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PREFACK

This book is a development of two lectures delivered at the Harvard

Tercentenary Conference of Arts and Sciences in the fall of 1936. The first

of these was published in Vol. 44 of the American Mathematical Monthly,

and is reprinted here, as Lecture I, without change. The second has

expanded gradually until it fills the rest of the book.

1 have given many lectures on Ramanujan’s work since 1936, isolated

lectures to a number of universities and societies in America and England,

and connected courses in Princeton and Cambridge. Lectures II-XT1

contain most of the substance of these courses, with the rearrangements

and additions required to fit them for publication. In this sense they are

genuine lectures, and they are written throughout in a lecturer’s style.

The contents of the book are described quite accurately by its title. It

is not a systematic account of Ramanujan’s work (though most of his more

important discoveries are menti

suggested by it. In each essay

text, and have said what

earlier and later writers. Bu

writing, for example, about Rad

Rankin’s in Lecture XI, ‘Rama:

together.

Dr R. A. Rankin has read ¢

in proof, and has made a ver:

corrections. I have also te th. NN. Bailey, who helped me to

revise Lecture VI]; Mr F. M. Goddapeed, who read and criticised several

lectures, and in particular Lecture XI; and Prof. G. N. Watson, without

whose aid I could hardly have written Lecture XII. The photograph of

Ramanujan was given me by Dr S. Chandrasekhar, formerly Fellow of

Trinity College: I regret that I cannot state the name of the actual

photographer. A considerable part of the bibliography was compiled for

me by Dr V. Levin. But my first thanks are due to Harvard University,

to whose invitation the book owes its existence.

Hout its relations to that of

digress furthest, when I am

swork in Lecture VIII, or about

he thread which holds the whole

ay

hook both in manuscript and

{important suggestions and

G. H. H.

July 1940
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THE INDIAN MATHEMATICIAN RAMANUJAN

I have set myself a task in these lectures which is genuinely difficult and

which, if I were determined to begin by making every excuse for failure,

I might represent as almost impossible. I have to form myself, as I have

never really formed before, and to try to help you to form, some sort of

reasoned estimate of the most romantic figure in the recent history of mathe-

matics; a man whose career seems full of paradoxes and contradictions, who

defies almost all the canons by which we are accustomed to judge one

another, and about whom all of us will probably agree in one judgment only,

that he was in some sense a very great mathematician.

The difficulties in judging Ramanujan are obvious and formidable

enough. Ramanujan was an Indian, and I suppose that it is always a little

difficult for an Englishman and an 1 Indian to understand one another

properly. He was, at the best iupducated Indian; he never had the

advantages, such as they are, . ¥-Indian training; he never was
able to pass the “First Arts* éf an Indian university, and

never could rise even to be a “ se worked, for most of his life,

in practically complete ignorant: ‘: European mathematics, and

died when he was a little over th nen his mathematical education

had in some ways hardly begu ied abundantly—his published

papers make a volume of nesz tut he also left a mass of un-

published work which had ne sd properly until the last few

years. This work includes a gr anew, but much more that is

rediscovery, and often imperiech-vedistovery; and it is sometimes still

impossible to distinguish between what he must have rediscovered and what

he may somehow have learnt. I cannot imagine anybody saying with any

confidence, even now, just how great a mathematician he was and still leas

how great a mathematician he might have been.

These are genuine difficulties, but I think that we shall find some of them

less formidable than they look, and the difficulty which is the greatest for

me has nothing to do with the obvious paradoxes of Ramanujan’s career.

The real difficulty for me is that Ramanujan was, in a way, my discovery.

I did not invent him-—like other great men, he invented himself-—but I was

the first really corapetent person who had the chance to see some of his work,

and I can still remember with satisfaction that I could recognise at once

what a treasure I had found. And I suppose that I still know more of

WR I



2 The Indian mathematician

Ramanujan than any one else, and am still the first authority on this

particular subject. There are other people in England, Professor Watson in

particular, and Professor Mordell, who know parts of his work very much

better than I do, but neither Watson nor Mordell knew Ramanujan himself

as I did, I saw him and talked with him almost every day for several years,

and above all I actually collaborated with him. I owe more to him than to

anyone else in the world with one exception, and my association with him

is the one romantic incident in my life. The difficulty for me then is not that

I do not know enough about him, but that I know and feel too much and

that [ simply cannot be impartial.

I rely, for the facts of Ramanujan’s life, on Seshu Aiyar and Rama-

chaundra Rao, whose memoir of Ramanujan is printed, along with my own,

in his Collected Papers. He was born in 1887 in a Brahmin family at Erode

near Kumbakonam, a fair-sized town in the Tanjore district of the Presi-

dency of Madras. His father was a clerk in a cloth-merchant’s office in

Kumbakonam, and all his relat gh of high caste, were very poor.

He was sent at seven to the ‘Eumbakonam, and remained

there nine years. His excepti begun to show themselves

before he was ten, and by the 4 vas twelve or thirteen he was

recognised as a quite abnorma iographers tell some curious

atories of his early years. They s: pie, that soon after he had begun

the study of trigonometry, he d himself “ Euler’s theorems for

the sine and cosine” (by whie: “cl the relations between the

circular and exponential fun ® very disappointed when he

found later, apparently from t me of Loney’s Trigonometry,

that they were known already. “Untittke-was sixteen he had never seen a

mathematical book of any higher class. Whittaker’s Modern analysis had

not yet spread so far, and Bromwich’s Infinite series did not exist. There

can be no doubt that either of these books would have made a tremendous

difference to him if they could have come his way. It was a book of a very

different kind, Carr’s Synopsis, which first aroused Ramanujan’s full

powers.

Carr’s book (A synopsis of elementary results in pure and applied mathe-

matics, by George Shoobridge Carr, formerly Scholar of Gonville and Caius

College, Cambridge, published in two volumes in 1880 and 1886) is almost

unprocurable now. There is a copy in the Cambridge University Library,

and there happened to be one in the library of the Government College of

Kumbakonam, which was borrowed for Ramanujan by a friend. The book

is not in any sense a great one, but Ramanujan has made it famous, and

there is no doubt that it influenced him profoundly and that his acquaintance

with it marked the real starting-point of his career. Such a book must have

S



Ramanujan 3

had its qualities, and Carr’s, if not a book of any high distinction, is no mere

third-rate textbook, but a book written with some real scholarship and

enthusiasm and with a style and individuality of its own. Carr himself was

a private coach in London, who came to Cambridge as an undergraduate

when he was neatly forty, and‘vas 12th Senior Optime in the Mathematical

Tripos of 1880 (the same year in which he published the first volume of his

book). He is now completely forgotten, even in his own college, except in

so far as Ramanujan has kept his name alive; but he must have been in

some ways rather a remarkable man.

I suppose that the book is substantially a summary of Carr’s coaching

notes. If you were a pupil of Carr, you worked through the appropriate

sections of the Synopsis. It covers roughly the subjects of Schedule A of the

present Tripos (as these subjects were understood in Cambridge in 1880),

and is effectively the ‘‘synopsis”’ it professes to be. It contains the enuncia-

tions of 6165 theorems, systematically and quite scientifically arranged, with

proofs which are often little mo -oss-references and are decidedly

the least interesting part of thed exaggerated in Ramanujan’s

famous notebooks (which co “no proofs at all), and any

student of the notebooks can 4 xujan’s ideal of presentation

had been copied fram Carr’s,

Carr has sections on the obvicu

and analytical geometry, but ec

and particularly the formal side

been Carr’s pet subject, and +

definitely good. There is no the ns; and T very much doubt

whether Ramanujan, to the end'é ifertever understood at all clearly

what an analytic function is. What is more surprising, in view of Carr’s own

tastes and Ramamujan’s later work, is that there is nothing about elliptic

functions. However Ramanujan may have acquired his very peculiar

knowledge of this theory, it was not from Carr.

On the whole, considered as an inspiration for a boy of such abnormal

gifts, Carr was not too bad, and Ramanujan responded amazingly.

8

iigebra, trigonometry, calculus

developed disproportionally,

calculus. This seems to have

‘ib is very full and in its way

Through the new world thus opened to him (say his Indian biographers) ,*

Ramanujan went ranging with delight. It was this book which awakened his

genius. He set himself to establish the formulae given therein. As he was without

the aid of other books, each solution was a piece of research so far as he was

concerned,...Ramanujan used to say that the goddess of Namakkal inspired

him with the formulae in dreams. It is a remarkable fact that frequently, on

rising from bed, he would note down results and rapidly verify them, though

he was not always able to supply a rigorous proof....

! Quotations (except those from my own memoir of Ramanujan) are from Seshu

Aiyar and Ramachaundra Rao.

1-2



4 The Indian mathematician

I have quoted the last sentences deliberately, not because I attach any

importance to them—I am no more interested in the goddess of Namakkal

than you are-—but because we are now approaching the difficult and tragic

part of Ramanujan’s career, and we must try to understand what we can

of his psychology and of the atmosphere surrounding him in his early years.

T am sure that Ramanujan was no mystic and that religion, except in a

strictly material sense, played no important part in his life. He was an

orthodox high-caste Hindu, and always adhered (indeed with a severity

most unusual in Indians resident in England) to all the observances of his

caste. He had promised his parents to do so, and he kept his promises to

the letter. He was a vegetarian in the strictest sense—this proved a terrible

difficulty later when he fell ill—and all the time he was in Cambridge he

cooked all his food himself, and never cooked it without first changing into

pyjamas.

Now the two memoirs of Raman

written by men who, in their differot

jan printed in the Papers (and both

iys,.knew him very well) contradict

a Aiyar and Ramachaundra

ad a special veneration for the

nce of a Supreme Being and in

ad settled convictions about the

Ramanujan had definite religiog

Namakkal goddess... .He believed

the attainment of Godhead by m

problem of life and after... ;

while I say

¥ic not of intellectual conviction,

to xay surprise) that all religions

.. his religion was a matter of’

and I remember well his telling

seemed to him more or less equally

Which of us is right? For my part I have no doubt at all; I am quite

certain that I am.

Classical scholars have, I believe, a general principle, difficilior lectio

potior—the more difficult reading is to be preferred—in textual criticism.

If the Archbishop of Canterbury tells one man that het believes in God,

and another that he does not, then it is probably the second assertion which

is true, since otherwise it is very difficult to understand why he should have

made it, while there are many excellent reasons for his making the first

whether it be true or false. Similarly, if a strict Brahmin like Ramanujan

told me, as he certainly did, that he had no definite beliefs, then it is 100 to 1

that he meant what he said.

This was no sufficient reason why Ramanujan should outrage the feelings

of his parents or his Indian friends. He was not a reasoned infidel, but an

* The Archbishop.



Ramanujan 5

“agnostic” in its strict sense, who saw no particular good, and no particular
harm, in Hinduism or in any other religion. Hinduism is, far more, for
example, than Christianity, a religion of observance, in which belief counts
for extremely little in any case, and, if Ramanujan’s friends assumed that
he accepted the conventional doctrines of such a religion, and he did not
disillusion them, he was practising a quite harmless, and probably necessary,
economy of truth,

This question of Ramanujan’s religion is not itself important, but it is
not altogether irrelevant, because there is one thing which I am really
anxious to insist upon as strongly as I can. There is quite enough about
Ramanujan that is difficult to understand, and we have no need to go out
of our way to manufacture mystery. For myself, I liked and admired him
enough to wish to bea rationalist about him; and I want to makeit quite clear
to you that Ramanujan, when he was living in Cambridge in good health
and comfortable surroundings, was, in spite of his oddities, as reasonable,
ag sane, and in his way as shrewd acpexaon aa anyone here. The last thing
which I want you to do is to 4 hands and exclaim “here is
something unintelligible, som Hestation of the immemorial
wisdom of the East!” I do vc immemorial wisdom of the
East, and the picture which T + & to you is that of a man who
had his peculiarities like other ¢ hed raen, but a man in whose
society one could take pleasure s could drink tea and discuss
politics or mathematics; the pic t of a wonder from the East,
or an inspired idiot, or a psych é of a rational human being
who happened to be a great ma

Until he was about seventeen, a i with Ramanujan.

In December 1103 he passed the Matriculation Examination of the University
of Madras, and in the January of the succeeding year he joined the Junior Firat
in Arts class of the Government College, Kumbakonam, and won the Subrah-
manyam scholarship, which is generally awarded for proficiency in English and
Mathematics...,

but after this there came a series of tragic checks.

By this time, he was so absorbed in the study of Mathematics that in all
lecture hours—whether devoted to English, History, or Physiology—he used to
engage himself in some mathematical investigation, unmindful of what was
happening in the class. This excessive devotion to mathematics and his conse-
quent neglect of the other subjects resulted in his failure to secure promotion to
the senior class and in the consequent discontinuance of the scholarship. Partly
owing to disappointment and partly owing to the influence of a friend, he ran
away northward into the Telugu country, but returned to Kumbakonam after
some wandering and rejoined the college. As owing to his absence he failed to
make sufficient attendances to obtain his term certificate in 1905, he entered
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Pachaiyappa’s College, Madras, in 1906, but falling ill returned to Kumba-
konam. He appeared as a private student for the F.A. examination of December
1907 and failed... .

Ramanujan does not seem to have had any definite occupation, except
mathematics, until 1912, In 1909 he married, and it became necessary for
him to have some regular employment, but he had great difficulty in finding
any because of his unfortunate college career. About 1910 he began to find
more influential Indian friends, Ramaswami Aiyar and his two biographers,
but all their efforts to find a tolerable position for him failed, and in 1912
he became a clerk in the office of the Port Trust of Madras, at a salary of
about £30 a year. He was then nearly twenty-five. The years between
eighteen and twenty-five are the critical years in a mathematician’s career,
and the damage had been done. Ramanujan’s genius never had again its
chance of full development.

There is not much to say about the rest of Ramanujan’s life. His first
substantial paper had been publi L911, and in 1912 his exceptional
powers began to be understow i that, though Indians could
befriend him, it was only the get anything effective done.
Sir Francis Spring and Sir Gi wbtained a special scholarship
for him, £60 a year, sufficient i Indian to live in tolerable
comfort. At the beginning of 1 te to me, and Professor Neville
and I, after many difficulties, , Hingland in 1914. Here he had
three years of uninterrupted ts of which you can read in
the Papers. He fell ill in the ¥, and never really recovered,
though he continued to work, r dically, but with no real sign
of degeneration, until his death iri 198. Hfé became a Fellow of the Royal
Society early in 1918, and a Fellow of Trinity College, Cambridge, later in
the same year (and was the first Indian elected to either society). His last
mathematical letter on ‘‘Mock-Theta functions’, the subject of Professor
Watson’s presidential address to the London Mathematical Society last
year, was written about two months before he died.

The real tragedy about Ramanujan was not his early death. It is of course
a disaster that any great man should die young, but a mathematician is
often comparatively old at thirty, and his death may be less of a catastrophe
than it seems. Abel died at twenty-six and, although he would no doubt
have added a great deal more to mathematics, he could hardly have become

a greater man. The tragedy of Ramanujan was not that he died young, but
that, during his five unfortunate years, his genius was misdirected, side-
tracked, and to a certain extent distorted.

I have been looking again through what I wrote about Ramanujan
sixteen years ago, and, although I know his work a good deal better now than
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I did then, and van think about him more dispassionately, I do not find a

great deal which I should particularly want to alter. But there is just one

sentence which now seems to me indefensible. I wrote

Opinions may differ about the importance of Ramanujan’s work, the kind of
standard by which it should be judged, and the influence which it is likely to
have on the mathematics of the future. It has not the simplicity and the
inevitableness of the very greatest work; it would be greater if it were less
strange. One gift it shows which no one can deny, profound and invincible
originality. He would probably have been a greater mathematician if he could

have been caught and tamed a little in his youth; he would have discovered
more that was new, and that, no doubt, of greater importance. On the other
hand he would have been less of a Ramanujan, and more of a European pro-
fessor, and the loss might have been greater than the gain...

and I stand by that except for the last sentence, which is quite ridiculous

sentimentalism. 'There was no gain at all when the College at Kumbakonam

rejected the one great man they: ‘ever possessed, and the loss was

irreparable; it is the worst inst: iv of the damage that can be

done by an inefficient and ine ‘system. So little was wantec

£60 a year for five years, ocea with almost anyone who had

real knowledge and a little imagitt he world to have gained another

of its greatest. mathematicians.

Ramanujan’s jetters to me,

contain the bare statements cf

extracted from his notebooks.

tive. They include two theorems 41.15), which are as interesting

as any but of which one is false other, as stated, misleading. The

rest have all been verified since by somebody; in particular Rogers and

Watson found the proofs of the extremely difficult theorems (1,16)~(1.12).

aprinted in full in the Papers,

ems, mostly formal identities

which are fairly representa-

(1.1) l—rptt aaptt—

- Q+aiptapt-) 0 -aiptani-~):

(1.2) 1~0(5) +954) - 19523) ==

(13) 14 o(;) + (3) + 25( 7545) + is ra

(1.4) 1=8(5) + (55) - 19 E38) + = rae
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“1+(FA) lena) nTerp nos vr (-a+3)

(1.6) ° da _ W

Jo (4 at) (1 +722) (1 t74e2) 24 rtreyre trey

(1.7) If af = 7, then

_ © pean fn ad

a ef Y 2 8 4
1.8 Ody = d_t—(1.8) [re de = yn 2a+ a+ 24+ a+ 2at+..
a 9) 4 © pe—2v 6 = ] y2 12 92 92 3B 32

‘ 9 cosha 1L+14+14+14+ 1+14+14...°

a a gl® ¢ 2 2 93

1,10) If -—— —_— = ————
(1.10) Tf w= Tigh i+1+1¢...

vet a4

then vy = %- uw
ac? + yt

1 e-* eo \ f54+1
—_—— own NO | pit(1.11) i+ 1+1+ } 2 le

—2aV 5 p—4rv 5 1(ag) Lee _N5+1) conv
I+ 14 1+... v4 2

(1.13) If F(k) = 1+(5 y b+(s4 s) ee Wt... and F(1—k) = (210) F(h),
then

= (y2~ 1) (2-4/3)? (7 — y6)4(8~ 3.4/7)? (/10— 3)

x (4—4/15)4 (4/15 — 4/14)? (6 — /35)®.

(1.14) The coefficient of 2 in (1— 2+ 274—2a°+...)-1 is the integer

nearest to :
sinh m/nx (cosh nn — TE) .

(1.15) The number of numbers between A and 2 which are either squares

or sums of two squares is

edt
K| ———4+0(2),i, (log t) (*)

where K = 0-764... and 6(x) is very small compared with the previous

integral.
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I should like you to begin by trying to reconstruct the immediate reactions

of an ordinary professional mathematician who receives a letter like this

from an unknown Hindu clerk.

The first question was whether I could recognise anything. I had proved

things rather like (1.7) myself, and seemed vaguely familiar with (1.8).

Actually (1.8) is classical; it is a formula of Laplace first proved properly

by Jacobi; and (1.9) occurs in a paper published by Rogers in 1907, I

thought that, as an expert in definite integrals, I could probably prove (1.5)

and (1.6), and did so, though with a good deal more trouble than I had

expected. On the whole the integral formulae seemed the Jeast impressive.

The series formulae (1.1)~(1.4) I found much more intriguing, and it soon

became obvious that Ramanujan must possess much more general theorems

and was keeping a great deal up his sleeve. The second is a formula of Bauer

well known in the theory of Legendre series, but the others are much harder

than they look. The theorems required in proving them can all be found now

in Bailey’s Cambridge Tract on hy# metric functions,

The formulae (1.10)-(1.13} ént level and obviously both
difficult and deep. An expert : 4 can see at once that (1.13)

omplex multiplication”, butis derived somehow from th

(1.10)-(1.12) defeated me comp never seen anything in the

least like them before. A single m is enough to show that they

could only be written down hy : ician of the highest class. They

no one would have had themust be true because, if they

puist remember that I knewimagination to invent them.

nothing whatever about Raman: to think of every possibility),

ae preat mathematicians arethe writer must be completely honest) beosu

commoner than thieves or humbugs of such incredible skill.

The last two formulae stand apart because they are not right and show

Ramanujan’s limitations, but that does not prevent them from being
additional evidence of his extraordinary powers. The function in (1.14) is

a genuine approximation to the coefficient, though not at all so close as

Ramanujan imagined, and Ramanujan’s false statement was one of the

most fruitful he ever made, since it ended by leading us to all our joint work

on partitions. Finally (1.15), though literally “true”, is definitely mis-

leading (and Ramanujan was under a real misapprehension). The integral

has no advantage, as an approximation, over the simpler function

Kae AL
(log x)’

found in 1908 by Landau. Ramanujan was deceived by a false analogy with

the problem of the distribution of primes. I must postpone till later what

(1.16)
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I have to say about Ramanujan’s work on this side of the theory of

numbers,

It was inevitable that a very large part of Ramanujan’s work should

prove on examination to have been anticipated. He had been carrying an

impossible handicap, a poor and solitary Hindu pitting his brains against

the accumulated wisdom of Europe. He had had no real teaching at all;

there was no one in India from whom he had anything to learn. He can have

seen at the outside three or four books of good quality, all of them English.

There had been periods in his life when he had access to the library in Madras,

but it was not a very good one; it contained very few French or German

books; and in any case Ramanujan did not know a word of either language.

I should estimate that about two-thirds of Ramanujan’s best Indian work

was rediscovery, and comparatively little of it was published in his lifetime,

though Watson, who has worked systematically through his notebooks,

has since disinterred a good deal more.

The great bulk of Ramanujan’s huhu

His mind had hardened to

*‘orthodox’’ mathematician, 5

do them extremely well. It wa:

he gradually absorbed new point

meant by proof, and his later p

dividual as ever, read like th

His methods and his weapons,

would have thought that su:

revelled in Cauchy’s Theorera,

most astonishing testimony te |

to feel the want of it in the least.

It is easy to compile an imposing list of theorems which Ramanujan

rediscovered, Such a list naturally cannot be quite sharp, since sometimes

he found a part only of a theorem, and sometimes, though he found the

whole theorem, he was without the proof which is essential if the theorem is

to be properly understood. For example, in the analytic theory of numbers

he had, in a sense, discovered a great deal, but he was a very long way from

understanding the real difficulties of the subject. And there is some of his

work, mostly in the theory of elliptic functions, about which some mystery

still remains; it is not possible, after all the work of Watson and Mordell, to

draw the line between what he may have picked up somehow and what he

must have found for himself. I will take only cases in which the evidence

seems to me tolerably clear.

work was done in England.

i he never became at all an

H learn to do new things, and

teach him systematically, but

particular he learnt what was

&# in some ways as odd and in-

vell-informed mathematician.

nied essentially the same. One

as Ramanujan would have

cally never used it,! and the

genius is that he never seemed

! Perhaps never. There is a reference to ‘‘the theory of residues” on p. 129 of the

Papers, but I believe that I supplied this myself.
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Here I must admit that I am to blame, since there is a good deal which

we should like to know now and which I could have discovered quite easily.

T saw Ramanujan almost every day, and could have cleared up most of the

obscurity by a little cross-examination. Ramanujan was quite able and

willing to give a straight answer to a question, and not in the least disposed

to make a mystery of his achievements. I hardly asked him a single question

of this kind; I never even asked him whether (as I think he must have done)

he had seen Cayley’s or Greenhill’s Llliptic functions.

Tam sorry about this now, but it does not really matter very much, and

it was entirely natural. In the first place, I did not know that Ramanujan

was going to die. He was not particularly interested in his own history or

psychology; he was a mathematician anxious to get on with the job. And

after all I too was a mathematician, and a mathematician meeting Rama-

nujan had more interesting things to think about than historical research.

It seemed ridiculous to worry him about bow he had found this or that known

theorem, when he was showing 26.) ‘dozen new ones almost every day.

I do not think that Ramana} Auch in the classical theory of

numbers, or indeed that he e eal. He had no knowledge

at all, at any time, of the gen arithmetical forms. I doubt

whether he knew the law of qd procity before he came here.

Diophantine equations should hi nim, but he did comparatively

little with them, and what he did: is best. Thus he gave solutions

of Euler’s equation

(1.17) oy
such as

(1.18) {° = 3a7+ 5ab—! = 40% — dab + 662,

2 = ha®—5ab-3b2, w= 6a? —4ab+4b?;

and

x= mi —3m4(1+p)+m(2+ 6p + 3p*),

(1.19) y = 2m8— 3m3(1 + 2p) +14 3p 4 3p?,

z= m—1—3p—3p*, w= m?—3m4p+m(3p?- 1);

but neither of these is the general solution.

He rediscovered the famous theorem of von Staudt about the Bernoullian

numbers:

111 1
-1)°B, =G@,+n+-+—-+..4+-(1.20) (IP By = Ont yt ot oten te,

where ~, q, ... are those odd primes such that »—-1, g—1, ... are divisors of

2n, and G,, is an integer. In what sense he had proved it it is difficult to say,

since he found it at a time of his life when he had hardly formed any definite

concept of proof. As Littlewood says, “the clear-cut idea of what is meant
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by a proof, nowadays so familiar as to be taken for granted, he perhaps did

not possess at all; if a significant piece of reasoning occurred somewhere,

and the total mixture of evidence and intuition gave him certainty, he

looked no further”. I shall have something to say later about this question

of proof, but I postpone it to another context in which it is much more

important. In this case there is nothing in the proof that was not obviously

within Ramanujan’s powers.

There is a considerable chapter of the theory of numbers, in particular

the theory of the representation of integers by sums of squares, which is

closely bound up with the theory of elliptic functions. Thus the number of

representations of n by two squares is

(1.21) r(n) = 4{d,(n) —d,(n)},

where d,(n) is the number of divisors of of the form 4k+1 and d,(n) the

number of divisors of the form 44+3. Jacobi gave similar formulae for

4, 6 and 8 squares. Ramanujan deumed.all these, and much more of the

same kind, :

He also found Legendre’s th

when it is of the form

(1.22)

but I do not attach much impor

guess and difficult to prove. Aj

theory of ternary forms, of w1

with Professor Dickson in thin

In any case he knew nothing ab ber of representations.

Ramanujan, then, before he came to England, had added comparatively

little to the theory of numbers; but no one can understand him who does

not understand his passion for numbers in themselves. I wrote before

the sum of 3 squares except

is. The theorem is quite easy to

a: knew nothing, and I agree

ikely that he possessed one.

He could remember the idiosyncrasies of numbers in an almost uncanny way.

Tt was Littlewood who said that every positive integer was onc of Ramanujan’s

personal friends. I remember going to see him once when he was lying ill in

Putney. I had ridden in taxi-cab No. 1729, and remarked that the number

seemed to me rather a dull one, and that I hoped that it was not an unfavourable

omen. “No,” he replied, ‘it is a very interesting number; it is the smallest

number expressible as a sum of two cubes in two different ways.”! I asked him,

naturally, whether he could tell me the solution of the corresponding problem

for fourth powers; and he replied, after a moment’s thought, that he knew no

obvious example, and supposed that the first such number must be very large.

In algebra, Ramanujan’s main work was concerned with hypergeometric

series and continued fractions (I use the word algebra, of course, in its old-

+ 1729 = 123+ 13 = 10*+ 98,
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fashioned sense). These subjects suited him exactly, and here he was un-

questionably one of the great masters. There are three now famous identities,

the ‘ Dougall-Ramanujan identity ”’

TM (abytetut 23+ 1) Lin)
1.23 — jr %. - in( ) x ( (342 on) se (C+Y+Z+ULS\p) eng (ES + 1”)

8 : Pets+ i Pytetutsth)
(stl Pa~yt2t+urst Yayen Te+u+s+]) ,

where a” = aad1)...(a+n—-1), ay)=a(a-1)...(a—n+]),

and the “ Rogers-Ramanujan identities ”

q q

147 at azpd-w*d-ot-p0-e)*

*) (1—9") ... (= 98) (1-9)

fish mathematicians, and about

gards hypergeometric series one

taal theory, set out in Bailey’s

iething about it in Carr, and

more in Chrystal’s Algebra, an & got his start from that, The

four formulae (1.1)-(1.4) are higi ed examples of this work.

His masterpiece in continued fractions was his work on

may say, roughly, that he red

tract, as it was known up te

1 a
1414 h4...’

which includes the theorems (1.10)-(1.12). The theory of this fraction

depends upon the Rogers-Ramanujan identities, in which he had been

anticipated by Rogers, but he had gone beyond Rogers in other ways and

the theorems which I have quoted are his own. He had many other very

general and very beautiful formulae, of which formulae like Laguerre’s

(a+))"—(2-1)TM an nP—-1 nt 2?

(1.26) (@+1)"$(@—ly" e+ Be+ Beton

(1.25)

are extremely special cases. Watson has recently published a proof of the

most imposing of them.

See Lectures VI and VII.
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It is perhaps in his work in these fields that Ramanujan shows at his very

best. I wrote

It was his insight into algebraical formulae, transformation of infinite series,

and so forth, that was most amazing. On this side most certainly I have never

met his equal, and I can compare him only with Euler or Jacobi, He worked,

far more than the majority of modern mathematicians, by induction from

numerical examples; all his congruence properties of partitions, for example,

were discovered in this way. But with his memory, his patience, and his power

of calculation he combined a power of gencralisation, a feeling for form, and

a capacity for rapid modification of his hypotheses, that were often really

startling, and made him, in his own peculiar field, without a rival in his day.

I do not think now that this extremely strong language is extravagant.

It is possible that the great days of formulae are finished, and that Rama-

nujan ought to have been born 100 years ago; but he was by far the greatest

formalist of his time. There have been a good many more important, and 1

suppose one must say greater, mathematicians than Ramanujan during

the last fifty years, but not one wt tand up to him on his own ground.

Playing the game of which , he could give any mathe-

matician in the world fifteen.

In analysis proper Ramanyj#

he knew no theory of functions,

and since the formal side of the int

learn from Carr or any other be

so intensively. Still, Raman:

the most beautiful analytic idép

Riemann Zeta-function

evitably less impressive, since

not do real analysis without it,

ales, which was all that he could

rarked over so repeatedly and

-an astonishing number of

‘he functional equation for the

&(s) Py n’ ,
namely

(1.27) ¢(1—s) = 2(27)-* cos 4am I'(s) €(s),

stands (in an almost unrecognisable notation) in the notebooks. So does

Poisson’s summation formula

(1.28) act{4d(0) + f(a) + P(2a) +...) = AHAW(0) + (8) + W268) + ..},

where (az) = JG) \- b(t) cos at dt

and af = 277; and so also does Abel’s functional equation

(1.29) L(x) + L(y) + L(wy) + 1a + 1 = 3L(1)

x a 28
for L(x) = yet gatgate
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He had most of the formal ideas which underlie the recent work of Watson

and of Titchmarsh and myself on ‘Fourier kernels’? and “reciprocal

functions”; and he could of course evaluate any evaluable definite integral.

There is one particularly interesting formula, viz.

° mTM(—8)(1.30) I, x 1{h(0) —a#b(1)+2°6(2)—...}de = “sinew?

of which he was especially fond and made continual use. This is really an

“Interpolation formula’’, which enables us to say, for example, that, under

certain conditions, i function which vanishes for all positive integral values

of its argument must vanish identically. I have never seen this formula

stated explicitly by anyone else, though it is closely connected with the

work of Mellin and others.

I have left till last the two most intriguing sides of Ramanujan’s early

work, his work on elliptic functions ; and in the analytic theory of numbers.

The first is probably too specialise hed

to understand, and I shall say

is still more difficult (as anya

Ingham’s tract will know), b

problems of the subject are, and:

roughly why they defeated Bari

real failure; he showed, as alw.

proved next to nothing, and

false.

Here I am obligecl to interpe rka ona very difficult subject:

proof and its importance in mathematica. AN physicists, and a good many

quite respectable mathematicians, are contemptuous about proof. I have
heard Professor Eddington, for example, maintain that proof, as pure

mathematicians understand it, isreally quite uninteresting and unimportant,

and that no one who is really certain that he has found something good

should waste his tirae looking for a proof. It is true that Eddington is in-

consistent, and has sometimes even descended to proof himself. It is not

enough for him to have direct knowledge that there are exactly

136 , 2758

tricate for anyone but an expert

,it now.’ The second subject

' Landau’s book on primes or

iderstand roughly what the

sathematician can understand

or this was Ramanujan’s one

ing imaginative power, but he

ron of what he imagined was

protons in the universe; he cannot resist the temptation of proving it; and

I cannot help thinking that the proof, whatever it may be worth, gives him

a certain amount of intellectual satisfaction. His apology would no doubt

be that “proof”? means something quite different for him from what it

means for a pure mathematician, and in any case we need not take him too

7 See Lecture XII.
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literally. But the opinion which I have attributed to him, and with which

Tam sure that almost all physicists agree at the bottom of their hearts, is

one to which a mathematician ought to have some reply.

