(7.3.3)

! This is one of the few cases in which Ramanujan gives an explicit proof in the
notebook. The proof is essentially the same as Thomae’s.
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Hence
- TIm+y+s+1) (~a,—b,w+y+s+1)
Ie+s+1)I'y+s+41) x+s+1l,y+s+1
_ 1 §F(—a+n)__7‘(~b+n)F(x+y+s+n4;i)
T I(~a)'(=b),20 wlla+s+n+)I(y+s+n+1)

g Ilzatm) I(=y+m)I(=a+n)[(=b+n)
mn=0 mia'ls+m+nt1)

and the conclugion follows by symmetry.

7.4. Ireturn to the Dougall-Ramanujan identity. The notebook contains
a mags of elegant summations, most-of which, though not all, can be derived
from (7.2.1)." I cannot quote many here, but I will say something about
the formulae (1.2), (1.3) and (1.4) of my first lecture.

If we suppose u, in (7.2.1), a positive integer, and make u-—+c0, we
obtain

(141) S (= 1) (s42m) o T 4w
T n=0 n!m'y,z(x“"'tg'l‘ 1)(n)
sl@w+y+z+s+1) Ixz+s+1)
I(s+1) el Y+2z+s+1)
The special cages T =y ==8 2=,
and x=y=2=—s
give
s\3 s(s+1)\3 sin s7r
(7.4.2) 8—(8+2)(T) +(8+4)(— 15 ) Tee=

which reduces to (1.2) for s = }, and

s{s+ 1))4+ _ sin?sm {I'(s)}?

) s\t
(7.4.3) S+(:§‘+2)(I) +(8+4:) ("‘f—z— ve = %écossﬂm)—,

which reduces to (1.3) for ¢ = }.

The formula (1.4) is more difficult, and it is not possible to deduce it
from (7.2.1). Proofs have been given by myself and by Whipple, the first
depending on the theory of the Legendre polynomials, and the second on

! There are a large nuwmber of examplos in my paper 8, and on p. 96 of Bailey’s
tract.
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a generalisation of (7.2.1) due to Whipple himself. Each proof shows that
Ramanujan’s series is equal to

A (a) (20 )

and then sums this series by means of (7.3.2). It would be very interesting
to know Ramanujan’s proof.
Another interesting summation is

This also is not a consequence of (7.2.1), but may be effected by means of
the two formulae

(7.4.5) {gFl( a f )}2=3F2( 2,0+, 24 x)

a+B+3 a+f+3, 20+ 24
and
wf o\ D(4a-BI(1+})
(7.4.6) 2Fl(l+ocm-/)” _1) LA +a) '+ fa—p)’

due to Clausen and Kummer respeetively. Both of these formulae are in
the notebook. If we put
w=f=}

in (7.4.5) and (7.4.6), and x = -1 in (7.4.5), we obtain
-l
ol - e

7.5. Another curious formula which has attracted a good deal of
attention is

R
e —

I prove this as a special case of a more general formula found by Bailey, viz.

(7.5.2) {{’(?WEW_—:)_%)}Z :;;L+ (%)2”2—1—1 + (—;—i) mi— et .ton terms}

LD (1 1 (1.3 1
_{W} =7_Z+(§) n+l+(ﬂ) PR tomterms},
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We can write this as an equation between two terminating series of the
type ;. For

1 1\ 1 1.3\2 1
';ﬁ+(2) ,;&Ti-l‘(é“i) MT-§+...tonterms
_{13 L (@n=-3)2 1 { (2n—=2P(m+n—1)
12.4... (2n— 2)} min—1\ T3P mrn~2)
(2n —2)* (2n — 4) 4R m+n-—1)(m+n—2)
(2n—3)% (2n~ B)® (m+n— 2) (m +n—3) }
1 (I'n-}) 1, -n+l, ~n+1l, —m—n+1\,
—(m+n—1)7r{ } F( -n+$,—n+d —m-—n+2 )

Ty
Hence (7.5.2) reduces to

1, —-n+1,~n+l, —m—n+1
(7.5.3) {m—14%)? F( )

—-n+3 —ntd —m-—n+2

1, -m+1, -m+1, —-m—n+1
- 132 2 ’ b
Now Fl( b, )—(1-90)0*“—”251(6—“;6_1);95)
and so
-n+1l, —n+1 ~m+4, —m+ i )
2Fl( ~m—n+ 2 ,x)zFl( —m—n+l 7
—m+1l, ~—m+1 n+4, —n+3%,
ngl( —m—n+2 )BF( ~-m—n+1 ,x).

If we equate the coefficients of a+"~1 on the two sides of this equation, it
will be found that we obtain (7.5.3).

7.6. Most of the preceding formulae, and in particular (7.2.1), can be
generalised for “‘basic” series. I prove the generalisation of (7.2.1), since
it is interesting in itself and has a curious connection with the Rogers-
Ramanujan identities.

The “basic” generalisation of the hypergeometric series was first studied
systematically by Heine. Suppose that, in the hypergeometric series

aff  afa+1)f(B+1)

7.6.1 T A e &
760 Ly" 1 2y+1)
1 ~gr+n :
we write T:%m’
where 0 <q< 1, for A+
ptn

' Using the notation of §7.1.
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(its limit when g—1), and then write [, m for ¢* and ¢#; and that we also
introduce a factor ¢” in the n-th term of the series. We thus obtain the series

(7.6.2) 1 1=a) (=) (0 ~a)(-ag)(1-b)(1—bg) ,

I-g) (=) ! (1=g)T=g(1=0)(I—cq)

which reduces to (7.6.1) when g— 1. This is the “basic series”” corresponding
to (7.6.1),
More generally, we may write

(@) = (1—-a)(l—aq)...(1—aq™™?)
and
[ PO ® ()7 (ag)y ... ()
7.6.3 o ) = g 2
( ) (bl’ bza ---,bs 2 (Q) (bl)q (b )n q
Ifa, = ¢, ...,b, = ¢A, ..., and ¢-»1, then (7.6.3) reduces to
F(al’ Lo, ...,oc,.).
/’)1’/’)2’ ""ﬁs

An additive relation between the & and 2, such as a,+ f, = 1, will corre-
spond to a multiplicative relation between the @ and b, such as a,b, = ¢.
The analogue of the series (7.2.5) is

(7.6.4) (a g2, —qJa, 1/b, Y e, 1/d, 1]e, l/f)
o \/“ '—\/a’ abq’ acy, adq aeq, afq
Here we have replaced 8%, U, % Uy ¥
by ¢F=0,0=bqg=ec¢=dq =9 =f

The effect of the four parameters

INa, —q 1, o3, — @
1— ann

is to contribute a factor T

in the general term of the series, just as the effect of the two parameters
1+ %s and }s in (7.2.5) was to contribute a factor (s+2n)/s. The relation
(7.2.4) is replaced by

(7.6.5) a®bedefg = 1,

and one of the parameters, say b, must be of the form ¢™.
We can transform the product of gamma-functions on the right of (7.2.1),
and the finite product (7.2.6), similarly. We have

L+ D) I (pa+1) 5 (A +7) (A +2)
DA+ 1) (A, +1) 1 () (pa+n)
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when Ay + Ay = 1)+ p,, and this is replaced by

PACICIE
J(my)f(my)’
where f) = ﬁ (1—lg™).
1
Hence the product of gamma-functions becomes
Sflabe)
(7.6.6) Sfla)f{abede) b_gi,emb)]—_(ubcd) ;

and the finite product becomes

(aq)g’ (agde)g’ (agec)g (aged)y’,

(age)y (aqd)y (age) (aqede)r’

and we are led to conjecture that, if (7.6.5) is satisfied, and one of b, ¢, d, e, f,
say b, is g™, then (7.6.4) is equal to-either of (7.6.6) or (7.6.7). It is plain
that (7.6.4) is symmetrical in b, ¢, d, ¢, f (since the restriction can be imposed
upon any one of these parameters), while (7.6.6) is symmetrical in four of
five symmetrically connected parameters; and so symmetrical in all of them.

(7.6.7)

7.7. We can prove the identity, which was found first by F. H, Jackson,
by an argument which runs strictly parallel to that of §7.2. We assume
it true for b=1,¢¢% g

and prove it for b == ¢m. If b = ¢, and we multiply both sides by

(age)g (agede)y,
then it becomes an identity between two polynomials in ¢ of degree 2m,
and it is enough to verify it for 2m + 1 differcnt values of ¢. Now it is
true for c=1,gq, ng g™

by the inductive hypothesis and the symmetry in b and ¢, and also for the
m values of ¢ corresponding to the same values of f. It is therefore enough
to verify it for one more value of ¢,

We choose the value ¢ = alg™,

which is a pole of the last term only of the series (7.6.4). It is sufficient to
prove that the residue at this pole is equal to the residue of (7.6.7). The
residues are, apart from a factor - a~l¢~™, the values of the coefficients of

1 1 1

l—acq™  aqrc—a-lg™™m

when ¢ = a~'¢~™; and we have to prove that these coefficients are equal
for this particular value of ¢.
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To calculate the first coefficient we observe that

b=gq" ¢=— 1=acleq,
and we obtain

1-ag® (@) (¢~™)g _(aq™)i  (1/d)g (1/e)f (adeq) .,
1—a (g)p (ag™)y (g™ )= (adg)y (aeq)y (1/de)y

(1.7.1)

Since

B~ -30-0) 157 v s

the terms in 1/e and 1/de may be transformed similarly, and
@7 =1—-g) (1 =g%)...(1—¢g™) = (= 1)rghmmtD (g=m)m,
1—ag® (a)f (aq™)y _ (adeq)y (dg~™ ) (eq= )7

Y A
TDIS T ety (P (ada) (e (deg )y
Also
1—ag® (a)j (ag™)g _ 1—ag®™ m-1y 1 —9"
1—a (aqm+1)£n7 T 1—a (1 ke a’) (1 TS G’Q) (]- aq ) aqzm (Q’Q)(rln

1t

Hence finally (7.7.1) reduces to

(ag) (adeq ) (dqg ). (eq )
(g5 (odg)y (aeg)y (deq )7

which is also the coefficient occurring in (7.6.7).
This completes the proof of Jackson’s identity, which includes the
Dougall-Ramanujan identity as a limiting case.

7.8. Let us suppose, in particular, that
a=1, b=gm c=d=e=¢ [f=a%n 13
and make ¢ tend to zero. Then

(1—c)(1-cq)...(1—clg")
(1 —acq) (1 —acqg?) ... (1 —acg™)

~(—1)rgintn-Dg—n,

and similarly for the factors in d and e; and

_ffl)(l—f—lq)_“(l_fflqn—]_) N o
(I =afq) (1 —afg?) ... (1 —afq™) ~ (— 1)ng—inm—Dimng3n,

After a little reduction, we obtain

1—gm) (1 —=qgm1),.. (1 —gm—n+l
S (=1 (1+gn) El _gmli) a zqm?ﬂ) ( (lq_qm+n; ginGn-1

n=y
= (1—¢)(1—¢%...(1—q™),
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which is the first of the two formulae of Rogers proved directly in § 6.16.
If we take @ = ¢ instead of a = 1, we obtain the second formula. These
formulae lead, as we saw in § 6.16, to a proof of the Rogers-Ramanujan
identities. The proof thus obtained is a compromise between Rogers’s proof
given in §§ 6.13-16 and the proof found later by Watson. Watson uses an
identity which is more complex in form than that of §§ 7.6-7, but which leads
to the Rogers-Ramanujan identities by a direct limiting process. We use
the simpler identity, the direct generalisation of the Dougall-Ramanujan
identity, to avoid the rather tricky algebra of § 6.16, but retain the more
straightforward part of Rogers’s argument.

NOTES ON LECTURE VII

§7.1. My analysis of the two chapters is in Hardy (8), There I call the chapter
with which I am primarily concerned ch, x1, but it is ch. X in Watson’s copy of the
‘second edition’. See Watson, 10, 139.

Almost all of the formulae discussed in the lecture are proved in Bailey’s tract
Generalised hypergeometric series (Cambridge 1935). This tract containg a full biblio-
graphy, and I do not repeat roferences to papers published before 1914.

The notation for generalised hypergeomotric series which has become standardized
was introduced by Barnes, Proc. London Math. Soc. (2), 5 {1907), 59-118.

§ 7.2, The Dougall-Ramanujan identity is the first formula in ch. x of the note-
book. Formulae (1.2) and (1.3) of Lecture I are special cases, but Ramanujan does not
seem evor to have printed the general formula, which T found in the note-book only
after his death.

§7.3. The special casc of Morley’s formula in which m is a negative intoger had
becn found by Dixon as early as 1891 (and proved more shortly by Richmond in
1892). Morley published his formula it 1902, and it was his result which led Dixon,
in the same year, to (7.3.2). Dixon’s original proof was very complicated.

The corresponding sum for the expansion of (1+x)™ is a ,F, with argument ~1,
not summable as a finite product of gamma-functions.

Formula (7.3.3) is equivalent to (1), § 3.2, of Bailey’s tract, It is an expression of
the theorem that

I S v(“v“w“ﬂ
L) T (o) I'(By+ fy— oy — 0tg — atg) Bu By
ig a symretric function of the five arguments
B P Pitla—og—ay Prtfy—cy—0y, fy+fy—o—a,

§7.4. The limit process used in the deduction of (7.4.1) requires a little attention.
See p. 27 of Bailey’s tract, and the paper of Dougall’s to which he refers.

For (1.4) sce Hardy (4) and Whipple (1).

Whipple gives two generalisations of (7.4.4) in 3. These generalisations give the

sums of tho series
’ (bbb
o2 Ygw, 1—2 '

bodta, b+ 2 _1)

d B ;
an 8 ”( 1+, 1+ 2
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which reduce to Ramanujan’s seriecs when z = 0. The second can be proved by the
method stated in the lecture.

§17.5. The first proofs of (7.5.1) were given by Darling (1) and Watson (5); and
generalisations by Bailey (2, 4), Hodgkinson (1) and Whipple (2). The formula has
an interesting application to the ‘Lebesgue’ and ‘Landau’ constants: seo Watson,
Quarterly Journal of Math. (Oxford), 1 (1930), 310-318.

Bailey (4) proved (7.5.2), and the still more general formula

I(x+m) I'(y+m) 7 z,y,v+m—1 hf(_x:ﬁﬂ!y+n) ¥ w,y,v+n—l]
Lm) Tw+y+m) "\ vat+y+n /], A vatytn |l

T I'm)IM'z+y+n)
Here [...], and [...],, mean that only the first n or m terms of the series are retained.
This reduces to (7.5.2) whena =y = 4, v = 1,
Formula (7.5.3) is a special case of formula (I), § 7.2, of Bailey’s tract. Replace
x, Y, 2, U, U, w, n by
-n+1, —n+4l, 1, —-m-n—2, =-n+i -n+§ min-L

Further information will be found in § 10.4 of the tract.
§7.8. See Heine, Theorie der Kugelfunktionen, i (1878), 97-125.

§7.7. Jackson, Messenger of Math. 50-(1921), 101-112. See §8.3 of Bailey’s tract.
Watson's proof of the Rogers-Ramanujan identities is given in §§ 8.6-6.



VIII

ASYMPTOTIC THEORY OF PARTITIONS

8.1, In this lecture I shall be concerned with the question: how large is
p(n) for large n? 1t is very remarkable, if we consider how much has been
written about approximate or asymptotic values of arithmetical functions,
that this question should never have been asked before 1917, when
Ramanujan and I published the memoir which is now no. 36 in his Papers,
We were very lucky in finding a problem which proved to have so much
individuality and to admit so complete and so surprising a solution.

8.2, There is one obvious method of attack on any such problem (if no
strictly elementary method suggests itself). If a,, is positive, and the power

series Fl@) = Za,an

has radius of convergence 1, then there is a general correspondence between
the order of magnitude of a,, for large », and that of F(z) for  near 1.
The first step, therefore, is to determine the order of magnitude of Euler’s
function

(8.2.1) F) = :

1—z) {1 —a}) (1—2%)...

when 0 <z <1 and z 1. This is quite simple, if we are content with a
rough approximation. For

l F \‘\l mmn m
and ma™ 1l —z)<1—a™<m(l—x),
go that
1 xm 1 x
(8.2.2) 1:;2,3{2<1°g F(x)<—1—_—_}277b§

Each of the series in (8.2.2) has the limit {#? when x—1, and so

72

(8.2.3) log F(x) ~

6(1-2)
or
72+ 0(1)
(824) F(x) = @Xp {Gﬁ} .

* 1 write  now instead of g, ¢ being wanted for other purposes.
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It follows that the order of magnitude of F(z) is, to a first approximation,
that of
8.2.5 m

( e, ) expm .

We want to know the order of @, corresponding to this order for
F(z) = Za,z".

If @, = n*, where a > —1, and x = e, so that y—>0, then

Ila+1) Ia+1)

et ~ (1 —z)=t1"

F(z) = Znen = Snag=mv ~ f toe-tvit =
0

On the other hand, if a,, were as large as e, for some positive &, then the
series would diverge before x reaches 1. It is plain then that o, must be
smaller than this, but larger than any power of n. It is natural to conjecture
that the right order is about ol

for some b between 0 and 1 and some B,

The order of G(x) = ZeBrlgn — YeBri—ny

may be calculated roughly from that of its maximum term. This occurs
when Bbnb—! = y, approximately; and the maximum term is then about

exp{C(1 - x)—l{—b},
1

where C = Bl=bpl=b(1 _}),
This agrees with (8.2.5) if b = } and B? = #?; and we conclude that the
order of p(n) should be about (Eni
where
(8.2.6) K =7,3).
8.3. It is actually true that
(8.3.1) log p(n) ~ Kn}
or
(8.3.2) p(n) = elE+otint

but we cannot prove this very simply. Itis however quite easy to prove that
(8.3.3) et < p(n) < B

for n > 0 and some positive 4 and B.
If & = e, then y—>0 when 21, and

(8.3.4) l—z~y.
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We write

(8.3.5) P@) = Zpm)e— = G(y);
and we suppose that

(8.3.6) 0<BE<C=%m<D.

(i) It follows from (8.2.3), (8.3.4) and (8.3.6) that
D
p(n)e~"¥ < G(y) < exp 7
for all » and small y. Hence, taking y = n~*, we obtain
p(n) <exp (ny + ?;—) = ¥,

with B = D+ 1, so that B may be any number greater than C'+ 1.
(ii) On the other hand B
G(y)>exp Z

for emall y; and so

m o E
Gy(y) + Gyly) = S pnje+ 3 p(n)e™™ >exp—
0 m+1 Yy
for every m. But p(n) increases with n, and therefore

(m+ 1) pm) > G1<y)>exp§—az(y).

Also Goly) = T p(n)e~*v'< 3 exp (Bni—ny),
m+1 m+l

after what we proved under (i); and so

1 E 2
.- — fal .
p(m) > 1 {exp y m§lexp (Bn ny)}.
We choose H so that H 2B, and take y = Hm~t, Then

% exp (Bnt-ny) £ % exp (Bnt — 2Bnm—1) < E‘, e Bt [
m+1 0

m+1

say. It follows that

E 1 E
o fexpZLl=—— ok — i
p(m) > (exp 7 L) p| (exp ™ L) >expAm

for large m, A being any number less than E/H. Since E may be any

number less than (!, and H any number greater than 2B = 2(1 + D), i.e. any

number greater than 2(1+ ), A may be any number less than $C/(1 + C).
8-2
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8.4. To prove (8.3.1) or (8.3.2) we require a general theorem of the
so-called ““Tauberian” kind. It is in fact true, whenever a,, = 0 for all n, that

log Xa,, a™ ~

-z
implies log A, = log(ag+a,+...+a,)~2(On)t
When, as here, a,, increases with »n, we can replace the last equation by
loga, ~ 2(Cn)i,

and this gives (8.3.1).

We have thus an asymptotic formula for the logarithm of p(n). But an
asymptotic formula for the logarithm of an arithmetical function is a very
crude result; it does not distinguish, for example, between the orders of

magnitude 1000 Kt

We should like, at the least, an agymptotic formula for p(n) itself. Actually

1
8.4, 3 K+v/n.

but we cannot hope to prove so much as this by arguments of so elementary
and general a kind. It is essential to use more powerful methods which
pay proper regard to the more intimate peculiarities of F(x).

8.5. Our natural resource is Canchy’s theorem. This tells us that

(8.5.1) o) =55

where C is a contour round the origin. We must move C into the most
advantageous position and study the integral directly. There is of course
nothing in the least novel in this idea, which is that which dominates the
whole analytic theory of numbers, and in particular the theory of primes;
but the setting here is quite different, and it is instructive to compare the
two problems,

In the theory of primes our generating functions were Dirichlet’s series
Za,n¢, and the proof of the Prime Number Theorem depended upon the

integrel o) — - L [ L
2o C(8) 8
where ¢> 1., We moved the contour of integration to the left, across the

pole at ¢ = 1, and inferred that yr*(x) and y(z) differed from the residue x
at the pole by an error of smaller order than 2.t

¥ See Lecture II.,
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The conclusion was correct, but the argument was difficult to justify
because {(s) behaves in a very complicated way at infinity. In particular
the location of its zeros is still highly mysterious. On the other hand there
is no difficulty at all about the singularity which yields the dominant term,
a pole at s = 1 of the simplest possible character.

8.6. The singularities of the F(x) of our present problem are very much
more complicated. 'They cover the unit circle |[z]| = 1. The circle is a
“barrier” for the function, which does not exist outside it, and there can
be no question of “moving C across the singularities”, All that we can
hope to do is to move C close to the singularities and study each part of it
in detail.

For all this, however, there are strong consolations. The function F(x)
is one of a well-known class, the elliptic modular functions, whose properties
have been studied intensively and are very exactly known. These functions
all have the same peculiarities as F(z), and exist only inside the circle; but’
they satisfy remarkable functional equations which enable us to determine
their behaviour, near any point of the cirele, very precisely. In particular,
F(x) satisfies the equation

e 1\¢ m? ’
(8.6.1) F(x) = —(w (log;z) exp {6_16?3'—(1—/;)} F(z),
where
b1 el an®
(8.6.2) 1og5’1og? = FiEaieeTe s exp{—@(l/x)}.

If, for example, x is positive and near to 1, then «’ is extravagantly small
and F(x') is practically 1; so that (8.6.1) expresses F(z), effectively, in
terms of elementary functions. There are similar formulae associated with
other points of the circle, such as

—1,ed7m g i g 4 et

(generally, with all primitive roots of unity); but (8.6.1) alone is enough to
enable us to make great progress.

In particular, if we take ' to be a circle with just the right radius, a little
less than 1, we can substitute from (8.6.1) into (8.5.1), and replace F(x')
by 1, with an error which turns out to be of order

¥
elin s

where H<K =mn,#).

There are then only elementary functions in the integral, and we can
calculate it very precisely.
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The result is the formula

T Y i W v
(8.6.3) P) = 52 dwn(—f) O(ei™),
where
(8.6.4) A, = 4/(n—4%), H<K.

This includes (8.4.1) and is very much more precise. The form of the
dominant term is at first sight rather mysterious, but it arises naturally
from the analysis. In particular, the “ —J;” in A, arises naturally from
the index 3 in (8.6.1).

8.7. This however is by no means the end of the matter. The formula
(8.6.1) is that appropriate for the study of F(z) near « = 1. There are, as
I remarked, similar formulae associated with other “‘rational points”

(8.7.1) x, = 2Pl

on the unit circle. One may say (natorally very roughly) that these “ rational
singularities’’ are the heaviest singularities of F'(x), that F(x) is bigger near
them than near other points of the circle, and that their contributions to
the integral (8.5.1) may be expected to outweigh those of other points.

Further, these rational singularities diminish in weight as ¢ increases.
When z—1 along a radius, F'(z) behaves roughly like

R

while when x>, , it behaves roughly like

-
eXPlamr— T !
ﬂ P 6q2(1—|w|)}
It is reasonable to expect that

(8.7.2) p(n) = By(n)+ By(n)+... + Py(n) + R(n),
where F,(n) is the dominant term in (8.6.3), Py(n), Fy(n), ..., Py(n) are similar
in form, but with smaller numbers K,, K, ..., K4 in the place of K, and
R(n) is an error of lower order than eXent,

The proof of all this can be put through without much additional
difficulty. The form of F(n) is

(8.7.8) Fy(n) = Ly(n) py(n),
where

L A oW
(8.7.4) Py(n) = 57%/‘2 dn (%77‘1) )

(8.7.5) Lq(’ﬂ) = Ewp'qe—-znpni/q,
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p runs through the integers less than and prime to ¢,' and w,, is a certain
24th root of unity. Thus

L =1, $w) =B, K =7
And
(8.7.6) R(n) = OfeHent),
where H,<K,

(so that H,—0 when §->c0). We can thus find p(n) with error O(e*™*) and
an arbitrarily small positive 4.

8.8. At this point we might have stopped had it not been for Major
MacMahon’s love of calculation. MacMahon was a practised and en-
thusiastic computer, and made us a table of p(n) up ton = 200. In particular
he found that

(8.8.1) P(200) = 3972999029388,

and we naturally took this value as a test for our asymptotic formula. We
expected a good result, with an error of perhaps one or two figures, but we
had never dared to hope for such a result as we found. Actually 8 terms of
our formulae gave p(200) with an error of 0-004. We were inevitably led
to ask whether the formula could not be used to calculate p(n) exactly for
any large n.

It is plain that, if this is possible, it will be necessary to use a ““large”
number of terms of the series, that is to say to make ¢ a function of n. Our
final result was as follows. There are constants «, M such that

(8.8.2) Py = 3 Fy(n)+ R(w)
where
(8.8.3) | R(n)| < Mn-t,

and, since p(n) i3 an integer, (8.8.2) will give its value exactly for sufficiently
large n. The formula is one of the rare formulae which are both asymptotic
and exact; it tells us all we want to know about the order and approximate
form of p(n), and it appears also to be adapted for exact calculation. It
was in fact from this formula that D. H. Lehmer first calculated the value
of p(721).

8.9. It was however necessary, until very recently, to make a curious
reservation at this point. The values of p(200) and p(243) were known,
because they had been calculated directly by MacMahon and Gupta, but
calculations based upon (8.8.2) were not decisive. We cannot use the formula

!Wheng=1,p=0,
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to prove that p(721) has a particular value until we have found numerical
values for « and M; Ramanujan and I had merely proved their existence,
It was necessary to go over all our analysis, give numerical values to all
our “constants’, and replace all our ““O” terms by terms with numerical
bounds. In the meantime Lehmer’s calculations, which used 21 terms of
the series, and led to the value

1610617565750279477635534762-0041,

gave a very strong presumption about the value of p(721) but were not
conclusive.

The gap has now been filled by Rademacher, who (trying at first merely
to simplify our analysis) was led to make a very fortunate formal change.
Ramanujan and I worked, not exactly with the function

1 d (eEtn
$) = 2 %(T}
but with the “nearly equivalent® function

1 d {eosh KA, — 1)
mi2dn A,

(afterwards discarding the less important parts of the function). Rade-
macher works with

1 d (sinh KA,
yn) = m/z%( x, )

which is also “nearly equivalent’”’; and this apparently slight change has

a very important effect, since it leads to an identity for p(n).

We have
d (1 . KA\ d(K Kin—) A1
o, = el + ) = of)
for fixed n and large g. Hence the function
_ gt d (sinh(KA,[q)
(8.9.1) vim =25 dn{ X }
behaves for large ¢ like a multiple of ¢*.¢=3 = ¢~¥; and
(8.9.2) | Lq(n) | =% y, 072D | < g,
»
so that
(8.9.3) S Ly n) Y (n)
q

is convergent. The series XL (n)¢,(n) is not convergent; this question
Ramanujan and I left doubtful, but it has been settled since by Lehmer,
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Rademacher proved that

(8.9.4) pln) = 3, Ly(n) Yln),

and that the remainder after ¢ terms is legs than

CQt+ D(%)* sinh %@ ,

where C and D are constants for which he found definite values. The
remainder is of order n—t when () is of order »*, as in our older work.

Proof of Rademacher’s identity

8.10. The rest of this lecture will be devoted to the proof of (8.9.4).

The Farey series 7y of order N is the set of irreducible fractions p/q,
between 0 and 1, whose denominators do not exceed N, We include 0 and 1
in the forms ¢ and %: thus &, is

o 1 i. 1 2 % 32 2 3 4 1
1> B 432 32 B 2 B) 31 42 By 1
It & = petid

and 6 runs through the values of {4 (so that the first and last values of x
are each 7), we define a set of “Farey points’ re?»7i2 on the circle |z | = r.
Suppose that ¢>1 and i L

fifr skl

T, 3 ’

q q 4

are three consecutive fractions of §,. We associate with p/g the interval
£pq OF *
' P P,
T - -+ ,
q Xp,a q Xpa

" 1 , 1
= glqr gy T glgr gy
These intervals just fill up the interval (0, 1), and the length of each of the
parts into which £, , is divided by p/q lies between

1 1
Vg Na
The definitions naturally require modification when ¢ = 1. Then pjq is
9 or 1 and the interval has one part only.

We shall also use £, , for the arc of |2 | = r defined by the same values
of 9; the two extreme arcs, which now abut at @ = , are to be amalgamated
into one. We call this dissection of the circle the Farey dissection of order N,

We apply (8.5.1) to the circle ' defined by

[z] =7 = eV

where
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We write

(810.1) pn) = o [ 2D gy = 3 L F‘*’”

2ms as"“ pa 2m w”“

ij q°

and study each integral separately. The range of summation is defined by
(8.10.2) O<p<gq, (p,g)=1, 1=q=N

(except that, when ¢ = 1, p assumes the single value 0).

8.11, On §,, we write

(8.11.1) 2 = re?nil  p =N @ =§+¢
so that
2
IR e e O ]
where
oy .
(8.11.3) 2= q(l—v—z—zqﬂ).
Thus ¢ = 0 gives the Farey point of £, ,,
(8.11.4) ——X” = _X;,q = ¢ = X;},q =
and
1 1 1
(8.11.5) éﬁ<x"<ﬁ’ l¢l<§_j_\—7

We also collect here some simple inequalities which will be useful later.
Since [g¢ | <1/N and ¢ £ N, we have

(8.11.6) |2] = g(N-4+ ¢ < (¢*N-4+ N-2) < 28N -1

(so that | z| is small, uniformly, for large N); also

mz 7
(8.11.7) exp(—m)‘ =exp(——l—2~ﬁ2—)<l,
and
1.1 N-2 N—2
(8.11.8) g—lé}i; T qu‘4+N 52 %

8.12. We now use the formula of the type (8.6.1) but associated with
¢2r7ifa ingtead of with 1. This formula is

- i 7
(8.12.1) F(z) = wp,z eXp(lzqz 12q) @)
where

2pmi 27rz) , (2101 m 271)
8.12.2 = , & =ex — -,
( ) rEox p( q q P q gz
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w,, is the 24th root of unity referred to in §8.7, 2t has its principal
value, and pp; = -1 (mod ¢). The formula reduces to (8.6.1) when g = 1.
If we substitute from (8.12.1) into the integral j, , of (8.10.1), write

(8.12.3) V() = ¥, (2) = 2 exp( 72)

12z 12¢)°
and observe that

Z . _ 2nm 2npmi )
— = 2midg, x "= eXP(N2 q —2”/7795‘):

we obtain
¥
(8124) €N, = o, o-2unril f P(e) F(o) e-tnrdi d,
._X'

It is convenient to have also a formula for j, , in which the variable of
integration is z. This formula, which is a trivial transformation of (8.12.4), is

(8.12.5) Jpa = 3(’)p,qe_2mmi/qu’(z) F(x') e2noia dy,

the path of integration being the straight line joining the points

1 &
Q(NE'HX )9 Q(Na @X)
in the plane of z.

8.13. When 2 is small and positive (i.e. when x is near to 2?72, on the
radius to that point), 2| = o-oriee
is extremely small, and F(z') is practically 1. We may hope to replace
F(2') by 1, without serious error, on the whole of £, .. We therefore write

(8.13.1) Jpa=IpatJog
and

(8.13.2) p(n) = 2jp 4= 2, .+ EJ . = P(n)+ P'(n),
say, J,, and J}, being the integrals obtained from j,, when we replace
F@) by 1, Fx')-1,
respectively. Of course P(n) and P’(n) depend upon N as well as n, and
we have to study their limits when N—co.

8.14. We prove first that
(8.14.1) P'(n)~>0.

We have Y} {F(x')—1} = ztexp { — %} (z - %)} j%_o‘,p(v) x™
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Now e | <1,
by (8.11.7). Also
2pymi 21
1202500 [ o= n __Z).l_.__._
|ttt BXP<12qz+V( q qz)}

by (8.11.8), 8o that
em22 Y p(v) x| £ 3 p(v) e ¢—7 = B,
1 1

where B is a constant. Finally,

| 2|t 2tV
by (8.11.6), and the interval of integration in (8.12.4) is less than 2/¢N,
by (8.11.5). Hence

‘ naNe 2 _ - L2018
| Tpq| <tV G- B = g o,
and |P'(n)| = O(N—izl) - O(N“"i b 1) — O(N—i)_
p,qq qEN

Combining (8.14.1) and (8.13.2), and remembering that p(n) is inde-
pendent of N, we see that

(8.14.2) p(n) = llvigle(n).

8.15. In discussing P(n) we use the formula (8.12.5), with F(x') replaced

by 1. Putting z=qZ7
we obtain

(8.15.1) g = Wy €2 PTHER,
where

¢t m
(8.15.2) R, = TfZ*exp{lzq———zz—+2ﬂ(n—-ﬁ) Z} dZ.
The path of integration is now the line L of Fig. 2. Thus

N N
(8.16.3) p(n) = lim P(n) = lim 3 Yw,,R, e *?"l = lim ¥ T,
Noo N—rowq=1p N—>wgml
where

(8.15.4) T, = %;w .0 B € 2P,

We have now to transform R,,. We apply Cauchy’s theorem to the
contour indicated in the figure. Here Zt is positive at N2, iy —i(— Z)t,
where ( — Z)t is positive, on the line (1), and i(— Z)* on (6). Also

e<N-2

and ¢ will be made to tend to 0 before N tends to co.
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Cauchy’s theorem gives

gt 'J‘(o+) J- J‘ J‘ J’ J‘ J‘ )
z'(. — W Jo Jo Jo Je Je

20U +ig Ly + L+ L+ L+ I+ 1),
say, where U is an integral from —co to —oco enclosing the origin in the

positive direction, and is independent of p."
1t is plain that

(8.15.5) R,,

i

(8.15.6) L+ Iy~ — 2V,
where
© i
(8.15.7) A =f0 tiexp{—-lzq%—%r(n—ﬁ)t} dt
_— N"2+i xl/
4
5 A
( L
8
-1 ~€ 0 N2
2 [
i
N N2-ix’
Fig. 2.

(so that V, also is independent of p), whene— 0. If we assume provisionally
that the other integrals 7, I, I,, and I can be neglected, then we shall have

N N
p(n) = lim 3 7) = lim lim ¥ 7,

Noomg=1 N-»oe—=0g=-1

N
= lim im ¥ 2¢'0, +igh(L,+ L)} & W, e~ 2nrmile
N—owe>0g=1 p

N
=lim ¥ 2q5(Uu o4 I{J) Sw ’q e-anpmilg
P

Noomg=1

N w©
=lim 2 q*Lq(U,1+I’,'1) =2¥ qiLq(Uq+V;).
Nowo ¢g-—1 g=1

Here L, = L,(n) is defined by (8.7.5). And if we can then prove that

1 df1 KA
5 7 = - A—si L
(8.15.8) U,+V, 52 d’n(/\nsmh p ),
the proof of Rademacher’s identity will be completed.
' R,, depends upon g as well as on ¢, beeause y” and ¥” do so; and so do I, I, 1,,I.

But U, V,, and the upper bounds found for I,..., I, in § 8.16, are independent
of p.
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8.16. We must first verify the provisional assumption made in § 8.15.
It is sufficient to prove that

N o
lim ¥ ¢Xlim|L+L+L+I| =0,

N->wg=1 p e—>0

or that
N
(8.16.1) lim ¥ ¢tlimMax |L+L+1,+1I,| =0.
N->mwg=1l >0 p
In I, Z =—¢e—1Y 0<Y <y,
1 €
?R(Z)<O, S{(z) = _62_+7§<0’
and | L] <(e+x3)tx < €2+._£_ Pl
2 ®N2) qN'
Plainly I, satisfies the same inequality, and
(8.16.2) Lim | f+ ;| < 2(qN)*
>0
(for each 7).
In I, Z=X-iy (—e<X<N-2),
| Z |b<2tg-tN-t,
by (8.11.6); | e2min~dal 2| < g2nmIN?,
-2
1 R 1 X N <4,

SR = <= <
¢4 PR T T
by (8.11.5); and, for each p,

(8.16.3) || <2N-2.2ig¥N~+, e2nalN gin o BN —ig—teinmINY

where B is again a constant (in particular, independent of p). Plainly I,
also satisfies the same inequality, and so

(8.16.4) fim | I, + I, | < 2BN-ig—tetniN®,
>0
Thus it is sufficient to prove that

N
> ¢HgN) 10
g=1

N
and 3 qt. N+ -0;

q=1

and each of these is O(IV—1).
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8.17. It remains only to evaluate the integrals U, and ¥, and so prove
(8.15.8). The integral U, is one of a standard type, and may be calculated
by formulae to be found in Watson’s Bessel functions. We have

1 e+ T
U=gi [ Boxp| iyt 2nn-2 2] 2

2] _ E{fZ
= Z:r_i éiﬁj(_o:z—* exp {1—22-% + 27(n —3) Z} az.
If we put = 2ﬂ(nt_ 5 = 27:/\% )
we obtain ;’% &dﬁ {X;TI(E?) fioz)t“i exp (t _%2) dt} )
with ﬂ2=——2~7?%—’2”, /L=iﬂ\/(%)%1‘=i§;—";
and this is
so that U, = 2711 N Ed;z_ (Xl; cosh Kqﬁ) .

As for ¥, we have

R . .
¥, =J0t exp -—1242t-21r(n-2~;)t dt

1d[= T
= el i —_—— — L
py dnfo t~texp { 2% 2m(n— ) t} dt.

Since fwe—“"’-b”" di = ﬂe‘””
0 2a
when a and b are positive, this gives
v 1 d (e KMt
© 'MM(' )
1 d/1 KA,
and %“"%“W%(Eﬁmh'?‘),

which is (8.15.8),

8.18. Tt is easy to estimate the error involved in taking only N terms of
the series. The value of .V which we choose will depend upon n, and we must
now use approximations valid uniformly in . In the first place

I L(n) [=2q
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by (8.9.2). Also
d(1 . KA\ d(K K¥n-gy) A}
i, ) =l o) = ol
if n < AgE,
for a fixed 4, and ¢ is large (and uniformly in any such range of n). The
error will involve all values of g greater than N, so that N must be at least

of order =t
This being so, we have ¥ (n) = O(g¥)

for g >N, and § Ly(n)ry(n) = 0( § q‘*) = O(N-%).
N+1 N+1

In particular, if we take N of order ni, we obtain p(n), for large n, with
an error O(n—t).

A rather closer analysis is required for numerical computation, but there
is no diffieulty of principle. Thus Rademacher, using only the crude estimate
(8.9.2), found that the error after NV terms is less than

% ¥
BN+ Bz(%’) sinh %”—

(with definite values for B, and B,). If we wish to use ¢,(n) instead of
¥,(n), as in the Hardy-Ramanujan formula (and this is more convenient),
then there is a slight additional error which is easily estimated. Thus
Rademacher was able to show that if n = 721 and N = 21, the error is less
than 0-38. Since p(n) is an integer, any bound less than } is good enough
to determine p(n).

A ceruder estimate will suffice for gpecial purposes. These calculations, for
example, were undertaken with a view to deciding whether

p(721)=0 (mod 113)
in accordance with one of Ramanujan’s conjectures. Since Ramanujan
proved that p(721) is a multiple of 112, any bound for the error less than
60-5 is sufficient for this purpose.

I have set out in tabular form the values of the first 21 terms of the
Hardy-Ramanujan formula.' The rapidity of the convergence is very
impressive, and the actual error is much less than that given by Rade-
macher’s analysis. The largest value of p(n) which has been found in this
way is p(14031) = 92 85303 04759 09931 69434 85156 67127

75089 29160 56358 46500 54568 28164
58081 50403 46756 75123 95895 59113
47418 88383 22063 43272 91599 91345
00745,

! The corresponding table for n = 14031 is too long to print conveniently.
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recently computed by Lehmer. This requires 62 terms of the series, and a
more refined estimate of L (n); the crude inequality (8.9.2) is insufficient.
Lehmer has, however, shown that

(8.18.1) [ L(n)] < 2q,
and this was enough for the purpose. 1t turns out that
p(14031)=0 (mod 11%),

as predicted by Ramanujan.

q Py121)
1 161061755750279601828302117-84821
2 - 124192062781-96844
3 —706763-61926
4 2169-16829
5 0-00000*
6 1420724
7 6-07837
8 0-18926
9 0-04914
10 0-00000"
11 0-08814
12 —0-03525
13 0-03247
14 - (0-00687
15 0-00000*
16 —0-01133
7 0-00000¢
18 —0-005653
19 0-00859
20 0-00000*

2] —0-00524

161061755760279477636634762-0041

' These terms vanish identically.

NOTES ON LECTURE VIII

§8.1. Most of the material of thiy lecture is to be found in Hardy and Ramanujan,
Proe. London Math. Sec. (2), 17 (1918), 75-115 (no. 36 of the Papers), and Rade-
macher (2).

§8.3. Hardy and Runannjan (l.e, 285-287) prove tho more precise inequalities
Hn-1et <p(n)< Kn-! e2em
by elementary methods.

§8.4. The Tauberian theorem is proved, in & more general form, by Hardy and
Ramanujan, Proc. London Math. Soc. (2), 16 (1917), 112-132 (no. 34 of the Papers).
There aro roferences at the end of this paper to similar thoorems of Valiron and earlier
writers.

HR Q
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The ‘Tauberian’ methods are naturally offective, so far as they go, over a wide
range of problems. Thus we can prove that the number of partitions of » into primes is

o2 i) )

with the same degree of accuracy as in (8.3.1) or (8.3.2).

§8.6. The functional equations for F(x), required here and later (in particular in
§8.12), are the formulae for the linear transformation of the function h(7) of Tannery
and Molk. See Tannery and Molk, Fonctions elliptiques, ii, 264-267 (tables XLV~
XLVI).

The formula (8.6.3) was found independently by Uspensky, Bull. de Uacad, des
sciences de PURSS (6), 14 (1920), 199-218. Uspensky's paper was published a
little after ours, and we developed the solution much further, so that his proof of
(8.6.8), which is simpler than ours, has been noticed less than it deserves.

§8.7. The abstract of no. 36 which appeared in 1917 in the Comptes rendus (no. 31
of the Papers) does not advance beyond this stage.

The idea of approximating to an arithmetical function by a ‘singular series’, in
which each term corresponds to a ‘rational point’ on the circle of convergence of the
genorating series, is one of these which dominate the work of Hardy and Littlewood
on Waring's problem.

Various expressions for w,, have been given by Hermite, Tannery and Molk,
Hardy and Ramanujan, and Rademacher (1). Rademacher’s is

Wy = €74,

-1
where 8pe= -l—q}'_‘, p(@ - [@] - 1) .
R B i g1 2
D. H, Lehmer (4) has proved that ZL,»n) has a ‘multiplicative’ property which
enables us to reduce its caloulation to easesin which ¢ is a prime or a power of a prime,
and that in these cases it is the produet of gi; a power of 2, a symbol of quadratic
residuality, and the cosine of a rational multiple of 7.

§§ 8.8--9. MacMahon worked with the recurrence formula,
pn)—pn—-2)—pn—3)+p(n—>5)+...=0
obtained by equating coefficients in the identity
(1—a?—2¥+ab+...) Zp, 2" = 1.

Gupta (1, 2) used additional devices.

Lehmer calculated p(721), from the Hardy-Ramanujan formula, in his paper 1,
but the result was first made decisive by Rademacher (2). Both Lehmer and Rade-
macher also calculated p(599), as a test of Ramanujan’s conjecture (§ 6.6) for modulus
5% (the result being again affirmative). In the meantime Gupta (2) had verified the
value of p(598) by direct computation.

In his paper 3 Lehmer finds the values of p(n) for

n = 1224, 2052, 2474, 14031
and verifies their divisibility by

54, 113, 58, 11¢
respectively.
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Rademacher and Zuckermann (1) and Zuckermann (3) have found identities for
the coefficients in other modular functions. Some of these functions are of the same
type as F(x), while others are of a different type also considered by Hardy and
Ramanujan [ Proc. Royal Soc. (A), 95 (1919), 144-155 (no. 37 of the Papers)].

For the divergence of the Hardy-Ramanujan series see Lehmer (2, 4, 5). The first
of these papers settles the question of divergence, while in the two latter he proves
more precige results.

§8.10, For the relovant propertics of Farey series see, for example, Hardy and
‘ Wright, ch. 111, or Landau, Vorlesungen, 1, 98-100.

§8.17. See Watson, Bessel functions, ch. v1, especially p. 176.
§8.18. For (8.18.1) see Lehmer (4), 292,



IX

THE REPRESENTATION OF NUMBERS
AS SUMS OF SQUARES

9.1. The problem of the representation of an integer » as the sum of a
given number k of integral squares is one of the most celebrated in the
theory of numbers. Its history may be traced back to Diophantus, but
begins effectively with Girard’s (or Fermat’s) theorem that a prime 4m +1
is the sum of two squares. Almost every arithmetician of note since Fermat
has contributed to the solution of the problem, and it has its puzzles for us
still,

We denote the number of representations of n by k squares, i.e. the
number of integral solutions of

a2+ zi+ ... +ai=mn,
by r(n). We are to pay attention to the sign and order of 2, @,, ..., #;. Thus
1= (+£1)24+02=0%4+(+1)% 5= (+22+4(+£1)2=(+1)2+(£2)?
and r5(1) = 4, 1ry(5) = 8.

The problem is that of determining #,(n) in terms of simpler arithmetical
functions of n, such as the number or the sum of its divisors. 1t is a good deal
eagier if k is an even number 2s, and I shall suppose this throughout the
lecture.

Jacobi golved the problem for 23 = 2, 4, 6 and 8. Thus he proved that

(9.1.1) ren) =4 ¥ (10D = 4{dy(n) —dy(n)};

dodd,di{n
and that
(9.1.2) ry{n) = 8 d = 8o(n),
din
or
(9.1.3) ryn) =24 ¥ d=240°n),
dodd,d|n

according as  is odd or even. Here the sums extend over all divisors d of ,
or all odd divisors; d,(n) and d4(n) are the numbers of the divisors of » of
the forms 4m + 1 and 4m + 3 respectively; o(n) is the sum of the divisors of
n, and ¢°(n) the sum of its odd divisors. The formula for r¢(n) is a little more
complicated, but of the same general character, and that for rg(n) will
occur later.
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9.2, Jacobi found his formulae from the theory of the elliptic theta-
functions. If
(9.2.1) W) = 1422+ 2x4+... = 3 a®’,
then B
e Y B S A ..
(9.2.2)  9) = 1+4(1_x e e e
and

(9.23)  9x) =1+ s(

Fom—g +

x 22 a3 4t +
l—x 1422 1—23 142t ')

and (9.1.1), (9.1.2) and (9.1.3) are the results of equating coefficients. Thus
the right-hand side of (9.2.2) is (ignoring the 1)

d
4y (=1)ia-v T _y Y z (= 1)Hd-1) gid,
dodd 1—ad dodd i=1

and the coefficient of x" is
4 3 (= 1idsh,
dodd, d|n
In this way the formulae for ry(n) and r,(n) appear as corollaries of an
analytical theory.

It is possible to reverse this procedure, to prove the arithmetical formulae
directly and deduce the analytical identities; and here there ig some differ-
ence between ry(n) and r,(n). It is easy to deduce (9.1.1) from the theory
of the Gaussian complex integers, but (9.1.2) and (9.1.3) present greater
difficulties. For this reason it is interesting to have an elementary deduction
of (9.2.3) from (9.2.2), and Ramanujan found one. I repeat it here because,
though it has very little bearing on the substance of my lecture, it is a very
characteristic speciinen of Ramanujan’s work.

It is easily verified that

z_ L 22 +73x3 +74:z:4 +
l—z 1422 1—2% 1424 7
_% 22 n 3a:3+ 5a® b= S
Tl-z 1-a? 1-a3 1-a® T "
x"‘l
where Un =

and the dash indicates the omission of multiples of 4. We have therefore
to prove that

(9.2.4) (F+uy—uytug—...)2 = o+ 12 mu,,.
Ramanujan proves, more generally, that
(9.2.5) 8% =T +T,
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where § = }cot}6+u,8in8+uysin20+ ...,
= ($ cot 360)2 + u,(1 + u,) cos 0 + uy(1 + ug) cos 260+ ...,
Ty = ${uy(1 — cos 8) + 2u,(1 — cos 20) + 3ug(1 — cos 30) + ...}
This reduces to (9.2.4) when 8 = 47, For then .
S = }+u —~ug+u;—

= ili"‘.;:j (= 1) gy (1 4 gyy,)
1 am 1y R —
=ﬁ+§1]( l)mm=ﬁ+§(~l)mzl:nxm
o an o 2n an
=%F_§ljxx2n =T§_%(1yivx2n"_12fa;4n)
= g~ Up— Bug— By — ...,
and Ty = 3(uy + Bug+ Bty + oo )+ 20y + Bug+ 100y, + ...,
so that T4+ Ty = + 32 mu,,
To prove (9.2.5), we write

L) 2
= (} cot 30+ X u,, sin m0)
1

® @ 2
= (} cot 40)* + } cot 30 ¥ u,, 8in mb + (2 U, 8in mB)
1 1
= (fcot 30)*-+8, + 8y,

say. We express 8, and 8, in the forms
= E}{{;+cos€+coszﬁ+...+cos (m—1)6+ 3 cosmb}u,,
1
=] [es] @
B, = S u,sinmb 3w, sinnd = 1 ¥ ¥, {cos (m—n) 08— cos (m+n)0}u,u,,
1 1 11

and rearrange S, + S, a8 ©
8.+ 8, = 3 C,coskd.
k=0

(i) The eontribution of 8, to C, is $2u,,, and that of S, is $Zu2,. Hence

Co=%§um(l+um) %z xm)a %i;?nxmn
= %% 1nx:n = %i:]nun.

(i) If &> 0, then the contribution of §; to Ck is

@ o0
Sup+ X, = dupt X Uy
E+1 =1
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That of S, is

o) k-1
1 X um’u’n""% ) umun"%’ D Uy, = 3 uﬂkkH_% 2 Wy
m—n=k n—m=k m4+n=k =1 =1

-3 @ k—1
Hence Gy, = uy+ lzl Uit ZZqu Uy — % lzluzukfz-
It is easily verified that
Ul L+ oy) = wp(uy— ), Wty = wp(1+ 0+ g ),

80 that
2

Cp = ”k{% + X)) — 3
=1 =1

=wufd -yt ugt+ . b up— 3~ 1) — (uy+ug+ .o+ uy_4)}

= (1 -y — 3k).

1
(14+2u;+ u,H)}

Hence finally
82 = (}eot 402+ X mu, + 3 (L uy, — kk) cos kO
n=1 k=1

= (}cot 102+ X u, (1 +u,) cosmb + % 3 mu,, (1 —cosmb)
m=1 m=1
=T+ T,
The identity is equivalent to
W o < (T 2{ La O

in the ordinary notation of elliptic functions.

9.3. Jacobi did not attempt to determine r,,(n) when 2s exceeds 8, and
the first results in this direction, for 2s = 10 and 2s = 12, were found by
Liouville and Eisenstein. In these cases r,,(n) is not usually expressible as
a simple “ divisor-function” of n. For example, in Glaisher’s notation,

ri(n) = §{Ey(n)+ 167, (n) + 8xy(n)},

where Eyn)= ¥ (—1)a-ngs,
dodd, dln

Ein)y= X (-1a-Dgs
d 0dd, din

(d’ being nfd, the divisor of % *' conjugate” to d), and
Xa(n) =1 3 (a+bi)*

a?+0=n

(a sum extended over the Gaussian complex divisors of »). There are
similar formulae for 23 = 12, 14, ..., r,,(n) being in each case the sum of a
“divisor-function” and one or more supplementary functions. The com-
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plexity of these supplementary functions increases with s, and it is only
the simplest of them, such as x,(n), which can be defined in an illuminating
arithmetical way. The majority can only be recognised as coefficients in
the expansions of modular functions.

We shall find, however, that there is always a divisor-function which
‘“dominates’’ ry(n). In all cases

Tas(n) = Oag(n) -+ €3(n),

where d,,(n) is a divisor-function and e, (n) is much smaller than &,,(n)
for large n, so that Pag(0) ~ Bye(m)
when n tends to infinity,

9.4. I propose to work out two special cases in detail here, 23 = 8 and
28 = 24. The analysis is a little simpler than usual when 2s is a multiple
of 8, but these two cases are quite typical of the general theory. In the first
case I shall obtain the classical formulae of Jacobi, in the second the most
characteristic of Ramanujan’s new theorems. I do not think that any
complete proof of this has been published before.

I shall not use Jacobi’s or Ramanujan’s methods, but the later “ function-
theoretic” method devised by Mordell and myself, which shows up the
foundations of the theory much more clearly. I must however begin with
a few general remarks about Ramanujan’s contributions to the subject,
which are set out in two substantial papers in the Transactions of the
Cambridge Philosophical Society.!

Tt is always difficult to say how much Ramanujan owed to other writers,
and the difficulty is at ite maximum when he is developing work which he
began before he came to England, and when he is concerned, as he is here,
with some side of the theory of elliptic functions. There is no book on elliptic
functions which he could have seen in India and which says anything about
the arithmetical applications of the theory. I believe therefore that Raman-
ujan had rediscovered Jacobi’s formulae, which certainly lay well within
his powers.

By the time he published these papers Ramanujan had read a great deal
more, and knew all about Jacobi’s and much later work. In particular he
had read Glaisher’s papers, and treats their content as known; arid & reader
who takes his acknowledgements at their face value will be liable to under-
estimate his originality. The papers are highly original, whatever deduc-
tions we may make: they are characteristic of Ramanujan at his best. They
contain many remarkable theorems which are undeniably new, and con-
jectures still more remarkable, which were confirmed later by Mordell; and

! Nos. 18 and 21 of the Papers.
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the general level of the analysis is astonishingly high. In particular the
second paper contains all the formal theory of *“ Ramanujan’s sum, which
is fundamental for my purposes here. I shall have to start from formulae
of Ramanujan even when I am developing the theory on lines entirely
different from his.