T am not going to get entangled in the analysis of a particularly prickly

concept, but I think that there are a few points about proof where nearly

all mathematicians are agreed. In the first place, even if we do not under-

stand exactly what proof is, we can, in ordinary analysis at any rate, re-

cognise a proof when we see one. Secondly, there are two different motives

in any presentation of a proof. The first motive is simply to secure con-

viction. The second is to exhibit the conclusion as the climax of a con-

ventional pattern of propositions, a sequence of propositions whose truth

is admitted and which are arranged in accordance with rules. These are the

two ideals, and experience shows that, except in the simplest mathematics,

we can hardly ever satisfy the first ideal without also satisfying the second.

We may be able to recognise directly that 5, or even 17, is prime, but nobody

can convince himself that aoe

is prime except by studying & as ever had an imagination

so vivid and comprehensive as

A mathematician usually disé

the conclusion strikes him as pis

a proof. Sometimes this is a ma

fessional could supply what is *

unreliable guide. In particulax

where even Ramanujan’s imagiti im very seriously astray.

There is a striking example, sve very often quoted, of a false

conjecture which seems to have ‘been endorsed even by Gauss and which
took about 100 years to refute. The central problem of the analytic theory

of numbers is that of the distribution of the primes. The number 7(z) of

primes less than a large number x is approximately

orem by an effort of intuition;

he sets to work to manufacture

tine, and any well-trained pro-

re often imagination is a very

# analytic theory of numbers,

x .

log a’
this is the ““Prime Number Theorem”, which had been conjectured for a

very long time, but was never established properly until Hadamard and

de Ja Vallée-Poussin proved it in 1896. The approximation errs by defect,

and a much better one is

(1.31)

* dt
ha= |} —)(1.32) ix » log

In some ways a still better one is

(1.33) lia—}liat—fliat—Lliat+liat—Lliat+..,

* The integral is a ‘principal value’. See § 2.2.
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(we need not trouble now about the law of formation of the series). It is

extremely natural to infer that

(1.34) a(x) <lia,

at any rate for large x, and Gauss and other mathematicians commented

on the high probability of this conjecture. The conjecture is not only plaus-

ible but is supported by all the evidence of the facts. The primes are known

up to 10,000,000, and their number at intervals up to 1,000,000,000, and

(1.34) is true for every value of x for which data exist.

In 1912 Littlewood proved that the conjecture is false, and that there

are an infinity of values of x for which the sign of inequality in (1.34) must

be reversed. In particular, there is a number X such that (1.34) is false for

some x less than X, Littlewood proved the existence of X, but his method

did not give any particular valuc, and it is only very recently that an

admissible value, viz.

was found by Skewes. I think

ever served any definite purps

The number of protons in th

The number of possible games

(in any case a second-order ¢: the universe were the chess-

board, the protons the chessm iterchange in the position of

two protons a move, then the suniberef possible games would be something

like the Skewes number. However much the number may be reduced by

refinements on Skewes’s argument, it does not seem at all likely that we

shall ever know a single instance of the truth of Littlewood’s theorem.

This is an example in which the truth has defeated not only all the

evidence of the facts and of common sense but even a mathematical imagina-

tion so powerful and profound as that of Gauss; but of course it is taken

from the most difficult parts of the theory. No part of the theory of primes

is really easy, but up to a point simple arguments, although they will prove

very little, do not actually mislead us. For example, there are simple

arguments which might lead any good mathematician to the conclusion

x

of the Prime Number 'Theorem,; or, what is the same thing, to the conclusion

1 f(z)~ 9(x2) means that the ratio f/g tends to unity.
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that

(1.36) Py~niogn,

where p,, is the m-th prime number.

In the first place, we may start from Kuler’s identity

1 I 1 iol 1

This is true for s>1, but both series and product become infinite for s = 1.

It is natural to argue that, when s = 1, the series and the product should

diverge in the same sort of way. Also

1 1 1 I 1(1.38) logy = 2 log i—p- = rot (pat gat -),

and the last series remains finite for s = 1. It is natural to infer that

diverges like

or, more precisely, that

(1.39)

for large x. Since also

formula (1.39) indicates that p, is about vlog n.

There is a slightly more sophisticated argument which is really simpler.

It is easy to see that the highest power of a prime p which divides z! is

ish)pl Let Ley”

where [y} denotes the integral part of y. Hence

el = J] peltairt.,

psx

cay tues BE] L ee
The left-hand side of (1.40) is practically zlog x, by Stirling’s Theorem. As

regards the right-hand side, one may argue; squares, cubes, ... of primes are

comparatively rare, and the terms involving them should be unimportant,



Ramanwan 19

and it should also make comparatively little difference if we replace [z/p]

by x/p. We thus infer that

Og Dplog p ]
zz p xlogz, 2 D log x,

and this again just fits the view that p, is approximately nlog n.

This is broadly the argument used, naturally in a less naive form, by

Tchebychef, who was the first to make substantial progress in the theory of

primes, and I imagine that Ramanujan began by arguing in the same sort

of way, though there is nothing in the notebooks to show. All that is plain

is that Ramanujan found the form of the Prime Number Theorem for

himself. This was a considerable achievement; for the men who had found

the form of the theorem before him, like Legendre, Gauss, and Dirichlet,

had all been very preat mathematicians; and Ramanujan found other

formulae which lie still further below the surface. Perhaps the best: instance

is (1.15). The integral is better replaced: ¢ simpler function (1.16), but

what Ramanujan says is corre and was proved by Landau in

1909; and there is nothing ob “vs truth.

The fact remains that hard) wajan’s work in this field had

any permanent value. The az ‘y of numbers is one of those

exceptional branches of mathe hich proof really is everything

and nothing short of absolute sts. The achievement of the

mathematicians who found th ex Theorem was quite a small

thing compared with that of the proof. It is not merely

that in this theory (as Littlew shows) you can never be sure

of the facts without the proof, theu; ists important enough. The whole

history of the Prime Number Theorem, and the other big theorems of the

subject, shows that you cannot reach any real understanding of the structure

and meaning of the theory, or have any sound instincts to guide you in

further research, until you have mastered the proofs. It is comparatively

easy to make clever guesses; indeed there are theorems, like “‘Goldbach’s

Theorem”’,’ which have never been proved and which any fool could have
’

guessed.

The theory of primes depends upon the properties of Riemann’s function

&(s), considered as an analytic function of the complex variable s, and in

particular on the distribution of its zeros; and Ramanujan knew nothing

at all about the theory of analytic functions. I wrote before

Ramanujan’s theory of primes was vitiated by his ignorance of the theory of

functions of a complex: variable. It was (so to say) what the theory might be if

the Zeta-function had no complex zeros. His method depended upon a wholesale

* “ Any even number groater than 2 is the sum of two primes.”
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use of divergent serics,...That his proofs should have been invalid was only to

be expected. But the mistakes went deeper than that, and many of the actual

results were false. He had obtained the dominant terms of the classical formulae,

although by invalid methods; but none of them are such close approximations

as he supposed,

This may be said to have been Ramanujan’s one great failure...

and if I had stopped there I should have had nothing to add, but I allowed

myself again to be led away by sentimentalism. I went on to argue that

“his failure was more wonderful than any of his triumphs’’, and that is an

absurd exaggeration. It is no use trying to pretend that failure is something

else. This much perhaps we may say, that his failure is one which, on the

balance, should increase and not diminish our admiration for his gifts, since

it gives us additional, and surprising, evidence of his imagination and

versatility.

But the reputation of a mathematician cannot be made by failures or by

rediscoveries; it must rest primar: ml rightly, on actual and original

achievement. I have to justify. this ground, and that I hope

to do in my later lectures.

NOTES RE I

ved at the Harvard Tercentenary

i, and published in the American

p. 1. This lecture is a reprint of

Conference of Arts and Sciences «

Math, Monthly, 44 (1937), 137-18

pp. 7-8. For (1.1), see Preece (2};

Whipple (1) and Watson (7). All these

formulae discussed in Bailey’s Cami

(no. 32, 1935), See also Lecture VII.

For (1.5) and (1.6), see no. Ll of the Papers, and Hardy (5, 6).

There are formulae of the same type as (1.7) in a paper by Hardy in the Quarterly

Journal of Math. 35 (1904), 193-207. The formula (1.7) itself is proved by Preece (2).
See also no. 11 of the Papers.

For (1.8), see Watson (2); for (1.9), Preece (4); for (1.10)-(1.12), Watson (4, 6);

and for (1.13), Watson (8),

As regards (1.15), see Landau, Archiv der Math. und Physik (3), 13 (1908), 305-315,

and Stanley (1). Miss Stanley shows just how Ramanujan’s statement is misleading.
See also Lecture TV (B).

p. 10. The Librarian of the University of Madras has very kindly sent me a copy of

the catalogue published in 1914, which makes it plain that the library was better

equipped than I had supposed. For example it possessed two standard French

treatises on elliptic functions (Appell and Lacour, Tannery and Molk) as well as the

books of Cayley and Greenhill. It seems plain from other evidence that Ramanujan

knew something of the English books but nothing of the French ones.

p. 11. Euler found the general rational solution of (1.17), and his solution was

afterwards simplified by Binet and other writers. See, for example, Hardy and

Wright, 198-202, A number of special solutions similar to (1.18) will be found in

3), Hardy (4,8); for (1.4), Hardy(4),

special cases of much more general

i; Generalised hypergeometric series
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Dickson’s History, ii, 500 et seg. The solution (1.19) is substantially the same as one

found by J. R. Young (Dickson, History, ii, 554).

The simplest known solution of

a! + af =z! + t*

is Kuler’s 1584 + 594 = 1344+ 1334 = 635318657,

See Dickson, Introduction, 60-62, and History, ii, 644-647. Euler gave a solution

involving two paramoters, but no ‘general’ solution is known.

There is a proof of von Staudt’s theorem, duo to R. Rado, in Hardy and Wright,

89-92.

The quotation from Littlewood is from his reviow of the Papers.

p. 12. The general theory of the represontation of numbers as sums of an even

number of squares is discussed in Lecture IX. For Legendre’s ‘three square’

theorem see Landau, Vorlesungen, i, 114-122.

p. 13. Laguerro’s formula (1.26) is formula a (18) of Ch. xu of the ‘second edition’

of Ramanujan’s notebooks. See Watea i

For ‘the most imposing’ forme

p. 14. The equation (1.29) wag

(2), 4 (1907), 169-189, and is att

found in a posthumous fragment

p. 15. For (1.30) see Lecture ST

p. 17. Skewes, Journal London .

the truth of the Riemann Hypothes:

for X independent of the hypothesi

p. 18. For (1.40) see, for examp

Handbuch, 75-76.

Rogers, Proc. London Math. Soc.
Mf the Papers, 337; but it is to be

hk, 193).

1933), 277-283. Skewes assumes

since found a (much larger) value

til unpublished,

ight, 342; Ingham, 20; Landau,



II

RAMANUJAN AND THE THEORY

OF PRIME NUMBERS

2.1. I shall begin by discussing Ramanujan’s work in the “analytic”

theory of numbers, and particularly on its most famous problem, the pro-

blem of the distribution of the primes. I told you that his work in this field

has little permanent value, but I am not afraid that you will find what I

have to say the less interesting for that. The problem is one of the most

fascinating in the whole of mathematics, and Ramanujan’s attack on it

was conceived in a thoroughly interesting way; and I have unpublished

manuscripts to refer to, and can explain to you for the first time just where

and how he failed.

Ramanujan wrote about the problem in both of his first two letters. He

did not write at length, and I can q what he says in full.

In p. 36 it is stated that “thy rime numbers less than x is

where the precise order of p(2°} b:

TI. I have found a functic

prime numbers less than x, *

tween the function and the act: primes is generally 0 or some

small finite value even when z becs niinite. I have got the function in

the form of infinite series and have expressed it in two ways.

(1) In terms of Bernoullian numbers. From this we can easily calculate

the number of prime numbers up to 100 millions, with generally no error

and in some cases with an error of 1 or 2.

(2) As a definite integral from which we can calculate for all values.

T have observed that (e2**) is of such a nature that its value is very small

when x lies between 0 and 3 (its value is less than a few hundreds when

© = 3) and rapidly increases when x is greater than 3.

II. I have also got expressions to find the actual number of prime

numbers of the form An+ B.

etermined”’,

y represents the number of

ense that the difference be-

* Of my Cambridge Track Ordere of infinity (no. 12, ed. 2, 1924),
* T have altered the sign of the second term so as to agree with Ramanujan’s later

assertions.
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The difference between the number of prime numbers of the form 4n—1

and which are less than x, and those of the form 4n + 1 less than 2, is infinite

when x becomes infinite. . .

29 Feb. 1918

1. The number of prime numbers less than z is

oD y'

2.1.1 a dt,(1.1) {, ies ty Teeny
where

1 I
(2.1.2) (t+) =atgat-

and y = log.

2. The number of prime numbers less than z is

: log x 4 oe)" 6 (S82 5
(2.1.3) a3 on v) an, (Ee + ER, =) Hedy

where B, =i, B, = 3, ..., the B

3. The number of prime nuy

[” = dt
1.4 =(2.1.4) le logt =f ~ logé

where c = 1:45136380 nearly .

I have also found expressions

form (say of the form 24+ 17;

mbers,

is

ae ft a
« logt 6), logt

Tseng

ber of prime numbers of a given

Primes of the form 474 1:

Those of the forms 8n+3, 8n+5, 8n+7, 12n+5, 12n4+7, and 12n411

are all equal.

But

(primes of the form 4n—1)— (those of the form 4+ 1),

(.ececeeeteeeseseeeeeeees 60 — VL) (cece ceecere ee cee ees 6+ 1)->00,

(ceceeesc eens eeees eens B+ 3) — (eeceecrcaesees eee eee 8n +1) 00,

(secceeer ences enon eee ees 12m +5) —(Lcccccceeeeeeeeeeees 12n+1)-+o.

* Ramanujan proceeds to explain the law of formation of the series. It is of course

(m) zum de

m Jo logt’

where p(m) is the Mébius function which is (~ 1)? when m is “quadratfrei” (a

product of p different primes) and 0 otherwise.

He continues with instructions concerning computation from the series (see

Papers, 351).

(2.1.5) papa
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I have not merely shown that the difference tends to infinity, but found

out expressions (like those for prime numbers) for the difference, within

any given number..........

We must read the second letter in the light of the first; the formulae

(2.1.1), (2.1.8) and (2.1.4) are naturally not exact.’ Ramanujan defines

three functions, the integral (2.1.1), which I will call J(z), and the two

series (2.1.3) and (2.1.4), which I will call G(x) and R(x) respectively, and

asserts that they differ boundedly from a(x): if F(x) is any one of the three

functions, then

(2.1.6) n(x) = F(x) + O(1).

The series R(x) is a famous series which occurs in Riemann’s work, and a

series much like G(x) was found by Gram. The integral J(x) had never, so

far as I know, appeared before; and in any case I am sure (for reasons which

I will state later) that Ramanujan had found all three functions for himself.

2.2. The series used by Gre

(2.2.1) g(x) = b+ Pin)’

2 This series can (as no doubt

ith R(x).

about R(x), which I will

and G(x) is twice the sum of i

Ramanujan knew) be shown ta:

We require some prelimin

write in the form (2,1.5)3

(2.2.2)

and

x Hm) —_(2.2.3) a log m 1

(though even the first of these equations is as “deep” as the Prime Number

Theorem). It follows from (2.2.2) that the value of c in (2.1.4) is immaterial

(so long as it is not 1). In particular, if we define the logarithm integral

liz, when z> 1, by
l—-e

ven fea oD
' Since m(2) is discontinuous.

224- ir

7 Since €(2k) = —- uy Be

(I follow Ramanujan’s notation for the “Bemoultian numbers, writing B,, where
B, is more usual.)

3 See the footnote to p. 23.
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(a “principal value” in Cauchy’s sense), then we may write (2.1.5) in the

more usual form

(2.2.4) R(a) = 2 wn) ligtm
It is known that

(2.2.5) liz = y+log loga+ um y; (log (loge)
where y is Euler’s constant. Hence

= (log x)"
1 %.n!mTM

(2.2.6) lal” = y+logloga—logm+¥

= ~logm+y +loglogz + 0(;)

when m->0o, and the convergence of (2.2.4) depends upon that of (2.2.2)

and (2.2.3).

If we substitute from (2.2.6) into R(x), and remember the formulae

(2.2.2) and (2.2.3), we obtain

] n

R(x) = (y+ log log x) 3 m+ 2 rn y Moe ey

= 14 y ROEM yf Oe)". = gla)
i+ i) Tn FI)
series are the same. Also, if we

mn wn He?

so that the sums of Riemann’s

write logx = y and

g(x) = A(log 2:

then Giz} BS },

and it is not difficuit to show that

(2.2.7) h(-y)7>0

when y>0o.?, Hence G(x) = R(x)+o(1),

and Ramanujan’s series is equivalent to Gram’s.

We can also prove that

(2.2.8) J (x) = G(x) +0(1);

but the proof, which depends upon the formula

2» gett cel eat dan
a c= et SOE» Pa#+) -[ xin + (log x)*}

is a little more difficult. If we may take this for granted, we can conclude

that Ramanujan’s three approximations are equivalent. I may therefore

confine myself, in what follows, to the most familiar function, R(x).

T All summations are from 1 to oo.

7 See the notes at the ond of the lecture.
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The series R(x)

2.3. Ramanujan’s assertions amount to this, that

(2.3.1) n(x) — R(x) = O(1),

Le. that 7(x)—~— R(x) is bounded. In this case

(2.3.2) m(x)— R(x) = O(«*)

for every positive 6, so that the error is less important than any term of

R(x). It would be an easy deduction that

(2.3.3) n(x) = lia+ O(att),

(2.3.4) mx) = lin—fliat+ O(a),

and so on, for every positive 6. In particular it would follow that

(2.3.5) m(az)—lia—+>—oo

when a->0o, I may as well sa¥

(2.3.2), (2.8.4) and (2.3.5) are:

with the Riemann Hypothesis,

Ramanujan’s main thesis is {§

facts. The primes are tabulated

been found for a number of much

of the values of 7(x), and the ery

‘vat, of these assertions, (2.3.1),

while (2.3.3) stands or falls

stonishing how well it fits the

000: and the value of (x) has

nea of x. The table shows some

il 2(x) by excess or default.

x liz R(x)

100,000 + 38 -— 5
1,600,000 + 130 +30
2,000,000 148,933 + 122 — 9
3,000,000 216,816 + 155 0
4,000,000 283,146 + 206 +33

5,000,000 348,513 + 125 — 64

6,000,000 412,849 + 228 +24
7,000,000 476,648 + 179 —38
8,000,000 539,777 + 223 - 6
9,000,000 602,489 + 187 — 53

10,000,000 664,579 + 339 +88
100,000,000 5,761,455 + 755 +97

1,000,000,000 50,847,478 + 1758 — 23

The largest error known in R(x) is +228 for « = 90,000,000. The agree-

ment is very striking and (though Ramanujan had not facts on this scale

to mislead him’) it is not at all surprising that he should have been misled.

He quotes only results for quite small x; errors —0-1, —0-1, +0-2 for x = 50, 300,
1000 (Papers, 351).
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The early history of the theory of primes

2.4. Ramanujan, of course, had not merely “guessed” his theorems; no

flight of pure imagination could carry any man so far. He had a “proof”,

a definite, and very ingenious, train of reasoning. This I intend to explain,

but it is essential that I should give first a rapid sketch of the history and

structure of the “classical” theory.

The Prime Number Theorem,

(2.4.1) (2) ~ Toa?

was conjectured independently by Legendre and by Gauss. Gauss gave

the approximation liz, now known to be more accurate, but neither author

is very explicit about the degree of accuracy which they claimed for their

formulae. As I said in my first lecture, (2.4.1) is equivalent to p, ~n log n.

The first definite progress was made by Tchebychef. Tchebychef proved

that

(2.4.2)

or (what is the same thing) thy

(2.4.3)

(and the most natural operation to perform on a set of primes is to multiply

them); and (x) is the logarithm of the least common multiple of the num-

bers up to x. It is the more complex function (xz), as we shall see, which

presents itself most naturally in the analytic theory. The number of

squares, cubes, ... of primes up to x does not exceed

at+attatt... = O(¢tlogsx)3

? Tuse C generally for an “absolute constant”’ (a number such as 7 or 77). The various

C’s are naturally not equal.

> Count log p for every p, p?, ... up to « Thus

yr(10) =: log 2+ log 3 + log 2 + log 5 + log 7 + log 2+log3

z= Slog 2+2log3+log5+log7

(log 2, for example, arising from 2, 2? = 4, 28 = 8).

3 Since pTM >a if m> log x/log 2, we need take only O(log x) terms of the series,



28 Ramanujan and the theory of

which is insignificant compared with functions whose order is about x.

Hence powers of primes are comparatively unimportant in the theory, and

we may think of Xx) and y(x) as, for our present purpose, substantially

the same.

It is natural to expect that

(2.4.5) log x .a(x) ~ ~ u(x),

since (i) (x) and y(x) are “‘much the same”, and (ii) #(x) contains 7(x)

terms in most of which log p is nearly log z. Tchebychef gave an accurate

proof of (2.4.5), and inferred that

= lim 2)
xv

= lim v(x)
x

(2.4.6) lim 288-712)

if any one of the three limits exists, and that the Prime Number Theorem is

equivalent to either of

(2.4.7) Boxtne Be

se of the limits is 1; but he

ity, the proof of the existence

Finally, he proved that the

could not overcome the funda

of the limits.

The proof of the sber Theorem

2.5. The Prime Number Th

de la Vallée-Poussin in 1896. T

on Euler’s identity

ity proved by Hadamard and

‘+k upon the problem depends

(2.5.1) tsj= ¥

where Its > 1. It follows from (2.5.1) that

log &£(. ] a — 2 i0g s)= x Og; l—7- —p? mpm’

the summation being over all primes p and all positive integers m. Hence

_ &(s) 08 P
2.5.2 —: a,n-,
G02) le) aa pm >

where a, = logp (n=p"),

a, = 0 (otherwise).

Here a, is the arithmetical function usually denoted by A(n), and the

“sum function”

A(x) = D ay,
NSE

of a,, is w(x)
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We now require a general theorem in the theory of Dirichlet’s series.
Suppose that s = o+it, and that

f(s) = 2a,n-*
is absolutely convergent for ¢ > 1. Then

1 C+100 4/8

sail Y ds
277 | e-ico 8

is 0, 4,1

in the three cases 0<y <1, y = 1, y>1;' and it is easily proved that

lf, 2 x\%ds
——, — = —_ —_— => ’ = A*smi] £0)", a9 = Sa {(Z)S = Ba, = AX,

where A*(x) differs from A(x) only in that, when x is an integer, the last
term a, in A(z) is to be multiplied by 4. In particular

(2.5.3) y* (a)

where c> 1 and

"of the prime number problem.

ions to the solution, the first so

¢, it cannot be carried through.

fs, which has a simple pole

This formula contains the “anal

In what follows I shall give two :

rough that, in the present state of.

It is known that &(s) is an az

of the type

at s = 1, but is otherwise regular. It satisfies Riemann’s equation

€(1 —8) = 2(27)-* cos an I's) €(3).

It has simple zeros (the “‘trivial” zeros) at

g§=—2,-4,—6,..,

and an infinity of complex zeros p for all of which 0 <a <1. The “Riemann

Hypothesis” is the hypothesis that all the p have the real part b.

The function (2./.2) has also a pole of type

' The integral is a principal value at infinity (ie, the limit of an integral from
c—if to e+iT) when z= 1.
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at the zeros of ¢(s). Let us assume that the Riemann Hypothesis is

true, and that the behaviour of f(s), when o>} and |t|—, is “not too

bad”. Then it is natural to suppose that we can move the contour of in-

tegration in (2.5.3) across the pole ats = 1, and deduce

2.5.4 * tee w d.(2.5.4) vv (v) = +57. ints 3,

where $< y<1. Tho zis the residue arising from the pole at s = 1. Further,

since every element of the integrand is of order x” in 2, it is natural to suppose

that the integral is of much the same order, and that

(2.5.5) yr*(a) = 2+ O(a?)

for every f > }. Since the difference between p*(x) and yr(x) is at most log z,

this gives the Prime Number Theorem (and a good deal more). The argu-

ment cannot be developed accurately on quite the simple lines which I have

sketched, but (2.5.5) is actually q.ccrrect conclusion from the Riemann

Hypothesis.

It is easy to deduce from

(2.5.6)

again for any f > 4. For (2.8.5

(2.5.7)

Also

and so n(x) —lin = “a Ov)
2

_ [74-3= tom)

_ W(x)" log2—2 =P(t)—1

~ loga —log2 I; iogne + OM)
-O ah 0 x {f-1 ou

= (sea) Ol] doaze] tO
= O(x*),

which is (2.5.6).

The function

(2.5.8) TT (x2) = a(x) + dar(at) + far(a4) +.

' Tt is convenient to use the notation of the Stieltjes integral: 0(x) is the stop-function

with jumps log p at the points z = p.
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is related to w(x) much as is 7(x) to O(a). Since

4n(at)+4n(2)+...Sattaty = O(a log x),

we have also

(2.5.9) IT(z) = lie + O(a).

Second approximation to the proof

2.6. This is the “first approximation” to the proof of the Prime Number
Theorem, but it is essential that we should get a little closer to the trath if
we are to understand Ramanujan’s attempt. In my second approximation
I shall discard the unproved Riemann Hypothesis; but that will not be the
most important improvement.

The main difficulty in my first “proof” lay, not in the assumption of the
Riemann Hypothesis, but in the naive argument about the “order” of the
integral in (2.5.4). The fundamental difficulty is that the integral is not
absolutely convergent, and that we..caunot be sure that its order is not
much greater than that of an We avoid this difficulty by
considering not y*(2x) itself : f w(x) or ¥{x), and finding
an asymptotic forniula for th have then to infer back from
the average to the function introduces a new element, a
“Tauberian” element, into the

It is most convenient to state

series, and I shall prove the £

(i) that

(2.6.1)

is absolutely convergent for ¢ > f

(ii) that f(s) is regular on the line o = 1, except for a simple pole, with
residue 1, at s = 1

(iii) that

(2.6.2) flo+it) = O(|¢|*),
where a <1, for 72; 1 and large |t|;

(iv) that

(2.6.8) a, > —K,

where K is a constant. Then

(2.6.4) A(x) ~ 2,

We write

(2.6.5) Axa) = {"Aw)dy = [4tenay
" A(y) and A*(y) differ only at isolated points.
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From 1 pe
AM(a)=5— | feds (>)

e~to

it follows by integration that

1 e+to aetl

2.6.6 =— —_—(2.6.6) Axa) = 55 { Jey
We h \ 1 e+io x 1

e have also Bri} sie &(8)-— ds = «+ O(1),

] t+to stl

2.6. —; ~———. dg = 4a(2.6.7) Sari | osm 8 ser) $224 O(z),

Subtracting (2.6.7) from (2.6.6), we obtain

2 6 8) A 2 0 1 e+io gat

-0. 1(%) — $2? + O(a) = Omi | o—im 98) 4) TM

where

(2.6.9)

and a simple continuity arguy

(2.6.10) — Ay(v)—4a2 +6

Now it is easy to prove that

rat

where 0<a<1,ie. that &(s},

the theorem. Hence the inte;

| 6

the product of 2? by an integral of the type

” H(t) eto dt = [ ” H(t) et dt,
—o

where | | Z(t) |dé<oo. Such an integral tends to 0 when £ = log x oo,4
and therefore A, (a) — 42? = o(2?),

or

(2.6.11) A, (x) ~ 42%,

* Exactly, [a] if x is not an integer, «—} if it is.

* ‘We must subtract (2.6.7) from (2.6.6) before putting ¢ = 1, since J (8) and &(8) each
have a pole at s= 1,

3 In fact &(s) = O(log |¢|): see Ingham, 27, or Landau, Handbuch, 169.
* By the “Riemann-Lebesgue theorem ” for trigonomotrical integrals: see, for example,
Titchmarsh, Fourier integrals, 11 (Theorem 1).
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2.7, We have now to pass from (2.6.11) to (2.6.4). This requires a
‘“Tauberian” argument, here of a very simple kind. If

(2.7.1) b, =4,—-1,

then B(x) = ¥ (a,-1) = A(z) -2+ 0(1),
NSE

B(z) = I Buy) dy = Aya) ~ 422+ O(2),
and so

(2.7.2) B(x) = o(2?);

and

(2.7.3) b,>-K-1=—L,

say, by (2.6.3) and (2.7.1). We have to prove that

(2.7.4) B(x) = o(x).
Suppose that (2.7.4) is falae,“t 

.
other of

(2.7.5) Bu

is a positive é such that one or

bx

Take, for example, the first bys sad suppose that B(£) > 6&. Then

Bix) — Be

and Be}

for Exe dk

Hence BE + 21) — By(E)> [assae = + £3,

But this contradicts /2.7.2), since each term on the left is o(&?).

We can deduce a contradiction similarly’ from the second hypothesis
(2.7.5), and the two contradictions prove (2.7.4).

In order to deduce the Prime Number Theorem we must show that the

function (2.5.2) satisfies the conditions (ii), (iii) and (iv) of §2.6. The last
condition is satistied because A(n) 20. Condition (ii) is equivalent to

(2.7.6) €(1 +t) + 0,

and (iii) asserts rather more. It is the verification of these conditions that

is the main difficulty of the proof.

* But now using an interval (£’, £) to the left of £.
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Later developments

2.8. There are two chapters in this proof (and in all other proofs) of the

Prime Number Theorem. The first part of the proof is properly function-

theoretic. We show that {(s) has certain properties, and deduce an asymp-

totic formula for

r(x) _ 1 =
a ve dt

or for some other average of y(x). The second part is ‘“Tauberian’’. The diffi-

culties are divided differently, in different proofs, between the two chapters.

In the “classical” proof, which I have sketched to you, the first chapter

is difficult and the second easy, only a very simple Tauberian theorem

being required. Later proofs simplify the first chapter at the expense of

the second.

The most important of these more racent developments is due, in essen-

tials, to Wiener. Wiener and hig* aye shown that we may simply

strike out the condition (iik theorem of §2.6. We still

need (ii); in particular, in t a primes, we must still prove

(2.7.6); but we do not require ing at all about the behaviour

of €(s) at infinity. It had for i id, a little vaguely, that ‘“‘the

Prime Number Theorem is ey the assertion that €(s) has no

zeros on ¢ = |”, but Wiener ha w to interpret this statement

literally, and this is naturally contribution to the logic of

prime number theory.

What is relevant now, howeve mers generalisation, the “‘true”’

generalisation of the theorem, but a y generalisation made by Little-

wood and myself in 1915. This half-way theorem has lost its significance

since its supersession by Wiener’s, but it is just what is wanted for the

comprehension of Ramanujan’s work.

Littlewood. and I found ourselves in possession of a powerful Tauberian

theorem: if

(2.8.1) Sa,e-" ~

when y-> 0, and

(2.8.2) Oy, 29,

then A(x) ~a.

This has an immediate application to the Prime Number Theorem, since, if

we can prove that

(2.8.3) ¥A(n) em we,
2 y
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it will follow that w(x) ~2. Since

(l-e¥) 2a, e-% = (1—e¥ PP Say +a, +... +a,)e-

_ A(0)+ Aer +...4Alnjerm + ..,

~ T+ 2eV 4 + (nt lye,

and 1—e-¥~y, we can regard

y 20,677

as a kind of average of A(n)/n. Hence a function-theoretic proof of (2.8.3)

will lead to ® proof of the Prime Number Theorem conforming to my

general description.

Littlewood and I, then, proceeded as follows. In the first place, we proved

an extension of the general theorem; we showed that condition (iii) of § 2.6

may be replaced by

(2.8.4) f(a +it) = O(e4'4),

for any positive constant A

in fact no condition of this |

and finally we applied our Tai

you to fix your attention, sinc

8 no importance now (since

condly, we deduced (2.8.3);

.. It is on (2.8.3) that I want

Ramanujan’s first objective.

Rome: ment

2.9. I can now pass to Rar

me some time after his arrival i

of it clearer if I allow myself to 3

Ramanujan was trying to prov ly the Prime Number Theorem,

not even merely a result like (2.5.6), which is true on the Riemann Hypothesis,

but a much more precise result which we know to be false. He committed

a definite, and a very curious, fallacy: his argument is not merely “un-

rigorous” but in a more drastic sense “unsound”, and I want to make

his mistake quite plain. I can do this more easily, and without doing him

the slightest injustive, by talking as if his aims had been limited to the proof

of the Prime Number Theorem.