Ramanujan’s sum c,(n)

9.5, Ramanujan’s sum is

CQ(TL) e Z e—anm‘/q,
»(a)
where the notation indicates a sum over values of p less than and prime
to ¢." It may also bie written as
2npm
e n) =¥ cos 7
»a)

(a form which shows that it is real), or again as
coln) = Zpp,

where p, is a primitive ¢-th root of 1.
It is easy to evaluate c,(n) in terms of the Mébius function u(n). This
function is defined by

(1) /l/(l) =1,
(ii) mmn) = (=1y
if n = p;p,...p, is the product of » different prime factors, and
(iii) un) =0
if n has a repeated factor.* The chief properties of u(n) are (@) that
X ud) =0
dlg
for all ¢> 1, and (b) that the identities
(9.5.1) 9@ = T /@)
and
(9.5.2) flg) = 2#(%) g(d)
diq

are equivalent to one another. The last theorem is usually described as the
“Mobius inversion formula”.
Ramanujan proved that

(9.5.3) )= I ,u(g)d

dlg,d|n

' Or any complete system of residues prime to g.
* p(n) has occurred already in Lectures IT and IV, See p. 23, footnote.
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(a sum extended over all common divigors of ¢ and n). To prove this he

observes that g1

"7;1(") = Z eg—2nhnilg
h=0

in ¢ if ¢ | » and 0 otherwise. But it is plain that
Ny(n) = X c4(n),
diq

and therefore, by the Mébius formula,

g
c,(n) = ) pg(n),
um) = (%) na
which is (9.5.3).
There is another proof which is a little longer but depends on principles
which will be useful later. We say that f(g) is multiplicative if

(9.5.4) Jq9'y=1@) f(¢')

whenever (g,q’) = 1. In particular this involves f(1) = 1. It is plain that,
if we want to prove that

(9.5.5) I@) = F(),

and know both f(g) and F(q) to be multiplicative, then it is enough to
prove the result when g is a power of a prime.
Now, if (q,¢’) = 1, we have

¢ (n)cp(n) = 2 e-2remiia > e-anp'nilg’
(q) Q)

= Z e ~2anJ/qq”
2(0),2'(¢")

where P =pq+p'q;
and P runs over the range P(gq’) when p and p’ run over p(¢) and p'(¢’).

Henco E e—2nPmijqy - E e—nlnijqy — cqq,(n),
na),p) Plaq)

and Ramanujan’s sum is multiplicative.
Again, if we denote the right-hand side of (9.5.3) by C,(n), we have

= D) oL aar = 2u(1L )\ aar
(9.5.6)  Cym)Cyln) = zﬂ( d) /L( d,)dd E/L( z d,)dd.
Here d|q, d|n, d'|q’, d’|n, and these relations are equivalent to
dd'|qq’, dd'|n

(since ¢ and ¢’ are coprime). Hence the right-hand side of (9.5.8) is Cj(n),
and C,(n) also is multiplicative.
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We have therefore only to prove that
Car(n) = Cyu(n)
when w is prime. The values of p in p(w*) are
p= w1z + D1
where z = 0, 1, 2, ..., w— 1 and p, runs through p,(@w*!). Hence
w—1
Cor(n) = 3 e~ npaijoh 3 g 2nanijw
(k=) z=0
and the inner sum is w when @ | n and zero otherwise. It follows that

(9.5.7) Coi(n) =@ Y e 2mpmilof T — ey i(n,)
p(wh )

if w|nand n = wn,; and that ¢ i(n) = 0 otherwise.

w—1
Now Co(n).= 3 erinpmi,
1
so that
(9.5.8) C,(n) =—1 (win), cy(n)=v—-1 (w|n);

and we can now calculate ¢ i(n) by (9.5.7) for every k. We find that
(9.5.9) () =0 (m1n), —w (@|nwitn), @ww-1) (*|n),
and generally
(9.5.10)
Cgi(n) = 0 (@14 n), —whl (@ 1]n, o rn), @Y o-1) (B*|n);

and we can verify at once that these are also the values of Ci(n). Thus
¢,(n) = Cy(n) whenever ¢ = w*, and therefore for all q.

The series Lq~*c,(n)

9.6. Ramanujan summed a large number of series of the form Za,c,(n).

The simplest is
A )
9.6.1 Un)= Y -+ —-.
(9.6.1 )= x
There are a number of interesting ways of summing this series. It is abso-

lutely convergent when s> 1, since | c,(n) | £ d(n) for every q.

(i) The shortest way is due to Estermann. We can write ¢,(n) in the form

my= = uhym,

Im=q,m|n

8o that %M _ s uyemre.

(Is Im=q,m|n
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When we sum with respect to ¢ we remove the restriction on !, which now
agsumes all positive integral values; and so

(9.6.2) Un)= 2% pl)l-mi®

l,m|n
—s M(Z) Ty n) _ — n~*g,_y(n)
=EMTET T G o)

where a,(n) is the sum of the v-th powers of the divisors of n.

(ii) Ramanujan argued as follows., We suppose that F(x, y)is any function
of the two variables # and y, and that

D=5 F(d, g);

and define 7,(n) as in §9.5, so that ,(n) is » or 0 according as v is or is not

a divisor of n. Then Ly (n) "
Do = SR 1(s7)
for any value of ¢ not less than n; and so

D(n) = Zt 1F(V, —73) M cg(n).

y=1V Viadw

Now ¢;(n) occurs in this series when j | v, or v = ju, in which case x <¢/j; and
therefore

| n
(9.6.3.) D(n) = cy(n) Z— F(,u,;t)
+Cz(n)2 F(2ﬂ52 )+Ca(n)2 F( 145 3‘1‘)
Suppose in particular that F(x,y) = 2% Then
D(n) = X d*=* = oy_y(n)

din
t i i
and oy _4(n) = 911(:&) P 2(5 )E/r‘" + 633(8 ) PO L N
1 1
Finally, if s > 1, and we make ¢ — co, we obtain (9.6.2).

(iii) A third proof proceeds on lines like those of the second proof of § 9.5.
We start from the identity
(1412 =)

SR ) -
qlq I;II m3+w23+m_gxm

where f(q) is any multiplicative function and & runs through the primes.
The identity reduces to *“ Euler’s product’ when f(g) = 1.
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m(’ﬂ) ¢a*(n) +

In this case Vo = T

and we can quote the formulae (9.5.10). Suppose that w® is the highest
power of @ which divides »n, Then

Xw =1 —w?
if @ = 0, and generally
w— 1 w(w—1) wﬂ 1w — -1) =
Xo = 1 — —_’072?—_ + .. ws w(a-}-l)g
1 — latha-a)
== e
L Co(n) 1—getdd-8 g (n)
Hence Pt A4 H 1—w%T] e 18V
% q ( )w]n l_nlgq g(S) !

by the ordinary formula for a sum of powers of divisors of ».
In particular, when ¢ = 2, we obtain the formula

1y 2coss mr 2 cos mr 2(cos 2nm + cos tnm)
opl1 4 L) i
an) ={n n{l 5 32 St 52 +. }
for the sum of the divisors of ». The formula shows in a very striking way
the oscillations of ¢(n) about its “average’’ im?n.

We have supposed that s> 1, when our series are absolutely convergent.
We can write (9.6.2) as

(9.6.4) 5%l g & gm)

The first factor on the right is a finite, and therefore absolutely convergent,
Dirichlet’s series, and the second a Dirichlet’s series convergent for sz 1;
and therefore, by a familiar theorem on the multiplication of Dirichlet’s
series, the series on the left is convergent, and (9.6.4) is true, for = 1.
Putting ¢ = 1, we obtain

cl(n)+-62f—z"~)+5‘ig@+... =0

{a theorem of the same depth as the prime number theorem).
Ramanujan made a number of similar summations, among which

ea(n) ) o o
2

¢ (n)logl+ )log 3+. —d{n)

and n{cl(n) - %g?’—) + 65(?’[) — .. = ry(n)

g2+

are two of the most striking.
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The series Le,q*c,(n)

9.7. The series which is important for our present purpose is not (9.6.1)
but

9.7.1 vy = 3 6 %™,
( ) (n) q§1€¢1 qa
whero =1 (¢g=13), 0(g=2), 2° (¢=0),

the congruences being to modulus 4. This series may be summed by any
of the methods of § 9.8; I select the first as the shortest. I define a¥(n) by

o¥(n) = o,(n) (nodd),
oy (n) = oj(n)—o}(n) (n even),

o%n) and o?(n) being the sums of the vr-th powers of the even and odd
divisors of #; and I prove that

l &
(9.7.2) V(n) = Qa T 3)§( )o'a w(m).t
We have
Vin) = X ¢q%m)+2 ¥ g% n)="N(n)+Vn),
q—=1,3,... a=4,8,...

say. Here, first,
W= 3 (@m) 5 alm

¢=1,3,... n=q,min
SR G RS
m=13,....m|n 1=13,.
B LY 201 ()
= JL (1) = T

Next,

Vi)=2 % ¢* I ahm=2 B a@)i-mt e

q—4,8,... Im—qm|n Im==4,8,...

If 41, then u(l) = 0. Hence we may suppose that either (i) / is odd and
4|mor (ii) I = 2}, where [, is odd, and 2 |m. The terms of type (i) give

C) o . 20t
2% AT 1-8
BB g T (1T )

where the double index indicates a sum over doubly even divisors; and the
werms of type (ii) give

l of_{n
— E(s_l) Y omlf = — 1 if ‘)__
=13... 83 2/mmin (1—29) &(s)
! We have not now two alternative forms like those in (9.6.2), since

ni=so ¥, (n) £ 0¥ (n)
when 7 is even.
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Collecting our results, we find that
(L=2-9)¢(s) V(r) = 09_,(n) — 0% _y(n) + 20ty (n);
and we have only to verify that
(9.7.3) 01-5(n) — 0f_u(n) + 2905 o(n) = n'~a (n).
This is obvious if » is odd. If n = 2N, where N is odd, and 8 runs through
the divisors of ¥, then the left-hand side of (9.7.3) is
L0178 — X(20)1 78 = (1 — 21-%) T = (1 — 21-) N1-s Xgs-1
= (21— 1) ad - Z851 = 13 X(28)0-1 — Fds-1} = nl-sg*_(n).
Finally, if » = 22N, where o> 1, then it is
Zg1-s — (210 p 41y | 4 2019} T§1-s 4 2afql-s | Loy | 4 Qall-a)} Figl-s
= {1 4 28 4 4l-s g 4 Qe 2a(1—s)} 2818
—_ Nl-*h‘{l + 21—9+ 41-a + ..t 2(0&—1)(1—-8) — 205(1—3)} 288—1
= pd-8{2a6 1) 4 2o Dy 4 De-T |} Sge-
= nt=og_1(n) — o5 4 (n)} = ’nl o5y (n).

This completes the proof of (9.7.2).

The singular series in the problem of 2s squares

9.8. I must now introduce ideas which are not to be found (at any rate
explicitly) in Ramanujan’s work.! They are the ideas from which Littlewood
and I started in our work on Waring’s problem.

It is easy to find asymptotic formulae for the behaviour of

f(s) = 9%(z) = (14 2w+ 22+ ...)%,
where x tends radially to a “rational point’ e2¢72 on the unit circle. We
may suppose that ¢ == 1, p = Oorthat ¢>1, 0<p<qgand (p,q) = 1. If
= re2pmily

and 7— 1, then -
f}(x) =1+2 X pnip2nipaijy

=142

=
2 yla+h? o 2g+iVpmijg
i ={)

11

= Iil\l‘n

=142 p2itonile E rla+i?®,
i=1 I=0
Ifr == e%, 5o that § > 0, then

o]

a o)
et o St | gm0kt
0

1=0 =0 J .
N (g ey L ¥ n .
Joemeas =g () =55 ee;) "

¥ Excopt in our joint work on partitions.
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and hence
T 1\-#
(9.8.1) 9e)~278, (log; ,
where
(9.8.2) ‘Sp,q = i“ e2*pmilg

i—1
is one of “‘Gauss’s sums”’. If 8, , = 0, as happens when g=2 (mod 4), then
(9.8.1) is to be interpreted as

1\t
Ha) = o{(log;) }
It follows that

(9.8.3) flx)~ "_a(%g)zs (log 71)‘”

We now form an auxiliary function which mimics the behaviour of f(x)
when x approaches the unit circle inthis way. It is known that if

2}
Fx) = zl]n"“a:“,

then Fa)—17s) (log ;10)_
is regular at z = 1. Hence, if

8 S 23 ]
Jog(®) = '1-7{3)('"251) B (xe-2mil),

then Foat®)~m (222" (10g )" ~ st

when z tends to 2?72, Thus f, () “mimics” f(x) near this point; and, if
we write

92.8(%) =14+ pr,q(x)r
y 2

then we may expect that @,,(x) will mimic f(x) near all rational points
¢?7i1, To say this is to say that O,(x) mimics f(z) very comprehensively,
so comprehensively that there should be a very close relation between the
coefficients of the two functions. Tf this be so, then the way will be open at
any rate to an approximate determination of ry,(n).

m 28 ® )
~'\TOW @, .(x) = ( Dy ’1) ns—lp—2npmily xn
: w@ =2\ Z

=1+ X puln)a®,
28 -
where Paglt) = =- 01 L( ) e—2npmijg
( ) pa\ 9
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We can write this as
2 o

7
(9.8.4) Pag(m) = F(.s_) -1 \“1 4 (n),
g=
where A,(n) = 1 and
(9.8.5) An)y=qg%3 S%fqe—znpni/q
o)

when ¢ > 1. We are entitled to expect a pretty close relation between ry,(n)
and py(n). It is only an expectation, since our analysis has been entirely
“heuristic”’; but it, is plainly one worth pursuing.

We call (9.8.4) the singular series. Our construction is typical of that
of the ‘““singular series” in the general Waring problem.

Summation of the singular series when 2s=0 (mod 8)

9.9. The singular series can be summed for all s. The analysis is simplest
when 2s= 0 (mod 8), as 1 shall suppose,

The Gaussian sum 8, , (or simply §,, if we omit the explicit reference
to p) can be calculated, for all p, g, from the formulae

pqq’ 3 Spq \q pqq”
=1, S8=0, Spu=241+7), Spun = 2¢tletrm,

N, = (g, @12 \/‘(Ti, sz.“ = 1wk, Spap = mI‘Sw‘

Here q and ¢’ are coprime, and @ is an odd prime. The formulae for the 8-th
powers become much simpler, and we find that

25
Spoq = €4°

when 2s= 0 (mod 8), ¢, being the symbol of §9.7. It follows that

Aq =€,q"° ;)Ganpm‘/q = eqqﬂacq(n),
piq

and that, in the notation of §9.7,
n”snsﬁl

(9.9.1) Pulm) =" V(n).

Thus the singular series is (apart from the outside factor) Ramanujan’s
series (9.7.1), and so

(9.9.2) Pas() = s

— _a(n
Ty (-2 ¢
In particular, if 23 = 8, then

m
(1-27) 86s) = 5

(9.9.3) ps(n) = 1603 (n).

HR I0
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If 25 = 24, then

B 691
_9-12 —12y 911012 6, —
and
(9.9.4) Pau(n) = g 011 (n).

The modular functions

9.10. We have strong reasons for expecting to find a fairly close resem-
blance between. ry(n) and py(n), and further analysis does more than
would be required to justify our hopes, the correspondence being extremely
close. Indeed when 2s =8 the two functions are identical; in particular

rg(n) = pg(n).
The proof of this depends on arguments of a quite different character, first
applied to this problem by Mordell.

9.11. We need the elements of the theory of the modular group and the
functions associated with it. The modular group I' has two forms. In the
homogeneous form it is defined as the group of substitutions

(9.11.1) wy = awy + b0y, @ = cw, - dwy,
where a, b, ¢, d are integers and
(9.11.2) ad—bc = 1,

In the non-homogeneous form we write
(9.11.3) T=

and the group is defined By the substitutions
, c+dr

a+br’
We shall use any of the symbols

a b c-t+dr
8, (c d)’ (m;)

to denote the substitution (9.11.1) or (9.11.3). I'is generated by the repeated
application of the two substitutions

1 0 0 -1
1 1) 11 o
or
1
(9.11.4) Te=T74+1, 7= -

In what follows we shall always suppose that
(9.11.5) J(r) >0,



The representation of numbers as sums of squares 147

80 that
(9.11.6) | = e | <1
Ifr=utiv, 7" =+, then

, (ad —bc)v

T (a+bu)? +bzv

go that one point in the upper half-plane is transformed into another, and
only such points are relevant.

We call the regicem D defined by D
—3w<d, w4t
the fundamental vegion of I'. Bach sub-
stitution of I" transforms ) into a curvi- //F \
linear triangle, whose sides are circles and s

whose angles are (}, 37, 0). These triangles

cover up the half-plane without over-

lapping. . g |
The fundamental function associated ! BE !
. : 3 Fig. 3.

with the modular group is Klein’s

“absolute invariant” J(r), which is defined as follows. We write

1(m 132 234
92 = gz((ul, (L)z) = E(&)-) {1 & 040( + 1— x4+ )} ’

1 ()8 1542 -~ 264
Ja = gyltwy, 0y) = 506 (0):) {1 004(1 x2+1—:;*+ )}

(these being the ordinary invariants of the Weierstrassian theory),

e

12
A = Ao, wy) = gi—27¢3 = (g) a2{(1—a?) (1 —a%) ...},

1
and J(1) =%

Then J(r) is a function of 7 only, invariant for the substitutions of I". It
assumes oevery value just once in D) (when proper conventions have been
laid down about the boundary of D), and represents D conformally on the
whole complex plane (regarded as bounded by the points 0, 1, and o).

We call a funetion which, like J(7), is invariant for I" a modulor invariant:
the phrase “modular function” is used more vaguely. The function

J = J(7)

plays, for modular invariants, the part played by z in the ordinary theory of
one-valued functions f(z). Thus a modular invariant, with properly restricted
singularities, i3 a one-valued function of J. In particular, if a modular

t T uso x instead of the usual g, as in Lecture VIII, ¢ being required for other purposes.
10-2
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nvariant 18 regular and bounded in D, then it is a one-valued function of J
bounded in the whole plane of J, and accordingly ¢ is constant.

Functions associated with the sub-group Iy
9.12. We shall be concerned now with functions which are not modular
invariants in the full sense just defined, but which are invariant, or “all
but” invariant, for the substitutions of a certain sub-group of I'.
It is easily verified that the substitutions of I'which satisfy the congruence

conditions a b 1 0 0 1
(c d)=(0 1) or (1 0) {mod 2)

D(71) D D(T11)
DEL-1) D% +1)
Fig. 4.
form a group, a sub-group of I' which we call I',. I'; is generated by
(9.12.1) =142, 7’2—;.

It has & “fundamental region” D, defined by

—l<u<l, w?*4+0v2>1;
and the substitutions of I'y transform D, into a system of triangles, all of
whose angles are 0, which just fill up the half-plane.?

There is a principal invariant Jy(7) of I';, which is related to I'y as J(7)
is to I" (but whose expression we shall not require). A one-valued function,
invariant for Iy, is a one-valued function of J, and a three-valued function
of J. Finally a function invariant for I'y, and regular and bounded in Dy, is
constant.

! Either a and d are odd and b and ¢ even, or conversely.
* Dy may be described roughly as formed by fitting together three regions congruent

to D (i.e. transforms of D for substitutions of I'). More strictly, it is formed by D
and one-half of each of the four regions

D(r+1), D(r—1), D(—1+1), 1)(-}—1)
T T

(the transforms of Dby 7’ = 7+ 1, ete.). In Fig. 4, D, is bounded by the thicker lines.
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Proof that rg(n) = pg(n)
9.13. The functions
B8 = 98(x) = 98(0,7) = (1 + 2w+ 2wt +...)8

and Oy = Oy(w) = 1+ ?Pa(”’) x",

where z = €7, are one-valued functions of 7. If we can prove that

(A) -804 is invariant for Iy,

(B) 9860 is reqular and bounded in D,
then it will follow from the general theorem of § 9.12 that 9860, is a constant,
which is plainly 1; and from this it will follow that

rg(n) = pg(n) = 1607 (n).

Proof of (A)
9.14. It is sufficient to prove that %@, is invariant for the two sub-

gtitutions 1
S (r+2), 8, ("‘;)

which generate I';. We can prove, quite generally, that #-%6),, is invariant.”
In the first place

(9.14.1) %50, 7+ 2) = 420, ),
(9.14.2) 928(0, -%) _ 9%(0,7),

by the familiar formulae for the linear transformation of the #-functions.?
It remains to determine the behaviour of @y, It is obvious that @,, is

I Wo are supposing 2s= 0 (mod 8), but the proof is very much the same in other cases.
* We shall require the full table for the functions
$4(0,7) = 2wt + 22t 4 22" 4.,
D5(0,7) = 1+ 20+ 2at 4 220+ ...,
D4(0,7) = 1 — 224 204 — 2254 ...,
which is
0!(0’7"{' 1) = \/iﬂﬂ(o’ T)' ’19.3(0’T+ 1) = 193(0’ T): 194(017+ 1) = 19'4(01 T)!

I\
192(0! "";) - :/dad(of T)r

1

193(0, - ;) = %{»a(o, ),
1

194(0, —;) = %-;192(0, ).

Here \fi = et and /r has its real and imaginary parts positive. The notation is
Tannery and Molk’s, and 940, 1) = $(0, 7).
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invariant for ), since « is invariant for 8, (and so that 3-%6),, is invariant).
This will also appear incidentally from the analysis which follows.

The function Fy(x) of §9.8 is elementary. In fact, if x = ¢¥, so that
Y = — 7T,

82
Fy(x) = Ynt—ta® = Tnt~le~™ = ((%) Xne ¥

d \5—2 eV d\s2
= (@) A== (@) % cosech? Ly

_ d 8-2 o 1 _ © __ml—_ (8) < ____L_.
(&) Z o= 1O g = S @
Also re—2pmila — em{rf@p/q)),
I's) = 1
—2 7”:/ =
and s0 Bwemml) = = B ot Gl
m (8 & i
Jpa(®) = I(s) (%‘q) F(we=207ia)

> 1

=— Y1 P (pe—20milg) — e
o8 ) 4% Bng+p)—qr)

e g
I'(s)g
Hence

6
0.14.3) O @) =1+37 WS oL
( ) 2s(%) zgfp.q(w p%:n{Q (ng +p)—qrf

where the range of summation is-defined by
g=12,3,...; O<p<qg, (pq9)=1; —oo<n<ow
(except that p =0 when qb= 1)
We can write (9.14.3) in the form

14, 0, s
(0-14.4) SRR T

whereg = 1, 2, ... and p runs through all values (positive or negative) prime
to ¢; and this is
1 28

9.14:5 @ =1—|— — - ——
0145) O =1+ % gD Cr=qrF

PR R T 1
a=1,3,.. 2D —q7)* 4=ty (D—qT)
1
:1+ >
o (P—qTP

wherenow ¢ = 1, 2, ... and p runs through all values prime to and of opposite
parity to g.
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We wish to remave the restriction that p should be prime to ¢. We can
do this by multiplving both sides of (9.14.5) by
78)=(1—-2")s)=1+3 8+52+...,
We thus obtain®

1
9.14.6 8) Oy =)+ Y, ——,
( ) 77( ) 29 77 ) v (p "—(17')‘9
where ¢ = 1, 2, 3, ..., and p runs through all values of opposite parity to q.
We may also write this in either of the forms

1
9.14.7) p(s) Oy, = () + X} - -— =0,1,2,...:p+q=1),
( ) M%) Oy, 7(s) = (p=qry (q p+q=1)
1
9.14.8 ), =1 - - — p+g=1).
( ) 1(8) Oy = 3 (p—qry (p+g=1)

Here the congruences are to modulug 2, and ¢, in (9.14.8), runs through all
integral values,

If we write 7(8) @y, = (7)),
then it follows at once from any of (9.14.5)-(9.14.8) that

X(1+ 2) = x(7).
This, as I pointed out, :» obvious from the beginning (but a useful check
on our analysis).
We use (9.14.8) in investigating the effect of the substitution S;. It gives

P P
X(. T) i pia= L{PTHq)
— 1l 1 = 8
. B 27)9 +);EI (p—-qr) ),

on replacing p, g by —q, p.

Thus x(7) is affected by S; and S, in just the same way as $2; and & %6,,
18 tnvariant for S; and 8, and therefore for I,

We have thus proved (A). More generally, we have proved the invariance
of 9-20),, whenever 23=0 (mod 8). .

Proof of (B)
9.15. The fun:tions 4% and 6, are defined by power series in x = enir

convergent in the circle || <1 or the half-plane %> 0. Also

M) = fi (1= a2m) (1 + an-1)2)

T A pair (p, q) of opposite parity is of one of the forms (I, @), (3P, 3¢, ...), where P
and € are coprimne and of opposito parity.
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has no zeros in the circle. Hence 980 is regular for |z | <1 or v>0. It is
bounded in any closed part of Dy which excludes the two points in which
D, abuts on the real axis; and therefore it is bounded in Dy if it is bounded
in the neighbourhood of the two points 7 = + 1. Tt is plain that we need
congider only the point 7 = 1.

We write
1 1
(9.15.1) T=l-g, T=7—,
and suppose that 7—1 inside D,, so that O<wu<1 and w*+0?>1. If
T = U+iV then
R -
T(l—wle? T T (I—u)R e’
so that 0< U <1 and V—co. Hence T — a0 inside D,, and

X = e’”'T—a-O.

Now 98(z) = 93(0,7) = ﬂs(o jie r) Ta95(0, T)
= TH2X 4 2X2 4 .08,
80 that
(9.15.2) 9%~ 256 T X2

when T — o0 and X — 0. We require a similar formula for 6.
We have from (9.14.8)

4
(0153) 576y =xn = x{1-7)

1
=y p+g=1
L PRy
1
(@+ PT)¥
where now @ runs through all integers and P through all odd integers, If

|P|T=¢ £=e¢it=X"P,

1 1 1/d\2? 1
then %(Q+PT)4‘§<Q+§E'€(d’c) 210+2F
1/d\2 1/d\% 471262”"§
= 5{d2) eomnt = ~5(3) ot eeep
- 27,2(1)2 (62mC 4 2eAmit 4 Jebmit 4 )
-_ ‘5 d€ cas

— %n4(eznig + 2364ni§+ 33667r’iC+ .. ’)
= 874 X3P 4 28 X4IPI + BBXOIPI ),
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We have to sum this with respect to P, but we need only the lowest powers
of X, and X2 oceurs only for P = +1. Hence (9.15.3) gives

~1.2.87eT4Xe,
or
(9.15.4) O ~ 256 T4X2.
Finally (9.15.2) and (9.15.4) show that 988, is bounded when 7> 1, and

therefore bounded in D,.
It follows that 9-%@, is a constant, which must be 1, and that rg(n) = pg(n).

24 squares

9.16. We proved in §9.14 that 9-%0,, is invariant for I'y whenever
2¢=0 (mod 8), and this is true in particular when 2s = 24. If 9-240,, were
bounded in Dy, it would follow that 92 = 0,, and ry,(n) = py(n); but this
is untrue. The correct formula, which was found first by Ramanujan, and
which I shall proceed to prove, is

(9.16.1)  $%(z) = Oy(w) - L4 g(— ) — 13558 g(a),
where

(9.16.2) gl@) = a{(1 —a) (1 —2%) (1 —2)..)™,
80 that g(x?) == (1 — %) (1 —2Y) (L —2°) ...}% = h?¥Y7),

in Tannery and Molk’s notation. This lagt function is, apart from a factor
of homogeneity, the discriminant 4A(w;, ©,).
We require the formulae for the linear transformation of 4(r). These are

(9.16.3) h(t+1) = er2mih(1),

(9.16.4) h( - ;) = e-tni Jr h(7).
We shall also use one other formula, viz.

(9.16.5) hz(“; 1) = o127 (1) B4(0, 7).

This belongs to the theory of quadratic transformation, but is a simple
corollary of the product formulae for A(7) and 94(0, 7).

The three functions

(9.16.6) P40, 9Mg(—z), I g(x?)
are all invariant for I';. We have already proved the first invariant. The
invariance of the third follows from the formulae

g(a?) = hA(1), h(7+2) = h2(7), h24( w;) = T12h24(7),
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Finally g(—2x) = k24(T; 1) = —h'%(1)93%(0, 1),

by (9.16.5), and the invariance of the second of the functions (9.16.6)

follows from the formulae (9.14.2) and (9.16.4). -
Hence V=4O = 92Oy, + ag(— ) + fg(x)}

is invariant, for any « and . We shall prove that it is possible to choose
a and £ so that 9240}, is bounded in D,. For this, we use the substitution
(9.15.1) of §9.15, and examine the behaviour of all the functions concerned
when T — co.