Ramanujan writes

(2.9. 1) d(4) = x log p > enpTMy —_ log 9 > RNrp—2My
p m=1 m=1

= Bi(y¥) — poly),

and sets out to prove, firat, that

(2.9.2) dw~;

al “proof”, which he showed

nall be able to make the points

; his object a little.

3-2
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He does not use the notation A(n), but actually

(2.9.3) Aly) = An) en,

so that the Prime Number Theorem would really follow from (2.9.2).

Next, he writes

(2.9.4) Py) = Hy) — P(2y) + A(3y) —... = Dy(y) — Daly),

where ®, and ®, are the functions related to ¢, and ¢, as ® is to ¢. Then

pnye 

ny

(2.9.8) D,(y) = loge x ,l+ePTM = SA) ra
and

00 Qmeg—2"y en’

(2.9.6) Oxy) = log? ST 5-aiy = 2log2 >a,

. . 2
by the elementary identity - al Foe =

2.10. Ramanujan now ma. ation of ®,(y). We have

(2.10.1) P69) #{2y),

where

(2.10.2) Ps

But

(2.10.3) Py(y) =

where

(2.10.4) Cy = DA(n).

Also, if k = Hp, TM
SA(n) = Dalogp = Y log p* = logk.

ple plknk

Hence Fly) = > log ke-*v
Z

and

(2.10.5) O(y) = Slog hk e*” — 2 Slog het
2 2

= sr log ke-kv — 2 Ss log 2k e~*kv +. 2 log 2 > e~tky
2 2 2

= eVlog 1—e~*V log 2 + e~84 log 3—.,. + 2log 2
l-e"

* Since we must count log p for each of the divisors p, p*, ..., p*.
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Combining (2.9.6) and (2.10.5), we obtain

(2.10.6) P(y) = eV log 1—e-V log 2 +e“ log 3—....

Ramanujan now infers that

(2.10.7) Dy) 1,"

or

(2.10.8) $y) — P(2y) + P(BY) — > L

for some 1. He gives no reason, but the conclusion is correct and easily

proved? Up to this point his argument, though expressed in @ less con-

venient notation than that which I have used, is quite sound.

Next, Ramanujan infers from (2.10.8) that

(2.10.9) bly) ol.

Allthat would be necessary, ifhe w iming at the Prime Number Theorem

only, would be the milder conclasi

(2.10.10)

and we may continue his argur e asserted no more than this.

He then states that
1

(2.10.11) daly) ~

and from (2.10.10) and (2.16.3 hat

, I

(2.10.12) Ply} ° wm

which is (2.8.3). What he actually says and professes to derive from (2.10.9)

is that
i

(2.10.13) Ply) = yt Ol)

or at any rate
1

(2.10.14) pily) = yt Oy’)

for every positive 6

Now (2.8.3) is true; it is, as I said, the half-way stage in the “Hardy-

Littlewood”? proof; and from (2.8.3) we can deduce the Prime Number

Theorem in an “elementary” manner, that is to say by arguments which

make no use of the notion of an analytic function of the complex variable.

© Tnsel for “a limit” (not necessarily the samo in different contexts).

2 For example, the series
log 1-log2+log3—...

is summable (C, 1), The sum is — }log }7.
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It follows that, if Ramanujan really had proved (2.10.12), he would have

found an elementary proof of the Prime Number Theorem, a proof involving

no function-theory at all. In particular, he would never have needed (2.7.6);

and this is of course enough to convince any reader who knows the subject

that the proof cannot possibly be correct. And in fact Ramanujan has

deduced the true conclusion from two false propositions, the proposition

(2.10.11), and the proposition that (2.10.8) implies (2.10.10).

2.11, I had better show the falsity of these propositions at once. In the

first place, (2.10.8) does not imply (2.10.10), and still less (2.10.9). Suppose,

for example, that :
P xy) = yt.

Then = x(y)—x(2y) + X(8y)— = (1-2 4 Ba

= (12°44) £1 +aiyy-t-%,

which is 0 if

ajan’s statement. It is true

amanujan’s ¢o(y), but we can

af y(y) as closely as we please,

ay any such reservation.

nt should contain flaws like

validity of difficult general

but yx(y) oscillates, in contraidl,

that x(y) is not a power-series i

find such series which mimic th

and the statement cannot be re}

It is only natural that Rama;

this, where his instincts misic

theorems. There are true Tans wis which have some superficial

resemblance to the one which 1] hw ‘refuted, and a good deal of ex-

perience and subtlety is needed to distinguish the true from the false. His

second error is much more surprising, since one would have expected him

to be right about the behaviour of a special function like ¢,(y).

He seems to have been deceived by an “integral analogy”’. The integral

analogue of the series (2.10.11) is

(2.11.1) log 2| 2%e-24 dar,
0

* 1 ” eu 1
Qxe—By = vt de = — weand I, eu dx jog a ev? dz ylog2~ ylog2”

so that (2.11.1) behaves in the manner which he attributes to (2.10.11).

But (2.10.11) itself behaves differently, having “wobbles” of order 1/y.

We can refute Ramanujan’s assertion in numerous ways. In the first

place, if (2.10.11) were true it would follow (by the Hardy-Littlewood

Tauberian theorem) that

x
Pe ————

Se ? log 2"
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This is plainly false, since the series is practically doubled when 2 passes

through a value 2”,

A more direct argument is as follows. The function ¢,(y) satisfies the

eqnenen daly) ~ 2bs(2y) = Ber % log 2.
It may also be verified at once that

_ o>) (- iyy ortl

Yo(y) = —log 2 2 a BELT

satisfies Wo(y) — 2yry(2y) = 2e-*¥ log 2,

and therefore hy) = $ly)—- Vly)

satisfies h(y) — 2h(2y) = 0.

Also yh(y) is not a constant."

If now we write

then H(leg

so that H is periodic and not ¢

nor does y¢o(y).

Finally we can, if we please

can prove that

; #(y) does not tend to a limit,

‘“wobbles” in a formula. We

1 2 12 14 2kni .
2.11.2 y) =——log 2 s ow ( —2kri/log 2
(2.11.2) daly) = 7 —log 2s yon \ toga )Y

where the dash excludes the v ad the last series shows the

wobbles, of order }/y, explicitly “Tecenverges rapidly, and the wobbles are

small compared with the dominant term.

The genesis of Riemann’s series

2.12. It will be plain by now that Ramanujan’s proof of the Prime

Number Theorem was quite wrong. His errors were fundamental; he was

wrong not merely because he could not supply the necessary “rigour”’,

but because the path which he followed did not follow the facts. I should

like to say that “rigour apart, he found the Hardy-Littlewood proof’, but

I cannot.

Ramanujan could not prove the true Prime Number Theorem, and

naturally he could not prove the false (2.3.1) or (2.3.2). I shall say something

later about the way in which he professes to derive them from (2.10.13),

but I must first make a few remarks about the status of the series R(x) in

the orthodox theory.

TM ¥,(y) is a meromorphic function, while 4o(y) has a barrier along the imaginary axis.

The point could aleo be settled by calculation.
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There are two goals in the theory. One is to prove the Prime Number

Theorem, or some refinement upon it. The other is to find an exact analytical

expression for 7(x), or one of its associated functions; an expression which

may incidentally provide an approximation for (x), but is sought as an

end in itself, Riemann (who never even mentions the Prime Number

Theorem) attacked the second problem.

It is easy to see how such identities may be derived from the integral

(2.5.3). It is natural to suppose that the integral is equal to the sum of the

residues at all the poles to the left of the line of integration. These are easily

calculated, and we find the formula

1

(2.12.1) y*(2) =x—-D oy tog (1-35).
P

Here the first term arises, as in (2.5.4), from s = 1, and the last from the

“trivial” zeros. It is fairly ea formula for the function [7(x)

defined by (2.5.8). If 17*(x) 2) as y*(x) is to w(x), then

, - —log 2.¥(y7) = Hie SG rts(2.12.2) *(x) = liz mh ijwlogu

Ppropriately to cover complex z.

‘irversion formulae” associated

The definition of liz must be e

We pass from I1(x) to m(x) by

with the Mébius function. If ,

then (subject to certain reservations 8653

f€) = 3, wng(?).
n

if vonvergence)

It follows from this and (2.5.8) that

48(2.12.3) n(a) = me) Ma"),
pe

and, if we ignore the difference between JJ and [/*, and replace [7(2"") in

every term of (2.12.3) by liz’, we obtain R(x). This involves neglecting

every term in (2.12.2) except the leading term, that is to say, substantially,

ignoring the complex zéros of ¢(s).

The exact proof of (2.12.1) and (2.12.2) is given in the textbooks. Riemann

(whose proof is not exact) argued rather differently. He observed first that

(2.12.4) [76 xoldr = | atautta) _ i xs 1. _ 10g &(s)
0 8 ommprs ~ s

"Take f(§) = Sm(eb), g(f) = (e8).
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for o>1, From this it follows, by ‘‘Mellin’s inversion formula”’, that

. _ 1 fet log es)(2.12.5) IT(x) = mil. ‘ee ds
ife> 1.

If

(2.12.6) s8=4+iz,

then

(2.12.7) E(z) = 49(8— 1) 7-# (48) (8)
is an integral function of z. Its zeros are given by

(2.12.8) s8=p, 2=-ip—-h)=7.

They lie symmetrically about the origin, and are real if the Riemann

Hypothesis is true; and

(2.12.9) E(2)

From (2.12.7) and (2.12.9) we'

(2.12.10) log €(s) = —log {s 1)+ 48s logz7

,log (1 + 7

and Riemann substitutes fre » (2.12.5) and evaluates the

terms of the resulling series 3: dominating term of (2.12.2)

results from the term —log (« —

There are gaps in the argumen i te most important is the lack

of any sufficient proof of (2.12.9). This was only made possible much later

by Hadamard’s work on integral functions. But what I want you to notice

particularly is that there is nowhere any explicit use of Cauchy’s Theorem.

Riemann’s formal machinery, his term by term integrations of series,

his use of Fourier’s Theorem in the proof of (2.12.5), and his evaluations of

particular definite integrals, would all have been intelligible, and highly

sympathetic, to Ramanujan.

2.13. I return to Ramanujan’s argument. We can write (2.8.3) or

(2.9.2) as

1(2.13.1) [vewave~<
0 y

* Riemann put s = ¢4 i, and expressed (2.12.4) as a Fourier intogral with a factor

iilec OB

then appealing to the Fourier formulae. The two arguments are formally oquivalent.
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(though Ramanujan does not use this notation), and from these propositions

we can deduce the Prime Number Theorem. Ramanujan thought that he

could prove much more, viz, (2.10.13) or (2.10.14), which may be written as

(2.13.2) i em aye) = , +0(1),
or

(2.13.3) | “e-¥ dyh(z) = ++ Oly).
0 ¥

From these he deduced

(2.18.4) r(x) —a = O(1) (or O(z*))

and the passage to

(2.13.5) n(x)~ R(a) = O(1) (or O(z*))

was easy. But his argument here is unsound beyond any possibility of

restoration. Not only are all of (2.13.5) demonstrably false, but

the passage from (2.13.2) or: ) is also fallacious. There are

no Tauberian theorems whic ake inferences like this. And

T do not think that it is wortl: e more closely into the details

of Ramanujan’s reasoning. ‘Th roach at any rate that cannot

be made against it. Unsound s ot “dim”; Ramanujan was never

dim, It contains a very inter aril one which, when properly

pruned, fits into its place in

The question s originality

2.14. Whatever you may think ‘of ‘Ramanujan’s argument, you will

agree that his formal ideas were fine, and you are sure to wonder whether

they were all his own. In particular, did he really discover the Riemann

series himself?

My own opinion is that he did. There is, however, just one book in which

he might conceivably have seen the series. There was a copy of Mathews’s

Theory of numbers in the Madras library, and this book contains a (rather

uncritical) reproduction of Riemann’s analysis. It seems worth while to

consider for a moment what books, of importance to him and accessible in

Madras, Ramanujan may have consulted.

There were five books which would have been particularly important to

Ramanujan: Whittaker’s Modern analysis (published in 1902), Brom-

wich’s Infinite series (1908), Mathews (1892), and Cayley’s and Greenhill’s

treatises on elliptic functions. My own opinion is that: he had seen one at

least, and possibly both, of the last two books, but none of the other three.

I have no idea how this may have happened, and my opinion is based on

internal evidence only, but no other hypothesis seems to fit.
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In the first place, Ramanujan cannot have seen Whittaker, since he did

not know Cauchy’s Theorem. For the same reason, of course, he cannot

have seen Forsyth’s Theory of functions. This is important because it

shows that there were “obvious”? books which Ramanujan had never seen

although they were: certainly accessible in Madras.

The evidence about Bromwich is not so conclusive, but I cannot believe

that Ramanujan had seen the book. He was keenly interested in divergent

series, about which he had a “theory” of his own. Bromwich has a long and

very interesting chapter on the subject, which would have fascinated

Ramanujan; but Ramanujan never showed any knowledge of Cesaro or

Borel summability, or of any of the standard work. It seems plain indeed

from passages in his letters that he had no idea that any scientific theory

of divergent series existed.

I do not think, then, that Ram

Bromwich; but itseems plain the

and I agree with Littlewood

He never refers to books, but

of the subject as though he th

tended the theory in differen:

invented elliptic integrals, theta.

things he treats as parts of eo

remarkable both fer its exter

and the limitations fit exceller:

Greenhill’s stimulating but eccer,

These theorems about prime rit én the other hand, Ramanujan

claimed quite definitely as his own (though of course he recognised his

mistakes later, and learnt the outlines of the established theory). This, to

anyone who knew Ramanujan well, is conclusive; but the hypothesis of

Ramanujan’s complete independence is also the only one which seems to

me to fit the facts.

In the first place, if Ramanujan had ever seen Mathews, how could he

have been as ignorant as he was of the classical theory of quadratic forms,

which Mathews discusses elaborately and which fills nearly half his book?

The series for the class-number, in particular, would have fascinated

Ramanujan, and it is certain that he would have studied them intensively.

But the most conclusive evidence is Mathews’s chapter on primes itself.

This, whatever its defects, contains a fairly adequate description of Rie-

mann’s memoir. It lavs all the proper emphasis on Riemann’s great dis-

covery, that the theory of primes depends upon the “complex” properties

of (s), and in particular on the location of its zeros. The complex zeros of

? In which we learn first on p. 258 that the elliptic functions are doubly periodic.

jan had seen either Whittaker or

‘ead some book on elliptic functions,

tit was probably Greenhill’s.

ny of the standard theorems

own. He claims to have ex-

3 ke had done, but not to have

or modular equations. All these

edue, His own knowledge was

itations, and both the extent

pothesis that it was based on

S,
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¢(s) dominate the analysis, as they must in any account of Riemann’s work.

Ramanujan had no accurate ideas about analytic functions, but he knew

quite well that an equation could have an infinity of complex roots, and he

could have followed the argument without difficulty. It is incredible that,

after seeing this chapter, he should have proceeded to construct a theory

in which ‘‘all the zeros of €(s) were real’’.

My conclusion is, therefore, that all this work of Ramanujan, with its

flashes of inspiration and its crude mistakes, was an individual and un-

assisted achievement. There is no other hypothesis which seems to me to be

tenable, or to make any sort of mathematical or psychological sense.

In conclusion I may say this. No one before Riemann, so far as I know,

had written down R(x), and if Ramanujan found the series himself it may

seem a very astonishing performance. Even Gauss stopped at liz.

There is, however, a certain danger of exaggeration. If we see that

I(x) = 3

plays a more ‘“‘natural” part

more natural part than (x); if

naturally” to lia; and if we a

Mébius; then, when we pass ha

series F(a#) presents itself in

Tchebychef, and there was no |

down R(x), though he never «

these things too, as the argumen

clearly, and everything that he di

intelligible.

Salat) +o.

an. ma) itself, as (x) plays a

tis 7(x) which ‘ corresponds

with the inversion formula of

‘} to a(x) by this formula, the

these ideas were familiar to

¥ he should not have written

done so. Ramanujan knew all

ve presented to you shows quite

owever we may judge it, is thoroughly

NOTES ON LECTURE II

This lecture is a revised and enlarged edition of one given to the London Mathe-

matical Society on February 18, 1937.

§ 2.1. The letters are those printed in full in the Papers, xxiii-xxix and 349-352.

About the time when the letters were written, Narayana Aiyar (1) published

Ramanujan’s principal assertions in the Journal Indian Math. Soc.

I have altered Ramanujan’s notation for the sake of convenience of referehcee: he

has e* for w and a for y in (2.1.1), » for # in (2.1.3) and (2.1.4), and yw for ¢ in (2.1.4),

He also writes S,,, for &(t+1).

Ramanujan implics that p(x) oo when x->00, which is false, as Littlewood proved

in 1914, Littlewood’s proof, which is difficult, will be found in Ingham, ch. 5 or

Landau, Vorlesungen, ii, Kap. 11. Tho similar assertions about primes in arithmetical

progressions, at the end of the passage quoted from the second letter, are also false.

§ 2.2. For the series (2.2.1) see Gram, Skrifter d. K. Danske Videnskabernes

Selskab (6), 2 (1884), 185-308 (212, 295).

For the history of (2.2.2) and (2.2.3) see Landau, Handbuch, 567-574. That the

Prime Number Theorem could be deduced from (2.2.2) by ‘elementary’ reasoning
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(that is to say by rcasoning independent of the theory of functions of a complex

variable) was first proved by Landau, Wiener Sitzungsberichte, 120 (1911), 973-988;

the Handbuch contains only a deduction from (2.2.3).

According to Soldner, lia = 0 for ¢ = 1:4513692346..., and it seems probable that

this is the real value of Ramanujan’s c.

For (2.2.5) see Bromwich, Infinite series, ed. 2, 334.

To prove (2.2.7) we observe that

(Q) Maye rte ore = 145M (4)eee m Mm yn nt \n
ut = pat

= 1 Eee
m Jo u

ulm | —e-*w= =" 1 — ’u-+1ogm)
J0

say, by (2.2.3). Now

XY, m) — X(ys 7m +

say. If we write

Antion, we obtain

ye

and transform the last series in (1)

hf

Now it is known that

(2)

and O<u(y,m) Ss mam EW) me e— win) <-.

Hence the series is mayorised by a multiple of

, 1

m(log m)*”

and is uniformly convergent for all y. Finally, all of its terms tend to 0.

For (2), and much stronger results, seo Landau, Handbuch, 594-597.

For the proof of (2.:2.8) see Hardy (3).

§ 2.3. For (2.3.3), which is true on the Riemann Hypothesis, see Ingham, 83

(Theorern 30) or Landau, Handbuch, 378-388, For the falsity of (2.3.4), which is

much easier to prove than that of (2.3.5) or the other false assertions of § 2.3, see

Ingham, 90 (Theorem 32) or Landau, Handbuch, 711-719.

To deduce (2.3.4) from (2.3.2), observe that

o 1] 2 2

R(x) We + li =o > i (eg2y\
m=3M pol p-plm?

= oftog x 5 aD 4 (73 *)"\- O(at log x).
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The table is extracted from the much more comprehensive one in D. N. Lehmer’s

Liat of prime numbers from 1 to 10,006,721 (Washington, 1914), except for the values

of li 108 and li 10°, which T have taken from Ingham. The values of w(x) are less by 1}

than Lehmer’s, sirice he counts 1 as a prime. Those beyond the range of the factor

tables were found by Meissel in a series of papers in the Math. Annalen of which the

latest appeared in vol, 25 (1885), 251-257, and afterwards confirmed by Bertelsen.

Meissel’s method is an elaboration of the ‘sieve’ of Eratosthenes: see Mathews,

ch. 10. There is an account of Bertelsen’s work in a paper by Gram, Acta Math. 17

(18938), 301-314.

There is a long and interesting essay on these topics in the introduction to

J, Glaisher’s Factor table for the sixth million (London 1883). Torelli’s monograph

Sulla totalita dei numeri primi fino ad un limite assegnato (Naples 1901) also contains

much interesting information.

§ 2.4. There are proofs of Tchebychef’s theorems in Ingham, in both of Landau’s

books, and in Hardy and Wright, ch. 22.

§§ 2.6-2.7. There is no proof of the Prime Number Theorem anywhere in this

book, though §§ 2.6-2.7 contain a sketch of Landau’s proof, which is simpler than the

original proofs of Hadamard and de, | o Poussin, To complete it, we must

prove that

(1)

(2.7.6), which is proved, in two

proposition (1) can be proved by a

2.7.8),

gontain (a) the simplest proofs of

proof referred to in § 2.8) and

for an @ less than 1. This natural

different ways, in Lecture IV (4). TH

development of the first proof (Hads

Both Ingham’s tract and Landay

the Prime Number Theorem (ap.

(6) more elaborate proofs of much

A ‘Tauberian’ theorem may & orrected form of the false con-

verse of an ‘Abelian’ theorem. An * A jorem asserts that, if a sequence or

function behaves regularly, then some average of it behaves regularly. Thus

A(a)~a

x

implies A,(x)= i} A(t) dt~4a*:
0

this Abelian theorem is true for any A(x) and in particular for the A(a) of the text.

The converse is false, but becomes true when we subject A(x) to an appropriate

additional condition, here implied by (2.6.3).

The first Tauberian theorem was Tauber’s converse of Abel's theorem on the con-

tinuity of power series: see, for example, Bromwich, Injinite series, ed. 2, 256. Since

— Bot (Ag+ Ay) B+ (Go + +) WT...
~ L+ate%t+..,

Ag tO o+a_u7+... ’

the limit of the series is the limit of a certain average of a), dy +@,, Gg +4, +g,

§ 2.8. What is here called Wiencr’s proof of the Prime Number Theorem is the

‘Wiener-Ikehara’ proof, contained in §§ 19 e¢ seg. of Wioner’s The Fourier integral

(Cambridge 1933). There is a quite different proof in §§ 17-18.

The proof has been much simplified by Bochner, Math. Zeitschrft, 37 (1933), 1-9

and Landau, Berliner Sitzungsberichte (1932), 514-521. Landau’s version embodies
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the shortest extant proof of the Prime Number Theorem, but has not yet appeared

in any book, The version in my lithographed lectures on ‘Ramanujan’s work’

(Institute for advanced. study, 1936) is substantially Bochner’s.

For the ‘Hardy-Littlewood’ proof see Quarterly Journal of Math. 46 (1915),

215-219 or Acta Math. 41 (1918), 119-196 (127-134). The simplest proof of our

Tauberian theorem is that given by Karamata in Math. Zeitschrift, 32 (1980), 319-

320.

§ 2.10. For the summability of log 2—log 3+... see Bromwich, Injinite series,

ed. 1, 351.

§ 2.11. The argument towards the end of the section was suggested to me many

years ago by Prof. Maclagan Wedderburn, See Hardy, Quarterly Journal of Math.

38 (1907), 269-288 (277).

The formula (2.11.2; may be deduced by differentiation from the last formula on

p. 283 of this paper (in which the sign of the last term should be changed).

Ramanujan, when J disputed the truth of his statement, produced the amended

formula

“Bx(y) +- log 2(1~ a -)= 54 Fw,
3.4

where yt '(y) = 000 oe 72911]

correct to 10 places of decimals’. T°

k=+1.

§ 2.12. The proofs of the ‘explic

Landau, Handbuch, Kap. 19. Riera

ch. 10,

For the Mobius inversion for

Handbuch, 577-580,

§ 2.14. Ramanajan seems to have

series of positive terms, such as

Imt4 "43-84... (8<)

and to have ‘defined’ the sum of such a series as the constant of the Euler-Maclaurin

sum formula. But he was not in the habit of giving strict ‘definitions’,

nt explicitly of the terms in which

s* are given in Ingham, ch. 4 and

‘ecament is reproduced in Mathews,

nd Wright, 234-237, or Landau,

wn theory of divergent series with
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ROUND NUMBERS

3.1. A number is described in popular language as round if it is the

product of a considerable number of comparatively small factors. Thus

1200 = 24.3.5? would certainly be called round. The number 2187 = 3? is

even rounder, but this is obscured by the decimal notation.

It is a matter of common observation that round numbers are very rare;

the fact may be verified by anyone who will make a habit of factorising

numbers, such as numbers of motor-cars or railway carriages, which are

presented to his attention in a random manner. Both Ramanujan and I

had observed this phenomenon, which seems at first a little paradoxical,’

and were curious about its mathematical explanation.

We therefore proposed to ourselves the problem of determining the

“normal degree of compositene ber n. How many prime factors

may one expect to occur in a re ier nt

teness’’ of a number by the

uot this in two different ways,

ply or not. Suppose that

number of its prime factors; an

according as we count multiple f

(3.2.1) n= PB

where

is the standard expression of # 8s of primes. Then

(3.2.2) f(n) =v

is the number of different prime factors of n, and

(3.2.3) F(n) = Sa,

is the total number of prime factors when multiple factors are counted

multiply; and either of these functions may be adopted as a measure of the

compositeness of n. We shall find that it makes no important difference which

measure we adopt, and for the moment I consider f(x).

* “Half the numbers are divisible by 2, one-third by 3, one-sixth by both 2 and 3, and

so on. Surely then we may expect most numbers to have a large number of factors?

But the facts seem to show the opposite.”
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3.3. Itis clear that f(n) cannot be “very large”. The worst, or roundest,

numbers, those for which f(n) is largest compared with », are the numbers

n= 2.3.5... p,,

which are products of the first vy primes. For these numbers

f(n) =V=7(D,)s

and logn = ¥ log p, = %p,).

Now TM
(3.3.1) Avlogy<p,< Brlogv,

for constant A and #, and so

log p, ~ log v.

Hence

= fin) = lon n Pe). loam logn(3.3.2) v= fin) = logan ogy?

and

2a about this number of prime

e tables, cannot have more than

. about the Eddington number,

Thus a large number cannut t

factors. A number about 107, th

about 6 or 7, and a number al

cannot have more than about 4

The tofal number of prime

has 160, and » = 2* has

good deal larger; thus 108°

“dog 2

Here there is a big cifference between f(n) and F'(n), but we shall see that

this is exceptional.

3.4. The theorem just proved about (7) is a theorem about all numbers,

and we are concerned with (in some sense) “almost all”. The function

log n

log log n

increases slowly, but by no means so slowly as to explain the facts. We

find, if we try numbers at random from near the end of the factor tables,

that f(n) is usually not 7 or 8 but 3 or 4; and we should find, if the tables

could ke extended to the limits of the Eddington number, that it was usually

not about 30 but about 5 or 6. A number like the Skewes number’ would

generally have about the Eddington number of factors (and that may help

us to form some image of its size).

' See Lecture I, p. 17.
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We need a definition of “almost all”. Suppose that P is a property of

a number » expressed by a proposition P(n); that N(x) is the number of

numbers, up to z, for which P(7) is false; and that

N(x) = o(x).

Then we say that ‘‘almost all numbers possess the property P”’. Roughly,

the proportion of exceptional n is infinitesimal.

The answer to our problem is that almost all numbers n have about log logn

prime factors. More exactly, given ¢, then almost all numbers have between

(1 —e) log log n and (1+) log log” prime factors. The theorem is true which-

ever way we measure the number of factors, and, as we shall see, it can

be stated still more precisely.

3.5. The function log log n is suggested in another way. We have

Liej= Bom b= BL
nSe RSL

the summation being extend

satisfying the inequality; and

a p and positive integers m

th respect to m we obtain

(3.5.1) e.
REL

or

(3.5.2) x Fe &),
NSE

since the removal of a square Fa s an error of 1 at most. But

(3.5.3) E -O(1),
nsaPp

and therefore

(3.5.4) ¥ f(n) = wlog log x + O(x).
nse

Also YFa=S Dl ¥F 1
n=ax nie pein plmsax

(the summation extending over primes p and positive integers ~ and m),

and so

os) zr= zl Z (allel Lal)
0) =([a}+[S] + | <a (setoot .] = el apa = O(z).

? »|n means ‘p divides n’, so that ¥1 implies counting 1 for every prime divisor
pin

of n. Similarly } 1 implies counting 1 for every prime or power of a prime which

pi in

divides n.
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Hence we have also

(3.5.7) x F(n) = «log log x + O(z),
NEx

In particular

(3.5.8) x f(m)~xloglogz, ¥ F(n)~aloglog«
NSExr Nee

Now if ¢(m) is some simple increasing function, and

g(2)-+9(3) +... +9(n) ~B(2) + (3) +... + A(n),?

then it is natural to say that “the average order of g(x) is d(n)”’. And since

log log 2+... + log logn ~n log log n,

the average order of both f(n) and F(x) is log log n.

3.6. This is an interesting theore.n, but quite different from the one we

want to prove. We want to pray and #(n) are usually about

log log n. If g(n) is log p log lc ime p, and 0 otherwise, then

Xi g(n) =
nek £

)~ clog log x,*

and the average order of g(7} is

“almost all” numbers are compo

In our problem the average an

but that is a peculiarity of th

2: but g(n) is usually 0 (since

‘bat the normal order of g(n) is 0.

prders happen to be the same,

3.7. There are two proofs of c our original proof and another

given much later by Turan. Turan‘s proof is very simple and elegant, and

I will give it later; but I insert first a sketch of the original proof, which is

in some ways more suggestive.

We need only consider one of the two functions, say f(n). For F(n)=f(n)

and, by (3.5.6),

DAP) -fa} = ( | = + | | + | < Ox,

for some C. If N(x) is the number of numbers up to x for which

F(n)--f(n) > @,

N(z) C
then <@

* Or gQ)+...4+9(n)~A(L)+...4+(n). We start from 2 here because loglogn is not

defined for n = 1.

7 Since He2)= Y logp~x
Pew

and the factor log log p adds an additional log log x.
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which is small when G@ is large; and the number of numbers for which

F(n)—f(n) > x(n), where y(n) is any function of x which increases to infinity,

is o(x). In this sense ‘‘ F(n) —f(n) is almost always bounded”’.

We confine our attention, then, to f(z). Suppose that o,(x) is the number

of numbers, not exceeding x, for which f(z) = r. Then

(3.7.1) W(x) ~ m(x) ~ Toga

More generally, it is known that

a (log log a)"
(3.7.2) Onl®)~ Too (r—1)!

Now

(3.7.3) (x] = w(x) + (4) +... +0,(2) +...

and

— —"_ plogloge — 2 gr )(3.7.4) x bex® ® o — taconite

where

(3.7.5)

and (3.7.2) indicates a certain s

the two series. The similarity ca:

series terminates; but correspo.

equivalent when 2-00.

The largest term in the series

se, be too close, since the first

ixed rank are asymptotically

ae

§ ans1+f+ ot. 2G!

is that for which r = [£]+1.1 We write (3.7.4) as

x gr-a x g@ltu-t

G70)" joga¥ Gal ~ loge Y (Ete
# assuming both positive and negative values. By Stirling’s formula

gota ey

([g]+“—1)! (278)

if « is fairly small compared with £. Hence the right-hand side of (3.7.4)

may be compared with

(3.7.7) Se HE"lo i
log x” °8 *- J(an£)

or with abt “ edt = x;
(278) J — 2

* There are two equal terms when é is an integer.
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and the part of this integral for which ¢ is of higher order than Vis negligible.

Thus practically all of the sum of (3.7.4) is contributed by the terms for
which # is O(/€). [t is natural to suppose that the same must be true of the

series (3.7.3); that practically all of its sum comes from the terms in which

|r—£| = |r—loglogz|

is O(yEé) = Of y(log log z)}.

This, as we shall see in a moment, would prove our theorem and a good deal

more,

The argument is, as it stands, rough and inconclusive. We have to prove

that we can neglect most of the terms w,(x) in the series (3.7.3), and for this

we need inequalities instead of asymptotic equalities. But these can be

found without much difficulty, and the conclusion is that, if x(a) 18 any

Junction of x such that

then almost all numbers not ex neween

I

prime factors. Sinve log log x ax

over most of the range (1, a),*:

numbers n have between

are practically indistinguishable

e thing to say that almost all

prime factors.

3.8. There is one remark to add before I pass to Turan’s proof of the

theorem. The asymptotic formulae (3.7.2) are corollaries of the Prime

Number Theorem but the final proof is ‘‘elementary”’. We have to show

that the “tails” of the series (3.7.3) are negligible, and for this we use an

inequality

x (leglog2+Cy-
(3.8.1) wre) <A re Goh

where A and C are independent of both x and r. The proof of this depends

on Tchebychef’s inequality

x

ma) < Are

and does not require the Prime Number Theorem.