(i) First, by (9.15.2),
(9.16.7) 024(0, 1- %) ~ 2UT12X8,
(ii) Secondly
1 1
) — 712 12 ~oriefy_ t)s1z -
g =) = — R27) 12(0,7) = = (1 T)"”a (0,1 T)

_kIZ 1 ,‘9,12 O 1 gl FI’ 12k12T.’9120 T
= —F)Y % = (T)93%0,T)

= T2X{(1 - X?) (1 - X¢) L HERX L 2XE 4 )2,
Hence '

(9.16.8) g(—2) = 2UTI(X4 4 O(X8)).
(iii) Thirdly
g(xZ) — hz4( ) h24(1 —T) h%(_%)
. T12h24(T) TlZXZ{ X2) 1— X4 __}24,
(9.16.9) g(a?) = TIX?- 24X+ O(XS)),

(iv) Finally we have to determine the behaviour of @,,, which can be
done by calculations like those of §9.15. We have now

7(12) By = T2 Y Z_Q ;’T)m’

1 1 1 /d 10 1
5 @+PNe - 2{gTon= —l_(d_{;) @0
_ (2m)2
ll‘ (

(27r)
11

e?mif + 211647715{ +.. ‘)

(X2P 4 QUXHPIy ),
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It is again only the verms with P == + 1 that matter, since P = + 3 yiclds
O(X%). Hence we obtain

(9.16.10) Oy = LT

11’77(1 )

214
b()]_ TI2{‘XZ+ ‘)11_X4+ 0 XB)}

T 12{ X2 211 x4 O(XG)}

on ingerting the value of 9(12).
We have to choose « and f so that

914
27 (X2 4 21X O(X)} 4 a2'H{ X4+ O(XO))

691
+B{X2— 24X% . O(X)} = O(XE).

It will then follow from (9.16.7), (9.16.8), (9.16.9), and (9.16.10) that
$-%0}, is bounded. Equating coefficients, we find that

and (9.16.1) follows.
The function 7(n)
9.17. We define 7(n)" as the coefficient of &” in

glx) = a{(l—z) (L —2?) ..} = L-r (n)a®
Then, after §9.9,

o0
Oay = L+ pgg(n)am = 1+ I8 3 ofy(n) a™
1 1

o

Also g(—x) = B (=) r(n)z"
1
and g(x?) = g‘f(‘%n) z",
1

if we agree that 7(y) meuns 0 when y is not an integor. Hence finally we
obtain Ramanujan’s formula

(9.17.1) ra4(n) = gy 011 (N) +eg(n),
where
(9.17.2) eoa(n) = F3{(— 1)y*12697(n) - 5127(4n)}.

9.18, The functior. 7(n) has been defined only as a coefficient, and it
is natural to ask whether there is any reasonably simple ‘“‘arithmetical”
definition; but none has yet been found. In the next lecture I shall discuss
some of the most remarkable properties of the function. T must however

! Tretain Ramanujan’s notation. The collision of the 7 in 7(n) and the T in "7 ig a little
unfortunate but is not likely to cause eonfusion.
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prove something here about the order of 7(n), since T have to justify my
assertion, in § 9.3, that ry(n) is ““dominated’” by pyy(n).

It follows from a formula of Jacobi which I have quoted several times
already that

Xr(n)ar = a{(1 —x) (1 —x?)...}2 = x(l - 3x+ 52% - Tal+ ... )3,
the exponents in the series being the triangular numbers. Now (1 -3z +...)8

is majorised by

@

8
S @n+ 1)min(n+1>} ,

n=>0
which is of order (1 —x) ® whenx—1." Hence
| 7(n) |2r < 2| 1(n) | 2" < A(1 —2)78,

where 4 is a constant, for all » and . Taking z = 1 —n-1, when 2™ is about
¢~1, we find that

(9.18.1) 7(n) ="0(nb).

On the other hand

6]—;_1 oti(n) = pagln) = 7_1"1;1')3,'1} q‘i €q 0_2(17;)7

and the series is greater than?

V-2 g g qm g b

Hence o (n) is greater than a eonstant multiple of #1!, and
18 1
() = (o7 ‘T’ﬁ(n){l + O(ﬁ)}

is dominated heavily by its leading term.
The order of 7(n) is really a good deal smaller than is shown by (9.18.1),
Ramanujan showed, by a more sophisticated method, that

(9.18,2) T(n) = O(n);
and I showed later, by a function-theoretic method, that
(9.18.3) T(n) = O(nt).

I shall prove a better result, due to Rankin, in Lecture X. It is very plausible
to suppose that (as Ramanujan conjectured)

T(n) = O(n+¢)
for every positive €; but these questions I must postpone.
) 8
! That of (Znxd*)® or of (f te ”"dt) , where e~¥ = . This is that of y~% or (1 —x)~5.

0
* Using the crude inequality | c,(n) | En.
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9.19. T conclude by repeating that the results which we have proved
are typical of those in the general problem of 2s squares. We can always
express ey (n) as the sum of a number, fixed by Ramanujan and Mordel),
of terms defined as modular coefficients; and each of the coefficients gives
rise to a series of problems resembling those arising from 7(n). In some cases
it is possible to define them fairly simply in arithmetical terms. In all cases
the number of representations is dominated by the divisor function p,(n).

NOTES ON LECTURE IX

§9.1. There is a full aceount of the history of the clagsical theorems concerning
representation by two or four squares in Dickson, History, ii, chs. vi and viir,
Jacobi’s results concerning 2, 4, 6 and 8 squares are quoted by Smith on p, 307 of
his Report on the theory of numbers (Collected papers, i, 38-364). They are contained
implicitly in §§40-42 and 85-66 of the Fundamenta nova. Liouville gave formulae
for 10 and 12 squares in the Journal de math. (2), 11 (1866), 1-8 and 9 (1864), 296-298,
Gauss, Disquisitiones arithmeticae, §182, stated o theorem equivalent to (9.1.1).
Glaisher, Proc. Londen Math. Soc, (2), 5 (1807), 479-490 (480), gives a systernatic
table of formulae for 7,,/n) up to 25 = 18. He had obtained these formulae in a series
of papers in vols. 36-39 of the Quarterly Journal of Math. The formulae for 14 and 18
gquares contain functiors defined only as the coefficients in certain modular functions
and not ‘arithmetically’. Ramanujan, in no. 18 of the Papers, continues Glaisher’s
table up to 2s = 24, and gives a goneral identity for 929(z) which was proved after-
wards by Mordell (in the first paper mentioned in the note on §9.4). ‘
Boulyguine gave general formulae for #,,(n) in which every function which oceurs
has in a sense an arithmetical definition. Thus the formula for 7,,(n) contains functions

of the type Zb() Bgr o r ),

where ¢ is a polynornial, £ has one of the values 25 -- 8, 28~ 186, ..., and the summation
extends over all solutions of #f + 23 + ... + ] = n. There are references to Boulyguine’s
work in Dickson’s History, ii, 317, and the papers of Uspensky quoted below.

Uspensky has developad the clementary methods which scem to have been used by
Liouville in a series of papors published in the Bulletin de I'Acad. des Sciences de
PURSS and other Russian periodicals: references will be found in a later paper of
his in T'rans. Amer. Math. Soc. 30 (1928), 385-404. He carries his analysis up to 12
squares, and states that h:s methods enable him to prove Boulyguine’s general formulae.
They can also be applied to many other problems concerning representations by
quadratic forms. '

H. Besgel (Dissertation, Konigsberg, 1929) has developed Liouvillo’s methods
independently, and gives formulae up to 2s = 16,

I am not concerned in this lecture with odd values of &, but it may be useful to add
a short note on the subject. The functions ry(n), r5(n), and r,(n) may be expressed as
finite sums involving symbols of quadratic reciprocity. Thus r4(n) was evaluated in
this form by Dirichlet, and ry(n) and r,(n) by Risenstein, Smith, and Minkowski.
When k& = 3 the problem is, as had becn shown long before by Gauss, much the same
as that of finding the nurber of classes of binary quadratic forms of determinant —n.

The results do not seem to have heen worked out so systematically as those for
even k, and it is not possible to refer to a comprehensive statement of them, though
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many formulae can be found in chs. vi1 and 1x of the second volume of Dickson’s
History and ch. x of Bachmann’s Die Arithmetik von quadratischen Formen (I Abthei-
lung).

There are two completely different solutions of the 5 and 7 square problems, the
‘arithmetic’ solution of Minkowski and Smith and the ‘function-theoretic’ solution
of Hardy and Mordell. Bachmann gives an account of the first and Dickson, Studries
in the theory of numbers, ch. X111, of the second. References to the work of Hardy and
Mordell are given in the noto to §9.4.

The formulae are generally stated, whon % is odd, in terms of primitive representation
(in which x,,%,,...,%; have no common factor). The simplest formulae are due to
Dirichlet and Eisenstein; thus the number of primitive representations of an odd »n
by 3 squares is (

8 8
24 Y% —) n=1), 8 % ( ..... ) (n=3).
sZ4n

n szin n
s\ . . e

Here (— is Jacobi’s generalisation of Legendre’s symbol, and the congruences are to
n

modulus 4. Tisenstcin’s formulae for 5 and 7 squares are proved by Bachmann. For
roferences see Dickson, History, ii, 263 and 305.

§9.2. The formulae (9.2.2) and (9.2.3) oeccur in Gauss’s posthumous work. See the
references given by Dickson, History, ii, 283.

There is a proof of (9.1.1), by means of Gaussian integers, in Hardy and Wright,
240-242; and one of (9.1.2) and (9.1.3), by means of integral quaternions, in Dickson,
Algebren und ihre Zahlentheorie, Kap. 1X (see in particular 181182, Satz 22). Landau,
Vorlesungen, i, 110-113, gives an elementary deduction of (9.1.2) and (9.1.3) from
(9.1.1).

Ramanujan’s proof of (9.2.3) oceurs in no. 18 of the Papers; tho formula is (17) on
p- 139. The proof is reproduced by Hardy and Wright, 311-314. Ramanujan seems to
have used similar arguments frequently; Watson (10) points out that the familiar

It
formulae enu+sn?u =1, dnlu+k’snu=1
appear, in the note-hooks, as identitios between g-series to be proved by clementary
calculation. Formula (18) on p. 139 of the Papers may bo reduced to the familiar form

(1) = 60%(u) — g,

Thus Ramanujan deduces the differential equation satisfied by f(u), by direct algebra,
from its expansion as a trigonometrical series.

§9.3. The formulae for ry(n) is Liouville’s: see the note on §9.1.
It may happen that e,(n) = 0 for special forms of n. Thus

e1o(n) = Hxy(n) = 0

if 7 is not & sum of two squarcs, and e;,(n) = 0 if n is even. These results, due to Liou-
ville, were rediscovered by Glaisher.

In order that e, (n) = 0 for all n, it is necessary and sufficient that 2s < 8. In these
cases only r,,(n) is a ‘divisor function’, represented by tho ‘singular series’ of §9-8.
The ‘reasons’ for this have been shown in a new light recently by Siegel, Annals of
Math. (2), 36 (1935), 527-606.

The theory of the representation of » by the special form

(1) 224+ 2l

can be extended to general definite quadratic forms in k variables. There are a certain
number of genera of forms of a given discriminant, each containing a certain number



The representation of numbers as sums of squares 159

of classos. If wo select one representative of each class of a given genus, and define
N(n)as the total numbur of representations of n by one or other of these representatives,
then N(n) is the sum of a singular series like those of § 9.8,

If the diseriminant is 1, then (1) is a representative of a class in the principal genus.
In order that there should be only one such class, it is necessary and sufficient that
k=<8, In this case only is 7, (n) the sum of the singular series.

I follow Ramanujan's notation except for a factor 2. He writes

D28 = 1 4 220 (n) o™,
80 that his 7y, 8,, and v, are half mine.

§9.4. The work of Mordell and myself is contained in

Mordell, Quarterly Journal of Math. 48 (1917), 93-104 and Trans. Camb. Phil,
Soc. 22 (1919), 361-372;

Hardy, Proc. Nat. Acad. of Sciences, 4 (1918), 189-193; Trans. Amer. Math., Soc.
21 (1920), 255-284,

§9.5. ‘Ramanujan’s sum’ oceurs in earlior writings, and (9.5.3) seems to be due
to Kluyver: see Papers, 343. But Ramanujan was thoe first to appreciate the importance
of the sum and to use it systomatically. The proofs of (9.5.3) given here are takon from
the Papers, 180, and from Hardy (7). ’

For the M&bius inversion formulae soe, for oxample, Hardy and Wright, 234--237,
or Landau, Handbuch, 677-582.

§9.6. The three way: of summing (9.6.1) are due ro stermann, Proc. London Math.
Soc. (2), 34 (1932), 194-195; Ramanujan, Papers, 180-185; and Hardy (7). Ramanu-
jan and Hardy prove many other formulae of the same kind.

For the formula for o, _,() see, for example, Hardy and Wright, 238.

The theorem on multiplication of Dirichlet’s series referred to near the end of the
section is proved in Landau, Handbuch, 671-673, and on pp. 63-64 of the tract of
Hardy and Riesz quoted on p. 69.

§9.8. Ramanujan formed ‘singular series’: thus the series (11.11)-(11.41) of
no. 21 of the Papers are the singular series relevant in this problem. But his approach
to them is quite different; he dotermines tho ‘ divisor-function® 8y,(n), as an approxi-
mation to ry(n), independently, and then expands it as a singular series. Here the
gingular series comes first, and §,(n) appoars as its sum,

Thoe phrase ‘singular series’ has beon used differently by different writers, Thus
Littlowood and I have sometimes called XA (n), without the outside factor, the
singular serios.

§9.9. The formulae for 8, , will be found in Bachmann, dnalytische Zahlentheorie,
ch. viL.

If & (here 25) wore odd, then 8% would involve a Legendre or Jacobi symbol, which
disappears when k i even. This is the origin of the Legondre or Jacobi symbols in the
formulae for rg(n), ry(n), ....

§9.11. The standard treatise on the elliptic modular functions is Klein-Fricke,
Theorie der elliptischen Modulfunktionen, 2 vols, Loipzig, 1890-1892. This is very long
and elaborate. Vivanti’s Fonctions polyédriques et modulaires (French translation by
A. Cahen, Parig, 1910) i3 a more elementary book designed “permettre au lecteur
d’aborder sans difficultés les legons classiques de MM. Klein et Fricke”,

Hurwitz has given a self-contained account of the theory in two papers in the
Math. Annalen, 18 (1881), 528-592 and 58 (1904), 343-360. This containg proofs of
the theorcms quoted here,

Thero is a clear account of tho elementary geometry of the modular group in Copson’s
T'heory of functions of a complex variable, ch. xv.

Dr Heilbronn has shown me the following simple and direct proof of the theorem
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quoted at the end of the section, Suppose that f(r) is regular and bounded for J(1) > 0,
and that

fa+1) = £, f(— i) =f(n).

Then g(x) = ¢(e7'7) = f(r) cannot have an essential singularity at the origin (since
then it would assume arbitrarily large values near tho origin), nor a pole (gsince then it
would tend to infinity); and so*it is regular at the origin. We may thorefore supposo
(subtracting a constant if necessary) that f(1) - 0 when }(7) - c0.

Now | f(7) | attains its upper bound M in D at a point on the boundary of D (and not
at infinity), so that there is a finite 7, on the boundary of D for which | f(1,) | = M.
If f(1) were not constant, there would be a 7, near 7, for which | f(7,} | > | f(7a) | = M.
But there is & 74 in D for which f(7,) = f(7,), and 8o | f(1,) | > M; a contradiction.

§§9.14~18, The proof follows the second paper of Hardy quoted in the note on § 9.4,

§9.17. (9.17.2) is formula (148) on p. 159 of the Papers. There is an orror of sign
in formula 7 of Table VI: Ramanujan seoms to forget momentarily that g( —x) beging
with -z and not z. In any caso, as I remarked in the note on § 9-3, his ry,(n) and egy(n)
are half mine.

§9-18. Ramanujan's proof of (9.18.2) is to be found (as a special case of more general
theorems) in the Papers, 146-148 and 153, or 160; and Hardy’s proof of (9.18.3),
which is reproduced in a slightly different formn in the next lecture (§ 10.8), in Hardy (9).
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RAMANUJAN'S FUNCTION 1(n)

10.1. Iproved it Lecture IX that

16 128

(10.1.1) roy(m) = gz () + o ((— 1)~ 2697(n) — 5127 (3n)},

where a¥(n) is a simple “ divisor function” of »n, and 7(n) is defined by
(10.1.2) g(e) = 2{(l —x) (1 —a?)...}" = 3 7(n) 2".
1

1 shall devote this lecture to a more intensive study of some of the properties
of 7(n), which are very remarkable and still very imperfectly understood.
We may seem to be straying into one of the backwaters of mathematics, but
the genesis of 7(r) 1s a coefficient in so fundamental a function compels
ug to treat it with respect.

The multiplicative property of T(n)

10.2. The coefficients in many modular expansions have simple arith-

metical meanings; thus the coefficient in
Hx) = (1+ 2+ 24+ ...)°

is r,(n). But 7(n) has no such obvious interpretation,’” and its arithmetical
properties are still very obscure,

Ramanujan conjectured that

(10.2.1) 7(nn')y =7(@m)1(n’)
if (n,n') =1, i.e. that 7(n) is multiplicative; and this was proved a litile
later by Mordell. Mordell’s proof is very instructive, and sufficiently simple
for insertion here. It depends on the identity

(o] o an
(10.2.2) Yr(on) et = 7(p) 3 7(n) 2™ — pt Y, 7(n) 2P,
1 1 1

where p is prime.
T Jacobi’s identity shows that

o)
Sr(n)an = x(l — 3+ Bxd— Tt + ... )8,
1

Heneo T(n) = Z(— )utreto+ns(2n, 4+ 1) (2ng + 1) ... (2ng+ 1),
the summation being extended over all ropresentations of n—1 as a sum
3 )
T Ann+1) = B &
i—1 i1

of 8 triangular numbess {;; but this intcrpretation is not illurainating.

HR 11



162 Ramanujan’s function 7(n)

We write, as usual

(10.2.3) A(w;, ) = (%Tf)mxz{(l—-zz) L—at) ...},
1

where « = "7, 7 = wy/w,. Then 4(w,, w,) is invariant for the substitutions

L {1 0 0 —1
bl (1 1) ’ Sz ( 0)!
which replace w,, w; by @y, v, + @, and by —w,, w, respectively. We prove
first that
p—1 p--1
(10.2.4) P = Moy, pw,)+ 3 A(pw,, ko, +wg) = uy+ X v,
k=0 k=0
is invariant for 8, and 8,, and therefore for all the substitutions of the
modular group I
First, 8, leaves u, unaltered, and permutes the »,, so that P is invariant

for §,.
Next, S, changes P into

p—1
A(— 0y, poy)+ A(— pwy, w,) + E:IA("‘P%, Wy — Ky)
p—1
= A(pwy, W)+ A0y, pwy,) + ;l A( = pwy, ) — kw,);

and, in order to prove P invariant, it is enough to show that
(10.2.5) A(— pwg, 0, =Kwy) = A(pw;, K0, +wy),

where «’ runs through the values 1,2, ..., p—1 with &, or through these
residues (mod p).

We take a=—k b=p,
and determine ¢ and d so that
ad—bec = —kd—pc = 1.
Then k" = d runs through the residues required. Also
—apwy+ b(wy — KW,) =Py,  —cpuy+ d(wy — kwy) = K'@y + w,,
and so A(— pwg, wy —Kwy) = A(pwy, K'o; +w,),

which is (10.2.5).
It follows that P is invariant for I', and therefore that
1)
10.2.6 =
( ) Q=7 @, 0))

is invariant.
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Now
(10.2.7)
7 \12 © 12 @
Awy, 03) = (—) Xr(n)xt,  Alwy, pw,) = (- ) 3 T(n)a?rr,
w, 1 . Wy 1
and
p-1 g \12 «© p—1
(10.2.8) 3 A(pw,, kg +wy) = (—-——) > T(n)x¥p 3 einkmip
k=0 Pwy)  n=1 k=0

Vid )12 w

— . 2n

- p E T(P")x H
YL n—-1

since the sum with respect to « gives p if p | n and 0 otherwise. Hence the
expansion of P in powers of  beging with

bid 12
o 7 -11 P 3
. (wl) pHr(p)ad,

while that of A(w,, w,) beging with

It follows that ¢ = F/4 is bounded i1 D, and therefore constant, so that
(10.2.9) P = piir(p)A.

Finally, substituting from (10.2.7)~(10.2.9) into (10.2.4), we obtain (10.2.2),
with 2% in place of z.
We can now prove (10.2.1). Itis suflicied’ to prove that

(1021()) T(p/\n) ik T(P’\)T(’n)

for every A, p being prime and (n, p) = 1. This is obvious when A —= 0. ¥f
we equate the coefficients of 27 in (10.2.2), we obtain

7(pn) = 7(p)7(n),

which is (10.2.10) for A = 1. If we equate those of ™', where A > 1, we
obtain

(10.2.11) 7(p*n) = 1(p)T(p* 'n) —pti1(p*- *n),
and in particular

(10.2.12) 7(pM) = T(P) TN ) =N r(pA),
Hence, if u, = 1(npt)—71(N)7(P*),
we have . Uy = T(P) vy — PMy_g.

But u, = 0 when A = 0 and A = 1, and therefore u, ~- 0 for all A.

Tr-2
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The function F(s) =X I:::)
10.3. From (10.2.1) we can deduce a remarkable formula for the Dirichlet’s
series

(10.3.1) F(s) = 27—(2’)
1 h
I proved in §9.18 that T(n) = O(n®),

so that (10.3.1) is absolutely convergent for oo = R(s) > 9. We shall see later

that much more than this is true, but this imperfect result is sufficient to

show that the transformations which follow are valid for sufficiently large o.
Since 7(n) is multiplicative, we have

(10.3.2) F(s) = 1P
where
7(p) 7(»%)
(10.3.3) xp =1 + 7)8—+ —:p‘l_s =+

We can calculate 7(p?) in terms of 7(p) from (10.2.11), and so determine y,,.
We write

(10.3.4) cosfl, = 3p~" 1(p),
(10.3.5) a, = p=TAz(p}).
Then (10.2.11) gives  a,—2cosf,a,_,+a,_, = 0.
But a,=1= E;%n—g’-’ , = 2cosb, = 5131—20”-;
sin 0, siné,
and it follows by induction that
a = sin (/:\_+- na,
sing,
and
sin (A4 1)0
Ay — plad T N TP
(10.3.8) T(p*) =p* sin,
Hence
2 1
[ N T - - L
(10.3.7) x, i Op,\%.'(,p ) sin(A+1)0, 1 - 2p7 "o 0, £t
—_— - 1 —
S -r(p)pTapt W
and
1
10.3.8 F(s) = =T - -
( ) o I;pr rpll—r(p)p‘“rp”’“

This is the analogue of Euler’s product for {(s). The series and product are
absolutely convergent for sufficiently large o.
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From (10.2.1) and (10.3.6) it follows that
sin (A+1)0
(10.3.9) r(n) = ni- 1= A 10
sin0,
if n = ITp*,

The function F(s) also satisfies a functional equation of the same type as
that satisfied by {(¢). It will be convenient to defer the proof of this to
§10.9,

Congruence properties of T(n)

10.4. The results of § 10.2 enable us to prove a number of curious arith-
metical properties ¢f r(n). These have a certain resemblance to those of
p(n), which T spoke of in an earlier lecture; but they are naturally more
numerous, since 7(n; is multiplicative.

Suppose that p is prime and that

(10.4.1) T7(p) =0 (mod p).
Then (10.2.12) and (10.2.10) show that
(10.4.2) T(pn}=0 (modp)

for every n. Ramanujan tabulated 7(n) up to n = 30, and his table shows
that (10.4.1) is true for

(10.4.3) p=2,3,5,7,23;

so that these primes have the property (10.4.2).
The last two primes yield further properties of 7(n), which do not depend
upon the multiplicative property. We can write g(2) in the form

g(x) = Tr(n)a™ = x IT(1—zn)> [T(1 —a)3.,

Now (I1—a7)"=1—a™ (modT7),
( | — a.-n,)zl =1-—38x™ + Jplin _ A (mod 7),
and II(1 —2m)* = Ze, x#,

¢, being divisible by 7 whenever x is not. Also
TI(1—an)® = X(— 1)y (2p + 1) ait D,

by Jacobi’s identity. Hence

Zr(n)at = TX(— 1) (2v+ 1)¢;/‘av*“"’+1)+l‘+1
and T(n) = 2(—1y (2v+1)c,
the summation being over all & and v for which

n= le(r4+-1)+p+ 1.
Now v(v+1)=0,1,3,0r6 (mod7),

so that n=p, p+1, p4+2 0or p+4 (mod7).
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If n=3, 5, or 6, u cannot be a multiple of 7, and then ¢ ., 18 a multiple of 7.
Hence T(Mm+k)=0 (mod?7)

fork = 3, 5, 6 ag well as for k = 0.
We can prove similarly (using Euler’s identity instead of Jacobi’s) that
T(23m +k)=0 (mod 23)

when k is any quadratic non-residue of 23.

10.56. The congruences of § 10.4 are satisfied by all » of certain arithmetical
progressions. There are also congruences satisfied by “almost all”’ n.
For example

(10.5.1) 7(n)=0 (mod 5)
for almost all n (in the sense of § 3.4),

We begin by proving that

(10.5.2) T(n)=no(n) (mod5s),
where o(n) is the sum of the divisors of n, for all n. This depends on two
identities in the theory of the modular functions, viz.

(10.5.3) Q2 — R? = 1728¢(x),
and
i
(10.5.4) Q— P2 = 2882(1—__x—n)2,
where
x 222 Ja®
(10.5.5) P= 1_24(1—x+1—x2+1—x3+“')’
x 232 33,3
5.6 = .
(10.5.6) Q 1+24‘0(1“_x+1_m2 ot )
z 2542 353
10.5. =1-— v )
(10.5.7) R=1 504(1_95 AL )

The identity (10.5.3) is familiar, but I have not seen (10.5.4) anywhere
except in Ramanujan’s work.
We can deduce (10.5.4) from (9.2.5). We have

1 6
10 = — _ ~ _ __—~ _
teotdl = o554 Tazo
1 1 e
2 = P
(3 cot 16) 16 24+960+""
Upsin O+ upsin20+ ... = — L1 @=L,

24 1440
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Uy (L +uy) cos G+ uy(l +25) cos 20+ ...

ax x2 1 { x 222

M T

1<) +...}02+...,

Huy(1 - cos 0) + 2uy(1--cos 20) + ...} = %(:01 0 +...,

1 P Q 2 1 1 x x?
('z‘a‘ﬁza" fa407 ) =uE Tt et it

Q1 «x 2%y? . )
+ 960 " 2 (T;’m)2+zl‘:52—)2+...} 2+ ...;
and (10.5.4) follows by equating the coefficients of 92.F

It is now easy to prove (10.5.2). For n5=n (mod 5) for all », and so

R=21P=P (mod5),

while @=1" (mod5).
Hence 1728 Lr(n)am = P— R:=0Q—P? (mod5).
@ p2rd 0 ©
But Q-P*=288 ¥ -y =288 3 ¥ ukw
ve1 (=) p=lv=1
= 288 2 na(n) ",
1
so that T{(n)=67(n)=ne(n) (mod 5).

In order to prove (10.5.1), then, it is sufficient to prove that
(10.5.8) o{n)=0 (mod?35)

for almost all n.

10.6. The congruence (10.5.8) expresses a special case of the more general
theorem that

(10.6.1) o(n)=0 (modk)
for every k and almost all n.> We may plainly suppose that k is prime,
We denote a general prime by p and a prime of the special form km —1
by w, and write n =TI p° ] o=
D4 w

! Equating the constant terms gives

T z?
2t o S
which is easily verified directly.
3 $till more generally, a,(n)=0 (mod &) for all odd s, all k, and almost all n,
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pﬂ"‘l —_ 1 wd+1 _— 1
Then o(n) = pgm sl | G
If & is odd then
m-az+1 — ]_ ma+1 1

since w+1=0 (modk) and the second factor is integral. It follows that
(10.6.1) is true unless every special prime w occurs in » with an even exponent
a. It is therefore sufficient to prove that « is odd, for at least one w, in almost
all n.

We define b, by
b,=1 (f all « are even),

b, = 0 (otherwise);

and we have to prove that

(10.6.2) B(n) = X6, = o(x).
nsy
We can in fact prove more, viz. that
Cx

where k = 1/(k—1) and C depends on k only. The proof is very much like
Landau’s proof quoted in §§ 4.5~4.6.

Let F(s) = b

ns

pw P po wzs wi

o 1 _
=i e 0 Tes) ™ Mo

Then Fs)y= 11 (1+—1&+512;+...)H(1+J—+L—1—+...)

for ¢ = R(s)>1. Hence.
log F(s) = log {(s) ~ G{(s),

where G(s) = Zlog (1 + @) = Zw—2+ R(s),

and R(s) is regular for o > }.

- I must now take for granted some of the standard theory of the primes
of an arithmetical progression. The function Zp—® behaves, in the ordinary
theory of primes, ““sufficiently like "’ log {(s); and 2w behaves, in the theory
of the primes of the arithmetical progression, sufficiently like «log{(s).
Hence log F(s) behaves sufficiently like (1 —«)log {(s), and F(s) suffigiently

like {{(¢)}=. In fact F(s) = {{(o))*~ H(s)
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where H(s) is regular at s = 1 and does not behave too badly for large s
whose real part is nearly 1.}

If we accept all this, then the road to (10.6.3) is clear, since we have only
to repeat Landau’s argument with comparatively trivial changes; and we
have seen that (10.6.1) is a corollary. Here k is arbitrary; but the passage

0 (10.5.1) depends upon the special properties of 5

There are similar congruences for other moduli, of which the most note-

worthy is 691. Ramanujan proved that

(10.6.4) T(n)=0on(n)  (mod 691);

and Watson has deduced? that (as Ramanujan conjectured) 7(n) is divisible
by 691 for almost all n.
I may observe that (10.6.4), for odd =, follows from (10.1.1). For then

167(n)= —128.2597(n) = 160,,(n) — 6917, (n)=160,(n) (mod 691).

The order of T(n)

10.7. I return to the problem of the order of 7(n), which I referred to at
the end of Lecture TX. This is the most fundamental of the unsolved
problems presented by the function.

Ramanujan conjectured that

(10.7.1) T(p)<2p"”
for every prime p, or, what is the same thing, that all the angles 6, of §10.3
are real. I shall call this the * Rumanujan hypothesis”. If the hypothesis
is true then

1.1 l A ,7‘
07.2) 0] = IS, 1T 50 I 0o =,
and o
(10.7.3) 7(n) = O *%)

for every positive «. 1t is eagy to prove, in the other direction, (i) that

(10.7.4) T(n)zZn'T

-

Actually, when k =: 5,

’ Ly(8) Ly(s)) ¥
£ = o N g,

where h{s) is regular for o>}, and Ly(s), Ly(s), L,(s) are the three Dirichlet’s L-
functions associated with the characters

(1.i, —i, —1), (1, =44, =1), (1, =1, =1, 1).

-

Using the theurem referred to in footnote 2, p. 167,
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for an infinity of n, so that the it of (10.7.3) cannot be replaced by any
smaller number; and (ii) that the truth of (10.7.3), for every positive n,
involves the truth of the Ramanujan.hypothesis.'

We saw in §9.18 that

(10.7.5) 7(n) = O(nd).
Ramanujan gave a more complicated proof of
(10.7.6) T(n) = O(n7),

and this is the most that has been proved by “elementary” methods. I
proved in 1918, by the method used by Littlewood and myself in our work
on Waring’s problem, that

(10.7.7) T(n) = O(n®).
Kloosterman proved in 1927 that
(10.7.8) 7(n) =0 )
for every positive ¢; Davenport and Salié proved independently in 1933 that
(10.7.9) T(n) = On<**);
and finally Rankin proved in 1939 that
(10.7.10) 1(n) = O™,

the best result yet known. The indices here are (apart from the ¢'s) less
than 6 by 1, }, and 1 respectively.

Proof that T(n) = O(n®)
10.8. I prove (10.7.7) by showing that
1
- _ —.y wm_pl_ 1

(10.8.1) g(z) = 2{(1—2) (1 —=2%) ...} 0{(1_7)6},
uniformly in . Here z = re¥ and 0 <7 < 1. Assuming this for the moment,
we have 1

L[ 9
T(n) N 2mi Cz”""l ’

! For (i) take n = p?, and observe that
s (A+1)0,

>
sinfl, 1

for an infinity of A. For (ii) take the same n and suppose 6, complex. Then
6, = km + iy, where 73, is positive (since cos 8, is real), and

sin (A +1) f,| _sinh(A41)7,
~ sin0, | sinhy, '

i8 greater than a constant multiple of e\ or né, where

s

T logp’
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where (' is the circle 7 = ¢~'/*. On this circle | 277 | = ¢, and therefore
T(n) = 0{ Max | g(re®) I} = O(nt),
r=e~ V"
8o that (10.7.7) is u corollary of (10.8.1).
We divide up (', by the Farey dissection® of order
v =[n]+1,

into arcs §,,. It is sufficient to prove that (10.8.1) is true on £, ,, with
uniformity in p and q.
If 2 = 2% = ¥ then
J(z) = h*¥(),
in Tannery and Molk’s notation; and
(10.8.2) B*(T) = (a+br)12h3¥(r)

e ctdr

if Tathr

is any substitution of the modular group 1. We take

1 ’
a=p, b=-—gq, c=..,,,ﬂ)£’ d=—p,
q
where p’ is defined by 14+pp'=0 ' (modg).
2 )
We write 6:—M+¢, T:P+f§.
q 7 q
Then )
(10.8.3) 2 = et = exp(—-21’-§+g£ﬂ)
q q
2 2 | R
and ——~7L§+ LA ——410,
q q n
so that
10.8.4 =911 _; )
(10.8.4) £=5-\, %)
ct+dr d 1 /2 1 p o1
T R e = — —_— o= T — oy
Also a+br b bla+br) ¢ Jrq(p——q*r) q +q§
and
, 2 2p'mi
10.8.5 7 = i — ex (M,,«_+ )
( ) ™ g
Finally, (10.8.2), when stated in terms of g(z) and ¢(Z), is
(10.8.6) 9(Z) = £%(2).

* Soo §8.10.
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Now
(10.87) I ZI = e“zﬂﬂ(T) = exp{...QT[SR(_I_)}
g8
- ox { dmin-1 }
=P T P )
Also ]¢|<q_v’ Q¢<V2<n

on §,,, and ¢*n~2 <vn—2< 2n~1. Hence there are constants 4 >0 and <1
guch that |Z| <o =

on £, .; and
(10.8.8) Ig(Z)lélzléllT(?@)lIZI"‘1<BIZ|:

where B is another constant.
It follows from (10.8.4), (10.8.6),(10.8.7) and (10.8.8) that

l9@)| = & 9(Z)| < B[ E|-1*| Z]
S e B g g = B
nol
eyl
Since ufe—17"# is bounded for positive p, it follows thaf
9(z) = O(n®) = Of{(1 —r)~%}

uniformly in p and ¢. This proves (10.8.1), first on the circle 7 = e-1/*, and
then, by the maximum modulus principle, generally.*
We have thus proved (10.7.7), and indeed a little more. We have

where

27
27¥(m) rm = 51%]0 | g(rei®) |2d0 = O{(1—r)12}

and a fortiori i T2(m)rm = O{(1 —r)"12} = O(n1?).
1
Also r2m = g=2min > ¢—2
if m £ m, so that
(10.8.9) ¥ 7%(m) = O(n12).
1

This includes (10.7.7), and shows that 7(n) is O(n") “in mean square”’.

T It would be sufficient that (10.8.1) should be true when # == ¢~1/n,
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7(n)

rn8

Further properties of F(s) = X

10.9. Rankin’s proof of (10.7.10) depends upon a functional equation
satisfied by
2
(10.9.1) fls) = =)

nt

The simpler function F(s) of § 10.3 also satisfies a functional equation, and
it will be convenient to investigate this here.
We saw in § 10.3 that
7(n) 1

(1092) F(«?) =2 e = HF—-T(]J)]O“’-PPH_%

for sufficiently large o~. It follows from (10.8.9) and Cauchy’s inequality that
Tl = O(n),

and that the series and product are absolutely convergent for o> %2. The
abscissa of non-absolute convergence depends upon the order of the sum
function

(10.9.3) T(x) = ¥ 1(n).
Now T(s) Fls) = f S dy,

where g(x) is the function (10.1.2), for o>22." But
12
o(e) = () gtemsmny

tends exponentially to zero both when y— 0 and when y-> 00, 80 that the
integral is convergent for all s, and F(s) is an integral function of s. Also

I'(s) F(s) = (2m)12 f wy2—13g(e—41ﬂ1y) dy
0

= (277)23—12J~ wz“fsg(e—z) dz = (2m)=-12 (12 -8) F(12—3),
0
go that F(s) satisfies
(10.9.4) (2m)~0 ['(s) F(s) = (2my* 12T (12— s) F(12—3).
! When 2| 1(n) |fwy”“le“"”dy = F(G')ELTT(;_)_’. < o0,
0

* This is the special case ¢ = 1, p = 0 of (10.8.6).
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Thebehaviourof F(s}is “trivial” in the half-plane of absolute convergence;
in particular, it has no zeros whose real part exceeds 1 The functional
equation then defines its behaviour for o <3t It has “trivial’’ zeros for
8§ =0, —1, —2, ..., but no other zeros whose real part is less than L}

The ““critical strip”, corresponding to the strip 0o <1 for {(s), is
Ll<o <43, and there are problems concerning its behaviour in this strip
corresponding to all the familiar problems about {(s). It has been shown,
for example, that there are no zeros on the lines ¢ = 4! and ¢ == 1%, and an
infinity on o = 6. The “Riemann hypothesis” for F(s) is that all the zeros,
other than the “trivial’’ zeros, lie on o = 6.

There is another generating function which may be made useful in the
gtudy of (n), viz,

(10.9.5) F(s) = S 7(n) eV,
1
It is easy to prove that
(10.0.6) 56 = o TEE)s o

but the properties of §§(s) are not so interesting as those of F(s).

Properties of f(s) = 2 T:n)

10.10. We have now to investigate the corresponding properties of the
function f(s) of (10.9.1); and we begin by finding an integral representation
of f(s), valid for o > 12, viz.

(10.10.1)  2(4m)=2I'(s) L(s — 22) f(s) =J.ny3—1 | 4(7) [2&(s, 2, ) dedy.

Here T =2x+iy, y>0,
A(T) — 621”:1'{(1 _ eZﬂir) (1 . 6417'0'7) .. _}24’1
(10.10.2) £(s) = E(s,,9) = 55—

[mr +n |22
when the dash has its usual meaning, and D is the fundamental region

~izwsd, |o+iylzl
of the modular group.
1t follows from (10.8.9) that the series for f(s) is absolutely convergent
when o >12. From

A ('T) = E 7'(’)?/) p2nnic-2nny
1

I So that A(7) = g(e?7) in the notation of § 10.1.
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it follows, by Parseval's theorem, that

% ')
f | A(7) |2dx = 35 7¥(n) e~tnmy,
-1 1

Further, if we suppose o > 12, we have

(10.10.3) (4m)=*I'(s)f(s) = cE‘Tﬂ('n)fwy-"“e“‘""”dy
1 0

._=J ys—l(x 1-2(n) e 4-nnu) dy
0 1

© ™3
[T 2w e =[] yya2aay,
0 - 8

where 8§ is the strip —t=2asi, y>0.
Since d(1) = O(e*v)
for large y, and A1) =0(y%)

for small 4," uniformly in #, the integral

ﬁ Y A7) [Pd=dy
8
is convergent for o :» 12, and this justifies the transformations.

10.11. We call & modular substitution

—~ct+ar
d=br’

or T, s substitution Ty if' it transforms points 7 of the fundamental region D
into points r of a triangle D, lyingin 8. Sincew, b, ¢,d and —a, —b, —¢, —d
give the same substitution, we may suppose that
(10.11.2) b0, d>0ifb =0, (hd)=1.
Any T transforms D into a triangle lying in a strip
n~}Zrsn+4,

and then T=T")—n

(10.11.1) T=T(")=

is o Tg; 8o that there is a T corresponding to any pair (b,d) which satisfies
(10.11.1). Further, if (b,d) is such a pair, and (a,,c,) & pair which, with
(b, d), gives a T, theu the general solution of

ad~bec =1
is a = a,-+nb, c=c0+nd;
-Co+QayT
1 th Yty - o "" oT _
and then T(t") iyt n

! By (10.8.1),
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gives a D, outside § except when n = 0. Hence there is just one T corre-
sponding to any pair (b, ) satisfying (10.11.2).

Now

(10.11.3) (4m)y2I'(s)f(s) = ZZJJ‘D Yot A(r) [Pdady.

If (10.11.1) is the T which transforms D into D, then elementary calcula-
tions show that ,

ye- Y gry_ 1 _
./—Id_b,rr‘gy dTl _ld_lelza
dr2,,. , dady
dedy = T da'dy’ = [d—br |+
Also A(r) = (d—br")2A(7").

Hence, substituting from (10.11.1) into (10.11.3), writing m for —b, » for d,
and then dropping the dashes, we obtain

a—1

—s B Y
(10.11.4) (4m)-s I'(8) f(s) = %ffpmmzr” | A(7) |2 dady

= ” Yt A(r) |2 F(s, ) dady,
D
where

1
(10.115) F(S,T) = Z’W
and the summation is defined by
(10.11.6) 0=m<w, —w0<B<0, (Mn)=1, n=1ifm=0,
Finally we multiply both sides of (10.11.4) by

1 1

26(28—22) = 22]023"22 = %’ (&[22’

1

where the dash excludes the value & = 0. It is plain that
1
= &(s),

| m7 +m |22
where the dash now excludes the pair m = 0, n = 0; and so we obtain
(10.10.1).

28(2s—22) F(s,7) = 22"

10.12. We now require certain properties of the function
, W \
(10.12.1) K{w) =2X exp(—?|m7+n|z),
where w > 0. The most essential is the functional equation

(10.12.2) 1+ Kw) = 217):1+K(:7))}
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This is & simple corollary of Poisson’s summation formula for functions of
two variables, viz.

(10.12.3)  EXp(m,n) = X f f B(E, 7) eBritnE+nn dE .

where all summations and integrations are from — oo to co. In this case
1+ K(w) = 22 ¢(m,n)

with o(E,7) = exp{—qyw | £ +iy)+ lz}-

1f we substitute this value of ¢ into (10.12.3), and use the formula

J\fe—aE’-—Zb‘ér]—yé’f 2ziimE+ ny) d€d7]

2
P e 2t o)
where &, v, and ay -- §2 are positive, we obtain (10.12.2).
We shall also need an upper bound for £ (w) for large w. This is
(10.12.4) K(w) = Ofye-tro),

and holds uniformly for w> 1 and 7 = 241y in D,
We have K(w) = XX exp ( - Z:‘-;u {(mx4-n)*+ m"‘yz}) .

The combination m = 0, n = 0 is excluded. Also y =4 ./3, since 7 is in D.
(i) The terms m = 0. n+ 0 give
2e "m0l

w0
¢ Y - By — —nw), —4mu -
Y = g(e T )<

which is O(y/w) when w/y is small and O(e~"*"¥) when w/y is large; and so

:Ii -yl — -tmwly
0{(1+w)e } O(ye 4m)

in any case.

(ii) There remain the terms for which m+ 0. If we fix m, then there is
at most one n for which |ma+n|<}.
This m and n give O(e~*"v*), and summation with respect to m then gives

O(e~mwov) = O(ye tmelv)!
The other n give two sequences whose numerical values exceed §, 3, £, ...
and so (for the fixed m) we get
0{(3‘*”"—‘/# +e Smwiy + ... ) e -m2n wy}’
which, as in (i), is Ofye—imoly  g-mimoy}

Ty>4and y>iy L
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Finally, summing with respect to m, we get
O{ye—hrw/y _e—1ru7y} = O(ye—inw/y).

This completes the proof of (10.12.4).
If y is fixed, then
(10.12.5) E(w) = O(e-4v)

for large w and a positive A.

10.13. We can now determine the principal analytical properties of £(s).
It is defined by (10.10.2) when o > 12. Also

8-1 I'(s—11)
(g) Im‘r(+n]2*"22 f wswexp(——lmr-l-n[z)

for o> 11, and so

(10.13.1) (%)H Tls—11) E(s) f:wa—lzz):' exp(—% |m7+n 12) dw

= f w1 K (w) dw
0
if the summation under the integral sign is legitimate. This will be so if
f w” 12K (w) dw < 0.
0

This integral is convergent at infinity, whatever o, because of (10.12.5).

Near the origin 111
Kw) = -1+ 5+ . K(3)
wow \w

behaves like w1, and the integral is convergent for o> 12. Thus (10.13.1)
is true for all such o, Also

Yy g—11
(10.13.2) (7_7) T(s—11)&(s)
=f1 w 12K(w)dw+f:w""12{— 1 +lw+-lle(i)}dw

*® 1 1
= T - i 11-s
—-Lw‘ K (w) dw 8—11+8—12+[ w2 K (w) dw

—_— 1 -

T s—1l)(s~

The integral here is an integral function of s, by (10.12.5), for any 7 of D;
and the right-hand side is unchanged by the substitution of 23—s for s.

13) + L (w124 11-8) K(w)dw.
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Thus £(s) is regular over the whole plane, excopt for a simple pole at ¢ = 12;
and

(10.13.3) (Z)u Tis—11)£(s) = (-;’r!)lz"msr(lzq)g(zs—s).

10.14. We deduce the properties of f(s) from those of £(s). It follows from
(10.10.1) and (10.13.2) that

(10.14.1)  2(4m) s I'(s) I'(s — 11) §(2s — 22) f(s)

81
= g1 ff Y0 A1) |2 {F(s-— 11) g-) ﬁ(s)‘l dxdy
D m J
_ f Y| A(r) |2 ddy
_(3‘—11)(8—12)“‘ DJ (T)[ ./
+ - f‘f Y1 | M) |2dxdy ‘ro(w’-'—12 +w't=) K(w)dw.
D 1
Now for any real ¢, and 7 in D, the integral
f wK(w) dw
1

is majorised, after (10.12.4), by a multiple of

[
1

If ¢ 2 0, we replace the lower limit 1 by 0; if ¢ < 0, we omit the »* and make
the same change in the limits. In either case the integral is less than

Ay,

where A and y depend only on ¢.* Hence the treble integral in (10.14.1)

is majorised by

Ano-12 f f y? | A(r) [2dady,
D

where A and & depend only on o; and this integral is convergent for
every o, because A(r) = Ofe—2m)
for large y.

It follows that the treble integral is absolutely and uniformly convergent
throughout any bournded domain of values of s, and represents an integral
function of ¢; and that

2(dm)2 I'(s) T(s — 11) {(2s — 22) f(3)

Py =c+2ifez0,y=2ifc<0.

12-2
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is regular for all 8 except for simple poles at s = 11 and s = 12. Hence f(s)
is a meromorphiec function of s regular except for

(i) a simple pole at ¢ = 12, with residue
_ o 4mt 10 2
(10.14.2) a = 12T(12)ijy | A(7) |2 dxdy.

(ii) poles corresponding to the complex zeros of {(2s — 22), all lying to the
left of o = 12.7
Finally, it follows from (10.14.1) that

(10.14.3) (2m)2 I'(s) I'(s— 11) (25 — 22)(s)

= (27m)%~48 ['(23 —8) I'(12 —8) §(24 — 25) f(23 — 8),
i.e. that

(10.14.4) B(s) = P(23—s),
where
(10.14.5) B(8) = (2m)~2 [(s) [(s = 11) {(25 — 22) f(s).

It also follows from these properties of f(s), and a well-known theorem
of Tkehara, that

(10.14.6) TH) + 72(2) + oo+ 72m) ~ on2,
This was a new theorem; but Rankin has shown that it is possible to go
much further by using a theorem of Landau,

10.15. Landau’s theorem?* is as follows. Suppose that

1) ¢, 20;

c

(2) Z(g) =2 ;z%

18 absolutely convergent for o> 1;

(3) Z(s) is regular all over the plane, except for a simple pole at 8 = 1, with
residue f3;

(4) Z(s) = O(er'"))
for large | t| and some y = y(0oy, 073), in any strip o, £ 0 < 7y;
(5) I'(s)I'(s+11) Z(s) = I'(1 —8) ['(12 — 8) Xe, (An),
the last series being absolutely convergent for o < 0;
(6) 3 nlen| = Ofa).
Then =
(10.15.1) C(x) =c)£,xon = fz+ O(x}).

' The *“‘trivial” zeros of the zeta-function are cancelled by poles of I'(s — 11).
* Particularised for the application.
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We show that
(10.15.2) Z(s) = {(28)f(s +11) = 2%’5

satisfies these conditions.

(i) Since
1 . 7%n)
we have
(10.15.4) ¢, = % p ¥ u)z0.
wi=n

(ii) Both series in (10.15.3) are absolutely convergent for o> 1," and
therefore the product series is so.

(iii) We proved that Z(s) satisfies condition (3) in § 10.14. The value of § is
f =1t
(iv) It is plain from (10.14.1) that Z(s) satisfies (4).
(v) The functional equation (10.14.3) may be written as
() I(8-+11) Z(s) = (2m)*-2 (1 —s) (12 —8) Z(1 ~5s)
= I'(1—8)I'(12 —s) Xe, (16mn)?,

cn
T4’

where e,

The series is absolutely convergent for o < 0.

(vi) It remains only to verify condition (6), which is

C@)= X ¢, = Of).

N

Now Z pHr(p) = O(=),
pET

by (10.8.9) and a partial summation; and, by (10.15.4),
C)= % pirp)= X p )+ X pt'rp)+ 5 p i p) + ...
pEle

wET % pElx
= O(@)+ O(}z) + OGx)+ ... = O(2).

Hence Z(s) satisfies all the conditions (1)—(6), and (10.15.1) is true.
The formula which we actually use, however, is not (10.15.1) but

(10.15.5) D) = 3 nle, = LAx12+ O(x12-1).

n=r

! The second by (10.8.9).
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This follows from (10.15.1) by partial summation. In fact, if 2] = £, we have

D(x) = 110(1) + EZ M{Cw)- Cv—1)}
2

— E0(E) - {(v+ D=1 C()

1
— 1+ () B+ O(eh) = 3. (L10+007) B+ 00)
— B0 H)+ O = fyra  O-),

10.16. It is now easy to prove that
(10.16.1) 1)+ 7%2) + ... + 72(n) = KHan!?+0(n1*1),

and to deduce Rankin’s theorem (10.7.10).
It follows from (10.15.3) that

T3 (n) _ Z(s—11) ntle, o n*u(n)
z ns £(2s— 22) 450 ne = n¥* '
73(n) = R ke 12p(l),

Z %(n) = 2 ki, l22 (1)
= 3 Pull) £ B, = 3 ) D)

1=qt k=xfl* 15at

e [\ 12 x\12-1
= ’“"‘”{ﬁ (z) +0(zz) }

by (10.15.5). The main term here gives

mio uwl) _ e 12{_L )| = 12 12-4
3 St zg%i B T ¥ §(2)+0(x 1)) o= Loaxl? 4+ O(x12-1),
and the error term gives
0@t H) 3 17 = O(wh*-H).

. =gt

Hence we obtain (10.16.1).

Finally, replacing » by »—1in (10.16.1), and subtracting, we find that

12(n) = O(n) + O(n'2-t) = O(ni3-t),
T(n) = O(nﬂ—t),

which is (10.7.10).

The sum. function T(n)

13

10.17. There is another set of problems connected with the
function”

(10.17.1) Tm) = 3’ 1(n)

sum
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of 7(n). The dash over the X implies, as usual, that when z is an integer the
last term 7(x) is to be replaced by 37(x).

I can explain these problems best by stating their analogues for a more
familiar arithmetical function. If #(n) = 7,(n) is the number of representa-
tions of 7 ag the sum of two squares, then the sum function

(10.17.2) B(x) =3 r(n)

nsT
is the number of lattice points in the circle
ul+v?<a,

with the convention that we count } instead of 1 for a lattice point on the
circumference of the circle. It is familiar that

(10.17.3) R(z) = mx + P(x),
where P(z) = O(z*);
but the true order of P(z) is still obseure. Sierpinski proved in 1906 that
P(r) = O(a4),
and this result has been improved by van der Corput and later writers. In
the other direction, Landau and I proved that
P(z) + O(a?).
Another problem is that of the ‘“identity’ for P(x). It was stated by
Voronoi in 1905 that
(10.17.4) P(z) = ot %%@Jﬂw(m)k},

where J, is the Bessel function of order 1. I proved this in 1915, and
many other proofs have been published since.

There are similar “order” and “identity’” problems for T(z). They are
naturally less important, and any order results are bound to be imperfect
80 long as we are uncertain about the true order of 7(n) itself. The best that
we can prove at present is that

(10.17.5) T(z) = O(x1?).
If the Ramanujan hypothesis is true, then

(10.17.6) T(x) = O(x'+e).
It is certainly not true that

(10.17.7) T(x) = o(z).

In this case the identity is perhaps more interesting. It is

(10.17.8) T(z) = 2 2‘: ffz%);gz{mmx)i}.
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Wilton proved that

(10.17.9) T, (x) = T(—ocl-l-—lj n§z(w—- n)27(n) = atia g} s(ﬂl Jyoro{dm(na)t}

for > 0, and T proved more recently that this result is still true for a = 0.

NOTES ON LECTURE X

§§ 10.1-3. Ramanujan, inno. 18 of the Papers, considers the function i,(n) defined by
#{(1 — e (1 —zt¥a) . Yo = Sy (n) on,

where | 24, When « = 24, Y (n) is 7(n).

When « is 1 or 3, ¥, (n) is given by tho identities of Fuler and Jacobi. When o = 12,
¥,(n) is a multiple of the e,,(n) of §9.3. It is 0 if n is even, and can be defined when
n is odd by a sum extended over the representations of n ag a sum of 4 squares; the
formula will be found in Glaisher’s paper referred to in the note on §9.1.

Ramanujan conjectured that ¥,(n) is multiplicative in every case, so that

Zn—)r,(n) has a product expression analogous to (10.3.8); and he deduced formulae
for r,(n) When ais 2, 4, 6 and 8. All these conjectures were confirmed in Mordell’s
paper 2. Mordell says there that the multiplicative property of yr,,(n) had been proved
before by (laisher, but this seems to be incorrect: see Glaisher, Quarterly Journal of
Math. 37 (1906), 36-38.

Rankin, in an unpublishod manuseript, has found elementary proofs of the multi-
plicative property of ¥r;,(n) and yrj4(n). These are substantially Glaisher’s £(n) and
O(n).

§10.4. The properties discussed in §§ 10.4-6 wore all enunciated by Rameanujan
in a manuscript ““ Properties of p(n) and 7(n)”’ now in Prof. Watson’s possession (see
also no. 28 of the Papers). This manuscript has never been published in full, but no. 30
of the Papers is substantially an extract from it, and Watson, in his papers 23 and 24,
has since rewritten and completed a good deal moro.

The proofs in §10.4 were given by Mordell (1), but stand also in Ramanujan’s
manuseript: Ramanujan of course assumes the multiplicative property of 7(n).

§§10.5-6. The proofs here are derived partly from my old notes on Ramanujan’s
manuscript and partly from Watson’s paper 23. Watson works out in detail the proof
sketched in §10.6.

If we replace « by ¢2, then P, @, R are

12,0, 12g,0t ' 216g,w°

T Tt 8

in the ordinary notation of elliptic functions; and (10.5.3) is equivalent to
4 = g3 —27g3.
See §9.11.

§§10.7-8, Bee Hardy (9); Hecke, Hamburg math. Abhandlungen, 5 (1927), 199-224;
Kloosterman, ibid. 337-352; Salié, Math. Zeitschrift, 36 (1932), 263-278; Davenport,
Journal fiir Math, 169 (1933), 1568-176; Rankin (2). Davenport does not mention
7(n) explicitly, but (10.7.9) is, after Kloosterman’s work, an immediate corollary of
what he proves.