If 0<¢<1] and a°<n<w, then loglogn lies between

log (clog x) = loglog #—log (1/c)

and log log x.
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3.9. Turan’s proof of the theorem “pen on the identities (3.5.1) and

(3.9.1) Lifm)pP= =
NSx pp se, p' +p

To prove (3.9.1), we observe that the eft hana in is
= (1 31)- Sols SS wy

pmns2\pln p'|n =pm'sa p+)’, py’ psa pPMSL

+

Here p, p’ are primes, m and any positive integers, and the ranges of sum-

mation are indicated by the subscripts. Summing the last sums first with

respect to # and m, we obtain the result.

Now we have seen in §3.5 that

(3.9.2) d f(r) - 3/5 | = xlogloga+ O(2).
nse ~ pen

Also ¥ : + O(a);
py Sa, pp 4.

is convergent. But

E )

veep) *

o sximplies ps2 and p’ =a;

we may drop the restriction w

(3.9.3) (2.3)
since p <./x and p’ S$ /x imply »

and each of the two extreme ¢

{log loga+ O(4 + O(log log x).

Hence

(3.9.4) yr an
pp’ Sa, p+p' pp

and it follows from (3.9.1), (3.9.2) and (3.9.4) that

(3.9.5) Dd (fn)? = x(log log z)? + O(log log 2).

-++ O(@ log log x);

Finally, writing £ for log log, as in (3.7.5), we have

(8.9.8) B {ln GF = ¥ {flay}? 26S (Fp +

nf E2-+ O(E)} ~ 2Ee{E + O(1)} + Ee -+ O(1)}

= O(z&),

by (3.9.2) and (3.9.5). But if

| f(n) ~E | > x(a)

for more than éz of the 7 less than x, then

x {f(n) ~ Ey > dxx?,
NS2

which contradicts (3.9.6) if y is of higher order than /é; and this proves the

theorem.
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3.10. There is a curious corollary about d(n), the number of divisors of n.

It is familiar that

d(1)+d(2)+...4+d(n)~nlogn,

so that the averaye order of d(n) is logn. What is its normal order?

Ifn = pipe... p%, then

(3.10.1) f(n) =v, F(n)=Xa,, d(n) = (1+a,).

Also 2<1l+as 2,

Hence

(3.10.2) w <IT(1 4+-4,) < 274,

or

(3.10.3) 2K) < d(n) < QO),

Since f(n) and F(n) are both usually about log log x, it follows that d(n) is

usually about

(3.10.4) glog log n)rs vee

of d(n) ig Q08loen”’, since the

much less precise type than

4 gay, more roughly, that the

We cannot quite say that “th:

inequalities which we prove fs

those which we prove for f(#}7°

normal order of din) is ‘about 2"

In this case the normal and af

much below its average order. f

Most numbers have about 2 at some have a very much

larger number, so much larger that, «bnormal numbers dominate the

average of d(n). The irregularities of /(x) and #(n) are not strong enough to

produce a similar effect.

It is natural to put the same question about 7(n), the number of repre-

sentations of m as a sum of two squares; but in this case the answer is

immediate. Since

s do not agree; d(n) is usually

ja simple; d(n) is too irregular.

r(l)+r(2)+...47(n)~70N,

the average order of r(n) is 7, The normal order, on the other hand, is 0,

since most numbers are not representable.”

* Of the type Dlog log n-XIM) << d(n) < Blowlog n+xH),

The normal order of log d(n) is

log 2 loglogn.

Ax
* Only about a

. Wicga)
of the first 2 numbers are representable. See Lecture TV (B). For the average order,

see Lecture V, § 5.1.
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3.11. I conclude by mentioning a conjecture which I made in 1936 and

which has since been proved, independently, by Erdés and Pillai.

The asymptotic formula (3.7.2) is true for every fixed r, and it is natural

to suppose that it is also true when r is a function of x which tends to infinity

sufficiently slowly. If it held for

r = [log log x],

then a simple application of Stirling’s theorem would give

w,(2) it,
, a (27) ./ (log log x)’

and at any rate we might hope to prove that

(3.11.1) w,(2) > 4%

(for some A) is a trivial corollary

when I made the conjecture, w

i that I could prove, however,

Erdis and Pillai have now 5

is true for

ind indeed that the inequality

log log a — B /(log log 2) <= lag log « + B Jog log x);

and Pillai has proved a good deal more, viz. that, if 0<k<e, then

x (loglogxz—Cy—

o,() * Toga (r—1)!
for r Sk(log log a —C),

where C depends only on k. The truth of (3.11.1), for the range of values of

r stated, is a simple corollary.

NOTES ON LECTURE III

The main theorem of the lecture was proved by Hardy and Ramanujan, Quarterly

Journal of Math. 48 (1917), 76-92. This paper is no. 35 of the Papers, no. 32 being a

preliminary account.

Turan’s proof, given in § 3.9, was published in his paper 1. We have incorporated,

a simplification suggested by Mr Marshall Hall. The proof is also reproduced in Hardy

and Wright, § 22.13. Turan (2) has proved several generalisations of the theorem.
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§ 3.3. The inoqualities (3.3.1) and tho asymptotic relation

can be proved by ‘slementary’ reasoning. See for example Hardy and Wright,

ch. 22, and Lecture II.

For (3.5.3), and sharpor results, see Hardy and Wright, ch. 22; Ingham, 22-24;

Landau, Handbuch, 100-102. The slightly sharper result

1
EX —=log log #+A+0(1)

psxP

(with the proper value of A) is equivalent to Mertens’s theorem

where y is Euler’s constant.

It is almost as easy to prove the more precise equations

x log log 4 B20 = )x f(r) = 2 log log x+Axv+O
log xNS

where

These equations are stated in § 1.8( % paper referred to in the first of

these notes.

§ 3.7. For (3.7.2) see Landau,

§ 3.10, The maximum order o

ei ee 3.

This was first proved by Wigert: see Landau, fiandbuch, 219-222, Wigert and Landau
use the Prime Number Theorem in the proof, but Ramanujan (Papers, 85-86)

showed that this was unnecessary.

§ 3.11. See p. 6 of my lithographed lectures roferred to in the note on § 2.8 (p. 47).

The proofs of Erdés and Pillai have not yet been published.



IV

SOME MORE PROBLEMS OF THE

ANALYTIC THEORY OF NUMBERS

4.1. In this lecture I return to the classical problems of the analytic

theory of numbers. Its contents are miscellaneous and rather disconnected,

but have a thread of unity because most of them are suggested by those of

Ramanujan’s letters. I begin by a digression on a topic about which

Ramanujan said nothing, but to which I referred in Lecture II.

A

The proof that &(s) has no zeros ong = 1

4.2, The prime number theorem is “equivalent” to the theorem that

(4.2.1) CL + at) £0,

in the sense that no deeper

The strict equivalence appe

(4.2.1) is essential in any

Hadamard’s, but there is az

is interesting in itself and re

Ramanujan’s formulae.

Hadamard’s proof depends

(4.2.2) 3+ 4cos

(for all real @). We use this as fo

{g} are required for the proof.

* use Wiener’s method, but

standard proof of (4.2.1) is

proof, due to Ingham, which

because it depends on one ofje

igonometrical inequality, viz.

cos J)? = 0

gler’s formula

= Lp +f(s),

where f(s) is regular for o = 1 (and indeed for o > 4). Hence

log | (a + it) | = R2p-* * + g(a, t)

= J’p~? cos (p log t)+g(c, 4),

for o > 1, g(o,t) being bounded, for any fixed t, when g->1.

It follows that, if we write

X(a, t) = log | C8(0) Oto + tt) (a + 2at) |,

and continue to use g(c, ¢) in the same sense, then

v(o,t) = Xp-?{3 + 4 cos (t log p) + cos (2¢ log p)} + g(a, 4);
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and therefore (since the terms of the series are positive)

(4.2.3) v(o,t)> —A(é),

where A(é) is independent of 7, when o-> 1.

We now fix 4. If (i+ i) = 0,

then Co +t) = (1 +2+o0—1) = (o-1} Ale, t),

where & is a positive integer and logh(a,t) is bounded when a>1; and

therefore

1
log | Gio + it) | < —klog=—> + A(t)

when ¢-—1. Also log | €(@ + 2it) | < A(t)

1
and log | (7) | < log +A,

where A is constant. Thus

ula, t) < (8: A{t)>—o,

in contradiction to (4.2.3).

4.3. Ingham’s proof depend: la published by Ramanujan in

1915, viz.

Talh) Opi%. _s (9—b) &(s—a—b)(4.3.1) f(s) = 2- nF
a) ,

4:0 divisors of n, and

R(s-—a—b)

where o,(n) is the sum of the 4.

Jis, R(s-a

are all greater than 1. In particular

a(n) S4(s)
es) ae = Fan

org>l.

To prove (4.3.1) we observe that

x(n) = 4(2) oy (2)

is “multiplicative”, ie. that

x(nn’) = x(n) x(n’)

for coprime nm and n’. Hence

(4.3.3) f(s) = IT fpls),
Pp

where p runs through the primes,

. oo (p+) o,(p*)
s)=1l+ HY,F's) A=1 pe
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and 3 has any value for which the product is absolutely convergent. But

2 patna a | pid a

f,(8) = = pel pool —AB

1 pith pt A i

~ (pt—1)(p?—1)|1— ptt’ Tp Tost Tp

1] — ptth—2s

~ (ip) (1p) (1 ph) (1 pare=ey)

1 — path 2s

so that f(s) = I (1 —p-) (1— pTM) (1— po-*) (1 — po)

_ S(s) (8 — a) &(s —b) &(s—a—b)
€(23-—a—b)

Let us now suppose that

ac in (4.3.1), we obtain

-4¢) €(8 + te)
(4.3.4) f(s) =2 thes) .

or o>1. But f(s) is regular for

i, is cancelled by the zeros of

-the series are positive. Hence,

is convergent, and represents

>4. Thus

This formula is valid, in the ii

o > 4, since the double pole wf ¢

€(s—ic) and €(s+ic); and the ce

by a well-known theorem of f.

f(s), for o> 4, and in particul:

fhe 8) =

for d>0, On the other hand

C(28) = €(1+ 26)->co

when 6-0, and all three factors in the numerator of (4.3.4) are bounded ;

so that fh +0)->0.

The contradiction shows that (1+ ic) +0 for any positive c.

B

The number of numbers which are aums of two squares

4.4, The assertion which T numbered (1.15) in my introductory lecture was

“the number of numbers between A and # which are either squares or

sums of two squares is

«| at +(x)
av(logt) ,

where K = 0-764... and (x) is very small compared with the integral”’.
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Tt is immaterial whether we include actual squares or not. Ramanujan

later (i) gave the exact value of K, viz.

(53)
where r runs throuyh the primes 4m 3, and (ii) stated that O(x) is of order

Jing)
We shall see that this last assertion is false.

4.5. This problem was solved by Landau in 1908. The solution is very

interesting because it epends on the application of the classical methods

of prime number theory to a function with an algebraical singularity.

We denote primes 421-1 and 4m+3 by q and r respectively. In order

that 2 should be a sum of two squares:it ia necessary and sufficient that

ict of primes r. If we define

) otherwise, then 6, is 1 when

where # is a product of prix

b, as 1 when nv is a sum of twe

a b,, ane — 1and fs) =I = Wyse

1
Also €(s) = a

i I

and Us) = I~ ait 5s i-q* ltr”
so that

(4.5.1) {f(a)P = w(s) &(s) L(s),

where

. 1 1
(4.5.2) yr(s) = ogee

It is plain that y(+) is regular, and has no zeros, for o > }. As regards the

other factors in (4.5.1), Z(s) is an integral function, whose value for s = 1

is 47, while €(s) is reyular except for its pole at s = 1, It is also known that

neither ¢(s) nor L(s) vanishes in a region D, stretching to the left of ¢ = 1,

of type

a>l-,, - A
{log (| ¢] + 2)}*

Finally, €(s) and L(s) are O{(log | £ |)4}

for large tin D.
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It follows that T(s) = (8—1)-* gs),

where g(s) is regular in D and

1) = (ery(nyt = [der
—T~

5) = Kin.

4.6. If B(x) = x Bas
RSL

then B(x) is the number of representable numbers up to x; and

] e+i0 af

(4.6.1) B*(z) = YY b, = sail OM
nsx 2778 J oi

for c> 1." We have to treat this integral (or

some derived integral) as we treated the

integral for y*(x) in Lecture LI.

I give a rough sketch of a proof which may

be compared with the “‘firgt i

(§ 2.5) to the proof of é
Theorem. Therearetwoim

The integral (4.6.1) is mw

way, since there is no ze

denominator; but the integs

braic singularity instead &

B*(x) will be approximate

but by a loop integral rou

transform the path of integer:

of the type C (Fig. 1), and our approximating

function will be

1 x(4.6.2) 5, { Jee
Fig. 1

a _ Kya= oni) , G16) ds = wl (s—1)! yi (s) ds,
where

(4.6.3) h(s) = 1+a,(s— 1) +a,(8— 1)? +...

near s = 1, and L is the lacet from 1—¥y round 1 shown in the figure.

If we treat h(s) as 1, we obtain

Ar, ae _ Ka 7 eNeS

At Jia Gs” ~ dirdo fe a
Ka

which is practical] Syn cree
P y Jdlog 2)

* The star and dash havo the same meanings as in §2.5.
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And the argument, when properly developed, will show that

Kx a a
4.6.4 Biz)= —"- f14. 4+ SB,ee) 1 log) |" “oge* woeae

the series being an usymptotic series in Poincaré’s sense. This is effectively

Landau’s result, though he does not push the analysis so far.

4.7. Now f

« dl Ke 1 fo

7.) KY tog) = Flogay\" ops dost}
the series being again asymptotic. Thus Ramanujan’s result is, apart from

the O(x), of the same form as (4.6.4); but the coefficients in the two series

are not the same.” ‘Chose in (4.6.4) depend, in a rather intricate way, on the

coefficients a), dg, ... In (4.6.3). The integral (4.7.1) has no advantage as an

approximation over the first he werics (4.6.4), and Ramanujan’s

assertion (15), though true 4: sfinitely misleading. He was

misled, not unnaturally, by t! he Prime Number Theorem,

in which the logarithm integr fisant and a particularly good

approximation,

It remains true that

and it would be very interestift st how Ramanujan came to this

conclusion. It seems clear, fro: of K, that he used the formula

(4.5.1). The rest of his argument was no doubt highly speculative.

4.8. Ramanujan made a similar mistake later in an unpublished manu-

script which was cxatnined after his death by Miss Stanley, Watson, and

myself. Ramanujan’s function 7(n)? is “almost always” divisible by 5.

More precisely, if 4, = 0 when 7(7) is divisible by 5, t, = 1 otherwise, and

Tt) = ZB by

x

then T(x)~C (log zi

for a certain C. Here again Ramanujan was under the misapprehension

that

G [ dt
Ja (log)

was a much better approximation.

7 In fact J, $a. * See Lecturo X.
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C

A note on the Mobius function p(n)

4.9. It is well known that certain theorems concerning Mébius’s function

(mn) are “of the same depth” as the Prime Number Theorem; they are

equivalent to it in the sense that they can be deduced from it, or it from them,

in an “elementary” manner. In particular this is true of the theorems

(4.9.1) ohn) =0
and

(4.9.2) M(x) = = Hn) = (x);

and these two theorems are naturally equivalent in the same sense. That

(4.9.2) follows from (4.9.1), indeed, is trivial, since the convergence of

» = O(n),

4.9.2), while technically “‘ele-

epends upon a rather delicate

af {n).
iter to me which imply his

£ course no question of his

implies A,

whatever @,,. ‘The deduction of

mentary”, is much less imme

theorem of Axer and the specia

There aro assertions in Raza

familiarity with (4.9.1) and (

possessing a real proof. It is im

wey tlt)

mei yatta)”
and he would hardly have distinguished between this and (4.9.1).

The assertions are those numbered (2) on p. xxiv of the Papers. If wis a

number which is the product of an odd number of different prime factors,

and U(a) the number of such numbers up to z, then

3x
(4.9.3) U(a)~=35

1 9
(4.9.4) ai = on?

_l 15
(4.9.5) uw = ont"

The last two theorems are easy. We write g for a quadratfrei number,

u in the sense just explained, and v for a q which is not a w. Then

p(w) =-1, Lv) =1
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and ze = pela) men)

But oh _ A

poe ae}
for ¢>1, and (4.9.4) and (4.9.5) are particular cases.

The theorem (4.1.3) lies deeper, and depends on (4.9.2). If we define

Q(x) and V (a) as we detined [(x), then

Q(x) = U(x) + V(x)

and Bia) = Vio) ~ is},

It is quite easy to prove that

and (4.9.3) then follows from

just of the same “depth” as th

‘Kamanujan’s assertion here is

aber Thoorem.

NOTES HIV

§ 4.2. Hadamard’s proof can b to show that €(s) has no zeros,

and indeed

NO) Tog (fe |
A

flog (J ¢ | +2)"

Here tho A are appropriate positive constants, See Landau, Handbuch, 169-180.

Ingham’s proof was published in his paper 2. It can be applied to all Dirichlet’s

“C-functions”’, and in particular to

E(s) =1-#§~3-4-5-°-...;

in a rogion o>l

but it cannot be developed in the same way as Hadamard’s.

§ 4.3. The formula (4.3.1) is stated in the Papers, 135 (15). There is a proof in

B. M. Wilson (1).

For (4.3.3) see, for example, Hardy and Wright, 247-248.

Landau’s theorem was published in Math. Annalen, 61 (1905), 527-550, The proof

is also given in the Handbuch, 697-698.

§ 4.4. See the notes on p, 10 (printed on p. 20).

For Ramanujan’s actual assertions sce Papers, xxiv and xxviii. It is plain that,

if his statement about tho order of @(2) were correct, it would be important whether

we counted actual squares or not.

HR 5



66 The analytic theory of numbers

§ 4.5. The properties of ¢(s) assurned here are included among those proved by

Landau in the part of the Handbuch referred to in the note on §4,2, For the extensions

to Z-functions, and in particular L(s) = 1-*—3-*+..., see Handbuch, 459-464.

§ 4.6. The argument here is a little less unsophisticated than that of § 2.5, since

there I assumed the truth of the Riemann Hypothesis, wheras here I assume nothing

about the zeros of ¢(s) and L(s) which has not been proved (and have for that reason

to use a curvilinear contour). In other respects the argument is as rough as in § 2.5.

§ 4.8. Seo Stanley (1). The function r(n) has many curious congruence properties:

for example T(n) = 0 (mod 691) for almost all x, For these, see Mordell (1), Watson (23),

and Lecture X.

§ 4.9. See Landan, Prac. Matematyceno-Pizycenych, 21 (1910), 97-177 (180-137),

and the note on § 2.2.

For the asymptotic formula for Q(z) see Hardy and Wright, 267-268; Landau,

Handbuch, 604-609, The theorem is due to Gegenbauer.



V

A LATTICE-POINT PROBLEM

5.1. Suppose that D is a bounded region in the plane of wu and », including

the origin O inside it; and that D(z) is the result of magnifying D about Oin

the linear ratio at: 1 or the areal ratio 2:1. About how many lattice-points

(i.e. points with integral coordinates) are there, inside or on the boundary

of D(x), when 2 is large?

The most familiar of such “lattice-point problems” is Gauss’s ‘‘circle

problem”, Here D is the unit circle and D(z) is the circle

wW+ey sa.

It is easy to show that, if N(x) is the number of lattice-points in D(x), then

(6.1.1) N(x) = mx + O(2!)

(the area of the circle, with an error of the order of the circumference),

This theorem is almost intuit y far from expressing the final

truth, more profound analy¢ having shown that the 4 in

(5.1.1) can be replaced, first y various smaller numbers.

We can also state the probl eometrical form. If r(n) is the
number of representations cf 2 the sum of two squares (repre-

sentations which differ in the erd af the bases of the squares being

reckoned separately), then r(#; lex of lattice-points on the circle

uw+v? =n, and

N(x) = r(B} uy) = 2 nln);

so that (6.1.1) may be written ase

(5.1.2) x r(n) = WHE+ O(a),

and becomes a theorem about the ‘‘average order” of the arithmetical

function r(#).

There are many generalisations of the problem, to ellipses, and to

hyperspheres and hyperellipsoids in space of any number of dimensions.

5.2. Another famous lattice-point. problem is ‘Dirichlet’s divisor

problem’’. It is convenient to state this in a slightly different form. The

circle of §5.1 was symmetrical in all four quadrants, and we might have

stated the problem for one quadrant only, If D(x) is now defined by

uz0, v20, wte' sa,

then N(x) = fav+ O(2t).
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We could equally well define D(x) by

“u>0, v>d, w+usa,

discarding the points on the axes; and we shall see that this modification

is essential in the divisor problem.

In the divisor problem D(x) is defined by

u>O, v>0, wa,

so that N(x) is the number of lattice-points between the axes and the

rectangular hyperbola uv = x, counting those, if any, on the hyperbola but

not those on the axes. There are an infinity of points on the axes, so that it

is essential to exclude them.

It was proved by Dirichlet that in this case

(5.2.1) N(x) = elogx+ (2y —1)a+ O(a),

ex, corresponds to (5.1.1), though

le problem, the theorem has

g much the same. Alternative

where y is Euler’s constant. Th

its proof is not quite so trivig

been refined by modern write

statements are (i) that

(5.2.2) E d(n) = wh
nNSxX

lye+ O(24),

d(n) being the number of divis

(6.2.3) [x]+ Hi + 5 i

The last form is that used in DNs

5.38. I do not know how much Ramanujan had thought about these

problems in his early days. He was familiar with the dominant terms

xloga+(2y—1)x

of Dirichlet’s approximation, and had probably found them by an argument

of the same kind. In this case he should have known (5.2.1). But he was

unlikely to make any substantial contribution to the subject, since the sting

of all these problems lies in estimates of error, about which his early ideas

were quite vague,

Thus in his first letter to me he says

“d(1)+d(2)+...+d(n) = nlogn+(2y—1)n+ fd(n)”.

We should infer (if we took this statement at all strictly) that the order

of the error in Dirichlet’s formula does not exceed that of d([a]), and in

particular that

N(x) = xloga+(2y—1)#+ O(z*)
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for every positive ¢. This is false (indeed with ¢ = 4), though not very casy

to disprove. It is however much more likely that Ramanujan inserted

the term jd(n) merely as a recognition of a quite sound formal principle.

When we are investigating the “sum-function”

A(z) = a an
Nz

of an arithmetical function a,,, it is usually not A(x) but

A*(x) = Di Gn,
Rie

with the last term a@,,, multiplied by 4 when x is an integer, which presents

itself naturally in the analysis."

Later in his life, of course, Ramanujan was interested in these problems

in a more sophisticated way, though his contributions were not important.

‘ned with either of these classical

esther of Ramanujan’s assertions.

5.4. Here, however, I am not

problems, but with one connes

This also is in his first letter

‘the number of numbers «af eas than n is

The formula is of course inte

evidence to show how accuraté

It will be convenient to wrt

pproximation, and there is no

y = logn,

Then Ramanujan’s assertion is that the number of solutions of the in-

equalities

(5.4.1) “20, v20, wutw'vsy

yoo, a it
Bea” Qo? Bea’ > 2"

The 4 at the end, of course, is not to be taken too seriously; and we shall

see that, if any constant has a right to stand there, it is not 3.

I propose in this lecture to give a short account of some of the very curious

and interesting analysis which can be made to hang upon Ramanujan’s

assertion.

is “‘approximately’’

' As in Perron’s formula

At , I et+ivo om a
iz) = ¥ = #)—(7) Neen mili ) a

where f(s) = 2a,e-40. See Hardy and Riesz, The general theory of Dirichlet’s

series, 12, Here the list term is to be multiplied by 4 if zis a A,.
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5.5, Let us suppose then that w and w’ are any positive numbers, that

N(7) = N(q, 0, w')

is the number of solutions of (5.4.1), ie. the number of lattice- -points in a

certain right-angled triangle, that

_ 7 nn,
(5.5.1) 2) = shot Bt Bo”?

and that

(5.5.2) N(q) = Q(y) + Ry).

The problem is that of finding the best bounds that we can for R(y). It has

been considered, in different forms, by a number of writers, and in particular

by Hardy and Littlewood and by Ostrowski. Hardy and Littlewood, in

two papers published in 192! and 3@ ansider it in the form in which it

is stated here. Ostrowski «9: ily different problem, super-

ficially more special but sub eat, and obtains, by different

methods, very much the sam

The problem is not changed %

the axes. The horizontal and ve

and the number of lattice-point

we disregard lattice-points on
a

i the triangle are 7/w and 9/w’,

(the area of the triangle, with an error at most of the order of its perimeter).

Beyond this everything depends upon the arithmetic nature of

0 = ww’.

Since N(y, 0, w’) = N(ky, ko, kw’),

it is only the ratio @ that is really relevant to the problem.
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Rational 0

5.6. The simplest case is that in which @ is rational. Then (since only

the ratio of w and w’ is relevant) we may suppose that

w=a, w' =),

where a and b are positive coprime integers.

The number of solutions of

(5.6.1) au+by =n

: 2is E +6,

where ¢ is 0 or 1.! It follows that (7) has a jump of order 7 when 7 passes

through the value , so that the equation

is false, R(y) being effective

5.7, We can calculate N(#}

numbers

aut be

? See for example Bachmann, 4’ 4e, ii, 129. The proof is simple.

Suppose that
n= ab),

and write u=bU+8, (isa<a, 0OSf<b);

so that (5.6.1) becomes

(5.6.2) mab+r= (U+ V)ab+ap + ba.

Consider the set of ab numbers

af + ba (Osa<a, OS P<b).

All these numbers are less than 2ab and incongruent (mod ab), Hence they can be

written as
p,» ab+p’,

where p and p’ together run through

0, 1, ...5 ab-—1,

If aftba =p,

then (5.6.2) implies U+Vom,

Thero is one pair a, # satisfying the first equation, and m+1 pairs U, V satisfying

the second, and each set U,V, a, £ gives a solution of (5.6.2), On the other hand, if

ab+ba = ab+p’,

then (5.6.2) gives U+V=m-—tI1,

and in this case there are m solutions only.
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arranged in order of magnitude, and with each A, counted as often as it

occurs, and f(s) = Ses,

1 Ne ry ] c+io em

then (9) = = Or) an f(8)> 3.

Here c> 0 and the dash has the meaning explained in § 5.3. But

1
—_ ~(autboye — _—__._.f(s) ze (1 _ e-a#) (Ql _— e- bs)?

so that

1 ett ens ds
*(y) = oe(5.7.1) N*(y) mil. (ine) (Toe)

We calculate the integral as a sum of residues. The integrand has

(i) a treble pole at the origin, with residue

(5.7.2) P(a) = Sab "Yaab- ;

(ii) double poles at the pe

where & is an integer, with res

etkynt

hats

(iii) simple poles at the po

Qhart
$=

a

] etkatty+sbya 1 etkaiyttayo

~ 4k sin (kbm/a)’ 4 kerr sin (kazt/b)

respectively: and it is not difficult to show that the integral is equal to

the sum of all these residues.3 A straightforward calculation then leads to

the formula

with residues

(5.7.3) N*(9) = P(9)+ Q(y) + Ti(q) + Toy),

where P(y) is defined by (5.7.2),

(5.7.4) Q(n) = —T AY ty) +5) y—-4?ahh

* By Perron’s formula alrcady quoted on p. 69,

7 e+y means ‘x is not a divisor of y’ (the contrary of x|y).

3 We apply Cauchy's theorem to a rectangle

e-tT, c+iT, —E407, —£-iT,

where T is so chosen that the horizontal sides of the rectangle do not pass within a

fixed distance 6 of any pole, and then make T and & tend to infinity.
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2k
| c03 (7 + $b) 1 0085" (+ 4a)

(5.7.5) Ty(7) = a2 been ? T(y) = -q~ _ ann ’
kein —— ksin>-

the k in the last two series running through all integral values which are

not multiples of a@ and b respectively.

It is plain that

Q@) = 5 -nl- §) +00),

and 7',(y) and 7,(1) are periodic (with periods a and 6 respectively), and so

bounded. Hence

(5.7.6) N*(y) = P(q)— “5, (0-[n]- $) + OW)

for large y. The second term h tinuibysadi

when » passes through an in |, kn accordance with our con-

clusions in § 5.6.

5.8. The problem is natura. t when @ is irrational. It has

been proved, in the first inst

(5.8.1)

for all irrational 6, so that

Om) =a 2 2
82) 1) = 2607 0 t Ba

is a genuine approximation to V(7); and there are sharper results for special

classes of 6. These depend upon the nature of the rational approximations

to @, or (what is the same thing) on the behaviour of the quotients a,, in

the expression

1 J
0 =a +————...

a+ Oat

of # as a continued fraction. If the a, do not increase very rapidly, then

(5.8.3) R(q) = O(9"),

for an a between 0 and 1; and if the a, are bounded, then

(5.8.4) R(y) = O(log 9).

In particular (5.8.3) is true for all algebraic and (5.8.4) for all quadratic @.
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The @ of Ramanujan’s problem is transcendental. Its irrationality is

trivial, since
log2 _ a

log3 b

would involve 3¢ = 2%, That it is transcendental follows from the theorem

of Gelfond and Schneider, that
ab

is transcendental whenever a and f are algebraic and f irrational. For 3 and

8° = 2

are rational, and therefore @ cannot be algebraic.

The most that we can prove about R(7), in Ramanujan’s case, is that

(5.8.5) R(y) = of aes):

ac equation

(5,8,6)

which I prove in § 5.12, is subs « of Ostrowski’s theorems.

5.9. There is an “identity”:

similar in form to (5.7.3) bu

the ordinary sense. I shall not

and (5.8.6) which is due substs bronn. Heilbronn’s argument

is the same in principle as Ostrowski’s, but simpler. It is effective when we

have to prove R(y) ‘only a little Jess than 7”’, as it is in (5.8.1) and (5.8.6),

but does not lead, in this simple form, to the more precise results which,

like (5.8.4), are true only for very ‘‘simple”’ 0.

We define {x} by {x} = x—[e]—-4.

This function has the analytic representation

when @ is irrational, which is

. which are not convergent in

shall give a proof of (5.8.1)

1{a} = (sin Qra + sin 47x
=—- t.ef,

" 2

but we shall not use this here.

The ordinate u = n cuts the hypotenuse of the triangle in the point

Yr nw

3 , ?

7)

and the number of lattice-points on it is

fra
@
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Hence ()= ¥ (1+) |) = x (Mortss)- = (orl.
nNSq/o w@ N=aylw nSylw

if ta[@ ap
then the first sum is

e-)320})3

“(Cobar sed
Hence

(5.9.1) Ny) =, +5 + 55 — S() + O(1) = Qn) ~ S() + O10),
fou’

where

(5.9.2)

and the proof of (5.8,1) is red:

(5.9.3)

if that

Ostrowski, in his paper referre &, is concerned with the sum

a series of much the same type a8

with equal effect to (5,9,2),

5.10. If PB Pm
q Wn

is a convergent to the continued fraction for 0, then qg,, tends to infinity

with m and

oP -p_Pm _(- 1” ,
q Qn Im Vmt1

where Ynta = Fnt1Imt Ima

and @,4; is the complete quotient corresponding to a,,,,. We suppose

that ¢<y/w and

[Janets (r21,0S8<Q).
Then

rg

(5.10.1) 80) = bf 3 ~no} + O(s) = S*(n) + O(s).

If we write

n= Ngiv (4 = 0,1,...,.7-1; » = 0,1,...,¢—1),
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then
r-1d-1 (y rl

(5.10.2) -8¥() ="3,"S [2 - Ga +6} = 5 syn,
#=0 v=o (@ z=0

where

q-1 q

(5.10.38) 8,(4) = x {a-v6}, a=a,= oe U9?

We prove in the next section that

(5.10.4) S,(y) = O(1),
Ht

uniformly in «. If we assume this for a moment, then (5.10.1), (5.10.2),

and (5.10.4) will give

(5.10.5) S(n) = O(r) + O(s) = o( ) + O(n):

aended

“mis even. Then

Also

where a is an integer and

Thus a — p92 EP _ g_ (a-2)
g g

is less than 1/¢ and greater than — 1/g, so that

(5.11.1) apo ¥P| <1
q q

If m is odd, so that @ is less than p/q, then we define a by

aat8 (oxe<’),
q q

and (5.11.1) is then still true. Hence in any case

(5.11.2) ay), YP

differ by less than 1/g. But (p,q) = 1, and therefore

a—vp

SU +,
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where #, is an integer and r, runs, in some order, through the values

1 2 q-1
q’ q peers q

The integral parts of the numbers (5.11.2) can differ only if there is an

integer between the numbers, and this can happen only if r, = 0, and

therefore once only. In this case the difference

—yo)—| 2 ¥P[a — v0] |

is 0 or —1. We call this difference e.