Everything that has been proved about the order of 7(n) has its a.nalogue for the
coefficients c,, in the expansion

= el
3 e, ednmitiN
1
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of any modular form of ‘Stufe’ N and dimension — k which vanishes at all the rational
points corresponding to cusps on the roal axis in the modular figure. Here ‘vanishing’
means ‘“‘having the limit 0 for approach along a perpendicular to the axis. The
special function g(¢*"7) is of Stufe 1 and weight — 12. The general ideas of the theory
of such modular functions were laid down by Hocke, who proves the result for general
modular forms which corresponds to (10.7.7).

The proof of (10.7.7) in Hardy (9) is arranged differently, the underlying Farey
dissection not being mentioned explicitly.

I show thero that there are constants 4 and B such that

An' <11} 4+ 7¥2) + ... + T¥n) < Bn'?,

This result is now superseded by Rankin’s theorems (10.14.6) and (10,16.1).

§10.9. The functicnal equation (10.9.4) must have been familiar to Ramanujan,
but I cannot find an explicit statement of it either in the Papers or in the note-books.
It was first stated in print by Wilton (1), who proves it as a special case of a functional
equation for (n)
F(S’Py Q) = E_E‘— e2npmila,

Wilton (1) proved that F(s) has an infinity of zeros on o = 6, and Rankin (1) that

it has none on o = 12 or o = 1},

§§10.10-16. The proof is that given by Rankin (2), with a fow small simplifications.
His proof of the corresponding theorems for functions of Stufe N i3 more complex.

§10.12. For Poisson’s formula sce, for example, Bochner, Vorlesungen diber Fourier-
sche Integrale, 33--38 and 203-208, or Titchmarsh, Fourier integrals, 80-68. The case
here is a simple one.

§10.14: Tkehara's vheorem, in the form relevant for its application here, runs:
if a, =0, and Za,n~* is convergent for o > 1 and represents a function regular for ¢z 1,
except for o stimple pole, with residue C, at 9 = 1, then

Y a,~Cua.
AEmL

The theorem (which has been referred to already in § 2.8) is based entirely on the ideas
of Wiener. There is a simple proof of the theorem, in a rather more general form, in
a paper by Bochner in Math. Zeitschrift, 37 (1933), 1-9.

§10.15. See Landaw, Gottinger Nachrichten (1915), 209-243.

§10.17. The ‘circle problem has been referred to already in Lecture V (§5.1 and
the note on that section).

My first proof of tha identity (10.17.4) occurs in a paper in the Quarterly Journal
of Math. 48 (1915), 263-283. A number of other proofs have been given since; for
references see Hardy and Landau, Proc, Royal Soe. (A), 105 (1923), 244--258. Perhaps
the best proof is that in Landau, Vorlesungen, ii, 221-232,

Of the theorems about T(x) stated at tho end of the section, (10.17.5) is Rankin’s,
(10.17.6), (10.17.7), and (10.17.8) my own. For (10.17.5) see Rankin (3), for (10.17.9),
Wilton (1), and for (10.17.8), Hardy (10). No proofs of (10.17.6) and (10.17.7) have
been published. My own proof of (10.17.7) depended on the identity (10.9.8).



XI
DEFINITE INTEGRALS

11.1. In this lecture I propose to speak about some theorems of
Ramanujan which have not attracted very much attention, which are, as
I said in my opening lecture, “‘inevitably less impressive’” than much of
his work, but which are still very interesting and will repay a careful
analysis.

Ramanujan was occupied, during most of the last year before he came
to England, with general formulae in the theory of definite integrals. He
then held a research scholarship in Madrag, and submitted three quarterly
reports to the University on the progress of his researches. It is from these
that most of the formulae which I quote are taken. I owe my knowledge
of the contents of these reports to Professor Watson, who included them
in his copy of Ramanujan’s notebooks; but most of the formulae which
I quote had been shown to me by Ramanujan himself.

11.2. The formulae which I take as my text are as follows.

(A) f:xs—l{¢<0)—x¢(1>+m2¢(2)~...}dx= T_ 4(~s).

gin s

(B) J‘wxﬂ“ltk(O)—~ (1457 /\(2)— }dx=1"(s)/\(u-8),

0

(€) A0+ (L) + (2) + ...
=fm¢(w)dx+f:¢( =~ (1) + 2% 2)_"'da:.

x{m? + (log z)?}

(D1) f:{,\(()) 1’”,/\( )+5; /\(2)—...}cosyxdx
= A(=1)—A(=3) g2+ A(=5) gt~ ....
w x x? .
(D2) fo {/\(0)——1—!/\(1)+2~!/\(2)—...}smya:dx
= A(=2)y = A~ 4) Y3+ A(— 6) g5 — ...
(E) f:{A(O)—-%A(l)+...}{/L(O)~1£!y(1)+...}dx
= A(= 1) s(0) = A(— 2) (1) +
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(F) If

(F1) , f:F(ocx) G(fx)ydx = E-l)——ij—‘
and

(F2) 7(s) = f T Flo)ztdz, g(s)= J : G(a) 21 dx,
then

(F3) f@)g1-8) = =1
And if

®a) [ A@ Y + - i = B)
then

(F5) [, B Hetei) + (- ity ds = 4ma)

I shall say something about each of these formulae in turn, but I must
begin with some general remarks about Ramanujan’s treatment of all of
them. He had no real proofs of any of the formulae; and here I am using
the phrase ‘““real proof’” not quite in its ordinary scnse but in one which
I must explain.

It is reasonable to say that we now know, roughly, the conditions for the
truth of most analyrical formulae. We can say, for example, that a formula
like (A) is true for certain ¢ and certain s, and that the conditions which we
impose on ¢ and s are “natural’ conditions; they do not intrude merely
on account of the weakness of our analysis, but are genuine limitations
corresponding broadly to the facts. Our theorems will not cover all cases
in which the formula is true, and it may be interesting and profitable to
do what we can to extend them; but the conditions under which we have
proved them would become insufficient if widened in any really drastic way.

A mathematician may have stated a formula and advanced reasons for
its truth which are jnadequate as they stand, in which case he cannot be
said to have “proved” it. But it often happens that his method, when
restated and developed by a modern analyst, leads to a proof valid under
“natural” conditions, and in that case we may fairly say that he has
“really” proved the theorem. Thus Euler “really’ proved large parts of
the classical analysis, and there are a great many theorems which Ramanujan
had “really” proved; but he had not “really” proved any of the formulae
which I have quoted. Tt was impossible that he should have done so because
the “natural” conditions involve ideas of which he knew nothing in 1914,
and which he had hardly absorbed before his death. He had also, as
Littlewood says, no clear-cut conception of proof: ““if a significant piece of
reasoning occurred somewhere, and the total mixture of evidence and
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intuition gave him certainty, he looked no further”. In this case any “real”’
proof was inevitably beyond his grasp, and the “significant pieces of
reasoning ’ which are indicated in the notebooks and reports, though we
shall find them curious and interesting, are quite inadequate for the
occasion.

Formulae (A) and (B)

11.8. The first two formulae are the most important, and I shall discuss
them in more detail than the rest. Ramanujan was particularly fond of
them, and used them as one of his commonest tools. They are variants of
one another, (A) becoming (B) when we write

Alw) _,
AR ITE)
and we may take (A) as the standard form of the formulae, though we shall

sometimes find (B) more convenient.
It is easy to give examples of both the truth and the falsity of (A). Thus

give the formulae

@ ps—-1 T w© T
— —p8—1 o — =]
fo 1+ dx sin 77’ f 0 e sin sml'(1 - 8) (s),

true for 0 <s <1 and for s > 0 respeetively. On the other hand the formula
is plainly false when $(u) = sinmu,
the integral then vanishing identically. The formula is an “interpolation
formula”, which defines ¢(—s) in terms of ¢(0), #(1),.... If it has been
proved for all ¢(u) of a certain class, then any ¢(u) of that class vanishes
identically if it vanishes for all non-negative integral values of u. There is
a well-known theorem of Carlson which says that if (i) ¢(u) is regular, and

| plu) | < Ceti,

where A <, in the right-hand half-plane of complex values of , and
(il) @¢(0) = (1) = ... = 0, then ¢(u) vanishes identically; and it is natural
to suppose that (A) should be true for all such ¢(u) and appropriate s. We
may also expect that the best methods for the discussion of the formula
will be those with which Carlson and others have familiarised us and whose
original source is to be found in Mellin.
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Proof of (A)
11.4. In what follows I write
U = v+ 1.

I denote the half-plane v= -8, where §>0, by H(d). For the present

I suppose 0<d<l.

If ¢(u) is regular, and
(11.4.1) | p(u) | < Cefr+an
throughout H(4), then I shall say that ¢(u) belongs to the class §(A4, P, ),

or gimply . We shall be concerned for the most part with functions for
which

(11.4.2) A<m.

Let us suppose now that ¢(u) belongs to §(4, P, §), with 4 <7, 0<d<1;
that 0 <¢<d; and that

(11.4.3) O<z<e?,
Then a simple application of Cauchy’s theorem gives
(11.4.4)

1 ct-io0 T

Bx) = $(0) — (1) +22P(2) = ... = ——.

270 ) ot SiNTTU

o(—u)xvdu.

The series is usually divergent if z>e-F, but the integrand is majorised,
for all positive z, by a multiple of

e——(w—A)]wle—ch—c,
and the integral converges uniformly in any interval 0 <z, <z < X; and
therefore @(x) is regular, and represented by the integral, for all positive x.!

We can now deduce (A) by the well-known inversion formula of Mellin,
This i3 expressed by the equations

Flu) = f(:OF(x)xi“ldx, Fla) = f ) s

2918 o joo

and (A) will follow if we can take

flu) =

We may justify the use of Mellin’s formula in various ways, appealing, if
we pleasge, to some established general theorem; but it is more interesting
to give a direct proof on the lines originally followed by Mellin himself.

il
sin wr

$(—u), F(z)= D).

T If x = red, then |z ™| = r—¢f%, and @(x) is regular for |6 | <m—A4; but we do
not use this.
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Suppose that s = o+ it and
0<o<d,
and choose ¢, and ¢, so that

O0<c, <o <Cy<o.

Then (11,4.4) is true both with ¢ = ¢; and with ¢ = ¢,,
Now

1¢ —1d 1 1 1g o tic m —ud
fo (x)2® x=%f0w wf . O(—u)xtdu

cl_iw smau

1 (otio 1 1 fotio o —u
= (—u)du ws*““ldx =-— I k)
2m1 ) oy—iw SINTTU 28 [ oo SINTU 8 —U

H

gince R(s —u) = o —¢, > 0. There ig no difficulty in the inversion, the double
integral being absolutely convergent. Similarly

¢y +1m o
f D(x)x?ldr = ;= ! f S ¢(—u)duf xs-vtdy
1

27t J oo SIDLTTU

_ 1 ¢g+i0 7" ¢( u du
T om i SINTTU 8 —u

since now R(s—u) = o—cy< 0. Combining these equations we obtain

@ 1 Gtio | Potioy g B(—u) ) -
3—1 _ R - —
fo Plw)a*de 2mi (fcl_im fci_m ) ginruw §—u du sin s #(—2),

by Cauchy’s theorem.

11.5. We have thus proved (A) for a ¢(u) of & and for O0<o <4, in
particular for 0 <s < 4. Itis plain that, if ¢(u) = O(e11*1), then @(u) belongs
to ®, with P = A, so that our class of ¢(u) includes the Carlson class.
Hence (A) gives incidentally a proof of Carlson’s theorem.

We may also reduce the second part of the proof to an application of
Fourier’s theorem. If we put x = e, % = ¢+ 4w, in (11.4.4), it becomes

1 [« Y/

) (= —iw) et gy
Pe) 2w _wsinﬂ(c+z'w)¢( 0 — ) EeFIduw;

and Fourier’s theorem then gives

mP(—c—iw)

7 tecriordio—tygr = | gttt
sin (¢4 tw) fﬂwe D(e~*) dE jow” D(x)dzx.

Such a reduction of a ‘“Mellin”’ to & “Fourier” transformation is of course
always possible, the transformations being formal variants of one another.
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I add one remark which applies not only here but often later in the
lecture. I have supposed 4 <7, in which case all the integrals occurring
are absolutely convergent, and with a good deal to spare. In many of the
most interesting examples 4 will be equal to #7; and the final integral may
not be absolutely convergent, in which case a more delicate argument, not
depending simply on majorisation, will be needed. The hypothesis 4 <7
i8, here and elsewhere, a crude hypothesis; but it is at any rate a “natural”’
one, the results being usually false when 4 >#; and I shall have no time
for any more subtle analysis,

Heuristic deductions of (A) and (B)

11.6. The formulae (A) and (13) are connected in a very interesting way
with ““Newton’s interpolation formula ™.
It is well known that

e”%} (- 1)"%’-;95” £ %%xn,
where Auag = ag—aqy,  A%ag = ag—2a,+a,,....
Hence, if 3> 0 and the series

A(x) = (O)—A(l)x+ #xz—...

is convergent for all z, we have
@© @ An

J\ 11(&)) x8—Ldx =J‘ =ty Eé.ig.__) xnd
0 0

and term-by-term integration gives

o An) @© 1
%4 n'(g)fo (3-xxe-+-7z—1dx = F(S){A(O)'F;—'AA(O)-!- (8+ )AzA(O)'i‘ }

3

Finally
(11.6.1)  A(—#) = /\(0)+%A/\(0)+

is Newton's formula,

The term-by-term integration can always be justified when the resulting
series is convergent. We can therefore prove (B) on the assumptions that
(1) 8 is positive (ii) A(z) is an integral function, and (iii) Newton’s formula
holds for A( — s). If (i) and (ii) are satisfied, then (B) is equivalent to Newton’s
formula.

There is a corresponding reduction of (A), based on Euler’s transformation

s(s+ 12 9
% A2A(0) +
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It is convenient to suppose that ¢(0) = 0. Then, writing b, for ¢(n), we

have formally
bix—bya? +bgz®~ ... = by y+A4b,. 4%+ A2, 9%+ ...,

n+1
—1 -1 n
f D(x)x*1de = — f z? Z,A b(l—l-w) dx

n — T id n ._F(S-i-n-i-].)
=S [ e = =T 9) S anp, T D
A (s+1)(s+2)
_E{;‘ﬂ{bl-{_(s-’rl)Abl-}- _‘.2!——[1 b1+---}.

In this way (A) also may be reduced to Newton’s formula,*

Ramanujan’s argument

11.7. Ramanujan supposes, in effect, that

(11.7.1) A(u) = x(e="4),
where a is positive and y(z) is regular at the origin, Then
@ —1n
(@) = 5 1S nygeany
neo Ml

(=1 2RO,
n! T B
@ r())oo‘ _]n u)’rO —ar
=z x(__ - (—,ﬁ)“ =,§01r(T)‘f‘“ “

and f ®A@) aetdz = 3, X0 f ® gt 1 gy
0 i

= 1) 3 XD ean = P(s) y(e) = Ts) A=)

r=0
for s> 0. The inversions can be justified if (i) x(z) is regular for |z| <1,
and (ii) s is sufficiently small. For then
5! x I 7
is convergent for some Z > 1,

2' l X I 2 xne—arn EI Xr I 1e—ar

is convergent, and

s LXOULT e s gy = pis) 21X o
r 0 r!

' (11.6.1) with ¢(u+ 1) for A(u) and s+ 1 for s.
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is convergent for sufficiently small positive s. In these circumstances
Ramanujan’s analysis is valid. But the condition on A(u), which demands
that A(n) should be of the form

CotCre ™ e e 2n
for large n, is extremely stringent and, though it may be extended a little,
excludes practically all of Ramanujan’s examples.

Itis instructive to consider a case in which an argument like Ramanujan’s
leads to a demonstrably false result. Suppose that, in (11,7.1), a = —b is
negative.”Then, if we repeat Ramanujan’s caloulations, we obtain

D r
(11.7.2) Afz) = 3 X0 e
r=0 7!
and can apparently complete the proof as before. But (11.7.2) is usually
false, since /(x) is regular at the origin, while the series on the right represents
a function of x which is regular in theright-hand half-plane and has the
imaginary axis as a singular line. Thus the assumptions

x(u) = e (c>0), b =log2, Au) = e
would lead to § (— 1)n% oot — Z f¥ l)r; -2,

4]

which is obviously false.

Framples and applications
11.8. I quote a few of Ramanujan’s special cases.
(i) If 0<s<Min(a, £), then

© RCONICLCS 9 I(f—s)
[y, —ate = T ST

Here F(a,p,y,x) is the hypergeometrlc function, defined for 0 <x <1 by
the usual power-series and for x> 1 by analytic continuation,

(i) If 0<s<1, then

© w
s-1(]-a _ 9—a g-2x2— ——(1—8)"%.
fo 211 %+ 3% ydx = smmr( )

(iii) If 0<g <1, >0, and 0 <a <g*?, then
fﬂoxs-l (1+age) (1 +ag’) .. ~d 7 2 (1—g™*) (1 —ag™)

o (I+2)(1 -‘-qx)(1+92x) v Sln87rl1 (I—¢™) (1 —ag™=)’

(iv) If 0<s< i, then
w N =) (—1)"’.’1:" F(S)
a-tv_NT Y ULl
f(, Bt ent P T =)

HR 13
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Of these, (i) and (ii) are straightforward corollaries of what we have
proved. To prove (iii), we use the expansion
D) = - (1+agz) (1 +ag’)... (l—aq) (1 —ag?) ... (1 —aq®) o
(T+2) (1+g2) (1 +¢%) ... 1-9)(1-¢)..(01—¢") '
which is easily deduced from the functional equation
(1+age)P(gz) = (1 +2)D(x)
satisfied by @(x). Here
(1 aq™) (1—g™*)

= I (T gy (1= agminy

Finally (iv) is a formula found independently by M. Riesz, and used by him
to determine a very curious necessary and sufficient condition for the truth
of the Riemann hypothesis. On this hypothesis, the formula is true for
0<s<$. An alternative form of @(x) is

= S (-1
0

2 m) s
P(2) _§ m =
where p(m) is the Mébius funetion.

11.9. We can use Ramanujan’s formulae to obtain many expansions
usually derived from Lagrange’s or Burmann’s series. I take two examples
given by Ramanujan himself.

(i}- A problem familiar in text-books is that of expanding ¢~ in powers
of we?*, Ramanujan argues as follows. If y = ze?® and

—am_.oo g "/}_(’ﬂ_) n

then, by (B),
I'(8) A(~s) = f 8-le—0% Jy = f 25-1(1 4 bx) e~@—#02 dp
0

= I'(s) a(a — sb)—5-1;
80 that A(n) = a(a+nb)*1,
The argument obviously requires that ¢ and b shall be positive.”

(ii) Itis well known that the roots of trinomial equations can be expanded
as hypergeometric series. Ramanujan finds an expansion for any power '

of a root of agz? +29 = 1
@0 n

as follows. If " = (_1)_’\(71) n
o n!
afa +buy*-t

* When the function T+

does not quite satisfy the conditions of § 11.4 (the “ 4" being 7).
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then, by (B),

o o U (1—ga\s-1 (] _gn
7 — g} = g—1..r — il { Pl
I'(s)A(—5) fo at~Larda fo.)c”( e ) d( o )

Calculating the integral, he finds the expansion

Tl T E2p=q) , rr+3p—q)(r+3p—2q) ,

=1 ——- IR S —

1 2' 3!

I do not know whether this formula is new, and I have not attempted to
find conditions under which the analysis can be justified.

Formula (C)

11.10. The formula (C) may be regarded as one for the remainder in
the “Euler-Maclaurin sum formula”. Since

[ dw y
Jg w{m?+Qogw)? — Joam+y? ™
we may multiply ¢(0), in the two places where it occurs, by any constant
factor. It is convenient to write the formula as

14(0) + 6(1) o= [Cpy < " WO g

x{m® + (log )%}

or, replacing ¢(u) by y%¢(u), as

* _Dy(—-yr)
.10. = | dz,
(11.10.1) R fo 2{n? -+ (log x)2} “
where now
(11.10.2) D,(z) = }(0) + X p(n) &"’
i
and
(11.10.3) k) = 00)- | ot
The most familiar formulae for R(y) are Poisson’s, viz,
(11.10.4) R(y) = 2 %fmyzqﬁ(x) cos 2nmr dx,
1J0
and Plana’s, viz.
T, ‘ul’ _—
(11.10.5) R(y) = j ¥ ¢<”"e2m 19'5 ) o,
0 _

Ramanujan’s is apparently new.

L@ (x) := D(—z)~ LH(0), in the notation of §11.4.

132
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It is convenient to begin by proving a special case of the formula. Suppose

that 1

P(u) = T+
and J(y) = fwyx¢(x) dz = pr(f/: xjdx
Then J; e (y)dy = .[ ]‘1-%%)] e

=fws—x*1dw = 1 ,
0 slogs

if > 1. Tt follows from the inversion formula of Laplace that
1 ctim  oys
Jy) = 2mi L_z-w slogsds’

where ¢ > 1. If we deform the contour into a lacet round the negative real
axis, and allow for the residue at the pole s = 1, we obtain

© e
0= 4| i ey
11.11, Ramanujan gives a very ingenious proof of this special formula.
He proves, more generally, that
(11.11.1)

i Py L _sinaf dx
f ]"1+x)dx+f xf-le—v (cosn§ "3 logm)ﬂ2m+(logx)2—ey

if ¥z 0 and £z 0. If we denote the left-hand side of (11.11.1) by p(y, &),
and differentiate with respect to £, we find that

__=_.—“____.~ e —1p~-yx
ETTOUE ), " ¢

1 I'(E)sinnwE

= y—£
Y {m =5 } >

Hence p(y, £) is a function P{y) of y only. But if we differentiate with respect

to y, we obtain

<] —1 1
ap = f ¥ f xﬁe—w(cosn —%qé logx) =

dy ~ )T (x) + (log z)?
@ —us nnf dx
_J‘mg 1F(x+1 = dx —~ f xfe~v (cosmﬁ— logw) 75 (log @)

= P Y, €+ 1) = ( )
Hence P(y) = Ce¥, and we can find C by supposing that y = 0 and £ = 0.
! We can also prove (11.11.1) by the ‘“ Laplace transform” method.
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We may now replace ¢(u) by

in the general formula, so that we may suppose $(0) = 0. We may also
suppose that ¢(w) is real for real u. These reductions are not essential, but
they simplify our formal analysis.*

11.12. We can deduce Ramanujan’s formula from Plana’s as follows,
We suppose again that ¢(u) belongs to &(4, P, é). Then

(11.12.1) Ql(—w) = %(_ 1)7l¢(n)wn = Z-:TQ, J.’Lw ~—zwx“u¢ du

e SINTU

1 [ g it
=2—7—7J‘ ———— =W — tw) dw;

« Sin 770

we can now take ¢ =: 0 hecause ¢(0) = 0. Hence
w P ( yx) 1 o T r—tw
LYY gy = |y .
fo a{m?+ (logx)*} ! Qﬂf B ) dw f a{m? + (log x)? }dx

* — 3] —iwt
But [t " f ¢ i = e,

o 2{7+ (log :v)z} w2 12
® B(=ge) L1 e
and so fo z{m?+ (log x)? }dx e Zf 80 i Y yp(—iw) dw,

which reduces to Plana’s integral (11,10.5) by trivial transformations.
There is a full discussion of Plana’s formula in Lindeltf’s Calcul des
résidus. Lindeldf proves (11.10.5) under the conditions that
(1) e—2mhwl y'n+iw (/5(,1) + @w) -0

when | w|—c0, uniformly in any finite strip —é<v =<V, and
b4 .
(i1) { e~ 2wl jyr i) | (v + tw) | dw— 0
J -

when v—>00. It is plain that these conditions are satisfied if ¢(u) belongs
to (4, P,9), with 4 <27, and
O<y<eF,;

and in particular, for such y, by the ¢(u) considered here. Thus Ramanujan’s
formuls (C) holds, in the form (11.10.1), and for these y, for the same ¢(u)
for which we proved (A).

! We could begin by verifying the formula for any special ¢(u) for which ¢(0)+0,
but I know of none fcr which (C) becomes quite trivial,
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11.13. T add a remark about Plana’s formula. It may be proved directly
as a corollary of Cauchy’s theorem: but it is worth while noticing how it
can be deduced from Poisson’s formula, which, being a ‘‘real variable”
formula, is probably now more familiar. Let us write Poisson’s formula
(11.10.4) as @
Bly) =2%Ju;

write e~#, where # > P, for y; and v for x. Then

J, = sn{ f :qs(v) e~ (p-unie dv} - ER{@' f :¢(iw) epiv—tnme dw},

again by Cauchy’s theorem; the argument here demands only that 4 < 27.*
When we sum, we obtain Plana’s formula.

11.14. Suppose, for example, that

Llr+u)
P = TGy )

where 7> 0. Then ¢(u) belongs to § for 0 <& <r, any positive 4, and any
P; and (11.10.1) gives

r+x [~ (14 yx)—
(I-y)” f I'r l+x yide _fo w{7r2+(logx)2}dx
The integral on the left is elementary when r is an integer, and then that
on the right can be evaluated in terms of elementary functions,

Fourier transformations

11.15. The formulae (D) embody a heuristic theory of Fourier transforms,
a theory which is naturally valid only under very restrictive conditions.
Suppose, for example, that A(u) is an integral function, and that

(11.15.1) ALy =A(8)=A(B) = ... =0,
80 that
_a(=0m L, 2AEm) ,,
(11.15.2) A(x) = %‘,T %:_2;)1_!__%2

is even; and let
(11.15.3) Aq(w) =A/(%)F(1+u)cos%u7r A(—u—-1),

Then A,(u) is also integral, since the poles of I'(1+u) at —1, —3, ... are
cancelled by zeros of cos Jus, and those at — 2, —4, ... by zeros of A(—u — 1);
and

(11.15.4) (1) = A,(3) = A,(8) = ... = 0.

! Instead of 4 <.
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Also A (2m) = (=1)m A/(;i) 2m!IA(—2m—1)

and P
Af(—2m—1) = A/(;r) A(2m)lim {I'(— 2m. +¢€) cos }(2m + 1 —¢) 7}
&->0

- R

Hence, if we write
M(x) = A/(%) N (=1)"A(—2m—1)xm
(L)
and denote by A;, M, the functions formed from A, as 4, M are formed

from A, then Ay(@) = M(z), My(z) = A(z);

and (D1) and the corresponding formula with A, become

A/(TgT) J-Ow,.i(x) cos yrdx = M(y), A/(;)J(;OA\/[(%) cos ywdz = A(y).

These are the ordinary formulae of the Fourier cosine transformation.
It we suppose, instead of (11.15.1), that

A0)=2A2)=A(4) = ... =0,
and defino A;(u) by

Ay(u) = J(z) (1 +u)sinfur A(—u—1),

we are led similarly to the formulae of the sine transformation.

‘H" /W = 9= -1 iu -}’IL
(3 - tu) 1( ~u)

satisfies (11.15.1). In this case

, 27 M + Ju) 28
2(w) A/( )! +u)cos durr .- T M '_I‘(%—\/?_,_u) = A(u)

Thus Au) =

and 4’1(1‘) == Z\I(L‘) —= g
0

The formulae express the “self-reciprocal” property of e .
On the other hand there are many familiar reciprocities which cannot be
expressed in this way. Thus

® 1 cos yx ~
(11.15.5) fo e~Tcosyrdr = 142 fo I xzd = fwe

The first of these is {when |y | < 1) a case of (D1), with A(u) = 1; but then

A (u) = A/(?r) I'(1+ u) cos Yum
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is not an integral function, so that we cannot account for the second formula
in this way (as is obvious because e~17!ig not expansible as a power series in y).

11.16. I worked out a theory of the formulae (D) in my paper 11. I shall
state it here in a rather more general form due to Mr F. M. Goodspeed;
his theory accounts for the formulae (11.15.5).

Suppose that y(u) is an integral function and that

(11.16.1) )

Plol+-Alw|
28T (3 v | + Jiw) <Ce ’

where 4 <, for all ». Then it follows from Cauchy’s theorem that

_w =Km) b et o aiy(w)
(11,162} A(z) = S ol )™ = "om fc_m sin 7w 20T (Ju+ £

when —1<c<0, O<x<e P,

the series being then convergent. The integral is uniformly convergent in
any interval 0 <8 £x £ 4 <o, so that A(x) is vregular for all positive z.
If now y > 0 then

(11.16.3) A/(%)F.A(x) cos yade
0
_ g @ _—1_ c+ico T xux(u)
. A/(rr) fo coSFRIL i L_iw sin7ru 24 (3w 4 §) du

_ 2\ 1 etim i X(u) Y

- A/( )‘)m fc_m snmu 20T (Su+ 3 )duf % cos yaxda.
The justification of the inversion is not quite trivial but proceeds on the
same lines as the discussion of the same point in 11,

Now f at¥cosyrdr = I'(u+ 1) cos 3(u + 1)ry—-t,
0

If we substitute this value in (11.16.3), and simplify by means of the
duplication formula for the Gamma-function, we obtain

2 ® 1 etia g y—u—lx(u)
— dr = — —— e futid
A/(ﬂ)j() Afw) cos ywdx 2ﬂlfc—im sin 7m2 I'(—3u) du

__1-]”"'“’ m_yN(—u-1)
e—iso SR 7TU 2} + Jur)

2m

(with a different ¢, but still with — 1 <¢<0). This integral may again be
calculated by Cauchy’s theorem, with the result

(11.16.4) J(g)f:A(x) cosyzdz = M(y),

m
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where

(11.16.5) Mz) = 3o Dx(=n=1)

This series also is convergent for 0 < <e P, and M(z) is regular for all
positive . And it is plain from the symmetry of the argument that

(11.16.6) J(%)f:M(x) cosyxdx = A(y).

11.17. Ramanujan’s own formulae for cosine transforms are slightly less
general. If we write

X(w) Au)

Pl(Gu+d)  Tw+1)

2-tu fr
or X = g 2w,
and suppose that A(u) satisfies the conditions (11.15.1), then it will be
found that the formulae of § 11.16 reduce to those of §11.15. The ““order”
conditions are equivalent. The analysis of §11.16 has the advantage of
symmetry, and is more general in two respects, In the first place, the
assumption that y(u) is integral ig less exacting than the assumption that
A(u) is integral, since it allows poles of A(u) for u = —2, —4,.... A more
important point is that, in § 11.15, both A(z) and M(x) are even analytic
functions regular at the origin, while in §11.16 they are defined by the
power series for positive x only, and then for negative 2 by evenness.”

20 (du+ §)

Thus, if we take x(u) = m_ ,

2\ 1

— p— — ) —_

then Afx) = e=, M(x) A/(ﬂ) T

for & > 0. The conditions of § 11.16 are satisfied, and, if we define A(z) and
M(x) by evenness for 2 < 0, we obtain the formulae (11.15.5).

If we take y(u) =1

M) =
we find that Afr) = M(z) = %:2&"11(,;”4_%)%

n

! In (D 1) we are in an intermediate position. If we write the formula as

A/ (g)J‘wA(“’) cos ywdx = M(y),
niJo

then A(x) is defined like the A(x) of §11.16, but M(y) is regular at the origin. In
§11.15 we make the relation symmetrical by specialisation.
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for x>0, and the same remarks apply. This A(x), which may also be
expressed by © w
1 —xe*x’f e dt = f e~twi—aw o dop,
T 0
is one of the examples of “‘self-reciprocal’ functions given by Hardy and
Titchmarsh,

Finally, the choice . —
M = PR T+ 10
leads to A(x) = M(z) = e-12°,

This case is covered by §11.15.

11.18. I said in my introductory lecture that Ramanujan was familiar
with most of the formal ideas which underlie the recent work of Watson,
and of Titchmarsh and myself, on “Fourier kernels” and ““self-reciprocal
functions”. Here we have a case in point.

It is plain that a necessary and sufficient condition for the A(x) of § 11.16
to be self-reciprocal is that

(11.18.1) x(u) = x(—u—1).
If we write

(11.18.2) Yr(u) = 7 (3 4 du) (1 — Ju) x(—u),
then (11.18.1) becomes

(11.18.3) PYr(u) = ¥(1 —u).

The integral expression for A(x) is

3 1 c+1iw m x“x(’u)
Aw) = - -é;ifc—ioo sin7ru 28 (Ju + §) o

If we change u into — u, substitute for y(—wu) from (11.18.2), and perform
some simple reductions, we obtain

c+io
(11.18.4) Alz) = 3;1; 1 (Ju) () du,
“ e=qiw
which is (apart from a numerical factor) the formula for self-reciprocal
functions given by Titchmarsh and myself.
All this has its analogue in the theory of “general transforms”, but

I postpone this to the end of the lecture.

Formula (E)
11.19. We may write (E) as

[>2]

(11.19.1) fowA(x)M(x)dx = 3 (= 1) A(=n—1)u(n),
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A(z) and M(x) being the two infinite series which occur in the integrand
of (E). We may as well consider a more general formula, viz.

(11.19.2) J':A(x)M(x)xsfldx-—m( 1y ‘S-T")A —n—8) u(n)
2 i
=I'(s){/\(——s)/t(())—fl-/\(——s—1)/1'( )+f(f}"t~~—) (—8—2)p(2)— }

We can deduce (11.19.2) formally from (B) by writing

fmA(x) M) z*tdz == %K%fﬂ(n)fwA(x)st—ldx

0

= ¥ (=1 A (= s - pm),

0
and there are some few cases in which this procedure can be justified. They
are however extremely special; and Ramanujan seems to have had no

other argument, even when M(x) is cosyz, when proof on these lines is
quite impossible. In this case

p(@m) = (=1)my*m, - p(2m1) = 0,
and (11.19.1) reduzes to (D1).

The formula becomes simpler when expressed in the notation of § 11.4.
Then

Au) plu)
0 =raxay VM7 rivwy

D(x) is defined as in § 11.4 and ¥(z) similarly, and (11.19.2) takes the form

(11.19.3) f :(ﬁ(x) Py x5 = o z B(—n—8) Pr(n).

gin s

This formula is sirapler, but rather misleading, and (11.19.2) is really the
better standard fcrm. We can sce this by considering the most obvious
special cases.

If we take Alu) = a¥,  plu) = B¢,
where 0 < f <a, in (11.19.2), we obtain

J " e—ta P gy — (s):ors~ioc - 1,g+__ij‘_;)a_q—2ﬂ2
0 .

_I'e)

(@+ By’
which is true for all positive s. But if we take ¢(u) = a¥, yr(u) = f* in
(11.19.3), we obtain

[* x$-1dxe T e el s20 7 ol-e
]0 (raz) (L) = sinen & HOT B +a ) = o B

which is always faise
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The correct formula is

J‘uo x5-1dx o m ?Llws_ﬂlﬁs
o I+ax)(1+px) sinsmr a—f °

which is true for 0 < s < 2. We can write the right-hand side as

: -8 —8—1 a—8-2p2 ...—OL"l 1—8 __ y—222-8 __
smsn(a +o1p 4+ %+ A a2

{B=8) PO+ (=8 = 1) P(1) + ... = $(~ 1) Y(1—s)
~p(~2)P(2—s5)— ...}

Here there are two series instead of one, and in fact, as we shall see in a

moment, the “right”’ formula for the general integral is not (11.19.3) but
(11.19.4)

sm 8T

[Tow vetin = TS g(—nme) ) - S p-n -1 P+ 1-).
This reduces to (11.19.3) when ¢(u) vanishes for u = —1, — 2, ..., as when
0= i

It is therefore better to work with (11.19.2). I shall not do more than
indicate the connection of this formula with the standard formulae of the
theory of Mellin transforms. There is a rigorous investigation in an
unpublished paper of Goodspeed.

11.20. We may regard (11.19.2) ‘ag a form of the “Parseval’ theorem
for Mellin transforms. This theorem asserts that, if

(11200)  f@) = [ F@ardn, g = [ 6@ a-ta,

then, under certain conditions,
] l k410
(11.20.2) f F(x) G(x)zs1dx = =~ S(u)g(s —u)du.
0 2m ) b i
Now in certain circumstances, which we considered in detail in § 11.4,
we have

(11.20.3)
f :A(x) 21dz = T(s) A(—s), f : M(z) 25-1de = I'(s) u( ~s),

(11.20.4)

1 c+i00F A g M 1 c+too
g T M =u)ardu, (x)—z—m.f

Ax) = () p( —w) v du.

¢—iwx
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In fact the formulae (11.20.3) are cases of (B), and if we write
_Mu) Mu)
P = Faray Y= T
then the formulae (11.20.4) become cases of (11.4.4),
Taking F(x) = A(x), G(x) = M(x) in (11.20.1), (11.20.2) gives
@© vkt
f F(x) G(x)z*lde = 271”J I(u) (8 —n) A= u) plu—s)du,
0 k—1iw

If this is true for a k between 0 and o, then the last integral, when calculated
by residues on the right, is
w (_1)n
S et s —m) i)
and we obtain (11.19.2), The whole argument, of course, requires careful
congideration.
If we argue with ¢ and 1,# instead of with A and u, we have

H(=g), fw Jartde = " y(—s),

BN 877

f D(x)ridr =
1} sin 877

f: () W () -1y = f ARlal " s yw—s)du,

2711 ) js i SN U s1n(s—~u)7r

and when we calculate this integral by residues we are led to (11.19.4). It
is only when ¢(u) vanishes for negative integral values of « that our earlier
formula (11.19.3) is correct,.

11.21. Formula (11.19.2) is a very powerful tool for the evaluation of
definite integrals. If for example

1

Alu) = I'a+1+u)

3 )
then A(x) = 20a—%— 1] (o 4fx), M(x) = 2"/)’—%‘*% (B ).
The formula reduces, after some trivial transformations,’ to

I'(3s+$a+3b)
b+ 1)I'(1—}s—ta—1b)

J‘m J (o) Jy(fx) 2t Az = 25-1-5-bp0
0

2
X F(%s+%a+ b, 45— ta+1b,b+1, g"i) ,
which is true whenever 0 < # <« and the integral is convergent.?

! 2? for z, }{s+a+0b) for s.
* e f —a—-bas<?.
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Formulae (F)

11.22. The last group of formulae contain a further justification of the
assertion of my own which 1 quoted at the beginning of §11.18. I shall
regard them, as did Ramanujan, simply as formulae, and say nothing at
all here about conditions for their vah‘dity Suppose that, in our previous

notation, Alw) = ap(u),  p(w) = frg(u),
where 0 < <o and plu)q(—u —1)=1.
Then A(x) = F(az), M(z) = G(fz),
where F(x) = (= ) pn)zr, Qx) = L(_ET) g(n)x™
0 1
and (11.19.2) gives
o ﬂn 1
(11.22.1) , Faa,)G(/}’x == %} -1) portt Sy

For example, a solution of this integral equation is
( e S Sk S A
Fly=2= 7 COS (e it - n! cosh{c,/(n+ 1)}

Now

f:an—ldaf: F(ax) Q{(fz) dx =wa G(fx) dxfmF(ax) «-lda

— /(s f oG (fx) ds = () g(1—s),

where f(s) and g(s) are defined by (F2). Since the first integral here is
® 8 -1
f E‘ —da i /)’s 1

o a+f = sinsw
wo obtain (F 3).
I now recall some fundamental formulae in the theory of ““Fourier
kernels”. If K(z) is a Fourier kernel, that is to say if

(11.22.2) J.:A(x) K(zy)dz = B(y)
implies
(11.22.3) fo B(x) K(zy)dz = Aly)

for “arbitrary” A(z), and
k(s) =f K(z)x*dz,
0
then
(11.22.4) k@) k(1—s8) = 1.
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More generally, if (11.22.2) implies

(11.22.5) f " B) Hiwy) dz = A(y),

0
and %(s) is defined like k(s), then
(11.22.6) E(s)h{l —8) = L.

Ramanujan never, I think, writes down quite these equations, but (F4)
and (F5) are formally much the same. For if

L (@) + G(~ai),

J(2m)

then k(s) = W;;){J‘:F(wi)xv ‘t1x+f:F(—xi)z”—1dx}

=G 277) G e = A/ (;) cos §s7 1 (s)

and similarly h(s) = A/ (i) cos §smg(s),

- 1 . .
K(x) = N {(Fizi)+ F(-xi)}, H(z)=

so that (11.22.6) becomes (F3).

All this was naturally simple formalism in Ramanujan’s hands, Its
translation into substantial analysis demandsideas which were quite beyond
his ken, Plancherel’s theory and Watson’s generalisation. But a formal
basis is essential as a foundation for all such theories, and that Ramanujan
possessed.

11.23. I conclude with a few remarks about the topic which T postponed
in § 11.18, the extension to ““general transforms” of formulae (D).
Suppose that
(11.23.1) h(s) = )

k(l—s)’
so that (11.22.4) ig satisfied identically. Then

1 ¢--io P
= — —u
K(x) P L_im Eu)xztdu

is a Fourier kernel whose Mellin transform is k(s).
If we start from the formula

Ry = (a0 L (=),
o k(n+1) 2 ) omin smunx( “u) ’
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and argue on the formal lines of § 11.16, we obtain

o0 1 cFio T ( u) o
fo R(x) K (xy)dx J- (lwu)d f K(xy)xzdx

= 2m c—ioo SINUT K

1 ferie g p(~u) w1
- 27ﬁfc_iw sinuﬂx(l—u)k(l_u)y du

1 feti= g p(—wu)

T 20 oo SR U K(W) “du
o (_puf=n—1) n;
=‘0v"( 1) k(n+1)
8o that
(11.23.2)
7{(n) r{=n—1) "

R<x>=§<-1>n ), S<x>=§<-1)n

K(n+1) k(n+1)

are a pair of ““ K-transforms’’ satisfying
(11,23.3)

|, Ry K@y de = Sw) [ st Key)az = R

The condition for a ‘““self-reciprocal”” R(z) is that

r(u) =r(—u-—-1)

Thus if K(z) = \Ju J,(x)
I'3s+4v+1)
= Qs—p \27 | 27 1
then k(s) = 2 TOri—is)’
and we may take K(8) = 281 (}s+ Jv+}).
N (1 r(n) "
Then R(z) = }03( 1) TGt ) ngn,
and Sx) = E (- 1)n_Z(LZ‘;L)__ —in,m
0 I'3n+4v+3)
are a pair of Hankel transforms.
2 1
If K(zx) = ol gt
then k(s) = cot }sm,
and we may take K(8) = cosec Jam.

In this case

o o0

R(z) = 2 (= 1)"r(2n) 2™, S(l‘)=§(—1)"7‘(—2n—1)x2";
G
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the integrals (11.28.3) are principal values. Tf r(u) = 1, then

!
R(x) = S(z) = 1322
and other simple rational functions self-reciprocal for K (x) may be obtained
by making r(w) an appropriate polynomial. Here also I must restrict
mysell to a mere sketch of the formal lines of the theory, adding only that

all the analysis of §§ 11.22-23 has also been made exact by Goodspeed.

NOTES ON LECTURE XI

§11.2. The quotation from Littlewood oceurs in his review of the Papers.

§11.3. Carlson’s theorem is proved in Titchmarsh, Theory of functions, 185-1886.

The theorem has been generalised in various ways. In the first place, we can wealken
the order conditions on ¢(u); and secondly we may replace tho conditions

$0) = HI) = .= 0
by more general conditions of thie type ¢(A,) =0 (n=0,1,2,...). The most general

theorern of this kind which I have secn was cominunicated to me by Mr N. Levinson,
and runs: if (i) ¢(u) is vegular and O(e1™), for some A, in the right-hand half-plane;

w0 Jogt w) | —m | w

(ii) f ogt [zt _ _ .
i 14 w?

(iii) P(An) = 0,

where A, is an increasing sequence of positive numbers such that
1
A,<Bn, X —>zlogh-0C,
=l An

for some B and C; then ¢(u) = 0.

§11.4. For Mellin’s formula sco Titchmarsh, Fourier integrals, 7-9 and 4648,
The proof of (A} is that given by Hardy, Acta Math, 42 (1920), 327--339. The con-
ditions on ¢{u) may bo relaxed here also, for example to

(u) = Otedivt) (some A), @(iw) = O(|w | 2eml),
Goodspeed, in an unpublished manuseript, has proved & *A,,” generalisation of (A).
A w = vt 0<A, <Ay, 0<An=A, < Bn,
o u2
g(u) = III (l wxz) N

and f (u) belongs to §(C. D, 8), where C <n/B and 8> 0, for some D, then the series

o0

by f,(/\i‘l xhn

k=19 (An)

converges, when the terms are grouped appropriately, for sufficiently small x, and repre-
sents an analytic function H{x) regular for all pusitive x; and

J‘mm"'lH(x) o =19
0 g(s)

Jor 0<s<8. If also Ay, — A, = k>0, then the series converges in the ordinary sense.

HR 14
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§11.6. The connection of (B) with Newton’s interpolation formula was pointed
out by Narayana Aiyar (2).

For the theory of Newton’s formula see Norlund, Vorlesungen tber Differenzen-
rechnung, 222 et seq. There is much useful information, but no function-theory, in
Whittaker and Robinson’s Calculus of observations.

For the justification of the term-by-term integration see Hardy, Trans. Camb.
Phil. Soe. 21 (1912), 1-48 (5-6), and Messenger of Math. 39 (1910), 136-139. There
is & similar theorem relevant to the reduction of (A) at the end of the section.

§11.7. Ramanujan’s analysis may be extended, for exaraple, to cases in which
X(2) = Ze,am,

where p, - o0, the p, need not be integers, and a finite number of them may be nogative.
This extension covers the case A(u) = e*¥, for any real a. A case actually covered by
his analysis as it stands i3

Au) = ~ 1

a-+e*

(0<a<l).

§11.8. There is a direct proof of formula (iii) by Cauchy’s theorem in Hardy (5).
For formula (iv) sce M. Riesz, Acta Math. 40 (1916), 185-190, and Hardy and Little-
wood, ibid. 41 (1917), 119-196 {156-162).

§11.9. For Lagrange’s and Burmann's series sco, for example, Whittaker and
Watson, Modern analysis, ed. 4 (1927), 128-133.

The most complete results concerning the expansion of roots of trinomial equations
aro those of Birkeland, Math. Zeitschrift, 26 (1927), 566-578. Birkeland gives full
references to earlier work of Mellin and other writers.

§§11.10-13. The substance of the proof is taken from Hardy (3), but Ramanujan’s
argument in §11.11 has not been printed before.

Laplace’s inversion formula, used in § 11.10, is another formal variant of Fourior’s.
See Titchmarsh, Fourier integrals, 6-7 and 48-49,

For & direct proof of Plana’s formula by means of Cauchy’s theorem see Lindeldf,
Le calcul des résidus, 55-62.

§§11.15-18. Seo Hardy (11) and Goodspeed (1). The penultimate example of §11.17
occurs in Hardy and Titchmarsh, Quarterly Journal of Math. (Oxford), 1 (1930),
196-231 (210); and (11.18.4) on p. 198 of the same paper.

§§11.19-20. Tt is curious that Ramanujan scoms never to have written down
(11.19.2), or even (11.19.1) in its general form. In the notebooks and reports one of
the functions is always even.

For the Parseval formula for Mellin transforms see Titchmarsh, Fourter integrals,
94-95. There 8 = o+, 0<k<a, and «*F and x7-*G are L?*0,). The integrals
(11.20.1) are ‘mean square’ integrals, and (11.20.2) is true, in the ordinary sense, for
all s whose real part is o,

Goodspeed, using a method more like that of §11.4, has proved that (11.19.4) is
true whenever

(1) @(u) is an integral function, and belongs to §(4, B, ), where A <m, for some B
and any positive 1;

(2) yr(u) belongs to §(C, D, 8), where C <, for some D and a 8 not less than 1;
(3) O<e<2;
(4) P(—u—s) P(u) = o(ef¥),

where E < 27, uniformly in w, when v —» 0.



Definite integrals 211

Tt should be observed that ¢(u) occurs in the theorem with arguments n, —n—s,
and —n» —1 and ¥(u) with arguments » and n + 1 —s. The conditions that ¢(u) should
be integral, and ¥(u) regular for o> — 1, are therefore natural.

§11.21, Soce the remarks at the ond of §11.5. In this case each of Alu) and g(u)
behaves roughly like ed”1%, and each of ¢(u) and (u) roughly like e7!*i, in the direction
of the imaginary axis, and the final integral is not necessarily absolutely convergent.
It is not difficult to justify the transformations in this or any other particular case.

The integral was first evaluated by Weber and Schafheitlin: see Watson, Bessel
Sfunctions, 398-410.

§11.22. For the theory of ‘Fourier kernels’ and ‘general transforms’ see Hardy
and Titchmarsh, Proc. London Math. Soc. (2), 35 (1933), 116-155; Watson, ibid.
156-199; or Titchmarsh, Fourier inlegrals, ch. viiL

The subject has attracted a good deal of attention since the appearance of Watson’s
paper. Full references, up to 1937, will he found in Titchmarsh’s book.

§11.23. Goodspeed has proved that if k(w) is real on the real axis, and is the reciprocal
of a function regular for v= — 8, where & is positive, r(u) is an integral function; and

) r(—1—u)
(1 +u)" " Kl +)
belong ta the classes §(.1, B, 8) and §(C, D, 8), with A <n and C <, then k(s) defines a
Watson transformation in which R(x) and S(x) are reciprocal,

14-2



XII
ELLIPTIC AND MODULAR FUNCTIONS

12.1. I must end by saying something about Ramanujan’s work on
elliptic and modular functions, and it is this which I find my most difficult
task. Itis here that both the profundity and the limitations of Ramanujan’s
knowledge stand out most sharply, and that it is least possible to decide
how much he may have learnt from others. Besides, I do not know the
subject very well.

Ramanujan never professed to have made any major advance in the
general theory of elliptic functions, and it seems that he must have learnt
the fundamentals of the theory, so far as he was interested in them, from
books. There is a sharp contrast between his attitude here and his attitude
about the theory of primes, where he certainly regarded all his results as
his own. He never writes as if he had ¢nvented theta-functions or modular
equations, though he sets out a whole theory of them in a language
of his own. Cayley’s and Greenhill’s books were in the Madras University
Library, and he could have found a good deal about them there. Indeed
Littlewood says that ‘“Ramanujan somehow acquired an effectively
complete knowledge of the formal side of the theory of elliptic functions”’,
and that his ignorance of complex function theory and of Cauchy’s theorem
may seem difficult to reconcile with this; and adds that “a sufficient, and
I think necessary, explanation would be that Greenhill’s very odd and
individual Elliptic functions was his text-book”’. In Greenhill’s book the
complex variable and double periodicity are not mentioned until p. 254,
and the double periodicity is deduced somehow from properties of Cartesian
ovals, In fact Greenhill knew very little more “‘function theory” than
Ramanujan.

I said that I did not know the subject well, and I shall rely very largely,
in all that follows, upon Professor Watson. In the first place, his lecture
to the London Mathematical Society contains a short account of the
relevant chapters of the notebooks. Secondly, he has very kindly lent me
a manuscript containing proofs of nearly all Ramanujan’s formulae,
without which I should have been very much lost,

12.2. Therelevant chapters are Chs. Xvi-xXr; these, in Watson’s opinion,
“show Ramanujan at his best’’. In Ch. xv1 he starts with the function

H(a,b) = (1+a) (1 +ab)(1+ab?)...,
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and all his later work is based on it. He develops a whole series of theorems,

mostly to be found in Iuler, Gauss, Jacobi, Heine, or other writers, though

there are some whizh seem to be new." I shall not refer to these formulae

except when it is necessary for my immediate purpose, which is to track

down in the notebooks the proof of the modular equation of degree 3.
Ramanujan also writes

fla,b) = 1+ (a+b)+ab(a®+b2) + ash3(a® + b3%) +

(the indices of powers of ab being the triangular numbers). Thus, in the

orthodox notation? fa,b) = (v, 7),
1 a 1
where V= mlog poT= o logab;
or again Sfla,b) = plz,q),
© §
where pley) = 3 ¢z, == = (Z) , g = e = (ab)},

Ramanujan gives Jacobi’s fundamental factorisation formula in the form
fla,b) = Il{a,ab) I(b,ab) 11( — ab, ab).
Finally, he writes3
Plq) = f(¢,9) = 1+29+2¢* + ..
Y(g) =fg,0°) =1tqg+g+q°+..
f(=0)=f(-¢:mg) = 1-g=¢° +q ton
x(@) = 1(g,¢*) = (1+9) (L +¢*) (A +%) ...
Thus h(q) = F5(0, 7).
Further, if, with Tannery and Molk, we define g,,4;, ¢, and g; by

ff[( g™, er1=ff1(1+q2"), q2=f1<1+q2n~1>, qazfl(l—q%-l),
then x(@) = qq,
=) =(0-=q) (1 —g*)(1-¢%) ... = 943,
—_n2 _ _
w(q)_(lj)(_l_ g)(1—¢%) ... gy

T I-U-g)(1-¢3) .. gy
The last pair of formulae embody famous identities of Huler and Gauss.
We have also Prlg?) = 1q—49,(0,7)
(a formula which we shall want later).

! Especially 16.17 (in the numeration of the notebooks), which I shall refer to again
in §12.12.
* That of Tannery and Molk, 3 T roplace his ¢ by the customary g.
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12.3. In this notation many fundamental formulae appear in odd
disguises. Thus the “inversion theorem’ (there is a 7 corresponding to a
given k2) appears as follows. Writing ¢ for k2, defining K and K’ as definite
integrals or hypergeometric series, and putting

e~ KK H(C),

then the equation g = H(c)
: $(-9)
has the solution ¢c=1— .
$4q)
Again the theorem sn?u+cnu =1

appears in the form: if ¢ = ¢~ and

_ sin 140 | sin3l _ cosfl | cos30
S(6.y) sinh }y smh%&+ C0.y) = coshiy 'coshdy ' "
then 82+ C% = 1k2d4(y)
kK - K@ kK K@
In fact S0, y) = —sn—, C(0,y) = ——on—
and K = 1a93(0,7) = lnd*(y).

There are proofs of these formulae, by direct squaring of series, in Jacobi’s
Fundamenta nova and Enneper’s Hlliptische Funktionen. It is very unlikely
that Ramanujan had seen either book, but this type of argument was
familiar to him.

The modular equation of degree 3

124, The modular equation of degree » is the relation between the
moduli k& and I which corresponds to the change of ¢ into ¢¥»,* i.e. to
WK

L K’
where K, K', L, L are the complete elliptic integrals with moduli £ and 1.

Ramanujan deduced his modular equations from relations between his

functions f, ¢, i, that is to say from relations between #-functions. Thus
his forms of the equation of degree 5 are derived from the identities

$Hq) — P4e°) = 44f (4, ) (4% 47)*
and YA~ a¥ ™) = F(9, 9 (4% ¢%)3
The first of these, in the orthodox notation, is
' 93(0,7)— D2(0, 57) = 4emirdy( — 27, 57) Sy( — 7, 7).

! Or into ¢", when L’/L = nK’[K. See §12.7,
19,10 (iv). 3 19.10 (v).