It follows that

0

q-1 q-1 —

x [a-vl] = > ° E | +e
0 0 q

Sao 12 gd,
0 q

=a-

8,4) = fe— 0-2)— 5 [av]

= y(a—4)~ |—o+4(p+1)(q-1)—6

= qa-a ao }- —€,

| S.(g) | S| @0| + 23

This completes the proof of (5.10.4 and so of (5.10.5).

5.12, We have thus

S(n) = (2) + O(n):

Given any positive 6, and any sufficiently large 7, we can choose m so that

; <I < 6y,

4 +%n < 207.
In

Hence S(y) = o(y) for all irrational 0; and this, as we have seen, is equivalent

to (5.8.1).

Suppose next that 0 has Ramanujan’s value, Then

(5.12.1) |2¢-37|21

for all p,q. This is | 1— ep tog 3—g log2| > 2-9,
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from which it follows that

(5.12.2) |gO—p|>A2-

for a constant A and all gq.

If » and q are :,, and g,,, then

1

| 29 — Pm | <5 ,
mt+1

and 80 Ym < AM < eAm,t

We can choose m so that

q
In= log 7 <Omi1

7Then €4dm > Ong > logy’

and this proves (5.8.6).

P

5.13. It remains to prove (5

(8.8.6), and no doubt says ver

may seem odd to insist on it

theorem of Pillai, and it is fo

We write down the sequenc

2, 3, 4, 8, 9, 16, 27, 32, 64, 81,...,

ix a very small improvement on

ban the final truth, so that it

epends on a very interesting

3 theorem that I include it.

formed by the powers of 2 and 3 arranged in order of magnitude, and call

the n-th term of the sequence w,,. Then Pillai’s theorem asserts that u,,,.;—-U,;

the n-th gap in the series, tends to infinity noarly as rapidly as u,,. More

precisely, given any positive 3,

| 27—-3Y | > a0-se

for all integral x and y with x >2,(8).

It follows in particular that the equation

(5.18.1) 27 3v = i

can have only a finite number of integral solutions for any given k. This is

easier to prove. A very well-known theorem of Thue says that

(5.13.2) AX8— BY3 =1

' The various A’s aro naturally not the same.
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(with any integral A, B, 1) has only a finite number of solutions, If we

now put

Cs 36 +p; y= dnt+o (p,a = 0,1, 2),

we obtain nine equations

2°(26)% — 3°(37)8 = hk

of the form (5.13.2). Each of these has only a finite number of solutions,

and so therefore has (5.13.1).

5.14, Pillai proves, more generally, that if m,n,a,6 are given positive

integers, am® —bn¥ £0

for any integral x and y, and 8 is positive, then

| am? — bn¥ | > mii

for all x > x9(6). Here x,(0), of couras, depends on m,n, a and b as well as on 6.

Similarly, a K which appears i wu) may depend on m, n, a and b,

as well as on any parameter :

We use one deep theorem of}

then there is an A(E), depending:

n algebraic number of degree r,

he that

theorem of Liouville in which

:r could be replaced by any

for all integral p and q. Ther

r stands in the place of 2rt, ‘The

number greater than }r+1, b owville’s nor Thue’s theorems

would be strong enough for Pillai’s application. What is essential is to have

an exponent of lower order of magnitude than r.

Suppose now that wu and v are positive integers, that a/b is not a perfect

r-th power, and that jaut < bv’ < au’.

Vy

If w= (5) - = aU,

then @ is an algebraic number of degree 7 at most, and

aut — bu" = b(wt — vt) > brv*—(w — v)

> K(r) a (w—v) = Kir) w(a—2) .

Hence

(5. 14, 1) au’ — bot > K (rut,

by Siegel’s theorem. It is obvious that this is also true if 0 < bv" < Jau’, so

that it holds whenever aw’ — bv" is positive. Similarly

(5.14.2) bot — aur > K(r)ur2rt
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whenever it is positive, and a moment’s consideration shows that we can

unite (5.14.1) and (5,.14,2) in the form

(5.14,3) | au? ~ bet | > K(r) 2-2",

uw and v being any positive integers, and z being wu or v at our discretion.’

Here K(r) of course depends on a and b as well as on r.

We can now prove Pillai’s theorem. We take 6 small and positive and

i6
r=5

and write zeasr+h (OSh<r), y=tr+l (0Sl<r),

u=m, van,

Then | am*"—bn¥ | = |am*.w —bn! ov | > K(r,h, ur,

by (5.14.3); and so Jam® ~ hn! > K(8) ur,

since the number of values yearned depends only on r, and

r only on d.

Also ut one,

year ; mG—H)e,

and so | anne® gph B8),

From this it follows that :

|<

for # > 2,(d), and this is Pillai’s

5.15, Pillai’s theorem is just su to improve (5.8.6) into (5.8.5).

Returning to the argument of § 5.12, we can replace (5.12.1) by

| 94 — 3p | > Qea—4)

(for any positive 3 and sufficiently large p,q); and (5.12.2) by

|qO—p|>2-*¢ = e~9,

where ¢ = dlog2. It follows that

Imai < etm

for sufficiently large m. We choose m so that

Yin <Fm41:
<b

“log 9

1 1 I
Then Im> & log Gmia> é (log 4 — log log 7 + log 2e) > Be logy

t Since a/b is not an r-th power, au’ — bv" cannot be 0. If it is of smaller order than

u’ or v", then u and v are of the same order.
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for large 7 and m, and y . dey

— < ——)

Im log”

_ {2so that S(y) = of ios ;)

We have thus replaced the O of (5.8.6) by o. It may seem rather dis-

appointing that the use of such powerful weapons should lead to so small

an improvement in the final result, but such disappointments are common

in this kind of analysis.

Im +

NOTES ON LECTURE V

§ 5.1. There are two proofs of (5.1.1) in Hardy and Wright, 268-269.

Tho essential difficulty of the circle problom is that of determining @, the smallest

value of € such that N

for every positive «. It follows f

that @ <=}, van der Corput in 1828

6534. In the other direction, 1

that @©2}. Thore is a profound stv

Vorlesungen, ii, 183-308.

The results have been improved s

The best result is Vinogradov’s @

Fuller references will be found i3

(1922), 823-824, and in two pa

(Oxford), 2 (1931), 161-173 and

555. The paper by Littlewood and

478-488.

}. Sierpinski proved in 1906

wood and Walfisz in 1924 that

jax, proved independently in 1915

mm, up to this stage, in Landau,

jand, Titchmarsh, and Vinogradov.

xner, Enzykl. d. Math. Wias. uc 8

sh, Quarterly Journal of Math.

. Soc, (2), 38 (1935), 96-115 and

‘vac. Royal Soc, (A), 106 (1924),

N(x) = @ log x + (2y~1) w+ O(xt**).

It follows from (5.2.1) that @S4. Voronoi proved in 1903 that <4, Hardy and

Landau in 1916 that @24, and van der Corput in 1922 that @<7335. For fuller

references see Bohr and Cramér’s article quoted above, 815-822,

The best known result hore seems to be @ = 34, proved by van der Corput in a later

paper in Math. Annalen, 98 (1928), 697-717.

§ 5.3. One example is the formula

2 _(n) rn)
1 MED gc anviin+ ay) — yt SE g~tarv/fint dia),

” a Int a) n+)
Here « and 6 are positive and r(n) has the meaning of §5.1,

It is easy to prove (1) by writing the series on the left as

1 [* dx 1 [(*—_ e-sennbiat S-(m) e-82}— = “4 gona tb/a 2/
ly ee Ad 0

where B(x) = 1+ 26-74 Qe-M7*+...,

HR 6

a,
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and using the functional equation

Mx) = J (=) (=).

There is a generalisation for the ellipsoid, which I quote in the Quarterly Journal

of Math. 46 (1915), 283.

The formula remains valid so long as a and ,/b have positive real parts. [f we put

a = ve, where 0O<0<7, and x is positive and non-integral, make 9-7, take the

imaginary parts, and then put 6 = 0, we obtain

r(m)

oenerV(2—n)
(2) = Qaet+ s o ain {2774/(na)}.

1 vi

This is also the result of putting a = —4} in a formula for Z(2—n)*r(n) which I

proved (for «> 0) in a paper in Proc. London Math, Soc. (2), 15 (1916), 192-213 (205).

Neither of these deductions, of course, is a proof of (2), and I do not know that

there is any proof standing in the literature. Tho formula is of the same type as the

identity
Bs, Gu

Bl r(n} sae
OSnS2

? {2m.] (na)

(first proved in my paper in the @

I imagine that the series on i

means of any positive order, so lon}

ted above).

ummable by Ceséro or Rieszian

nteger.

§ 5.4. Papers, xxiv (3).

§ 6.5. The principal papers by Hu

Soe. (2), 20 (1922), 15-36 and A’

that by Ostrowski in Abh. math.

There is an account of these prob

“Diophantische Approximationer:”

lewood are in Proc, London Math.

famburg, 1 (1922), 212-249; and

1 (1922), 77-98 and 250-251.

aastive bibliography, in Koksma,

Math, v 4 (1936), Kap, Ix.

§ 5.8. The problem of proving the Stiiality of a?, under the conditions

atated, was the seventh of the problems proposed by Hilbert in his address “‘ Mathe-

matische Probleme” to the seventh international congress of mathematicians in

Paris in 1900, This address was published in German in Géttinger Nachrichten (1900),

263-297, and in French, under the title “Sur les problémes futurs des mathé-

matiques’’, in the official report of the congress (Paris, 1902). See Koksma, l.c, supra,

Kap. Iv, especially pp. 64-65, where there are references to the papers of Gelfond

and Schneider.

§ 5.9. For the “identity” see Theorem 4 of the second of the papers by Hardy

and Littlewood referred to under § 5.5.

Dr Heilbronn communicated his proof to me personally.

§ 65.10, The notation for continued fractions is that of Hardy and Wright, ch. x.

§§ 5.13-14. Pillai’s theorem was proved in Journal Indian Math. Soc. 19 (1931),

1-11.

Polya, Math. Zeitschrift, 1 (1918), 143-148, proved a general theorem from which

it follows, as a very particular case, that (5.13.1) has only a finite number of solutions.

Herschfeld, Buli. Amer. Math. Sec. 42 (1936), 231-234, has proved that there is at

most one solution when & is sufficiently large. There are further results of this kind

in another paper by Pillai, Journal Indian Math. Soe. (2), 2 (1936), 119-122 and 215.

For Thue’s and Siegel’s theorems seo Landau, Vorlesungen, iii, 37-56. Siegel’s

theorem is Satz 691, It is stated there in a slightly different form, and for r23,

but it is trivial whon 7 = 2.

ie



VI

RAMANUJAN’S WORK ON PARTITIONS

6.1. A partition of nis a division of n into any number of positive integral

parts. Thus

4=341=242=2+14+1=14+1+141

has 5 partitions. The order in which the parts are arranged is irrelevant, so

that we may think of them, if we please, as arranged in descending order.

We denote the number of partitions of n by p(n); thus p(1) = land p(4) = 5.

It is convenient to define p(0) as 1.

A partition of n may be represented graphically by an array of dots or

“nodes”. Thus

3. We could also read the graph

tition 64 4+38+1+41+41. Two

represents the partition 6+ 3+ %

vertically, when it would repres

partitions so related are called

The largest part in either

parts in the other. Generally,

horizontally, a partition into TM ead vertically it represents a

partition into parts the largest af whte: som. It follows that the number

of partitions of n into m parts is equal to the number of partitions into parts

of which the largest is m; and that the number of partitions into at most

m parts is equal to the number of partitions into parts which do not exceed m.

ns is equal to the number of

rows represents, when read

6.2. There are many less obvious theorems about partitions which can

be proved by a direct study of their graphs. I choose as an example

F. Franklin’s beautiful proof of a famous identity of Euler.

Euler’s identity is

(6.2.1) (1—a) (1-2?) (1-24)... =1l-w—a +e tet—...,

The right-hand side is

1+ > (= Rath) 4 gAKBETD) — x (— 1)Fadh@e+n,
k= k=—0

6-2



84 Ramanujan’s work on partitions

ao

It may also be written as 1+ dic,@,
I

where ¢,, is 0 unless n = $4(3k + 1), and then (—1)*.

Let us write (1—a) (1—a#*) (1-29)... = Ny(n) 2”,

and multiply out the product so as to obtain an arithmetical interpretation

of the coefficient y(n). There is a term in x” corresponding to every partition

of n into unequal parts: thus the partition 6 = 3+2+1 gives rise to a

term (—1)%a°, Generally, a partition of n into » unequal parts contributes

(—1)* to y(n), so that

y(n) = pln) — pol),

where p,(n) and p,(n) are the numbers of partitions of x into an even and

an odd number of unequal parts. We try to establish, as far as we can,

a one-to-one correspondence & artitions of these two types. The

correspondence cannot be | : a complete correspondence

would show that p,(n) = 7,(3 rv every n.

We take the graph G, whick sad horizontally) any partition

of n into any number of un in descending order. We call

the lowest line AB the base £ of the graph. From the extreme north-east

node, we draw the longest south-westerly line possible in the graph; it

might of course contain one node only. This line CDE we call the slope

of the graph. We write &<o when (as in graph G,) there are more nodes

in o than in f, and use a similar notation in other cases. Then there are

three possibilities.

(i) B<o. We move f into a position parallel to and outside a, as shown

in graph Gp. This gives a new partition into decreasing unequal parts, and
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into a number of such parts whose parity is opposite to that of the number

in Gy.

We call this operation O, and the converse operation (removing o and

placing it below £) Q. It is plain that Q is not possible, when f < o, without

violating the conditions of the graph.

(ii) 2 =o. In this case O is possible (as in graph G,) unless # meets o

(as in graph G,), when it is impossible. 2 is not possible in either case.

(iii) @>o. In this case O is always impossible. Qis possible (asin graph Gs)

unless # meets o and @ = o+1 (as in graph G,). 2 is impossible in the

last case because it would lead to a partition with two equal parts.

To sum up: there is a (1,1

partitions except in the cases

these exceptional cases n is of t

k+(k4+1) + (kh +274 (26-1) = $(3k?—&),

and in this case there is an excess of one even or one odd partition according

as k is even or odd. In the second case n is of the form

(k+4\)+ (e+ 2)4 (44+3)4+...4+2h = $(3k? +),

and the excess is the same. Hence y(n) is 0 unless n = $(3k2+k), when

y(n) = (—1)*. That is to say, y(n) = c,, and this is Euler’s theorem.

ve between the two types of

34) and (G,). In the first ofpe

6.3. Franklin’s proof is a very striking example of what may be done

by elementary “combinatorial” arguments; but most of the theory of

partitions requires a more analytical setting.

The analytical theory was founded by Euler, and rests, like the analytical

theory of primes, on the idea of a generating function. But the generating

functions of the theory of partitions are power-series

F(x) = Lf(n) x.

The function F(n) is called the generating function of f(n), and is also said

to enumerate f(n).
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It is easy to find the generating function of p(n). This is the function

]

F(z) = (1 —x) (1—2?) (1—2)...

(a function fundamental in the theory of elliptic functions). In fact,

expanding each factor of F(a) by the binomial theorem, we have

F(a) = (l+ae+a?+oe%+...)(lta?+attaS+...) (Lt aetaesaPt...)...,

and a moment’s consideration shows that every partition of n contributes

just I to the coefficient of a". Hence

F(x) = Lp(n) x”.

It is equally easy to find the generating functions which enumerate

partitions of into parts restricted in varions ways. Thus

d-

enumerates partitions into cd

(+e

partitions into odd and unequs!

(1—a) (1-

enumerates the function y(n) of § 6.2, the excess of the number of partitions

of x into an even number of unequal parts over that of its partitions into

an odd number,

Similarly (I take examples which I shall want to refer to later)

1

enumerates partitions into parts not exceeding m or (what we have seen

to be equivalent) into at most m parts;

aN

(U—a) (a)... (1= a)

enumerates the number of partitions of n— N into at most m parts; and

aN

(1-22) (124)... (12)
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the number of partitions of n— N into at most m even parts, or of }(n—N)

into at most m parts of any kind, Finally

I

(1—2) (1-24) (1—2°) 1-29)...’

where the indices of x are the numbers 5m-+ 1 and 5m-+ 4, enumerates the

partitions of x into parts of these two forms.

Ramanujan’s congruences

6.4. Very little is known about the arithmetical properties of p(n); we

do not know, for example, when p(n) is odd or even. Ramanujan was the

first, and up to now the only, mathematician to discover any such properties;

and his theorems were discovered, in the first instance, by observation.

MacMahon had calculated, for yosea to which I shall refer later,

a table of p(n) for the first 26 4d Ramanujan observed that

the table indicated certain‘ ence properties of p(n). In

particular, the numbers of the: mumbers 5m+4, 7m+5, and

11m +6 are divisible by 5, 7 and dy: Le.

(6.4.1) p( Bin - ad &),

(6.4.2) pT

(6.4.3) pli»

Thus p(4) = 5 and (5) = 7.

6.5. Ramanujan found comparatively simple proofs of (6.4.1) and

(6.4.2). These depend on two formulae which belong properly to the theory

of elliptic functions, Euler’s formula (6.2.1) and Jacobi’s formula

(6.5.1) {(1—x)(1~—a?) (1-2)... = 1-32 + 523-7284...

where the indices on the right are the triangular numbers 44(k +1), We have

proved (6.2.1), but there is no equally simple proof of (6.5.1). We may also

write (6.5.1) as

{(1 a) (1-22) (1 —23) ...}8 = 4 (— 1) (2h-+ 1) cds,

Ramanujan now argues as follows. We have

a{(L —a) (1 —i) ...}4 = wf{(1—2) (1—a?) ...}.{(1—a) (1-2) ...}8

= X(1—a—x?+a5+.,,)(1— 3x4 503 — 748 ...),

by (6.2.1) and (6.5.1). We write this as

(6.5.2) x{(~a) (1-29?) ...}4 = 422 — 1)ye(2p + 1) al tte@et dt be ty,
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both w and yrunning from — oo to 00, and we consider in what circumstances

the index of x is divisible by 5. This demands that

2(4+ 1)? + (2v+ 1)? = 8{1 + bu(3mt 1) + dry + 1)}— 0p? —

shall also be a multiple of 5. Now

2(#+1)?=0,2,or3 (mod 5)

and (2v+1)?=0,1,or4 (mod 5),

as we can see by enumerating the possible cases; and the sum of one residue

from each set can be 0 or 5 only if each is 0. Hence, if the index in (6.5.2)

is a multiple of 5, the coefficient 2v+ 1 is also a multiple of 5, and therefore

; Bm+5 7.the coefficient of x in af(1—x) (1—a2) ...}4

is a multiple of 5.

Next, in the binomial expansion of

all the coefficients are divisible ose of 1, 25, x1, ..., which have

residue 1 (mod 5), That is to 2a

10d 5)!

or

Hence the coefficient of 25+ ;

(28) (1 2).
(1—-x)(1—2")..

is a multiple of 5, and so therefore is that in

(1 —2#5) (1-219)...
= a{(l- a) (1— —a*).. cay (isa)

ee
(1—#) (1—2?) (1 — 23)...’

and this coefficient is p(5m + 4).

We can prove (6.4.2) similarly. In this case we write

a*{(1 — a) (1 — a) ...}8 = 2°(1 ~ 3x4 523 — Ta®+...)2

= $DE(— 1H (Qu +1) (Qvt 1) atte ety,

and observe that

(2+ 1)? + (2v-+ 1)? = 8(24 du(ut 1) + 4r(v+)}—14

can be divisible by 7 only if 2~+1 and 2v+1 are both divisible by 7. The

proof may then be completed on the same lines as before. There does not

seem to be any equally simple proof of (6.4.3).

' Corresponding coefficionts are congruent (mod 8),
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6.6. Ramanujan went a good deal further. He proved congruences with

moduli 5, 7? and 112, that for 5? being

p(25m+24)=0 (mod 5%),

and put forward a general conjecture: if

6 = 5¢7511¢

and 24A=1 (mod 0),

then p(md+A)=0 (mod 6)

for every m. It would be sufficient to prove the congruence for the special

moduli 57, 7° and 11°, the general congruence being a corollary.

This conjecture has led to a good deal of work, and it has been found

that Ramanujan generalised too far. Gupta, extending MacMahon’s

calculations of p(n} up to n = 3

p(243;

a number not divisible by 7°;

24, 2

this contradicts Ramanujan’s «

proved the congruence

(128s

and Watson the congruence for na D, H. Lehmer has verified

the conjecture, in certain specidfdasee> for 118 and 114. Lehmer’s work

involves the calculation of some particular very large values of p(n) by

a method which I shall explain in Lecture VIII: the largest is

(6.6.1) (14031) = 92 85308 04759 09931 69434 85156 67127 75089

29160 56358 46500 54568 28164 58081 50403

46756 75123 95895 59113 47418 88383 22063

43272 91599 91345 00745,

a number divisible by 114.

6.7. There is another proof of (6.4.1) which is much more difficult than

the one I quoted, but which says much more and led Ramanujan much

deeper into the theory of elliptic modular functions. In the same paper

in which he proved (6.4.1) and (6.4.2), Ramanujan stated without proof

the two remarkable identities

5 — 10) _— 15) 5

(6.7.1) pd) +p(0)e+plldyat+... = 6h ee OE)?
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and

1-27) (1—al4) (1-22) ...38.7,2 tos i(6.7.2) p(5) + p(12) e+ p(17) a+ 7 (i=) (1—#) (I-25) ,..}4

(aay. a) (1a) 7+ 49a: ——___ “{(1=a) (1-2) (123). ye

These make (6.4.1) and (6.4.2) intuitive, and also oie proofs of the
congruences to moduli 5? and 72, Thus, if we assume (6.7.1), we have

p(d) a + p(9) 28+ # (1 — 25) (1—x1) ..,
5{(1 — 25) (1-2). yo (1-2) (1-27)... {(l—a) (1-2?) ...}5

x

~ (1-2) (1-2)... (mod 6).
Hence (after what we have proved already) the coefficient of 25"+5 on the

left-hand side is a multiple of 4; 2 in this it follows that

p( 250% 5),

Similarly (6.7.2) leads to

p(4omn cal 7),

Ramanujan never published

proofs have been found by Darl

proof of (6.7.1) or (6.7.2); but

dell,

dentilies

6.8. I come next to two form ogers-Ramanujan identities”’,

in which Ramanujan had been anticipated by a much less famous mathe-

matician, but which are certainly as remarkable as any which even he ever

wrote down.

The Rogers-Ramanujan identities are

ae at zm
80 Tat aaa) ayaa). mat

1

~ (1—) (1—28)... (1—a4) (1-29)...
and

yt 6 mim-+-1)

(6.8.2) 145 = =* G2) (2) 1 Ta) G2)... doar t

_ 1

~ (L—a?) (1-27)... (1 —a) (1-23)...

The exponents in the denominators on the right form in each case two

arithmetical progressions with the difference 5. This is the surprise of the

formulae; the ‘basic series”’ on the left are of a comparatively familiar type.
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The formulae have a very curious history. They were found first in 1894

by Rogers, a mathematician of great talent but comparatively little

reputation, now remenibered mainly from Ramanujan’s rediscovery of his

work. Rogers was a fine analyst, whose gifts were, on a smaller scale, not

unlike Ramanujan’s; but no one paid much attention to anything he did, and

the particular paper in which he proved the formulae was quite neglected.

Ramanujan rediscovered the formulae sometime before 1913. He had

then no proof (and knew that he had none), and none of the mathematicians

to whom I communicated the formulae could find one. They are therefore

stated without proof in the second volume of MacMahon’s Combinatory

analysis.

The mystery was solved, trebly, in 1917. In that year Ramanujan,

looking through old volumes of the Proceedings of the London Mathe-

matical Society, came accidentally across Rogers’s paper. I can remember

very well his surprise, and the.ads ‘which he expressed for Rogers’s

work. A correspondence follo% of which Rogers was led to

a considerable simplification proof. About the same time

I. Schur, who was then cut aif $ by the war, rediscovered the

identities again. Schur publist sofs, one of which is “‘com-

binatorial’’ and quite unlike am: of known. There are now seven

published proofs, the four referr y, the two much simpler proofs

found later by Rogers and Baty yublished in the Papers, and

a much later proof by Watson & different ideas. None of these

proofs can be called both “‘aiz . “straightforward”’’, since the

simplest are essentially verificatio doubt it would be unreasonable

to expect a really easy proof.

6.9. MacMahon and Schur showed that the theorems have a simple

combinatorial interpretation. I take the first. We can exhibit a square m? as

14+3+45+...+(2m—1),

or in the manner shown by the black dots of (G,). If we now take any

partition of n — m? into m parts at most, with the parts in descending order,

. . e . * e ° a a o

* . * . . 9 3 Qo

(@)
. . . o o Qo

. o

and add it to the graph, as shown by the circles of (G,), where m = 4 and

n= 4°+411 = 27, we obtain a partition of » (here

27 = 114+8+6+2)
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into parts without repetitions or sequences,’ or parts whose minimal

difference is 2. The partitions of n of this type, associated with a particular

m, are enumerated by

gm?

ayia). 2)

the general term of the series on the left in (6.8.1); and the whole series

enumerates all such partitions of n.

On the other hand the right-hand side enumerates partitions into numbers

5m-+1 and 5m+4. Hence (6.8.1) may be restated as a “combinatorial”

theorem: the number of partitions of n with minimal difference 2 is equal to

the number of partitions into parts 5m+1 and 5m+4,. Thus when n = 9

there are 5 partitions of each type;

9, 8+1, 74+2, 643, 54341

of the first kind, and :

9, 6414143 f+1l+1+141,

14+1+ +141

of the second. There is a similar

These forms of the theorems a

nor Ramanujan ever considex

to ask for a proof in which w

direct correspondence betwee

is known. Schur’s ‘“combinat a based, not on (6.8.1) itself,

but on a transformation of the & awhioh I will mention in a moment.?

It is not unlike Franklin’s proof of (6.2.1), but a good deal more complicated.

rial interpretation of (6.8.2).

on’s (or Schur’s); neither Rogers

inatorial aspect. It is natural

eombinatorial” arguments, a

t partitions, but no such proof

6.10. The proofs given ultimately by Rogers and Ramanujan are much

the same, but Rogers’s form is a little easier to follow.

We can write the right-hand side of (6.8.1) as

1 _ Ma —= bm) (1 — abt?) (1 — gm+3)\

IT{(1 —aem+1) (1 — pdm) (1—2) (1—2) (1—23)... ;

and the numerator on the right can be transformed, by a standard formula

from the theory of the theta-functions, into

1l—g?—aF 4a? +a ...,

where the indices are the numbers

4(5n? + n) (n = 0,1, 2,...).

* Parts differing by 1.

% (6.10.1), with cach side multiplied by (1 —x) (1—2*)....
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We have therefore to prove that

x act l—a?—2F + a9 +a...
6.10.1 ©, de ee

(6.10.1) 1+) +G=a) da) * 1—a) (1—2*) (1—#4)...

Similarly (6.8.2) is equivalent to

x x8 l-a-atta7+ae8—,,.
6.10.2 wy
(6.10.2) l+o—4+ Gray (aa) 7 (1—a@) (1-24) (1-28)...

the indices in the numerator on the right being the numbers }(5n? + 3n),

6.11. We use the auxiliary function

(6.11.1) G, = G,(a,%) = a (- 1)" arrginintD—kn(y — aka thn) CO,
na

where & is 0, 1, or 2 and

Com}, On: ya)
Thus

(6.11.2) G, = (1--a*) Cy— CO, + atel-2k(1 —atet®) Cg...

If a+0 then G, = 0 for all x. ¥

(6.11.3) Gy (0, 2} = + o33 —

and

(6.11.4) G(0, 2} +aH—.,,

are the series which occur in“

If the operator 7 is defined |

nf (a, 2) = f (aa, 2),

10.1).

then
4 _ (l-aa)... (l—-az") 1—ax

(6.11.5) n= “To a)..(l—a") —ol-a
and.

_ (laa)... —ae"-1) 1-2"

(6.11.6) Cra ~“Yoey..(l—at!) =a
Hence

(6.11.7) (L—2") 0, = (1-4) 9@,-15 (1-ax")C, = (1—a)7C,,

and in particular Cy = Cy = 1.

If kis 1 or 2, then

wo

Gy, —_ Grit = x ( _ 1) arrgknGnt+)—knfy _ qkgtkn — xk(1 _ ak-1y2k—In)} C,

oO

— ak-l(1 _ a) + ¥ ( _ 1)" ginyinon+D—knf(] — x) + agk-lylak—1)n(] ~ aa)} C,,

n=1

= ak-1(1 _ a) 9Qo + Ql _ a) x ( Jj yn arg hion+D—knfyO) 1 + ak lghtk- Dn?
n=1
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by (6.11.7). When we rearrange this series in terms of 9Cj, 7C4, ..., the

coefficient of 9C,, is

( ~ 1)" ql ue a) {q2nth—lyinlon+DHk—Dn — G2Nt Ry n+L) (bn48)—Wn+ DY

= (= 1)" (1—a) arth -ly nnd) eng] g8—kyB-M Ant),

Hence

G, _ Ona = (1 ~— a) qk-1 x ( _ 1)" q2ngtnntDHk-Dns] _ ashy SK) (2n+)) nC,,.

n=0

But Gan = ( —] ye a2nginint)—(3—k)nf] — a8 -kyG—han} Chs

0

8 3
ih4s

and so n@s_x = ¥ (~1)" ging dnbnt)+e—Dng Y _ a8-kyB—H enti Ch;

n=0

and therefore

. (6.11.8) Gy- Gai = (1 —a) a*yG5_y (k = 1, 2).

6.12. If now

Hy, = H,{a

(so that Hy = 0), then (6.11.3)

Hy, 948 sie
In particular

(6.12.1) H,

and so

(6.12.2) i,

Suppose now that Hi, = wey

where the coefficients depend on x only. Substituting into (6.12.2), we

obtain

L+eja+c,a?+... = 1+cyaxt+cga®a*t+...+a(1+c,ax*%+cgatxt t+...)

Hence, equating coefficients,

c 1 c x c c a= 7s =7 7s = Too 79 Oa, oo1 1-2’ 2 1—xz? LD 3 1_z PF]

d 
gn}

~ «= cali) oie
and hence

G(a, x) _ _ a ate?

(=a) (aay... =) = 4 ay iat)
akxs
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Also

G, (a, 2) 
an

(1—a@) (1—az)... = A(a,2) = yH,(a, 2) = Iti

aryt aSy9

* (ia) (P= a) * (2) (2) a) t
Finally, putting a= 2 in these two formulae, and using (6.11.4) and

(6.11.3), we obtain (6.10.1) and (6.10.2),

This proof is elementary, and reasonably simple; but it is undeniably

rather artificial. It is a ‘verification’; we verify that the series (6.11.1)

satisfies a functional equation, and the argument gives no explanation of

our choice of this particular series.

6.13. There is another proof by Rogers which seems to assume a little

more but is really more illuminati

We shorten our formulae by

Uy = |~

and begin by expanding the fx

J)

in powers of a. The function s

fa} =

Substituting a power series in a for f(a), and equating coefficients, we find

without difficulty that

, ghnin+))

f(@)= Lear eat ta at,

Replacing @ by ae and ae~, and multiplying the resulting series, we

find that

m

(6.13.1) @(x,0,a) = I1(1 + 2aa” cos 4 + a%xtn)

a

} +2 al 4 “ate, 1) (14 2 ae + Sate to we
1! Ly! | xy! tq!

= 14 pal gn
x,,!

* The argument of §§ 10-12, if regarded asa proof of (6.10.1), assumes nothing, though
some knowledgo of theta-functions is required ¢o identify (6.8.1) and (6.10.1). Intho proof here we use formulae from the theory of theta- functions i in the proof.
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where
B..(8 gnnt+))

(6.13.2) Banl?) =— it Fn On c03 20 +B H-L O94 cos 40+ ..
Lon . Ly Ly . Uap Lr4iense

RnB nae U1 Dent cos 1)
Crittnzae +++ Van

B Q ante

(6.13.3) Bansal?) =F (2 cos 0-+—"-22* cos 30
vont . ty? Unit : Tn+e

Lyln Ly, Ln+—2 1 946 cos 50+... +2 nai F1__ oynin+t) epg (2n +1) 0).
Trselnrg Cr+ genga s+ Songs

Finally, we replace a in (6.13.1) by 2-*, and use a standard formula from

the theory of the theta-functions, viz.