(12.4.1)
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The identities are proved by ‘‘elementary’ arguments, the whole process
being ‘‘algebraical”, ‘

I shall confine myself to the equation of order 3, and I shall begin by
explaining two of the standard methods of proof. The first rests on direct
transformations of integrals, and is Jacobi’s version of Legendre’s original
proof. The second, found much later by Schréter, is much more like
Ramanujan’s,

12.5. Jacobi’s argument is expounded in many text-books. We try to
satisfy the equation

(12.5.1) 7'3/;1;/ j;
where X=(1-2)(1-k2?, Y =0-y2(1-013?,

0<k<l, O0<l<l,
by taking

9 4
(12.5.2) Y=

T
where U and V are coprime polynomials in 2 of degree not exceceding 3,
and y vanishes with x and is positive for positive z. It is plain (since y is
an odd function of x) that
U =x(a+fa%), V=4822
where «, 4, v, § are constants,
dy (3 =93 (1 -1
et mi= e
for small z, so that m is positive; and y = 1 when 2 = 1, since y would
otherwise have a branch point for # = 1. Further (12.5.1), and so (12.5.2),
is unaltered when we substitute 1/kx and 1/ly for z and y, so that the values

1 1
= ]: —1: 'Zy '-'i
A dat IR
correspond to =1, Y TR
, dy U’V uv’
Since \/Y N4 U“’) Vi le_z'j’}dw,

we must have (V2—U?)(V2-12U?) = T%(1 —x?) (1 - k%?),
where 7' is a quartic; so that ‘
dy _UV-UV
JY X
UV-UV' = Z

m

dz,
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Next, since no two of V+ U, V+1IU can have a common factor, we
must have V+U=(1+2)42, V+IU = (1+kx)C?,
V—U=(1-2)B2 V-IU=(1-kx)D?
where A, B, C, D are linear, It follows (since y is odd) that
l1—y 1-z (1 - cx)“‘

I+y 1+a\l+cx
2¢ + 1 + 622
or y:a_:_(gt ,+_c_'l£),
14¢(c+2)a?

for some ¢. This equation must be unchanged if we substitute 1/kx, 1/ly

for «, y, when it becomes
_ka clc+2) + k%2
Y= Ty (et )i

___ﬁ(c+2) l2-—6(6+2)

and therefore
{12.5.3) k?

2e+1 2c+1
We obtain a relation between £ and / by eliminating ¢. In fact
) (d+efdl=c) ., ~c\?
2= 1_}2 = 2
(125.4) k2= 1-F =2 gnbe o, V=11 (1+c) zc+1

and so

(12.5.5) JOD) + (k1) = A0 E 2 ofe+2) (1+e)(I—e) _

2e+1 2c+41
when appropriate values of the radicals are taken. This is Legendre’s form
of the relation. It is easy to deduce Jacobi’s form

(12.5.6) wt vt 4 2up(l — u?) = 0,
where k = u* and | = v%.

Comparing the values of 2 and y for small x, we see that

1

= o1

12.6. The equations (12.5.3), (12.5.5), and (12.5.6) are in fact different
forms of the modular equation of degree 3; but in order to see this, we
must show that they correspond to (12.4.1), with #» = 3, as well as to

(12.5.7)

(12.5.1).
It is easy to see' that, if 0 < k2 < 1, then the equation
a3 Ct 2
(12.6.1) =y -5

* By means of “graphical® considerations and the equation

B[ 2o+l
P\ et+2)”
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in ¢ has just two real roots, one between 0 and 1 and one between —2
and —1, and that these roots make I2>k? and [2 < k? respectively. If, in
the equations (12.5.4), we put

1—-¢ 1—y
12.6.2 — = — =
( ) 2rl "yl ”
then
, y+2\¢ y+2
12.6. Y s 29 VT2
( 3) k 7/(2”y+ 1) » U=y Iy +1

It now follows from the analysis of § 12.5 that
1 dx dy

w1 (=T

(- (=B
ith fe=

wi m 571

Hence, integrating between 0-and 1,

LI

il feg r
ml ¥
while (12.5,1) gives mL =K.
L K’
T T = e
hus = mm'
and it is only necessary to show that
mm' =%
But mm' = —— .,,1,,4,,,.
T (2e+1)(2y+1)
and 2y+1 = 3 mm' =1
LA PO o

by (12.6.2).

12.7. The equation (12.5.5) is symmetrical in k and [, and corresponds to

L K’
"k
(i.e. to the change of ¢ into ¢") as well as to (12.4.1). We can see this more
directly. If we put
c+2
T 2+1

_ C”j',‘?‘
- 26’ _+_ 19

¢ =
in (12.5.3), we obtain
T C,(C_'Jr:z )3, - ¢'¥(c +2)

b

1) DT e R
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i.e. (12.5.8) with ¢’ for ¢ and % and [ interchanged. Also ¢’ lies between — 2
and — 1 when ¢ lies between 0 and 1, and conversely, so that ¢’ is the second
root of (12.6.1). If ¢’ is associated with ¢’ as y is with ¢, then

(14+20)(1+2¢") =—3, (1+2y)(1+2y) = ~3,

and so (I+2)(1+2y') =3
L K’
and —L—= 3?

12.8. The second method of proof depends on direct manipulation of
theta-series. The equation (12.5.5) is equivalent to

(12.8.1) 95(0,7)95(0, 87) —B,(0, 7)9,(0, 37) = $,(0,7)9,(0, 37)
or to
(12.8.2) QAN Bt DM +HD?

where 2’ indicates summation over all integers and 2’ summation over all
integers of opposite parity. If now we put

M+n=1u m—n="07,
so that

utv\t | (u—v\?
m2+3nt = (T) +3(—-2‘) = ul—uv+v? = (u— )%+ 3(Lv)?,

then the left-hand side of (12.8.2) becomes
2 ¥ q(Uuév)“H(iv)"

u,vodd
Next, if we put u—tv=p+} tv=v+l}
go that w=pu+v+1, v=2041,

and let # and v run through all values of opposite parity, then % and » run
through all odd values, and so

by q(um}v)“+3(1h:)2 =Y q(#+§)ﬁ+3(v+i)”’
u,» odd
where the dash has the same meaning as before. Finally, if

’

po==u=1, v =y,
then (W 474307+ D2 = (u+ 1)+ 30+ 1%

and p" and v’ run through all values of the same parity. Hence

[=+}
3 quHRHDE = 2 S gt DHSEH? = 3 3 gmi+ent

-

which is (12.8.2).
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12.9. This proof is much like those given by Schréter of the equations
for this and certain higher degrees. Schriter found the general identity
(12.9.1) F4(z, ar)dy(y, f7)
at+p—1 .
= Y e (r+y+rar, (a+ ) T} O4{fx — oy + rafr, afla+ )1},

r==1

where o and f are any positive integers. There iy a fairly simple proof of
this formula in Tannery and Molk, where it is applied to the cases n = 3
and n = 5, Schriter also worked out the cases 11, 23 and 31; thus his
form of the equation of degree 23 is

(RDE+ (K1) + 28(RIET ) 's = 1,

which also appears in the notebook." It would seem that Ramanujan must
have known (12.9.1). He has a formula? for

Jla,b)f(c,d),
i.e. for P4(v, T)4(x", 7'), as the sum of an infinite series, which was also
found by Schriter, and in certain cases this series becomes finite. ‘“‘These
compact formulae ”, says Watson, “ were not given in the notebook, but
in view of the numerous special cases which he does give, he must have

been aware of their existence.”
Ramanujan gave the known forms for

BRI
(with many variants in the simpler cases), and new forms for
13, 17,19; 81,47, 71.

Thus the equation of degree 13 appears as3
(Y () (Y
’"‘(k +(7;'c' “(kk' E)
13 (k\} (! kic')b WAy
m T '*(’z' “\w) (u' ’
and that of degree 17 as*
YA LAY 9 llf'r)* 14+ I\ l’)*
’"*k)*k—'Jf;T/a‘k/c' @“*z?}’
17 (k\E (RN (REN\Y O ER\ E\E K\
= (0) () () ) +(3) +(r) |

Watson has now worked out proofs of all of these. He remarks that
“although modular equations of degrees 13, 17 and 19 have been obtained

T 920.15 (i). 2 16.36 (i), (ii).
3 20.8iii), (iv). ¢ 20.12 (iii), (iv).
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by other authors, they have usually been given in more complicated forms;
and in fact, when dealing with Ramanujan’s modular equations generally,
it has always seemed to me that knowledge of other people’s work is a
positive disadvantage in that it tends to put one off the shortest track”.
There are also many “mixed’’ modular equations or equations of com-
posite degree. For example, if the moduli %, «, I, A correspond to ¢, ¢3, ¢°
and ¢ respectively, then'
(BAR — (K'AW = (kD) — (1)}
and?
(L4 E)E (L4 A= (1= k) (L~ )1}
+ AW {(I+E ) (L+ A= (1=F) (1 =A) = 2.

I shall say no more about results of this kind. I prefer to disentangle
from the notebook Ramanujan’s own proof of the equation of degree 3,
which appears there as the climax of & very intricate chain of reasoning.
It is of course quite likely that he possessed a shorter proof on the lines
of §12.8,

12.10. Ramanujan actually deduces (12.8.1) and (12.5.5) from two
identities3 involving series of the “‘ Lambert’’ type, viz.

. . q q5 q7 qll

3 —  eru e iy ¢ ¢
(12102) @) = 1+2(Eomglt T T ),

the signs in each series recurring to modulus 6. From these it follows that
(12.10.3)  49¥(¢®) ¥(¢*) = ¢(9) p(¢°) — $(— ) (- ¢*); ¢
and, since
$(g) = 95(0,7),  h(—q) =3(0,7), P(g*) = 3g7¥04(0,7),
(12.10.3) is equivalent to (12.8.1). Tt remains to trace the genesis of (12.10.1)

and (12.10.2): this T have only been able to do with the help of Watson’s
solutions.

I call a relation between f, ¢, i “trivial” if it is a direct consequence of
their expressions as products. Thus

(12.10.4 fla,— )~ 8()

f(=a.9%) ¢

is “trivial”’, For if we write
—q* = (n), l+q"=(7m),

t 20.11 (iii). * 20,11 (vi). 3 19.3(i), (ii).
4 This formula does not cccur explicitly in the notebook.
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then it is
(0 @M A0... QOO D). DEO... DERE?....
(D@ (7)(T0) ... 3G E) (1) .. (6)(12)(18) ... (3)2 (9 (T5)2 ...
Such a formula may be verified by observing that
— _ (2n)
=
and comparing factors,
Similarly
- J(=¢" —9%
(12.10.5) 3,(---_g q(f(,)( (4%) (q) = ¥ (¢®) ¥(g®)

8 “trivial”.

12.11. The proofs of (12.10.1) and (12.10.2) may be traced back to earlier
formulae, viz.

flabh) o akh | at+b? !
(12.11.1) f(_a’--:b)gs(. ab) = ”'(1+ab g

and

(12.11.2)  f%a,b) —f¥—a, —b) = ~1af(g,a3b) Yr(ab)

Let us assume these formulae provisionally. The series in brackets in
(12.11.1) is

SR (= 1) {gtmrvn, om+ 1
PN — 1Y fgimiDnymn o gmn himt Dn

id

n=1 1 + anbn n=1m=0

S S (I ),
0 1=

1
Ny am t bm 1— am bm+1

Hence (12.11.1) is equivalent to

Sla,b) 2 B o o m(
f(_' "[)¢ (Lb)“]-i_-’n?:()( 1)

If we put a = ¢, b = —¢?, and use (12.10.4), then (12.11.3) gives (12.10.2).
It algo follows from (12.11.3) that

et _S-a0)

(12.11.3)

am+ipm am bnr} 1
1‘__-5711:-‘_—1 b7}¢ 1 __am -[)m-}-i :

e fra, —b
If we transform the left-hand side by (12.11.2) and the “trivial”’ identity
J(a, =b)f( -a,b) = f(—a? —*) p(ab),

T 16,33 (corollary).
 16.30 (vi).

dHab) = 4 L

m=10

( art 1 pm am bm 11 )

1 —g2mi 2p2m | L gamp2miz)”
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we obtain
g, _ 4af( - —a3b)
e i ) P = T e H
4af(-—2, ——asb)
== 5 P(ab) Yr(a?b?).
Hence
(e, 5y P v =,,§0(r_ et | _z-zmbw-z) :
Finally, if we replace a and b by ¢ and ¢5, and use (12.10.5), we obtain
W@ Y) = mij 0(1 36;:;“ - l__L:;l,;ns{lO) ’

which is (12.10.1).
Thus everything is reduced to the proof of (12.11.1) and (12.11.2).

12.12. The first of these formulae is equivalent to

) g 9(07’ U+'£
2 ) - RS
(12.1 1) i+2141 i g anoszTUT’U 47 D, (0 T)I9‘ (U+ ET) )

Tannery and Molk prove formulae of this type by means of Cauchy’s
theorem. We can deduce (12.11.1) from (12.12.1) by putting

¥
q = omiT — (ab)%, &= iy — (Z) ,

and then making a “trivial” transformation. Ramanujan’s proof is natur-
ally very different. He deduces (12.12.1) from a remarkable formula®
with many parameters, viz.

(12.12.2)

I{xy, x?) U(; , xz) H(—a®, 2% IT( — afx?, x?)

—1+(xy 1-a =1 _/5’)
2
H(axj,xﬁ)ﬂ(ﬂ— x’)H( o, %) TT( — Ba?, a?) [—p yl-ax

(1— )(x —a) 2\ (1 f) («?
e =) (1 - ) () (l—mz)(l—az‘*)}

(1—~a) (xz—oc) (2t —a)

{‘“’ (T fa) (1 — fi) (1= )

bt

. T 16.17.
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This formula seems to be new. [t is however deduced from one which is
familiar and probably goes back to Euler, viz.
b,y _ oy e+b (atb)atbz)
(- a,z) -z (L=z) (I —-2?) 7"
In the application of (12.12.2) to the proof of (12.11.1)
x
= .= e = ) = — _l_
xy =a, y b=y
12.13. Finally (12.11.2) is equivalent to
P, T) —F(v, T) = 29,(0, 21) 9y (20, 27),
which is derived by 'Tannery and Molk from the theory of Landen’s quadratic
transformation. Ramanujan deduces it from

fla,0)fe,dy=j(—a, =b)f(--¢, —d) = ‘)af(g,;;abcd)f(z, gabcd),‘
where ab = cd.,

The direct proof ol this formula is quite simple, if we write the left-hand

side as 2 3 aimmiDpimen D einoer ) gintn-y)
mitneven
and put m4+n=2M, m-n=2N,

when the summation is over all integral M, N.

12.14. Tt is obvious that the argument of §§ 12.10-12.13, regarded simply
as a proof of Legendre’s equation, is very long and complicated, and will
not bear comparison with the economical proofs of §§ 12.5-12.8. The
comparison, however, is not at all a fair one. The proof of § 12.8, for example,
is an ad hoc proof, a short cut to a particular formula; and it seems almost
certain that Ramanujan must have possessed short cuts of the same kind.
He certainly used similar methods sometimes (as is shown by the argument
which T quoted in § 12.13), and the proof of § 12.8 is one which, whether he
knew it or not, he could certainly have constructed. The proof which T have
pieced together in §§ 12.10-12.13 is onc of an entirely different kind; it
wanders over large parts of the theory of elliptic functions, and the modular
equation appears only as one of the climaxes of Ramanujan’s reconstruction
of the theory.

Singular moduli

12.15. T shall say less about Ramanujan’s work in the closely connected
theory of ““‘singular moduli”’. A good deul of this work is alrcady in print;3
and Watson, in his series of papers on s.igular moduli, has proved all

' 16.2. There .s a rimple proof of this formula in the Papers, no. 11, 57--68.
16,29 (1), 3 Papers, no. 6, 23-39.
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Ramanujan’s results, and done a great deal to elucidate his probable
method of procedure. 1 begin with a very short summary of the foundations
of the orthodox theory.

It is familiar that

(12.15.1) Pluu, vy, w,) = R(p),
where £ = ) = U, 0, 0,),

and Risarationalfunction, when uis aninteger. Can this be true for other y?
If so, then 2uw,, 2uw, are periods of @(u), and

pwy = awy+ fuy,  pw, = yw, -+ dw,,

where a, £, v, § are integers with

(12.15.2) A0, y£0, ad—py+0.
We may suppose
(12.15.3) B> 0

(since otherwise we can change the sign of @, £, v, 8 and x). Conversely,
when these conditions are satisied, g(uu) is an elliptic function with periods
), w,, and 8o a rational function of  and ’. Finally, since it is even, it is
a rational function of ({ only.

The situation is not affected if we replace w, and w, by Aw, and Aw,, so

that only the ratio
T = (/@

is relevant. In these circumstances we shall say that “there is complex
multiplication by u for 7. For thig, it is necessary and sufficient that

(12.15.4) p=a+fr, pur=-y+dr,
80 that

5
(12.15.5) _yrer

iy
with integral o, B, v, & satisfying (12.15.2) and (12.15.3). Thus 7 is the root,
with positive imaginary part, of

(12.15.6) prit (a—8)1—y =0,

It is easily verified that any number 4 -- Bu, where A and B are integers,
is a multiplier for 7 if 1 is one.

12.16. We write

(12,16.1) p=(—v,a—-8,p)>0
and

(12.16.2) —y=uap, a—0=>bp, f=cp



Elliptic and modular functions 225

Then

(12.16.3) a+br4ert =0,
where

(12.16.4) a>0, ¢>0, :*—duc=—-n<0,
and

b—i4n

(12.16.5) T=— 26‘/

Furthor, we wrile

(12.16.6) o+ 8= p.
Then prtbp =22=0 (mod 2),

(12.16.7) o =$1p,+bp), B=cp, y=-ap, &= }(p—bp),
and

(12.16.8) uo= a+ pr =5p +ip Jn).

Conversely, if there are integers a, b, ¢ satisfying (12.16.4), and p, p;
satisfying

(12.16.9) p>0, pyrbp=0 (mod 2),
a, 1, v, & are then defined by (12.16.7), 7 hy (12.16.5), and pg=a + f7, then
there is complex mualtiplication by u for 7.

Further, if

(12.16.10) € =0 (beven), e=1(bodd),
(12.16.11) M= H—e+iqn),

then M is also o multiplier for 7. For it is casy to verify that
(12.16.12) n=a-3b—¢e)p+pM,

(12.16.13) M=1b—¢)ter, Mr= ~a—L(h+e)7.
Since the last equations are of the form (12.15.4), M is a multiplier (when
M 14 one),

On the other hand, if M is a multiplier for 7, it follows from (12.16.12),
and the last remark: of §12.15, that g is a multiplier.

12.17. If 7 satisfies (12.15.5), A, B, C, D arc integers with AD— B(C = 1,
and

, CU+Dr
(12.17.1) "=
80 that
(12.17.2) J(r') = J(1),
then 7° yatisfies an equation
(12.17.3) a' 0T+’ T%= 0

HR 15
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with the same determinant as (12.16.3), so that b’ has the same parity as b,
and the ¢’ and M’ corresponding to 7’ are the same as e and M. It follows
that there is multiplication for 7 by M, and therefore by any g which is a
multiplier for 7. The values of 7 for which there is multiplication, and the
corresponding multipliers, are determined uniquely by the values of J(r).

12.18. If 7 and any positive integer m are given, the values of

5
for different «, £, v, & satisfying
ad—fy = m,
are the roots of an equation E(m, J) =0,
where J =J(7),
of degree m. If 7 satisfies (12.15.5), then
(12.18.1) F(J,J)=0.

Hence each J(7) corresponding to a 7 for which there is complex multiplica-
tion satisfies an algebraic equation. We call these J(7) singular invariants,
and the corresponding £2(7) singular moduli; the singular moduli also satisfy
algebraic equations, These equations are all soluble by radicals (though
this depends on considerations of group theory of which Ramanujan knew
nothing).

12.19. All this is connected with the theory of arithmetical forms,

Suppose that = az®+ bay + o,

where (a,b,¢) =1,
is equivalent to [ =ada2+b2y +c'y'?,
with ¥ =ox+fy, y =yr+dy, ad—fy=1,
so that
(12.19.1)

a=ga'a?+bay+cy? b= 2a'aff+b'(By+ad)+2c'ys, ¢ =a'f*+b' 5+ c'82,
(a',b',c") =1,
b2 —dac = b2 —da'c’ = —n.
Then b and &’ have the same parity and, if 7 and 7’ are roots of

(12.19.2) a+br+er2=0, a' +b'T+c12 =0,
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the M of § 12.16 hLas the same value for 7 and 7’. Thus there is complex
multiplication by M for both 7 and 7. Also 7 and 7’ satisfy

: ., v+or

2.19. =0 — =

(12.10.3) v=ly  @-pr=1)
and so

(12.19.4) J(1') = J(7).

Cunversely, supose that (12.19.4) is true, that there is complex multi-
plication for 7 aad 7', and that 7 and 7' satisfy equations (12.19.2), with
(a,b,¢) =1 and (a’,#",¢') = 1. Since (12.19.4) is true, there are integers
e, 1, v, & satisfying (12.19.3). Hence the equation

a' ot Pr2+b'(a +fr) (v +07) (Y4 01)2 = 0
has the same roots as a+br4cr?=0.

From this it follows easily thata, b, ¢ satisfy (12.19.1), and that the forms
fand f’ arc equivalent,
Thus (12.19.4) is a necessary and sufficient condition for equivalence,
and the degree of (12.18.1) is the elass number 4(—n) for determinant —n.
It seems clear that Ramanujan knew nothing about the arithmetical
side of the theory.

12.20. The theory appears in the clearest light when stated in terms
of J{r). For numerical work, other modular functions are more convenient,
since the equations satisfied by J(7) tend to have large coefficients.

It is usual to write

, > a1y _4_1’"2
sy = T+ = (o)

2 gy (MR
Ja(7) =f1‘“111 (I~g* 1) = (,7) ,

L@ 4k s
Ja(r) = 24 [[(L+¢*) = (k—) .
1
Then =13+ ffufa= A2
If n=4dac—02 = 8m-+3£0 (mod 3),
then the simplest invariant is
FW(=n)} =fo =1,

while if n=8m—1-0 (mod3),
it is 2-tf{(~n)} = F, =T,

15-2
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Ramanujan, however, uses the invariants
Gy = 27 {J(—n)} = 274, (n odd),
gn = 27H1{J(—n)} (n even).

The equations connecting f, f; and f, with J(7) are

. 1— k24 k)3
J(7) = 1728J(7) = 256(762-(1——_--10—5)-2—
_ (=167 (fH16)°  (f§E+16)°
f24 - fzi-t = f%" [

and f#, — 2, — f2¢ are the three roots of
(x— 16 —zj(r) = 0.
12.21. Ramanujan obtained the values of the simplest of his singular

moduli directly from modular equations. He gives the complete proof in
one case only, viz. n = 5. Hero

6y = 2= = (i)

&nd G* = Gs
(from the transformation 7" = —1/r).
If u = 2(1), w= 2 (57),

8 [p\3
then “Vy 3)) = 2{utv?— —1—)
v u u?y?
This is Schlafli’s form of the modular equation of degree 5, which occurs
also in the notebook.! If 7 = i/\/6, ¢'= ¢~7/V5, then
u=0G0, v==0, v=uyu,
w—yt=1,

! E
and @y = (‘Lﬁzi—l) .

Similarly, if we use the form?

Q+~é+7 = 2*(P+%),

"\
where P =20kl Q= —ll—, )
kk
of the modular equation of degree 7, we can show that
G, =24

Watson, in his paper 20, works out the values of all of Ramanujan’s new
singular moduli which it seems likely that he could have found in this way,

¥ 19.13 (xiv). ? 19.19 (ix).
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12.22. There are also many cases in which Ramanujan gives the values
of singular moduli which he can hardly have determined rigorously.
Let us suppose, to fix our ideas, that

n=8n—1%0 (mod 3).

If the number of genera of classes of forms with determinant —=» is N, and
the number of classes in each genus is r, so that the class numberis b = Nr,
then j(r) and F, satisfy equations of degree A, soluble by radicals. The
solution of the equations depends on that of a number of subsidiary
equations, the number and degree of these equations being specifiable in
terms of N and », Thus when n =7, N = 1, r = 1, and F, = 1 is rational,
and when n = 23, N = 1, r = 3, and Fy; is given by a single cubic

Fi—F-1=0,

In Watson’s paper 13 he deals with cases in which N =1, in 25 also with
cases in which N=2 or N=4. When N = 2, two equations are required.
Thus if n = 35, N = 2, r = 2, h = 4, F satisfies the quartic

Fi_2F8+ F—1=0

3+2.,5

H -

by the adjunction of /5. If n = 465, N = 4, r = 5, b = 20; and F satisfies
an equation of degree 20 which can be redu¢ed to a quintic by the adjunction
of /5 and \/13.

Ramanujan did not know any of this arithmetical theory, and, when he
was dealing with large values of %, where no modular equation was available,
must have been guided a good deal by guesswork and intuition. Watson,
in his papers 8. 9, and 19, has made a very plausible reconstruction
of the arguments which Ramanujan seems to have used. These all involve
assumptions thar certain numbers satisfy equations of appropriate degrees.
In these assumptions, which always accord with the arithmetical theory,
he seems to have been guided by a mixture of intuition and computation.

Thus in 8 Watson reconstructs Ramanujan’s calculation of gy, (a
value found also by Weber), and deduces one of the most striking of
Ramanujan’s results, viz. that

k= (y2 = 1)*(2-y3) (T —J6)2 (8 — 3YT) (y10 — ) (4 /15)2
X (415 —,/14) (6 —4/35)

which reduces to (F-3)2=

when q = emmV2I0,

This result Ramanujan proved rigorously, granted the value of gy, by a
very curious algebraical lemma.
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NOTES ON LECTURE XII

§ 12.1. Tho eatalogue referred to on p. 20 (note on p. 10) contains Cayley, Greenhill,
Tannery and Molk, A. C. Dixon’s The elementary properties of elliptic functions, Appell
and Lacour’s Principes de la théorie des fonctions elliptiques, and the first edition of
Whittaker’s Modern analysis. It is howover clear that Ramanujan had not read any
account of elliptic funections based (like those in Tannery and Molk or Whittaker) on
general function theory.

The quotation from Littlewood is from his review of the Papers.

§ 12.2. There are proofs of Jacobi’s identity, and deductions of those of Euler and
Gauss, in Hardy and Wright, §§ 19.8 9.

§12.3. Sec Watson's lecture 10, Jacobi, Fundamenta nova, §41, and [nnoper,
Elliptische Funktionen, §13.

The last sentence is justified by the proof (from no. 18 of the Papers) reproduced in
§ 9.2,

§ 12.6. Seo Cayley, chs. vir and vl (especially pp. 188-190), Greenhill, c¢h. x
(especially p. 323). There is a better account-of the general theory in Enneper, ¢l 1x
(espucially pp. 226-237), but Jacobi’s treatmont of Ltho special enson = 3is stated very
shortly in an appendix (p. 518).

§ 12.9. Sce Tannery and Molk, i1, 163--166, and iv, 230-231, 242-244.

§12.12. For (12.12.1) see Tannery and Molk, 1ii, 120- 134 and iv, 105 (Table CVIII).

(12.12.2) reduces to Jacobi’s formula quoted in § 12.2 when ¢ = f = 0.

§12.13. See Tanncry and Molk, ii, 114-1196 and 268 (Table XLVI1I).

§§ 12.15-19. My sketch of the orthodox theory is based on Tannery and Molk, iv,
254-260.

§12.19. The classnumberhere isthe number of primitive classes of detorminant — n;
we have supposed throughout that (a,6,¢) — 1. The wholo argumoent is based on
Kronecker's theory of fortns ax? 4 bzy + ey®, in which b is not necessarily even and the
determinant is b2 —4ac: thus a?+ 7y? has determinant —28. In the older theory of
Ganss, tho form is ax? + 2bey + cy® nnd the doterminant b2 —ac, so that «? + Ty? has
determinant —7.

T have in my possession a lotter to Ramanujan {romn Professor W, E. H. Berwick
which throws some light on the last sentence of this section. Professor Berwick, after
acknowledging the recoipt of Ramanujan’s paper **Modular equations and approxi-
mations to 7’ (no. 6 of tho Papers), and giving a number of refercnces, explains that
J satisfios an irveducible equation of degree &, and that k? can sometimes, but not
always, bo expressed rationally in terms of J. In particular he points out that J(4,/257)
and k2(¢,/257) satisfy equations of degree 16 soluble by chains of four quadratics.

§12.20. See Watson (13).

§12.21. The proof for n = b is given in no. 6 of the Papers.

§12.22, All the examples are takon from Watson’s papors,
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