A(x, 8, a) = TQ + Qn 6 + perl)

_ lt 2sle v.20 + 2a? cos 30 +...

We thus obtain

1 + 2at cos 6 + 2a aos a4 © B.(@)
- = n —kn(6.13.4) (—x(— 4d tt,

6.14. If we replace B, (0), i

or (6.13.8), and rearrange the

we obtain an equality between 4 trigonometrical series. Such

an equality must be an identity; the eoeicients of cos 76 in the two series

being the same. It follows that we may replace

1, 2cos@, 2cos 20, 2.cos 30, ...

tg explicit expression (6.13.2)

@ as a trigonometrical series,

by any numbers for which the series remain convergent.

If we replace
1, 2cos 20, 2cos 40, ..., 2cos 2nd, .

by 1, —(1+2), o(1 +27), ..., (—L)*ain@-D1 +27), ...

and all the odd cosines by 0, then B,,(0) becomes

Ly

fn x(1 +a) +2 Bt (1 +a%)—..,
n+l Trin nee

(6.14.1) fan = ae -zl,
+(-1)"- Ly Vy or By gin@n—1/ Lp =}

Unt ensa +s Can ,
and we obtain

14 Pag ty Pa ny, _ 1-2-2 +a8tah—
! X,! .(6.14.2) = (=a) (I-24) (1—a)...”
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where the right-hand side is the same as in (6.10. 1). On the other hand,
if we replace

2 cos 0, 2c08 38, ..., 2cos(2n+1)8, ..,

by (I~), —(1—29), ..., (—1)tatem—D(] — ant,

and the even cosines by 0, then B,,,,,,(0) becomes

(6.14.3)

x xPong =~ ab ant UP] — 92] — 93) 4 — enna *a7(1—25)-.,,ane py ,! 2, ai! “iy Crsetnig
+(— 1)"— Fn Byars ey ginGnt+D(] — gntiy|

tn4 2tnig + + Cont
Multiplying by x, we obtain

Bs l-a—g¢t +27 +a —
144 -1 “eo(6.14.4) j@ +f 2 + f(a)...

(8.10.2). It remains to prove

) are the same as in (6.10.1)

where the right hand side is t
that the series on the left in (8

and (6.10.2),

6.15. We can do this by eval

before doing this I observe that

linear analytical transformatic

n an elementary manner. But

butions of § 6.14 correspond to

é then

| e278 cos 8.2 cos 2n6.dO = 211 — 1) 8 + cos (2n + 1)0}d0
Ca

= a[(}nd) {e-B2a~ WA} os /(dard) act MD 4 ry,

Hence the first substitution of § 6.14 corresponds to the result of (i) replacing

6 by 6+ 4m and (ii) operating with

(za) wif” e278 cog... dO.
16 aw

Similarly it may be verified that the second is the result of (i) replacing

@ by 6+ $7 and (ii) operating with

Je 2 je if e-267/8 sin 20... dé.
70 —@

6.16. We now write

+eé

vy, at ! 1 Ton41! 2
(6.16.1) Bon = z,! 2, ene Yanr Pans = z,!a,qi° Yen-+1>

and prove that

(6.16.2) Yan =! Yona = nail.
HR 

7
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We shall then have

= L = 1)
(6. 16. 3) Ban ~ ant Cr saTasas » Cons Boansa a” agit ) wv. nti nts are vont

and it may be verified at once that the series on the left of (6.14.2) and

(6.14.4) reduce to the Rogers-Ramanujan series.
To prove (6.16.2) it is enough to prove that

(6.16.4) Yonga = Unt Yen. Yan+a = Yani

Now

x Ln knit Ly Une n—
Yon = 1-1 +2) +— 22 wP(1 + 2?) — Annan lL + a8) +...

ent. Cnpien+3 Cn s1en tel n+3

= (1-22. )- gy? ~n (1 — 28a) a a Balas (1 —a8S-8) —
Cys enti en+e eye nta Tn+3

1 By : LyX
= —(l-z)-2#2——"" nel (1 — a5) —

n+1 Utd Ft nt eens

—_ Yan+1
— 3

Pri

and

= (1 Tn 92] — 93) 4 26) 9
Vener = (1-2) - x(1—2}-# (i a)

Tnte
Ly Unite n—_ en nal na) gl] —27)+...

T4920 43Un+4

x Ly, Ly Ln—
= 1a 1402) +28. ~ git Sno (1420 t)+..

nd ore) Vrpenss Cnia

x Unt Lyin Un
= 1-4 y(14+2) 4 nen 951 + ap?) — et nad gl] +03) 4-

Une ene n+3 Lagat nya n+a

= Yante

These are the relations required.

The equations ee) are

, =a") (12)

= (1—a) (1-24)... (1—2")

1— ei(1+2?)—..

and

(6.16.6) (1 er al ~ x") (1— —g?-})
(1 — a2) (1-244)

= (1-2) (1—22)... (1-24).

_ yn

(1 7 x) +
1]

Togei3 x?(1 — a8) —

Each of them reduces, when n—> 00, to

L—v—2®+ae4+a7—... = (L—#) (1-2?) (1—-24)...,
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Euler’s identity; and the argument of this section gives a particularly

simple proof of the identity. We shall be led to the formulae (6.16.5) and

(6.16.6) in a different manner later.’

6.17. It follows from (6.12.2), or may be verified directly, that

aa: ays
F(a) = H,(a, x) = 1+)>— zt (a =a) (t= at

satisfies the functional equation

F(a) = Fax) +axvF (ax),

From this it follows that

Fe) gg Fle), a
F(ax) F(ax) Lax? F(ax’)

F(az")

In particular

14. a a

141+ 1+.

_ . fl —a#3) (1-28)...

~ {1—a4) (1-2)...

is a quotient of elliptic theta-funs : a may be evaluated for certain

special values of x, This formula is the key to Ramanujan’s evaluations of

the continued fraction for special values of x, which I quoted in my first

lecture.

NOTES ON LECTURE VI

This lecture contains a good deal of the substance of Hardy and Wright, ch. 19,

and there is inevitably a certain amount of repetition; but the account here is

naturally less systematic. There is nothing in Hardy and Wright corresponding to

§§ 6.13-16.

§ 6.2. See Hardy and Wright, § 19.11, or MacMahon, Combinatory analysis, ii,

21-23. Franklin’s proof was first publishod in Comptes rendus, 92 (1881), 448-450.

Both Hardy and Wright and MacMahon give other examples of ‘graphical’

proofs.

§ 6.3. For a more rigorous proof that F(z) enumeratos p(n), see Hardy and

Wright, § 19.3.

§§ 6.4-5. Compare Hardy and Wright, § 19.12, where however there is no proof

of (6.4.2). There are alternative proofs of (6.4.1) and (6.4.2), and a proof of (6.4.3),

in no. 30 of the Papers. Darling (3) gave further proofs of (6.4.1) and (6.4.2),

1 Soe Lecture VIT, $7.8.
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There are interesting remarks on the parity of p(n) in MacMahon’s paper 2. Mac-

Mahon does not prove any general theorem, but gives recurrence congruences (mod 2}

by which it is possible to calculate the parity of p(n), for quite large n, very quickly.

Thus he proves, in ‘about five minutes work’, that p(1000) is odd,

One of the standard proofs of (6.5.1) is reproduced in Hardy and Wright, § 19.9.

§§ 6.6-7, Ramanujan’s proofs of the congruonces for moduli 5%, 79, and 11* are

contained in an unpublished manuscript now in the possession of Prof. Watson.

Darling (2) gave a proof of (6.7.1), and Mordell (1) much shorter proofs of both

(6.7.1) and (6.7.2).

The references relevant to the work of Chowla, Gupta, Kreémar, Lohmer, and

Watson aro 8. Chowla (1); Gupta (1, 2, 3); Kreémar (1); D. H. Lehmer (1, 3); and

Watson (24).

§ 6.8. Rogers (1): the identities are formulae (1) and (2) of §5. Rogers also

anticipated ‘THélder’s inequality’ (and is quoted by Hélder), but without writing

it in the standard form or recognising its fundamental importance. See Hardy,

Littlewood, and Pélya, Inequalities, 25 and 311.

Roger’s two later proofs are in his papers 2 and 4: the latter contains the proof

given in §§ 6.10-6.12, the former thet “te $2 6.13 -6.16.

For Ramanujan’s own proof so pers. Schur’s two proofs appeared

in Berliner Sitzungsberichte (191% Rison’s in Watson (3),

Ramanujan does not seem to Ne mulae explicitly in his letters to

me, but formulae LX, (4)-(7), of yond upon them. See Lecture I,

formulae (1.10)-(1.12); Papers, xx 2 (4), Ramanujan proposed the

formulae as a problem in Journeat Fv ac, 6 (1914), 199; see Papers, 330.

§ 6.9. See Hardy and Wright, § i Mahon, Combinatory analysis, ii,

33-36.

§§ 6.10-6.12. See Hardy and W

at the beginning of the proof are

PEW

theta-function formulae required

19.9 (Theorems 355 and 356).

back to Euler. The theta-function

or in any of the standard treatises

§ 6.13. The expansion of f(a) in 7

formula is proved in Hardy and Ws

on elliptic functions, ,

§ 6.17. Seo Lecture I, formulao (1.10)-(1.12). Proofs were given by Watson (4).
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HYPERGEOMETRIC SERIES

7,14. Ramanujan’s work on hypergeometric series is contained in two

chapters of his notebook which I analysed and edited after his death. This

analysis has since occasioned a small flood of papers, by Bailey, Watson,

Whipple and others, in the publications of the London Mathematical

Society. There is an excellent account of the results of all these researches

in Bailey’s tract.

The problem which dominates Ch. 10 of the notebook is that of the

summation of the series

(7.1.1) #(Ay, hy, *s) wx 1p 21%a%s (Hy + 1) Oy(%y + 1) es (a + 1)
—— tess

Bu Ps 1. fi P, 1.2. 8,(f,+ 1) By(2s4 1)

and the chapter contains practice verything known about this series

before 1922, When f, = a, the sto an ordinary hypergeometric

series, and its sum is given &

(7.1.2)

By, by hy hy | ky (cry - _ F(A) (2, -%—%) ,

F( Ay Jars : Ae le I(pi—% )P(By—%)"
ec series of higher order, and

vtions. We write

It will be necessary to ug

I must begin by explaining

a =ala+l)...(atne afa-l)...(a—nt+),

by, Bays vey 2 ae fMarfTM) .., anhad hf 90 Mg) = a
Br, Bay vvnr By) > enn! BOPP, BOE

The series is generally convergent for all x if psq, and for |x| <1 when

p=qtl. When p>q+1 it is divergent for all x unless one of the & is 0 or

a negative integer. We shall usually omit the argument 1 when x = 1. Thus

#(* “us) =F (*s Xe, 2) al, {* Has Xs :1).
Py Pe ue Py Pe Bubs’

* Here and elsewhere I ignore questions of convergence. The reader should be able

to supply the conditions for the validity of any formulae which I quote or prove.
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7.2, The key formula of the chapter is

© ety rebut 38: 28+ 1) Xen)
7.21 —1)" 2n oo

2 BMH ekycetut aly ad bu@eed lym
8 Il Petstiytz+ut+set+))

sti latyte2+uteset layeu P(2+uts+1) ,

where one of the five arguments

(7.2.2) L,Y, %, Uy —UX—-Yy—2z2—u—2As—1

is @ positive integer. If this condition (which is essential) is satisfied, then

the series terminates, and the formula is an algebraical identity. The whole

chapter, indeed, is essentially a chapter in elementary formal algebra; we

are concerned, at bottom, with identities between polynomials. From these

we deduce identities between infinite series, but the passages to the limit

which are necessary, though some, hem have points of interest, do not

present any serious difficulty te tt analyst.

Ramanujan seems to hava: la about 1910 or 1911, but

he had been anticipated by rmula looks formidable, but

Dougall’s proofis very simple. & Ramanujan argued similarly,"

but there is nothing in the nate

If we observe that fe,

and

we can write (7.2.1) in the farr

8,1+4s, —x, -y, —2, —u,e+ty+z2+ut%s41
(7.2.3) Fal, 31

t6,x+s+l,yt+s+ 1,z+st+l1,u+s+l, ~x-y-—z-u-s

_ 1 Ul Pats+l)lyt+etus+ed¢l)

— Pst Letrytet+utst leyzu Let+ut+s+l)

If we write —v for z+y+z2+u+2s+ 1, so that

(7.2.4) etyt+e+utv= —2~—1,

then the formula becomes

8, 1+ 48, ~¥%, —y, —2, -u, —v
7.2.5) oF(7.2.5) ds, e+s+ly+st1z+s+1lu+s4+1, vtetl’ 1)

1 P(e+s+1)yt+ztuts+l)

(s+ ljPatyte+utst layeu Pa@+ut+stl)

* By such verifications in particular cases as, when associated appropriately, yield

a rigorous proof.
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The left-hand side here is obviously symmetrical in z, y, z, wu, v. The right-

hand side is symmetrical in the four arguments 2, y, z, w, and, since the five

arguments are connected by the symmetrical relation (7.2.4), it is sym-

metrical in the five.

One of the arguments is to be a positive integer. If, say,

x= Mm,

then the series terminates, and the right-hand side becomes

(8+ DM (2+ut+s+1)TM (ut ytst 1) (ytz+at 1)
7.2.6) §— a .( ) (ytst 1) (z+st+)DTM(utst IM (ytetuts+ LI

And if we multiply both sides by

(ytst1ITM(y+e2+uts+1)TM,

then the formula asserts the identity of two polynomials in y, each of

degree 2m.

We assume the truth of the.

and prove it for z = m. It is #

it is true for 2m+ 1 different vah

Now the formula is true for |

¥

from the inductive hypothes

ar last remark, to prove that

= i

‘etry in x and y, and for

i.e. for

y= —2s—2-u—m—1, —2s—z2-u—m-—2, ..., ~28—z-u—2m,

from the inductive hypothesis and the symmetry in x and v. Hence it is

true for 2m values of y, in general different, and it is sufficient to verify its

truth for one more value. We choose the value

y = -s—m.

This value of y is a pole of the last term only of the series (7.2.5); and it is

sufficient to prove that the residue of this term is equal to the residue of

the product (7.2.6). It is easily verified that each residue is

(s+ 1)TM (s+2+u-+1)TM (z—m+ 1) (u—m + 1)
(— Ime a) ;

(m—I)t (s+ 2+ 1) (s+ + 1)TM (2 t-u—m + 1)

and this completes the proof.’

* I give a little more detail in §7.7, where I prove a more general formula which

includes (7.2.3) as # particular case.
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7.3. There is a whole crowd of striking particular cases. If we suppose

that x, y or z is a positive integer, divide by s, write {—wu for s, and then

make u— oo, we obtain

—%,-Y,~2

(7.3.1) ge -4)
_ tt Pytettsl)etett+ yD @tyt+tty

Paett+ilytt+irett+ i Letytetttly

which gives the value of (7.1.1) when

+ Oy +Og = fy +f,—1

and one @ is a negative integer. This result was found by Saalschiitz in 1890.

If on the other hand we suppose that u is a positive integer, divide by s,

put z = — 4s, and then make u— oo, we obtain

(7.3.2)

‘(ytst+)T@+tytist))

‘y+he+l)Tetytstl)

value of (7.171) when

ys \_T(s
erstlytstl) Pe:

This formula, due to A. 0. Dix

a +f,

It includes F. Morley’s formul

m\3 (m(m+s — 3m1+ 1 + TS a x cos dom

for the sum of the cubes of the ¢ he incr series for (1 — x)".
The formulae (7.3.1) and {7.3.2} two'of the three most important in

the theory of the series (7.1.1), The third is

(7.3.3) _ Ptytstl) (— gt)
Paet+s+1)Pyt+st+1) e+stlytst+l

(a+6+84+1) eT)

~ Tats+i)f(6+s+1) a+ée+1,6+8+1

This formula of Thomae’s was also rediscovered by Ramanujan. It is not

a consequence of the Dougall-Ramanujan identity, which is my main

subject here, but I give Ramanujan’s proof.’ By Gauss’s formula

Patytst+nt+l) ee ae (5% 74)
I(a+stnt+l)Cytstntl) Fstnt+h) \et+n+1

_ 1 emt m) I -y+m)
I(-2)IP(-y)m=o m'T(s+m+nt+1)

' This is one of the few cases in which Ramanujan gives an explicit proof in the

notebook. The proof is essentially the same as Thomae’s.
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Hence

Petyte+) yt yeeat |

Tet+s+IPy+s+1) \ x+st+ly+s+l

-~_t = A a+n)I(—b+n)T(@+yts+ntl)

~ T(-a)i(-b)ato nt! T(@tstnt ly) Py+st+n4+1)

I(-a+m)I(-y+m)I(-a+n)I(—b+n)

mn=0 mint Tis+m+n-+1)

and the conclusion follows by symmetry.

7.4. Treturn to the Dougall- Ramanujan identity. The notebook contains

a mass of elegant summations, mo. ich, though not all, can be derived

hut I will say something about

the formulae (1.2), (1.

If we suppose wu, in (7.2. - integer, and make u—oo, we

obtain

(7.4.1) SS (—1)"(¢ +20}
n=0 n

+8s+1) I(a+s6+1)

1) ayel (yYtets+1)

The special cases Hae g == 00,

and ea=yY=2=-8

give

s(s+1)\8 _ sine(7.4.2) 8 (s+2)(5 exc +a(* 7 ae

which reduces to (1.2) for s = 4, and

s\t s(¢+1) __sin?sn {I(s)}?(7.4.3) s+(6+2)(1) + +(s ora) () + ~ 27 cos sa I'(2s) ’
which reduces to (1.3) for s = }.

The formula (1.4) is more difficult, and it is not possible to deduce it

from (7.2.1). Proofs have been given by myself and by Whipple, the first

depending on the theory of the Legendre polynomials, and the second on

' There are a large number of examplos in my paper 8, and on p. 96 of Bailey’s

tract.
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a generalisation of (7.2.1) due to Whipple himself. Each proof shows that

Ramanujan’s series is equal to

al'+(3) +254) +]
and then sums this series by means of (7.3.2). It would be very interesting

to know Ramanujan’s proof.

Another interesting summation is

This also is not a consequence of (7.2.1), but may be effected by means of

the two formulae

ws) lash ge) earl eee
and

a, B )P(1+40)
(7.4.6) Al, taf Ftia—p
due to Clausen and Kummer Both of these formulae are in

the notebook. If we put

in (7.4.5) and (7.4.6), and x we obtain

1 5) 1.3\8

-(5 + x4) ~
_ $4, > | rg) \?
= a(S —)) = bray

7.5. Another curious formula which has attracted a good deal of

attention is

ass Ghost

oe
I prove this as a special case of a more general formula found by Bailey, viz.

(7.5.2) fae) (a+ lees + (2) ans maot'” . ton terms}

— (Lint ayefl (V2 1 (48)? 1

= Fr | In (3) wsi* (3a) neat” to m terms],
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We can write this as an equation between two terminating series of the

type ,f,. For

i 1\" 1 1.3\? 1 t t

m E mrpit 2.4 meat 0% berms
_ {L.3.. ws (2n—3)P 1 (2n 2)? (m+n—1)

(2.4... Qn— a wen + Qn—3P (m+n: 2)
(2n — 2)? (2n — 4) 4)? (m+n—1)(m+n—2)

(2n ~ 8)? (2n — 5)? (m+n — 2) (m+n—~3) |
— 1 sf £(n— 3) 1,~n+1,—-n4+1, -—-m—nt+l\,

= tania \ ¥( —n+3, —n+3, —m—n+2 ).“T(n)

Hence (7.5.2) reduces to

1,-n+1,~n+1,-m—n4+1(7.5.3) (m—4)* »( )
—#H +4, ~ Mm m+ 2

+1,-m+1, ee)

Now A” 08. t)
and so

—nt+1, -n+1 ‘
Ai ~m—n+2 i) A

If we equate the coefficients of #’”+"-1 on the two sides of this equation, it
will be found that we obtain (7.5.3).

7.6. Most of the preceding formulae, and in particular (7.2.1), can be

generalised for “basic” series. I prove the generalisation of (7.2.1), since

it is interesting in itself and has a curious connection with the Rogers-

Ramanujan identities.

The “basic” generalisation of the hypergeometric series was first studied

systematically by Heine. Suppose that, in the hypergeometric series

af a(a+l)f(P+1)
7.6.1 14+ tt

me) Ly? Vet)
]~qen ‘

we write iam

where 0<q<1, for Atm
pe+n

* Using the notation of § 7.1.
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(its limit when g—>1), and then write 7, m for q* and q#; and that we also

introduce a factor g” in the n-th term of the series. We thus obtain the series

(7.62) 142290=6), (1a) (ag) (1-8) (159) 09
(i-q) (ie) £* (i=) Gg) (Te) (10g) ©

which reduces to (7.6.1) when g> 1. This is the “basic series”’ corresponding

to (7.6.1).

More generally, we may write

(a)? = (1—a)(1—ag)... (1-aqg"TM")

and

Oy gy oy) (04) (ag)... (0)7.6.3 ple 2 "|= AUG Rg NE gin(7.6.3) (° bay --abg) (lop (b) 2
If a, = q%,...,b, = q@t,..., and g->1, then (7.6.3) reduces to

An additive relation betwee

spond to a multiplicative relat

The analogue of the series {

(7.6.4) ob IN 4
“ a, — 4/8

Here we have replaced

ch as a+, = 1, will corre-

bea and b, such as a,b, = q.

id, Le, ‘)

, weg, af}

by q° = 4,9" = b,¥ aeg=f.

The effect of the four parameters

q a, —-q Va, Ja, _ a
[— ag?

is to contribute a factor ima

in the general term of the series, just as the effect of the two parameters

1+ 48 and 3s in (7.2.5) was to contribute a factor (s+ 2n)/s. The relation

(7.2.4) is replaced by

(7.6.5) abedefg = 1,

and one of the parameters, say b, must be of the form gq”.

We can transform the product of gamma-functions on the right of (7.2.1),

and the finite product (7.2.6), similarly. We have

Py tT +Y) _ A Arte) gt)
PAF I) LAg+ 1) 1 (fy +2) (Mg +n)
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when A,+ A, = #1 +#2, and this is replaced by

F(L)F (Ly)

f f(m,) )F (me)?
where JO = il (1—lg”).

1

Hence the product of gamma-functions becomes

__f(abe)(7.6.6) Fa)flabede) TN Fab) F(abed)*
and the finite product becomes

(7.6.7) (aq)a' (agde)y' (agec)y' (aged
(age)? (agd)p (age)? (agede)r’

and we are led to conjecture that, if (7.6.5) is satisfied, and one of 8, c, d, e, f,

say b, is gTM, then (7.6.4) is equal ta-either of (7.6.6) or (7.6.7). It is plain

that (7.6.4) is symmetrical in 26 restriction can be imposed

upon any one of these parani .G) is symmetrical in four of

five symmetrically connected p; so symmetrical in all of them.

it true for hb 2

and prove it for b =: gTM. Ifb : iuitiply both sides by

then it becomes an. identity between two polynomials i in ¢ of degree 2m,
and it is enough to verify it for 2m+1 differont values of c. Now it is

true for c=l1,q, q, Lg,

by the inductive hypothesis and the symmetry in 6 and c, and also for the

m values of ¢ corresponding to the same values of f. It is therefore enough

to verify it for one more value of c.

We choose the value c=atgTM

which is a pole of the last term only of the series (7.6.4). It is sufficient to

prove that the residue at this pole is equal to the residue of (7.6.7). The

residues are, apart from a factor --a~'g-TM, the values of the coefficients of

1 1 1

1—acgTM ~~ aqgTMc—a-ig-TM

when c = a~!g-TM; and we have to prove that these coefficients are equal

for this particular value of c.
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To calculate the first coefficient we observe that

1
b=qTM, c= — Fm ated,

and we obtain

Loagie (aye (Ga (ag)? (UA)? eye (adeqye am
OD Ta OD (ag YE ANE (adgyy (aca (dee

Since

GI= 0-0-2) 6-6) tre setrnn
the terms in 1/e and 1/de may be transformed similarly, and

(gz = (1—q) (1g?) ... (L—9TM) = (— Timi) (grey,

(7.7.1) ig LAP OE (age (adeq)t (dam yg (eqrmttyr
_ l-a (agri ye (aeq)? (deq-m*t)m*

Also

1—aq*TM (a)@ (age 1—ag 
ay

l-—a (agn1y = — .. (l-agn- 1); sai - (ag)

Hence finally (7.7.1) reduces ts

(aq)a (ade

(qe ye

jeg tyr

which is also the coefficient «

This completes the proof «: identity, which includes the

Dougall-Ramanujan identity as a limiting case.

7.8. Let us suppose, in particular, that

a=), b=Q@", cH=d=e=e6, faa gle,

and make ¢ tend to zero. Then

(1-7?) (l1-e¥g) ... (1-e4g""4)

(1 —aeqg) (1 — ag?) ... (1 —aeg”)
~(—L)tginmDe~n,

and similarly for the factors in d and e; and

—f-)(1—f-g)... (l—fg") hana mn

(1 —afq) (i —afq?) ... (l—afg") ~ (—1)tg-imm—Dtnngsn,

After a little reduction, we obtain

1—gTM) (1 -qgTM).... (1 —gqm—ntl
St (—1)"(1+q") 4 = a ees f aT ginan—2
n=O

= (1—q) (l—q*)...(1-@TM),
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which is the first of the two formulae of Rogers proved directly in § 6.16.

If we take @ = q instead of a = 1, we obtain the second formula. These

formulae lead, as we saw in § 6.16, to a proof of the Rogers-Ramanujan

identities. The proof thus obtained is a compromise between Rogers’s proof

given in §§ 6.13-16 and the proof found later by Watson. Watson uses an

identity which is more complex in form than that of 8 7.6-7, but which leads

to the Rogers-Ramanujan identities by a direct limiting process. We use

the simpler identity, the direct generalisation of the Dougall-Ramanujan

identity, to avoid the rather tricky algebra of § 6.16, but retain the more

straightforward part of Rogers’s argument.

NOTES ON LECTURE VII

§7.1, My analysis of the two chapters is in Hardy (8), There I call the chapter

with which I am primarily concerned ch but it is ch. x in Watson's copy of the

‘second edition’. See Watson, 18, }

Almost all of the formulae di

Generalised hypergeometric series

graphy, and I do not repeat rofereti

The notation for generalised hyp

was introduced by Barnes, Proc, £0

§ 7.2. The Dougall-Ramanujan id

book. Formulae (1.2) and (1.3) of Lee

seem evor to have printed the gen

after his death.

§7.3. The special caso of Merle

etture aro proved in Bailey’s tract

‘This tract contains a full biblio-

lished before 1914.

; which has become standardized

oc. (2), & (1907), 59-116.

io first formula in ch. x of the note-

secial cases, but Ramanujan does not

iwh I found in the note-book only

Wich m is a negative integer had

beon found by Dixon as early as 15 ect more shortly by Richmond in

1892). Morley published his formule ta AhG2) ghd it was his result which led Dixon,

in the same year, to (7.3.2). Dixon’s original proof was very complicated.

The corresponding sum for the expansion of (1+) is a ,F, with argument ~1,

not summable as a finite product of gamma-functions.

Formula (7.3.3) is equivalent to (1), §3.2, of Bailey’s tract, It is an expression of

the theorem that

ee er (*; On *s)
Pp) P(Ba) P(Bi + Ba % — %q — Hs) Ay Bs

ig a symmetric function of the five arguments

Bus Ba Bit Pa-%y— Og, Pit hy %y—%, fy t hyo — a.

§7.4, The limit: process used in the deduction of (7.4.1) requires a little attention.

See p. 27 af Bailey’s tract, and the paper of Dougall’s to which he refers.

For (1.4) sce Hardy (4) and Whipple (1).

Whipple gives two generalisations of (7.4.4) in 3. These generalisations give the

ums of the seriess 4 
P 4, k+a, e-®

ue l+a,l—a ’

b, da, $420, -1)
nyand | l+a, 1+2m ’
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which reduce to Ramanujan’s series when z = 0. The second can be proved by the

method stated in the lecture.

87.5, The first proofs of (7.5.1) were given by Darling (1) and Watson (5); and

generalisations by Bailey (2, 4), Hodgkinson (1) and Whipple (2). The formula has

an interesting application to the ‘Lebesgue’ and ‘Landau’ constants: see Watson,

Quarterly Journal of Math. (Oxford), 1 (1930), 310-318.

Bailey (4) proved (7.5.2), and the still more general formula

Patm)P(y+m) RF z,y,vtm—l1 _ Petr lytn) P en)

Pim) Paty+m)| 2 \ vatytn Jn eH vaetytn ] bn~ Pn) P(ety+n)

Here [...J, and [...], mean that only the first x or m terms of the series are retained.

This reduces to (7.5.2) when # = y = 4,v= 1.

Formula (7.5.3) is a special case of formula (1), § 7.2, of Bailey’s tract. Replace

x, Y, Z, u,v, w, n by

—-n+1, —n+1, 1, -m-n—-2, ~n+3, —n+8, mt+n-1.

Further information will be found in § 10.4 of the tract.

§7.6. See Heine, Theorie der Kugetfanktionen, i (1878), 97-125.

§7.7. Jackson, Messenger of 4: 31-112. See §8.3 of Bailey’s tract.

Watson’s proof of the Rogers-Ria, given in §§ 8.5~6.



VIII

ASYMPTOTIC THEORY OF PARTITIONS

8.1. In this lecture ] shall be concerned with the question: how large is

p(n) for large n? It is very remarkable, if we consider how much has been

written about approximate or asymptotic values of arithmetical functions,

that this question should never have been asked before 1917, when

Ramanujan and I published the memoir which is now no. 36 in his Papers.

We were very lucky in finding a problem which proved to have so much

individuality and to admit so complete and so surprising a solution.

8.2, There is one obvious method of attack on any such problem (if no

strictly elementary method suggests itself). If a,, is positive, and the power

series F(x)
Te2G, €

eral correspondence between

d that of F(x) for # near 1.

order of magnitude of Euler’s

has radius of convergence 1, 4

the order of magnitude of

The first step, therefore, is tc

function

(8.2.1) F(x) =
{ ia)...

when 0<2<land gol! Th

rough approximation. For

inde, if we are content with a

CT — em
log F(z) = x log F => m2)

and maTM—1(] —2)<1l—-aTM< m(1—2),

so that

1 am 1 x
(8.2.2) You me <8 B(x) <\— va

Each of the series in (8.2.2) has the imit §7? when 2-1, and so

2

(8.2.3) log F(z) ~ 6(1 —2)

or

Ly?

(8.2.4) F(a) = exp (Pee.

* I write z now instead of g, g being wanted for other purposes.
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It follows that the order of magnitude of F(z) is, to a first approximation,

that of

8.2.5 m( ae ) XP G(T a) .

We want to know the order of a, corresponding to this order for

F(x) = Za,,2".

If a, = n*, where a> ~—1, and « = e~”, so that y>0, then

Pa+i) Fa@+i)

yet (ay
P(a) = Enea = Snte-m ~ | tre-twdt =

0

On the other hand, if a, were as large as e’”, for some positive 6, then the

series would diverge before x reaches 1. It is plain then that a, must be

smaller than this, but larger than any power of n. It is natural to conjecture

that the right order is about b

for some } between 0 and 1 ai

The order of Ga} =

may be calculated roughly fro#

when Bbn- = y, approximately

RIRY

: maximum term. This occurs

aximum term is then about

where C=

This agrees with (8.2.5) if 6 = } and ‘8

order of p(n) should be about

37°; and we conclude that the

eKnt

where

(8.2.6) K = 7(3).

8.3. It is actually true that

(8.3.1) log p(n)~Kn*

or

(8.3.2) p(n) = e(K+ott)nt

but we cannot prove this very simply. Itis however quite easy to prove that

(8.3.3) cant < n(n) < ebm

for n>0 and some positive A and B.

If a = e-¥, then y>0 when x->1, and

(8.3.4) l-z~y.
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We write

(8.8.5) F(a) = Ep(nje-TMTM = Gy);
and we suppose that

(8.3.6) O<B<CH=ir<D,

(i) It follows from (8.2.3), (8.3.4) and (8.3.6) that

D
p(nye-"¥ < Gy) <exp y

for all xn and small y. Hence, taking y = n-*, we obtain

p(n) <exp (ny + 7) = ent,

with B = D+1, so that B may be any number greater than (+1.

(ii) On the other hand

for small y; and so

#H

Gy) + Ga{y) = gine > exp
o i

for every m, But p(n) increases therefore

(m +1) pee = _ ayy).

Also Gy) = 5 playe
m+1 m+

after what we proved under (i); and so

1 E 2
> = tep(m) > +1 [exp 7 exe (Bn ny}.

We choose H so that H > 2B, and take y = Hm-*, Then

y exp (Bunt -ny)s s exp (Bnt — 2Bnm-*) < zr eBnt < J,
mt+1 0m+1

say. It follows that

E 1 E
—_fexp--— EL) =—— mt ip(m) > (exp 7 r) mal (exp a 1) >exp Am

for large m, A being any number less than H/H. Since E may be any

number less than C', and H any number greater than 2B = 2(14+D), i.e. any

number greater than 2(1+ C), A may be any number less than $C/(1+ C).
8-2
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8.4. To prove (8.3.1) or (8.3.2) we require a general theorem of the

so-called ‘Tauberian” kind. It is in fact true, whenever a, 2 0 for all n, that

log Xa,,2" ~
l—z

implies log A, = log (4g + a,+...+4,)~2(On)#.

When, as here, a,, increases with n, we can replace the last equation by

log a, ~ 2(Cn),

and this gives (8.3.1).

We have thus an asymptotic formula for the logarithm of p(n). But an

asymptotic formula for the logarithm of an arithmetical function is a very

crude result; it does not distinguish, for example, between the orders of

magnitude n£1000pKint

We should like, at the least, ic-forraula for p(n) itself. Actually

(8.4.1)

by arguments of so elementary

more powerfal methods which

nilarities of F(z).

but we cannot hope to prove sci

and general a kind. It is essen

pay proper regard to the more

8.5, Our natural resource rem. This tells us that

(8.5.1)

where C is a contour round the origin. We must move C into the most

advantageous position and study the integral directly. There is of course

nothing in the least novel in this idea, which is that which dominates the

whole analytic theory of numbers, and in particular the theory of primes;

but the setting here is quite different, and it is instructive to compare the

two problems,

Tn the theory of primes our generating functions were Dirichlet’s series

2a, n-*, and the proof of the Prime Number Theorem depended upon the

integral Me) =~ Lf otto 7 Cle)at

Ott} e—-io &(8) 8

where c>1, We moved the contour of if integration to the left, across the
pole at s = 1, and inferred that y*(z) and x(x) differed from the residue x

at the pole by an error of smaller order than x.

* See Lecture II,
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The conclusion was correct, but the argument was difficult to justify

because €(s) behaves in a very complicated way at infinity. In particular

the location of its zeros is still highly mysterious. On the other hand there

is no difficulty at all about the singularity which yields the dominant term,

a pole at s = 1 of the simplest possible character.

8.6. The singularities of the F(x) of our present problem are very much

more complicated. 'They cover the unit circle |v] = 1. The circle is a

‘barrier’ for the function, which does not cxist outside it, and there can

be no question of “moving C across the singularities”, All that we can

hope to do is to move C close to the singularities and study each part of it

in detail.

For all this, however, there are strong consolations. The function F(x)

is one of a well-known class, the elliptic modular functions, whose properties

have been studied intensively and ery y exactly known. These functions

all have the same peculiarities:8 “exist only inside the circle; but’

they satisfy remarkable fun ‘hich enable us to determine

their behaviour, near any poi very precisely. In particular,

F(x) satisfies the equation

are.

ge f 7 ,

where

1 1 47?(8.6.2) log ; log -5 : i ~ig iit

If, for example, « is positive and near to i, then x’ is extravagantly small

and F(x’) is practically 1; so that (8.6.1) expresses F(x), effectively, in

terms of elementary functions. There are similar formulae associated with

other points of the circle, such as

— 1, ef, e477, 7, — 7, ef, ,,

(generally, with all primitive roots of unity); but (8.6.1) alone is enough to

enable us to make great progress.

In particular, if we take C to be a circle with just the right radius, a little

less than 1, we can substitute from (8.6.1) into (8.5.1), and replace F(x’)

by 1, with an error which turns out to be of order

link

where H<K =7,/(8).

There are then only elementary functions in the integral, and we can

calculate it very precisely.
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The result is the formula

_ 1 ad ean Hnt
(8.6.3) PO) = 575 aa an) O(eHnhy,

where

(8.6.4) An = (n-), H<K.

This includes (8.4.1) and is very much more precise. The form of the

dominant term is at first sight rather mysterious, but it arises naturally

from the analysis. In particular, the “—;” in A, arises naturally from

the index 5; in (8.6.1).

8.7. This however is by no means the end of the matter. The formula

(8.6.1) is that appropriate for the study of /’(#) near w = 1, There are, as

I remarked, similar formulae associated with other ‘‘rational points”

(8.7.1) Lap g = CrPmIE

roughly) that these “rational

(x), that F(x) is bigger near

ind that their contributions to

‘weigh those of other points.

tninish in weight as q increases.

oughly like

on the unit circle. One mays

singularities’ are the heavies

them than near other points :

the integral (8.5.1) may be ex

Further, these rational singy

When x— 1 along a radius, (23

while when +->2, q it behaves r
=

€XPia5. » agra)
It is reasonable to expect that

(8.7.2) p(n) = P(n)+ P(n)+...+Po(n)+ R(n),

where P,(n) is the dominant term in (8.6.3), P,(n), P,(n), ..., Pg(n) are similar

in form, but with smaller numbers K,, Kg,...,Kg in the place of K, and

R(n) is an error of lower order than eXo,

The proof of all this can be put through without much additional

difficulty. The form of P,(n) is

(8.7.3) Pn) = Lg(n) b4(n),

where
Bod [eK An!

(8.7.4) P(n) = Ta dn (5-) ’
(8.7.5) E,(n) = Ey, gerne,
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p runs through the integers less than and prime to q,* and w,,, is a certain

24th root of unity. Thus

Lyn) =1, b(n) = Pin), Ky= 7
And

(8.7.6) Rin) = O(eHan4),
where Hg<Kg

(so that Hy—>0 when Q->co). We can thus find p(n) with error O(ei*) and

an arbitrarily small positive 6.

8.8, At this point we might have stopped had it not been for Major

MacMahon’s love of calculation. MacMahon was a practised and en-

thusiastic computer, and made usa, table of p(n) up ton = 200. In particular

he found that

(8.8.1) p(200}

and we naturally took this vi

expected a good result, with ai

had never dared to hope for au

our asymptotic formula. We

ps one or two figures, but we

@ we found. Actually 8 terms of

£ 0-004. We were inevitably led

sc to calculate p(n) exactly forto ask whether the formula co

any large n.

It is plain that, if this is p

number of terms of the series, th¥

final result was as follows. There:

necessary to use a “‘large”’

make Q a function of n. Our

ints a, M such that

(8.8.2) p(n) = Y P,ln)+ Rn),
g<anik

where

(8.8.3) | R(n)| < Mn-,

and, since p(n) is an integer, (8.8.2) will give its value exactly for sufficiently

large n. The formula is one of the rare formulae which are both asymptotic

and exact; it tells us all we want to know about the order and approximate

form of p(n), and it appears also to be adapted for exact calculation. It

was in fact from this formula that D. H. Lehmer first calculated the value

of p(721).

8.9. It was however necessary, until very recently, to make a curious

reservation at this point. The values of p(200) and p(243) were known,

because they had been calculated directly by MacMahon and Gupta, but

calculations based upon (8.8.2) were not decisive. We cannot use the formula

* When ¢ = 1, p= 0.
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to prove that p(721) has a particular value until we have found numerical

values for « and MZ; Ramanujan and I had merely proved their existence.

It was necessary to go over all our analysis, give numerical values to all

our “constants’’, and replace all our ‘“O” terms by terms with numerical

bounds. In the meantime Lehmer’s calculations, which used 21 terms of

the series, and led to the value

161061755750279477635534762-0041,

gave a very strong presumption about the value of p(721) but were not

conclusive.

The gap has now been filled by Rademacher, who (trying at first merely

to simplify our analysis) was led to make a very fortunate formal change.

Ramanujan and I worked, not exactly with the function

but with the “nearly equiva

Taf 3

(afterwards discarding the less ib parts of the function). Rade-

macher works with

vn

which is also “nearly equivails s apparently slight change has

a very important effect, since it leads to an identity for p(n).

We have

djl KA, d(K K*(n—+) _ {1

inlay) ala ae ~) = OCR)
for fixed n and large g. Hence the function

sinh (KA,/q)

Helm) = ap Rael An |
behaves for large ¢ like a multiple of gt.g-? = q-!; and

(8.9.1)

(8.9.2) | Lyn) | = | Daye era | <q,

so that °

(8.9.3) BE,(n) o,(n)

is convergent. The series 2'L,(n)¢,(n) is not convergent; this question

Ramanujan and I left doubtful, but it has been settled since by Lehmer.
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Rademacher proved that

(8.9.4) p(n) = 3 Lan) elm)

and that the remainder after Q@ terms is less than

CQ*+ v(2) sinh 3 ,

where C and D are constants for which he found definite values. The

remainder is of order n—-* when Q is of order n+, as in our older work.

Proof of Rademacher’s identity

8.10. The rest of this lecture will be devoted to the proof of (8.9.4).

The Farey series }, of order N is the set of irreducible fractions p/q,

between 0 and 1, whose denominators do not exceed N. We include 0 and 1

in the forms % and 4: thus %, i

if

and @ runs through. the values

are each 7), we define a set of “F

Suppose that q> 1 and.

£ the first and last values of x

8°? ye?Prtia on the circle |a| =r.

are three consecutive fractions associate with p/g the interval

Eng OF

qt Xa

” 1 ,» _ 1

Xna aig) ** ggg’)
These intervals just fill up the interval (0, 1), and the length of each of the

parts into which £,,, is divided by p/q lies between

1 1

avg’ Na’

The definitions naturally require modification when g = 1. Then p/q is

© or 4 and the interval has one part only.

We shall also use £,, for the arc of |x| = 7 defined by the same values

of 0; the two extreme arcs, which now abut at x = 1, are to be amalgamated

into one. We call this dissection of the circle the Farey dissection of order N.

We apply (8.5.1) to the circle C defined by

far] = 7 = en PnlN®

where
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We write

(8.10.1) p(n) = [2M ae = meQari gird pa oa an é = Lp, a

and study each integral separately. The range of summation is defined by

(8.10.2) O<p<q, (vp, g)=1, ISqsN

(except that, when q = 1, p assumes the single value 0).

8.11, On £,, we write

(8.11.1) wns reer, yp = entlN®, ite
so that

, 2

ay eae n i) 28)
where

(8.11.3)

Thus ¢ = 0 gives the Farey ¢

(8.11.4) i fon =X
and

1 1
8.11, ——— i.(8.11.5) 5qN iN

We also collect here some Hties which will be useful later.

Since [gf |<1/N and gSN, weh

(8.11.6) |z| = q(N-*+¢2)#< (q@N-4-+ N-2)F < 24-1

(so that |z| is small, uniformly, for large NV); also

Mz 7(8.11.7) exp(— J) = exp(-3yy73) <)
and

1,1 N- N=
(8.11.8) qua N+ 6 > PNALNS 52 4-

8.12. We now use the formula of the type (8.6.1) but associated with

eP7ta instead of with 1. This formula is

_ + 7(8.12.1) P(t) = Op 92 xp (i i)? @)
where

2pm -*m) ; (# mm =)
8.12.2 = » & = OX ——— ——],( ames oa g q P q q2
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Wy, 18 the 24th root of unity referred to in §8.7, 2? has its principal

value, and pp, = -1 (mod q). The formula reduces to (8.6.1) when q = 1.

If we substitute from (8.12.1) into the integral j,, of (8.10.1), write

nm We
8.12. = = zt asa(8.12.3) Wz) = ¥(z) =z exp (is in)

and observe that

2nn 2npmi

Ne
be = 2Inidd, a= exp( — 2nngi),

we obtain
x

(8.12.4) emtnn'NY, | = er, ge-mnvnil { Plz) Fe!) e-tnrde dg,
-x"

It is convenient to have also a formula for j,,, in which the variable of

integration is z. This formula, which is a trivial transformation of (8.12.4), is

(8.12.5) (co) eannela dz,

the path of integration being e joining the points

]

a(t
in the plane of z.

8.13. When z is small and

radius to that point),

is extremely small, and F(«’} is’ practi¢aily 1. We may hope to replace

F(z’) by 1, without serious error, on the whole of £,,,. We therefore write

(8.13.1) Joa = Ipaqt oq

and

(8.13.2) P(r) = Mog = XI q+ ZI pq = P(n) + P'(n),

say, J,, and Jj, being the integrals obtained from j,, when we replace

Fe’) by 1, F(x')-1,
respectively. Of course P(n) and P’(n) depend upon N as well as n, and

we have to study their limits when Noo.

8.14. We prove first that

(8.14.1) P'(n)>0.

We have W(2) {F(x')— 1} = ztexp | Ele ~)\ Sr) 2"
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Now | e-7#/222 |<],

by (8.11.7). Also

29,71 QaTmL292n'v | a au “P17 a7| emer | ox lio? q ah

by (8.11.8), so that

em/i2az S p(v) xv’? | S ¥ p(v) e-e-#)7 = B,

1 1

where B is a constant. Finally,

|z|#s2tn-4,

by (8.11.6), and the interval of integration in (8.12.4) is less than 2/qN,

by (8.11.5). Hence

[Foal <etr

{ 4 _ al i g &zand | P’(n)| = o(w

Combining (8.14.1) and {8.

pendent of NV, we see that

(8.14.2) mts

reembering that p(n) is inde-

8.15. In discussing P(n) w

by 1. Putting

we obtain

(8.15.1) Jog = Op ge "Ry as

where

id a(8.15.2) Rog = © aiexp| israg + 2mn— se) z} adZ.

a (8.12.5), with F(x’) replaced

The path of integration is now the line L of Fig. 2. Thus

N N

(8.15.3) p(n) = lim P(n) = lim ¥ Do, R, ere" = lim > Ti,
Now N--oqg=1 p No q=ul

where

(8.15.4) T, = ze 1n,q Rep, @ Ora,

We have now to transform R,,. We apply Cauchy’s theorem to the

contour indicated in the figure. Here Z! is positive at N~-?, is —7i(— Z)f,

where (— Z)! is positive, on the line (1), and 7(-— Z)? on (6), Also

e<N-

and ¢ will be made to tend to 0 before N tends to o.
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Cauchy’s theorem gives

g pee i f I [ I

| a wm J J@ Jam Jo Je
2giU, + igh +h+h+l+1,+J,),

say, where U, is an integral from —co to —co enclosing the origin in the

positive direction, and is independent of p.'

It is plain that

(8.15.5) Ry

u

(8.15.6) L+1,> — 2,

where

* W(8.15.7) y -{ Woxp {~ iq 2mn—a) dt

amet: N 247 x”

4

/
L

<6

—T> N72

Nix!

(so that V, also is independent:

that the other integrals 4, J, 44,

G. If we assume provisionally

> neglected, then we shall have
N :

p(n) = lim 3 T= lim lim » 7,
Woo g=1 N->»0 60 q=1

N

= lim lim ¥ (2q'U, +g h+L)} 5 Op ge ernmila

N—> vi > 0 g=1 Dn

N

=lim ¥ 29(U, “+ V,) Sw a e-enpTilg

pNon g=7

N 00

= lim 2 gL (U,+V¥,) =2y @L(U,+¥,).
V3m g-l q=i1

Here L, = L,(n) is defined by (8.7.5). And if we can then prove that

1 d/l Ka
5 y = —.. -{(— si att(8.15.8) +, On 2 an(asinh d ),

the proof of Rademacher’s identity will be completed.

* Rpg depends upon 7 as well as on g, because x’ and y” do so; and so do T;, Ty, I, I.
But U, V,, and the upper bounds found for J,,..., J, in § 8.16, are independent
of p.
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8.16. We must first verify the provisional assumption made in § 8.15.

It is sufficient to prove that

N _

lim } @dlim|4+4+44+5| =9,
N->og=1 p er>d

or that
N

(8.16.1) lim ¥ qlimMax|4+44+4,4+4,| =0.
N-og=1 ¢e>0 p

In J, Z=u—~—e-1Y (O<Y<x’),

1 €R(Z) < 0, %(Z) = -ayy<®

i éf 1 t 1and | In| <(e? + x"2)t x < (e+ aay) iN’

Plainly J, satisfies the same ineg

(8.16.2)

(for each 7p),

In 4, Z=X—? c& < N-*),

by (8.11.6);

1
GZ gey't = 4,

by (8.11.5); and, for each p,

(8.16.3) | Ig | <2N-®. 28-9 N+, e2naiN? etn < BN~tg—be2naiN?

where B is again a constant (in particular, independent of p). Plainly J,

also satisfies the same inequality, and so

(8.16.4) lim | J, + I, | <2BN-tg-te2n7N*,
e->0

Thus it is sufficient to prove that

N

% gi(qN)#-+0
q=1

N

and ¥ gt. N-ig-++0;
q=1

and each of these is O(N-}).
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8.17. It remains only to evaluate the integrals U, and V,, and so prove

(8.15.8). The integral U, is one of a standard type, and may be calculated

by formulae to be found in Watson’s Bessel functions. We have

ga [ oO a 7 _42n(n—2,) ZldZ=a], Borla t inna Z|
(0+)id J Z-texp Linde + 2n(n— de) 2} ad.

4nidn] ao 12422

If we put Z= —_ to ot
were ~ Qar(m— gg) 2772?

ld 1 (0+) pe
i a fo. “+ aewe obtain dn dn Xl oa. i-texp ( rae

22

with j= a, 4 ae da (2) An = j Kan.

and this is

dd | _}
21 dn \(27)i A,”

so that

As for V,, we have

--if
2a dn

Since [peor dt == NT cat
0 2a

when a and 6 are positive, this gives

V 1d (e-*4nla

~ arial a
1 df{l.,, Ka,and Use 575 ae gest),

which is (8.15.8).

8.18. It is easy to estimate the error involved in taking only N terms of

the series. The value of NV which we choose will depend upon x, and we must

now use approximations valid uniformly in ». In the first place

| L,(n) |Sq
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by (8.9.2). Also

djl. Ka,\_ d[(K , K¥\(n~) pli

inli,s a") alg tot) = As)
if n < Ag’,

for a fixed A, and q is large (and uniformly in any such range of n). The

error will involve all values of g greater than N, so that N must be at least

of order n#.

This being so, we have Wain) = O(g-*)

for g>N, and L,(n) y(n) = of y r) = O(N-4).
N+1 N+1

In particular, if we take N of order n*, we obtain p(n), for large n, with

an error O(n-*).

A rather closer analysis is required for numerical computation, but there

is no difficulty of principle. Thus Rademacher, using only the crude estimate

(8.9.2), found that the error 8 less than

Kant

~

« wish to use ¢,(n) instead of

isa. {and this is more convenient),

ich is easily estimated. Thus

‘Land N = 21, the error is less

nd less than 4 is good enough

(with definite values for B, a.

y(n), as in the Hardy-Ramat

then there is a slight additia

Rademacher was able to she

than 0:38. Since p(n) is an i

to determine p(x).

A cruder estimate will suffice To? special purposes. These calculations, for

example, were undertaken with a view to deciding whether

p(721)=0 (mod 118)

in accordance with one of Ramanujan’s conjectures. Since Ramanujan
proved that p(721) is a multiple of 11°, any bound for the error less than

60-5 is sufficient for this purpose.

T have set out in tabular form the values of the first 21 terms of the

Hardy-Ramanujan formula.’ The rapidity of the convergence is very

impressive, and the actual error is much less than that given by Rade-

macher’s analysis. The largest value of p(n) which has been found in this

way is (14031) = 92 85303 04759 09931 69434 85156 67127
75089 29160 56358 46500 54568 28164

58081 50403 46756 75123 95895 59113

47418 88383 22063 43272 91599 91345

00745,

1 The corresponding table for 7 = 14031 is too long to print conveniently.
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recently computed by Lehmer. This requires 62 terms of the series, and a

more refined estimate of L,(n); the crude inequality (8.9.2) is insufficient.

Lehmer has, however, shown that

(8.18.1) | L,(n) | < 2q',

and this was enough for the purpose. It turns out that

(14031)=0 (mod 114),

as predicted by Ramanujan.

q P{721)

I 161061755750279601828302117-84821

2 — 124192062781-96844

3 — 706763-61926

4 2169-16829

5 0-00000

6 14-20724

7 6-07837

8 018926

9 0-04914

10 0-00000'

eI 0-08814

12 — 0-03525

13 0-03247

14 — 0-00687

15 0-00000

16 —0-01133

7 0-000008

18 — 0-00553

19 a 0-00859

20 0-00000!

21 —0-00524

161061755750279477635534762-0041

' These terms vanish identically.

NOTES ON LECTURE VIII

§8.1. Most of the material of this lecture is to be found in Hardy and Ramanujan,

Proc, London Math. Soc, (2), 17 (1918), 75-115 (no. 36 of the Papers), and Rade-

rnacher (2).

88.3. Hardy and Ramanujan (Ic, 285-287) prove tho more precise inequalities

Hn-eant <p(n)< Kn} e2am
by elementary methods.

§8.4. The Tauberian theorem is proved, in a more general form, by Hardy and

Ramanujan, Proc. London Math, Soc. (2), 16 (1917), 112-132 (no. 34 of the Papers).

There are roferences at the end of this paper to similar theorems of Valiron and earlier

writers,

HR 9
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Tho ‘Tauberian’ methods are naturally offective, so far as they go, over a wide

range of problems. Thus we can prove that the number of partitions of n into primes is

ose (lig) |
with the same degree of accuracy as in (8.3.1) or (8.3.2).

$8.6, The functional equations for F(x), required here and later (in particular in

§8.12), are the formulae for the linear transformation of the function A(7) of Tannery

and Molk. See Tannery and Molk, Fonetions elliptiques, ii, 264-267 (tables XLV-

XLVI).

The formula, (8.6.3) was found independently by Uspensky, Bull. de Pacad, des

sciences de TURSS (6), 14 (1920), 199-218. Uspensky’s paper was published a
little after ours, and we developed the solution much further, so that his proof of

(8.6.8), which is simpler than ours, has been noticed leas than it deserves.

§8.7. The abstract of no. 36 which appeared in 1917 in the Comptes rendus (no. 31

of the Papers) does not advance beyond this stage.

The idea of approximating to an arithmetical function by a ‘singular series’, in

which each term corresponds to & ‘ net’ on the circle of convergence of the

generating series, is one of these e work of Hardy and Littlewood

on Waring’s problem.

Various expressions for wy. ! ¥y Hermite, Tannery and Molk,
eraacher’s ig

where 8yq

D. H. Lehmer (4) has proved & ‘multiplicative’ property which

enables us to reduce its calculation £5 ¢ is a prime or a power of a prime,

and that in these cases it is the pro: power of 2, a symbol of quadratic

residuality, and the cosine of a rational multipi of w.

§§ 8.8--9. MacMahon worked with the recurrence formula

p(n) —p(n— 2) -—pin -3)+p(n—5) +... = 0

obtained by equating coefficients in the identity

(l—2?-—a+a5+....)2p,2" = 1.

Gupta (1, 2) used additional devices.

Lehmer calculated p(721), from the Hardy-Ramanujan formula, in his paper 1,

but the result was first made decisive by Rademacher (2). Both Lehmer and Rado-

macher also calculated p(599), as a test of Ramanujan’s conjecture (§ 6.6) for modulus

54 (the result being again affirmative). In the meantime Gupta (2) had verified the

value of (599) by direct computation.

In his paper 3 Lehmer finds the values of p(n) for

n = 1224, 2052, 2474, 14081

and verifies their divisibility by

54, 118, 55, 114

respectively.
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Rademacher and Zuckermann (1) and Zuckermann (3) have found identities for

the coefficients in other modular functions. Some of these functions are of the same

type as F(x), while others are of a different type also considered by Hardy and

Ramanujan (Proc. Royal Soc. (A), 95 (1919), 144-155 (no. 37 of the Papers)}.

For the divergence of the Hardy-Ramanujan series see Lehmer (2, 4, 5). The first

of these papers settles the question of divergence, while in the two latter he proves

more precise results.

§8.10, For the relovant propertics of Farey series see, for example, Hardy and

| Wright, ch. 111, or Landau, Vorlesungen, i, 98-100.

§8.17. See Watson, Bessel functions, ch, vi, especially p. 176.

§8.18. For (8.18.1) see Lehmer (4), 292,



IX

THE REPRESENTATION OF NUMBERS

AS SUMS OF SQUARES

9.1. The problem of the representation of an integer » as the sum of a

given number k of integral squares is one of the most celebrated in the

theory of numbers. Its history may be traced back to Diophantus, but

begins effectively with Girard’s (or Fermat’s) theorem that a prime 4m+1

is the sum of two squares. Almost every arithmetician of note since Fermat

has contributed to the solution of the problem, and it has its puzzles for us

still,

We denote the number of representations of n by k squares, i.e. the

number of integral solutions of

e+ abs... taf =n,

by 7, (7). We are to pay attention.

1 = (+1)?+0? = 0?+(4

ign and order of 2, %,, ..., #,. Thus

(UP = (408+ (4 2)%

8.and Tfl

The problem is that of deterx

functions of n, such as the num

easier if k is an even number 2:

lecture.

Jacobi solved the problers {

terms of simpler arithmetical

of its divisors. It is a good deal

{ suppose this throughout the

ud 8, Thus he proved that

(9.1.1) rin)= 4 & 4{d,(n) —dg(n)};
doadd,d|n

and that

(9.1.2) r,(n) = 85d = 8a(n),
d|n

or

(9.1.3) r(n)=24 Yo d= 240°%n),
dodd, dln

according as ” is odd or even. Here the sums extend over all divisors d of n,

or all odd divisors; d,(m) and d,(n) are the numbers of the divisors of n of

the forms 4m +1 and 4m + 3 respectively; a(n) is the sum of the divisors of

n, and o°(n) the sum of its odd divisors. The formula for 7,(7) is a little more

complicated, but of the same general character, and that for r.(n) will

occur later.
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9.2, Jacobi found his formulae from the theory of the elliptic theta-

functions. If

(9.2.1) a) = 14+ 2n+274+...= Ha”,
—«

then
“3 ys a?

2.2.) — 9%X(n) = mt ..(9.2.2.) Oe) 1ea( eg i- TT et
and

(9.2.3) Mr) = 1+ (7 Qa? + 8a stp 4x4 Lo.

1— l+a21- l+a4

and (9.1.1), (9.1.2) and (9.1.3) are the results of equating coefficients. Thus

the right-hand side of (9.2.2) is (ignoring the 1)

at

4 (-Ier ad yy (I Dat;
dodda 1—at dodd i=1

and the coefficient of x” is

In this way the formulae fo

analytical theory.

It is possible to reverse this pr

directly and deduce the analyti

ence between r,(n) and 7,(n}. f

2} appear as corollaries of an

prove the arithmetical formulae

and here there is some differ-

aduce (9.1.1) from the theory

of the Gaussian complex int 2) and (9.1.3) present greater

difficulties. For this reason iti have an elementary deduction

of (9.2.3) from (9.2.2), and Kamanuiin-Ginnd one. I repeat it here because,

though it has very little bearing on the substance of my lecture, it is a very

characteristic speciinen of Ramanujan’s work.

It is easily verified that

te

“. sti 2a* + eS 4 dat 4.

l+22° 1 1+a4

x Qx2 3a8 5a5 =x

~ [oe ioe oa ta ti
am

where Um = 7

and the dash indicates the omission of multiples of 4. We have therefore

to prove that

(9.2.4) (E+ uy —Ugtus—...)? = pt $2’muy.

Ramanujan proves, more generally, that

(9.2.5) S@=7,+T,,
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where S = }cot40+u,sin@+u,sin20+...,

= (f cot $6)? + u,(1+u,) cos 6 + ug(1+ ug) cos 20+...,

T, = ${u,(1—cos 6) + 2u.(1 — cos 20) + 3u(1 — cos 30) +...}.

This reduces to (9.2.4) when 0 = 47, For then .

S = 444, —-Ugtug—

T, = vet 2 (- 1)” tam (1 + Um)

1 a 1 gam « 1 amn

a m — im

tet 2 ( ) (1 —a2m)2 2 ) ne

_4_ oO meen 4 0 nee _ nat

— #8 ps L+a2 18 = 1-2 ]-ain

= gig — Ua — Bg — Stay —

and. T, = $(uy + 84g

so that BR

To prove (9.2.5), we write

= (: cot 46+ 514
i

Ce) a

= (} cot 40)* + mo + (= Up» Sin mo)
1

= (fcot 30)* +

say. We express 8, and S, in &

= 5 {4-+.cos 6+ cos 20+... +608 (m—1) 8+ 4.608 MO} Uy,
1

a [oa) ao ©

S, = Su, sin m4 Su, sinnd = 4¥ ¥ {cos (m—n) O— cos (m+n) O} Uy tn,
i 1 17

and rearrange S,+ S, as ©

8,+5, = % C, cos kd.
k=0

(i) The contribution of S, to Cy is 42 u,,, and that of S, is $Xu?,. Hence

Cy = FEU (L + ty) = Ea: a =4E Ene

= » oe = ES mye
(ii) If & > 0, then the contribution of S, to C, is

wo oO

du, t+ Dt, = $Up+ SN Una
k+1 l=1
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That of S, ia

~ k~1

D Umtn +4 x Up Un — Do U_ty = Dy Up — $ DL Uy Up_t-
m—-n=k n—m=k mtn=k t=1 i=1

00 a k~1

Hence Cy, = 4uy+ p> Unga t zu Usa 2 ait

It is easily verified that

Ups AL + ay) == Up (ty Upys), Uppy = Uy (1+ + Uy),
so that

>Cy = ued + a Mier) — t
= Up fh Uy + Ug t 0. + Uy, — Fh — 1) — (ty ig +... + Uy_y)}

= Uy (1 ~ Uy — 9h).

1

(L+u,+ up 0)
1

Hence finally

S? = (}cot 40)? +4
n

oO

= (fcot dO? + Hx.
m=4

= 7,+7.

The identity is equivalent tc

ney(ecw) — 22)" —

in the ordinary notation of #1

2

9.3. Jacobi did not attempt to determine r,,(n) when 2s exceeds 8, and

the first results in this direction, for 2s = 10 and 2s = 12, were found by

Liouville and Eisenstein. In these cases r,,() is not usually expressible as

a simple “divisor-function” of n. For example, in Glaisher’s notation,

Tyo) = 3{Hy(n) + 16 Hy (m) + 8xq(m)},

where En)= Y (—1ke-ds,
dodd, d\n

Emy= YD (—1)Kevds
d’ oda, d\n

(d’ being n/d, the divisor of » “ conjugate”’ to d), and

X(r) =F DY (a+b)
C+P=n

(a sum extended over the Gaussian complex divisors of 7). There are

similar formulae for 28 = 12, 14, ..., 72,(7) being in each case the sum of a

“divisor-function” and one or more supplementary functions. The com-



136 The representation of numbers as sums of squares

plexity of these supplementary functions increases with s, and it is only

the simplest of them, such as y,(n), which can be defined in an illuminating

arithmetical way. The majority can only be recognised as coefficients in

the expansions of modular functions.

We shall find, however, that there is always a divisor-function which

‘“‘dominates”’ 7,,(n). In all cases

Tog(%) = Oo,(7) + Caq(1);

where 6,,(n) is a divisor-function and ¢,,(n) is much smaller than 4,,(n)

for large n, so that T'oq(0) ~ Bgg(2)

when » tends to infinity,

9.4, I propose to work out two special cases in detail here, 2s = 8 and

2s = 24. The analysis is a little simpler than usual when 2s is a multiple

of 8, but these two cases are quite typical of the general theory. In the first

case I shall obtain the classic ‘.acobi, in the second the most

characteristic of Ramanuja . Ido not think that any

complete proof of this has been fore.

thods, but the later “function-I shall not use Jacobi’s or Rai

theoretic’? method devised by id myself, which shows up the

rly, I must however begin withfoundations of the theory muc

contributions to the subject,a few general remarks about :

which are set out in two su in the Transactions of the

Cambridge Philosophical Socie

It is always difficult to say hoya gmanujan owed to other writers,

and the difficulty is at its maximu he is developing work which he

began before he came to England, and when he is concerned, as he is here,

with some side of the theory of elliptic functions. There is-no book on elliptic

functions which he could have seen in India and which says anything about

the arithmetical applications of the theory. I believe therefore that Raman-

ujan had rediscovered Jacobi’s formulae, which certainly lay well within

his powers.

By the time he published these papers Ramanujan had read a great deal

more, and knew all about Jacobi’s and much later work. In particular he

had read Glaisher’s papers, and treats their content as known; arid a reader

who takes his acknowledgements at their face value will be liable to under-

estimate his originality. The papers are highly original, whatever deduc-

tions we may make: they are characteristic of Ramanujan at his best. They

contain many remarkable theorems which are undeniably new, and con-

jectures still more remarkable, which were confirmed later by Mordell; and

1 Nos. 18 and 21 of the Papers.
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the general level of the analysis is astonishingly high. In particular the

second paper contains all the formal theory of ““Ramanujan’s sum”, which

is fundamental for my purposes here. I shall have to start from formulae

of Ramanujan even when I am developing the theory on lines entirely

different from his.

Ramanujan’s sum c,(n)

9.5, Ramanujan’s sum is

Cq(n) os > e72nprilq,

pa

where the notation indicates a sum over values of p less than and prime

tog.’ It may also be written as

Qnp7
¢,(n) = cos

pa)

(a form which shows that it is res]), or again as

where p, is a primitive q-th n
It is easy to evaluate c,(%

function is defined by

(i)

(ii)

ifn = pyp,... p, is the produ

(iii)

if n has a repeated factor? The c

ie M6bius function «(n), This

prime factors, and

properties of (n) are (a) that

x Hd) = 0
@

for all g> 1, and (6) that the identities

(9.5.1) 9(q) = ¥ f(a)
diq

and

‘ = g(9.5.2) fa) = Sa{ 4) aa)

are equivalent to one another. The last theorem is usually described as the

“Mobius inversion formula’’.

Ramanujan proved that

(9.5.3) o(n)= ¥ (5)a
dlq,din

’ Or any complete system of residues prime to gq.

> p(n) has occurred already in Lectures IT and IV. See p. 23, footnote.
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(a sum extended over all common divisors of g and n). To prove this he

observes that q-1

Ng”) = z e—2nhatig

A=0

is q if g| n and 0 otherwise. But it is plain that

M(TM) = X eg(r);
d\q

and therefore, by the Mébius formula,

g
¢,(n) = =| a(n),an) = 3 0(6) na)

which is (9.5.3).

There is another proof which is a little longer but depends on principles

which will be useful later. We say that f(g) is multiplicative if

(9.5.4) Fg fe)

whenever (q,q’) = 1. In parti

if we want to prove that

(9.5.5)

and know both f(g) and Fig} pheative, then it is enough to

prove the result when q is a p

Now, if (¢,¢') = 1, we have

Cq(n) Cy(#}

= > “@e “Bn Prilag |

P(g), p'(g’)

where P= pq'+p'9;

and P runs over the range P(gg') when » and p’ run over (gq) and p'(q’).

Hence > e-2tnPaijq”’ .- > e-tnPatiad’ Cyq(®),
nia), D(a’) P(aq’)

and Ramanujan’s sum is multiplicative.

Again, if we denote the right-hand side of (9.5.3) by C,(), we have

= Suf2) (2) aa’ = Ze( 2) aa(9.5.6) Gn) O(n) = En 4) | t,) da El 1 yi) aa

Here d|q, d|n, d'|q’, d’|n, and these relations are equivalent to

dd’ |qq’, dd'|n

(since g and q’ are coprime). Hence the right-hand side of (9.5.6) is C,y(n),

and (,(n) also is multiplicative.
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We have therefore only to prove that

Cot(n) = Cs(n)

when @ is prime. The values of » in p(w*) are

p= OF lz + py,

where z = 0, 1, 2, ....@—1 and p, runs through p,(w*1). Hence

Cyt(n) = SS en temyrift “Se tnanii,
pi(wk->) 2=0

and the inner sum is 7 when w |” and zero otherwise, It follows that

(9.5.7) Coi(n) =O Se eeprrtiok? — ge py s(m)
pile)

if o|n and n = wn,; and that c,:(n) = 0 otherwise.

Now

80 that

(9.5.8) e,(n) = —1 (9 =a—1 (w|n);

: revery k. We find that

(9.5.9) €,2(2) = 0 (wrn), win), w(w—1) (w*|n),

and we can now calculate ¢,2(7%

and generally

(9.5.10)

Cgt(n) = 0 (weI4n), —w* ken), wk-a—1) (| n);

and we can verify at once that these are also the values of C,s(n). Thus
c,(n) = C,(n) whenever g = w*, and therefore for all q.

The series Xq-*e,(n)

9.6. Ramanujan summed a large number of series of the form Xa,c,(n).

The simplest is

S Cq(%)
9.6.1 Un= > +.(9.6.1) (n= ye

There are a number of interesting ways of summing this series. It is abso-

lutely convergent when s > 1, since | ¢,(n) | = d(n) for every q.

(i) The shortest way is due to Estermann. We can write c,(n) in the form

cn) = SS pllym,
im=a,m|n

so that Cl) ll) -*m-*,
yf Im=a,m|n
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When we sum with respect to g we remove the restriction on 1, which now

assumes all positive integral values; and so

(9.6.2) O(n)= Y wm
: Lm|n

_ » MO o_,() n~o4_4(1)mi-# = ~i- —- ;

ek) Es)
where ¢,(n) is the sum of the v-th powers of the divisors of n.

(ii) Ramanujan argued as follows. We suppose that F(a, y) is any function

of the two variables x and y, and that

Din) = 3 F(4,5);
d\n ad

and define 7,(n) as in §9.5, so that 9,(n) is vp or 0 according as pv is or is not

a divisor of n. Then

Now c,(n) occurs in this series wht

therefore
ty rf

(9.6.3) Din) = ey(n) S 7 (

ju, in which case pz St/j; and

e

+0y(0) D5 F235]

Suppose in particular that F(z, y) = 21-*. Then

D(n) = Da = o1_,(n)
din

c(n) # tt c Pu

and o,_,(n) = eal) yaaa exln) Sas oat) PS Wt a

+o(0) De mae i, at

Finally, if s>1, and we make t— co, we obtain (9.6.2).

(iii) A third proof proceeds on lines like those of the second proof of § 9.5.

We start from the identity

od) | fa) fe),
op abe tet | = ke
q=1 g m

where f(g) is any multiplicative function and w runs through the primes.

The identity reduces to “‘Euler’s product’ when f(q) = 1.
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+o) Ca*(”) +
In this case Ve = pw tee

and we can quote the formulae (9.5.10). Suppose that w* is the highest

power of @ which divides », Then

Xo = 1-w
ifa = 0, and generally

w— 4 a(@w—1) oe o- -l) aw
Xo =1+——-+ ge +. as parDa

| —m@tna-a)

= OO) gt

€,(7) l—_w@ba-§) og ,_,(n)
Hence ye = II l-o) T] oe Engh!

7 ne a On
by the ordinary formula for 4 sum vera of divisors of n,

In particular, when « = 2, % rmula

1 Tt

a(n) = bn%n{t 4 & a : =
2(cos 2.n7 + cos $n)

3 tos,
5

for the sum of the divisors of #.:

the oscillations of o(1) about its

We have supposed that s>

We can write (9.6.2) as

(9.6.4) x

la shows in a very striking way
2

dar'n,

sries are absolutely convergent.

The first factor on the right is a finite, and therefore absolutely convergent,

Dirichlet’s series, and the second a Dirichlet’s series convergent for s 21;

and therefore, by a familiar theorem on the multiplication of Dirichlet’s

series, the series on the left is convergent, and (9.6.4) is true, for 21.

Putting s = 1, we obtain

ox(n) + 2) 4 200) =0

(a theorem of the same depth as the prime number theorem).

Ramanujan made a number of similar summations, among which

eat) 10 ex(m tog 3+... =—d(n)c,(n) log 1+ og 24+.

and nfex(n) _ “2{") + eal) —...) = 74(7)

are two of the most striking.
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The series Le,q-*c,(n)

9.7. The series which is important for our present purpose is not (9.6.1)

but

9.7.1 Viny= 36”,( ) (2) he ¢

where €g= 1 q@=1,3), 0 (g=2), 2’ q=0),

the congruences being to modulus 4, This series may be summed by any

of the methods of § 9.6; I select the first as the shortest. I define o*(n) by

o*(n) =0,(n) (n odd),

oF (n) = o;(n)—oy(n) (nm even),

o%(n) and o°(n) being the sums of the v-th powers of the even and odd

divisors of n; and I prove that

(9.7.2) V(n) :

We have

Vin)=

say. Ilere, first,

Kn) = 2 (lays

gC {n) = K(n) + (n),

¢=1,3,...

u(L
= | ain) xy HO

Im=1,3,...,min t=1,3,,.,

Next,

Vim)= 22 gS wm a2 YL pllyiemt 4,
q—4,8,... ln—g,m|n Im=4,8,...

If 4} 7, then (2) = 0. Hence we may suppose that either (i) / is odd and

4|m or (ii) 1 = 2l,, where 1, is odd, and 2 | m. The terms of type (i) give

WD yg BOK. g(n)os eM 1-3 _

pe Batti = (= 8=*) L0)?
where the double index indicates a sum over doubly even divisors; and the

verms of type (ii) give

l of_,(n_ HN) yx meta 1 al vy)
4-13... Af 2]manin (1 —2-*) &(s)

' We have not now two alternative forms like those in (9.6.2), since

nimoX(n) +o (n)
when 7 is even.
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Collecting our results, we find that

(1 ~ 2°") (8) V(n) = of_,(n) — of_,(n) + 20% (2);
and we have only to verify that

(9.7.3) ial) — OF _4(n) + 2oGt_,(n) = no, (n).
This is obvious if is odd. If n = 2N, where N is odd, and é runs through

the divisors of V, then the left-hand side of (9.7.3) is

201-8 — S(26)-8 = (1 — 21-5) SGl-# = (1 — g1-8) N18 Pgs

= (28-1 1) nk S81 = nlf E(28)0-A — FG} = nl -Ag*_4(n),

Finally, if » = 2*N, where «> 1, then it is

Deis — {21-8 + 4i-a t+o..4 2a-s)} 261-8 + 2s{4l-s + gl-s +...4 2a(l—s)} d,O1-8

=_ { 1+ Q1~s + 41~s +o. f Qe DG-28) gett—s)) Dd§i-s

— = Nl*{] + 21- G4 gi-s AXY--2) 2a(1—s)) Sel

a ni-s{Qale- Dy Wakes? Ys oy: } Sent

= nb-{o¢_,(n)—

This completes the proof of vo
The singular serie blew, of 28 squares

« not to be found (at any rate

e ideas from which Littlewood

fem,

9.8. I must now introduce id

explicitly) in Ramanujan’s wor

and I started in our work on.

It is easy to find asymptoti: he behaviour of

f(s) = OX att ,)2,

where x tends radially to a “rational point” e??7/2 on the unit cirele. We

may suppose that q == 1, p = 0 or that g>1, 0<p<q and (p,q) = 1. If

ag == petprtia

and r->], then ~

H(z) =142 2 pn p2n parila

= 142

wm

gtd? pXla+i pataHo? é
j =}il& EMe °

= 142 35 eifpria s pati)
j=l i=()

Ifr = e-*, so that 60, then

wm wo oe

Sty an Se Bat |g Heat i dy

0i=0 t=0 da ;

~ “ ~8e2y? = a 7T ~~

Jreteaem ae l(5) = Bye)
* Exeopt in our joint work on partitions.
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and hence

(9.8.1) oa) ~2s, (low)
where

(9.8.2) Souq = di eeiteril
g=1

is one of ‘‘Gauss’s sums”’. If S,,, = 0, as happens when q= 2 (mod 4), then

(9.8.1) is to be interpreted as
l\-3

Hx) = o{(tog.)
It follows that

(9.8.3) fie) ~ n( "2a" (18 7)
We now form an auxiliary function which mimics the behaviour of f(z)

when x approaches the unit cir ie way. It is known that if

then Eh:

is regular at 2 = 1. Hence, if

Fr.al®)

then Fngl®) ~

when 2 tends to e??7#/2, Thus f,, (x) “‘mimics”’ f(x) near this point; and, if

we write

0,,(2) =1+ XSpq(),
PA

then we may expect that 0,,(7) will mimic f(x) near all rational points

e2P7t4, To say this is to say that O,,(x) mimics f(z) very comprehensively,

so comprehensively that there should be a very close relation between the

coefficients of the two functions. If this be so, then the way will be open at

any rate to an approximate determination of r,,(7).

7 2e .Now Q,.(2) = (= D Mes)" ni-le—2npri/a an
° w= TAG) 2%,

= 1+ % puln)2",

28 -where Pag(tt) = se- n} » (FE *) e-2npzi/a,Te ) pa
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We can write this as
& tO

Ce 2

(9.8.4) P2g(%) = 7) ms 2X Ad”);
a=

where A,(7) = 1 and

(9.8.5) A,(n) =q-* > S28, e~2npatla
RD

when g> 1. We are entitled to expect a pretty close relation between 7,,(7)

and p,,(n). It is only an expectation, since our analysis has been entirely

“heuristic’’; but it is plainly one worth pursuing.

We call (9.8.4) the singular series. Our construction is typical of that

of the ‘singular series” in the general Waring problem.

Summation of the singular series when 2s = 0 (mod 8)

9.9. The singular series can be summed for all s. The analysis is simplest

when 23 = 0 (mod 8), as I shall suppe

The Gaussian sum S,, (©

to p) can be calculated, for ai

8.
Bi

S=1, %&=0, &

P\ eum |a, = (2) joD*

ve omit the explicit reference

rmulae

Syeau = Qe+letprt

8pay = Ut So

Here q and q’ are coprime, am mie. The formulae for the 8-th

powers become much simpler, a

when 2s = 0 (mod 8), ¢, being the symbol of §9.7. It follows that

A, =eg° > en innrilg — eg %Cq(n),

pi@)

and that, in the notation of § 9.7,

(9.9.1) (n) = Ven)9. n) = ——- V(n).P 2s ( 8)

Thus the singular series is (apart from the outside factor) Ramanujan’s

series (9.7.1), and so

(9.9.2) Pag() = Poa) he og—1(2).

In particular, if 2s = 8, then
a

(1-2-9) 6) =F,

(9.9.3) p(n) = 160F(n).

HR To
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If 2s = 24, then

B 691
— 9-12 ~12) 911,12. a =

and

(9.9.4) Poa”) = gor TH(n)-

The modular functions

9.10. We have strong reasons for expecting to find a fairly close resem-

blance between. 7.,(7) and p,,(v), and further analysis does more than

would be required to justify our hopes, the correspondence being extremely

close. Indeed when 2s < 8 the two functions are identical; in particular

Tan) = Pal).

The proof of this depends on arguments of a quite different character, first

applied to this problem by Mordell.

9.11. We need the clement

functions associated with it. !

homogeneous form it is define

(9.11.1) Wy = Ab,

where a, 6, c, d are integers and

(9.11.2)

Tn the non-homogeneous forn

rf: sf the modular group and the

rp IF has two forms. In the

substitutions ©

by + dwg,

(9.11.3)

a b c+dr

8, (° i) (5)
to denote the substitution (9.11.1) or (9.11.3). Fis generated by the repeated

application of the two substitutions

1 0 0-1

1 i)’ \l Oo

or

1
(9.11.4) ve=Tt+l r= a

Tn what follows we shall always suppose that

(9.11.5) (7) > 0,
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so that

(9.11.6) fa] = [eTMrl<1.

Tfr = utiv, 7 = ' +iv’, then

, (ad — be)v

~ (a-+bu)?+ Bu?

so that one point in the upper half-plane is transformed into another, and

only such points are relevant.

We call the region D defined by

—$eudsd, wtvtol

the fundamental region of I’. Each sub-

stitution of J transforms D into a curvi- -

linear triangle, whose sides are circles and <

whose angles are (j,77, 477, 0). These triangles

cover up the half-plane withinmesover-

lapping. : __——

The fundamental functi

with the modular group

“absolute invariant’? J(7), wh at follows. We write

L (wr ‘ aa? 234

Jo = Jo(@y, Wy) = Take mt 1_ Togtt ,

. 3

and J(7) = Ge

Then J(7) is a function of 7 only, invariant for the substitutions of I. It

assumes every value just once in D (when proper conventions have been

laid down about the boundary of D), and represents D conformally on the

whole complex plane (regarded as bounded by the points 0, 1, and oo).

We call a function which, like J(r7), is invariant for ’a modular invariant:

the phrase “modular function” is used more vaguely. The function

J = J(r)

plays, for modular invariants, the part played by z in the ordinary theory of

one-valued functions f(z). Thus a modular invariant, with properly restricted

singularities, is a one-valued function of J. In particular, if a modular

' Tuso z instead of the usual g, as in Lecture VIII, q being required for other purposes.

10-2
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invariant is regular and bounded in D, then it is a one-valued function of J

bounded in the whole plane of J, and accordingly ié ts constant.

Functions associated with the sub-group I’;

9.12. We shall be concerned now with functions which are not modular

invariants in the full sense just defined, but which are invariant, or ‘‘all

but” invariant, for the substitutions of a certain sub-group of I.

It is easily verified that the substitutions of which satisfy the congruence

conditions" a b 1 0 01
(’ 12 (0 i} or (; 0) (mod 2)

D(T-1) D D(r+1)

$41)

form a group, a sub-group of

(9.12.1) T’

It has a “fundamental region” D, defined by

—-l<u<l, uv®+v%>1;

and the substitutions of I’, transform D, into a system of triangles, all of

whose angles are 0, which just fill up the half-plane.?

There is a principal invariant J;(7) of [3, which is related to I’, as J(r)

is to I” (but whose expression we shall not require). A one-valued function,

invariant for I';, is a one-valued function of J, and a three-valued function

of J. Finally a function invariant for I';, and regular and bounded in Dg, is

constant.

* Either a and d are odd and 6 and c even, or conversely.

2 D, may be described roughly as formed by fitting together three regions congruent

to D (i.e. transforms of D for substitutions of IP’). More strictly, it is formed by D

and one-half of each of the four regions

D(r+1), D(r-1), p(-2+1), »(-;-1)
T T

(the transforms of D by 7’ = 7 +1, ete.). In Fig. 4, D, is bounded by the thicker lines.
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Proof that r,(n) = p,(n)

9,13, The functions

OF = 98(x) = 08(0,7) = (1 + 2x + Qxt+...)8

and Oy = Og(we) = 1+ Spal) 2”
1

where x = e*7, are one-valued functions of 7. If we can prove that

(A) 3 °0, is invariant for P,,

(B) 380, is regular and bounded in Dg,

then it will follow from the general theorem of § 9.12 that O-®O, is a constant,

which is plainly 1, and from this it will follow that

tq(n) = palm) = 1603 (n).

Proo

9.14, It is sufficient to pray

stitutions

8.

which generate I’,. We can prev’ praily, that 0-@,, is invariant.’

In the first place

(9.14.1) 80,

(9.14.2) 9 0:

by the familiar formulae for the:lincer transformation of the 0-functions.*

It remains to determine the behaviour of @,,. It is obvious that 0,, is

1 We are supposing 2s= 0 (mod 8), but the proof is very much the same in other cases.

2 We shall require the full table for the functions

3,(0,7) = Qni + Qet 42a"? +...,

B,(0,7) = 1+ Qa + Qat+ 29 4

B,(0, 7) = 1— 2a 4 2et— 2a +...,

which is

$,(0,7+1) = 29,(0,7), 93(0,7+1) = 3,(0,7), 3,(0,7+1) = 3,(0,7),

1\ vr
0,(0, -3) - jes T),

I#4(0, -;) = Lo T)s
120,2) = “oso.

Here ./i = e#* and ./r has its real and imaginary parts positive. The notation is

Tannery and Molk’s, and 3,(0, 7) = (0, 7).
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invariant for S,, since « is invariant for S, (and so that 0-*6,, is invariant).

This will also appear incidentally from the analysis which follows.

The function F(z) of §9.8 is elementary. In fact, if a = e-¥, so that

y= ~ TIT,
a2

Ea) = Snide? = Sins teow = (;,) sine

d \8-2 eu d \s-2= (;,) (oem (;,) 4 cosech? dy

(4? 28 2 py Be)=(i) Sqrzemp OE qraaaip = oe Gey
Also 

we—2P tla — er ir—-Qpin} |

I'(s) 2 1and 60 Rivet) = OS a

nm (8,

Soul) = Tye
—TM a py :I\s)q°* (2(nq + p)—ar}*

Hence

(9.14.3) O,,(%) = 1+ Y fog
BG

where the range of summation

q=1,2,3,...5 O<

(except that p= 0 when q= 1).
We can write (9.14.3) in the form

9.14,4 O0,, = 1+ ’
| OS) Leper
where g = 1, 2, ... and pruns through all values (positive or negative) prime

to qg; and this is

1 Q8
9.14.5 a =I] + —— -

( 8 pais... pg q=4,8,... (2p — 97)8
-i4 y oto

q=i3,...(29—-QT)® qaaz,...(p—49T)

1
x= 14+ >

pa(p—4qrT/?

where now q = 1, 2,... and pruns through all values prime to and of opposite

parity to gq.
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We wish to remove the restriction that p should be prime to g. We can

do this by multiplying both sides of (9.14.5) by

a(s) = (1—2-*) &(s) = 143 94+5-*4+...,

We thus obtain”

]
(9.14.6 (3), = (s)+ S -——,

HO) Oo = 8) + Bn aay
where g = 1, 2, 3, ..., and p runs through all values of opposite parity to q.

We may also write this in either of the forms

1
9.14.7) 9(s)@y, = —(8)+ Mew =0,1,2,...3 p+q=1),( ) (8) Oo, (8) ip-gr (9 p+q=1)

1
9.14.8 A(s)O,, = 4X - -— p+qe2l).( ) H(8) Ox, = 4 (pry (p+q=1)

Here the congruences are to modaly

integral values,

and g, in (9.14.8), runs through all

If we write

then it follows at once from az 14,8) that

xe

This, as I pointed out, + obvie

on our analysis).

We use (9.14.8) in investign

beginning (but a useful check

# the substitution S,. It gives

—iI- yw ! —_ = 78

7 BP ei (p— q7)s mx\7),
on replacing p,q by —4g, p.

Thus x(7) is affected by S, and 5, in just the same way as 0; and} *0,,

18 invariant for S, and 8, and therefore for I's.

We have thus proved (A). More generally, we have proved the invariance

of 8-0,, whenever 23 = 0 (mod 8).

Proof of (B)

9.15. The functions 38 and ©, are defined by power series in x = et!7

convergent in the circle || <1 or the half-plane @> 0. Also

Ha) = i ((1 = 22") (1 + 28-1)

' A pair (p,q) of opposite parity is of one of the forms (P,Q), (3.,3@,...), where P

and @ are coprimne and of opposite parity.
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has no zeros in the circle. Hence 9-°@, is regular for |x|<1 or v>0. It is

bounded in any closed part of D, which excludes the two points in which

D, abuts on the real axis; and therefore it is bounded in D, if it is bounded

in the neighbourhood of the two points 7 = +1. It is plain that we need

consider only the point r = 1.

We write

] 1
(9.15.1) T=l-7, T=y>

and suppose that 7-1 inside D,, so that O<u<1 and w+v?>1. If

T = U+iV then
l—w v

“Gla > Gaye

Now D(x) = (0, T498(0, T)

so that

(9.15.2)

when T+ 0 and X>0. Were

We have from (9.14.8)

r formula for @,.

4

(9.15.8) ZO, = x{(r)s

] 1 l/d\? ]

then E rere 72 ae alae) =a
1/d\? 1/d\3 Antetrit

= Gla) ements = Gi) Game
__ atal (e27il 4 Dedril 4 BeBe 4.)
—_ 3 at ean

= Brr4(e2rtt + Q8e4rit 4 B8eGrt6 4. . )

= St X2Pl 4 2 XAPi 4 BAX + ..),
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We have to sum this with respect to P, but we need only the lowest powers

of X, and X? occurs only for P = + 1. Hence (9.15.3) gives

mw ‘
75 Oe~ $2. $meTAXE,

or

(9.15.4) O, ~ 256TAX2,
Finally (9.15.2) and (9.15.4) show that 8-®@, is bounded when 7-> 1, and

therefore bounded in Ds.

It follows that 9-*@, is a constant, which must be 1, and thatr,(n) = pg(n).

24 squares

9.16. We proved in §9.14 that 3-*@,, is invariant for [, whenever

2s =0 (mod 8), and this is true in particular when 2s = 24. If 9-240,, were

bounded in Dg, it would follow that 0%4 = O,, and r,,(n) = po,(n); but this

is untrue. The correct formula,.awt madound first by Ramanujan, and

which I shall proceed to pro

(9.16.1) B°M(x) =: Ogg( 85588 g(a),

where

(9.16.2) g(x) = af{i ) (i — a3) py

so that g(2*) «= a*{(1— 2 v8}. 4 = h*4(7),

in Tannery and Molk’s notatit ction is, apart from a factor

of homogeneity, the discrimix:

We require the formulae for 4! neformation of h(r). These are

(9.16.3) A(r +1) = et"*A(r),

(9.16.4) a( - 4 = ett Ir hr),

We shall also use one other formula, viz.

(9.16.5) mS *) = eth" h(7)9,(0, 7).

This belongs to the theory of quadratic transformation, but is a simple

corollary of the product formulae for A(7) and 3,(0, 7).

The three functions

(9.16.6) O-4O,,, O-749(— a2), 8-24g(x*)

are all invariant for ’,. We have already proved the first invariant. The

invariance of the third follows from the formulae

g(a?) = h24(r), h24(7-+.2) = hr), ne -) = T%h24(r),
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Finally g(—-2) = a *} = —h(r) 922(0, 7),

by (9.16.5), and the invariance of the second of the functions (9.16.6)

follows from the formulae (9.14.2) and (9.16.4).

Hence B-4OZ, = O40, + ag(— a4) + fg(x?)}

is invariant, for any a and £. We shall prove that it is possible to choose

« and f so that 9-40}, is bounded in D,. For this, we use the substitution

(9.15.1) of §9.15, and examine the behaviour of all the functions concerned

when T+ oo,

(i) First, by (9.15.2),

(9.16.7) ono, 1- 1 ~ QUT WX6,

1 1
__ 12 — oe1) (0. 1 ‘)

12

-) AT) 93(0, T)
ay

Pe (Qkt+ 2X4... )12

(ii) Secondly

g(— 22) = —W%(r) 538

-{—1)
= TEX{(1— 2

Hence

(9.16.8) g( 2} 3

(iii) Thirdly

g(a?) = hPa(r) = a* (7)
os THA24(T) = TEX (1 ~— X?) ( 1-— X4) )...}4,

(9.16.9) g(a?) = TP{X®. 24X44 O(X9)},
(iv) Finally we have to determine the behaviour of @,,, which can be

done by calculations like those of § 9.15. We have now

(12) Og, = 3T? S OT PI Pie

1 1 1 /d "ys 1

3 (@+ PI! = 2@tHe= mila) E (@+6)
__ (27)?

“Vt (

= ea"
i

e2ntt + QU ypAnigt +. rs)

(X2Pi4 QUX4Pl4 |),
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It is again only the terms with P = +1 that matter, since P = +3 yields

O(X*), Hence we obtain

(9.16.10) 6,, ="
11! y(12 )

914

= 501 TH XA+ ova O( (X°)},

T af X24 gi yas O(X8)}

on inserting the value of 4(12).

We have to choose « and f so that

914

2 (N24 MXIG OX} +o QEK44 O(XS)}
691

+ P(X? 24X44. O(X8)} = O(X8).

It will then follow from (9.16.7), (9.16.8), (9.16.9), and (9.16.10) that

o-4O%, is bounded. Equating coefficients, we find that

Also

and g(x?) = ¥7(4n) x”,

if we agree that 7(y) means 0 when y is not an integer. Hence finally we

obtain Ramanujan’s formula

(9.17.1) Toa(M) = gor Ti1(%) + ega(2),

where

(9.17.2) Cg4(n) = GEE {(— 1)"-1 2597(n) - 5127(4n)}.

9.18, The function 7(n) has been defined only as a coefficient, and it

is natural to ask whether there is any reasonably simple “arithmetical”

definition; but none has yet been found. In the next lecture I shall discuss

some of the most remarkable properties of the function. I must however

' Tretain Ramanujan’s notation. The collision of the 7 in 7(n) and thet in e**7 is a little

unfortunate but is not likely to cause confusion.
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prove something here about the order of 7(n), since I have to justify my

assertion, in §9.3, that r,,(”) is “dominated” by p.,(7).

It follows from a formula of Jacobi which I have quoted several times

already that

S1(n) x” = a{(1 —x) (1-2?) ...}%4 = a(1 — 3x4 523-728 +...)%,

the exponents in the series being the triangular numbers. Now (1 — 32+ ...)8

is majorised by
oO 8

(nt 1) arnoo| ,
n=0

which is of order (l—a) § whena>1.' Hence

| r(n) | a <2} r(n) | a" < A(L—2)-,

where A is a constant, for all x and #. Taking x = 1—n7~1, when 2” is about

e—!, we find that

(9.18.1)

On the other hand

16 ae)OF in) x x 6 oh691 ots?) on &q gia’

and the series is greater than*

3 2h, 28
Is ye ag Te Ob

Hence o#,(n) is greater than a

Teal”) = 691

is dominated heavily by its leading term.

The order of 7(n) is really a good deal smaller than is shown by (9.18.1).

Ramanujan showed, by a more sophisticated method, that

(9.18.2) T(n) = O(n’);

and I showed later, by a function-theoretic method, that

(9.18.3) T(n) = O(n).

T shall prove a better result, due to Rankin, in Lecture X. It is very plausible

to suppose that (as Ramanujan conjectured)

7(n) = O(n? +*)

for every positive ¢; but these questions I must postpone.

oD, 8

’ That of (Znai*")8 or of (f te wnat) , whore e~¥ = 2. Thia is that of y~8 or (1 —x)-8.
0

* Using the crude inequality | c,(n) | Sn.
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9.19. I conclude by repeating that the results which we have proved

are typical of those in the general problem of 2s squares. We can always

express €,,(n) as the sum of a number, fixed by Ramanujan and Mordell,

of terms defined as modular coefficients; and each of the coefficients gives

rise to a series of problerns resembling those arising from 7(n). In some cases

it is possible to define them fairly simply in arithmetical terms. In all cases

the number of representations is dominated by the divisor function p,,(n).

NOTES ON LECTURE IX

§9.1. There is a full account of the history of the classical theorems concerning

representation by two or four squares in Dickson, History, ii, chs. vi and vit.

Jacobi’s results concerning 2, 4, 6 and 8 squares are quoted by Smith on p. 307 of

his Report on the theory of numbe (ec tk papers, 1, 38-364). They are contained

implicitly in §§ 40-42 and 65-66 @f” ta nova. Liouville gave formulas

for 10 and 12 squares in the Jour £1866), 1-8 and 9 (1864), 296-298,

Gauss, Disquisitiones arithmeti: theorem equivalent to (9.1.1).
Glaisher, Proc. London Math, 79-490 (480), gives a systematic

table of formulae for 7,,/n) up to 3¢ 2ktained these formulae in a series

of papers in vols, 36-39 of the @uar. ifath, The formulas for 14 and 18

squares contain functions defined on) onts in certain modular functions

and not ‘arithmetically’. Ramanujg of the Papers, continues Glaisher’s

table up to 2s = 24, and gives a ae D842) which was proved after-

wards by Mordell (in the first pap # note on § 9.4). ‘

Boulyguine gave general forrmuk hich every function which occurs

has in a sense an arithmetical defini ormula for r,,(n) contains functions

of the type
EDS; Bay ea yyy

where ¢ is a polynornial, ¢ has one of the values 2s -- 8, 2s— 16, ..., and the summation

extends over all solutions of {+2} +...+27 =n. There are references to Boulyguine’s

work in Dickson’s History, ii, 317, and the papers of Uspensky quoted below.

Uspensky has developed the cleomentary methods which scem to have been used by

Liouville in a series of papers published in the Bulletin de Acad. des Sciences de

PURSS and other Russian periodicals: references will be found in a later paper of

his in Trans, Amer. Math. Soc. 30 (1928), 385-404, He carries his analysis up to 12

squares, and states that h:s methods enable him to prove Boulyguine’s general formulae.

They can also be applied to many other problems concerning representations by

quadratic forms.

H. Bessel (Dissertation, Kiénigsberg, 1929) has developed Liouvillo’s methods

independently, and gives forraulae up to 2s = 16,

I am not concerned in this lecture with odd values of #, but it may be useful to add

a short note on the subject. The functions r,(n), 7,(n), and r,(n) may be expressed as

finite sums involving symbols of quadratic reciprocity. Thus 7,(n) was evaluated in

this form by Dirichlet, and 7,(m) and 7,(n) by Hisenstein, Smith, and Minkowski.

When k = 3 the problem is, as had beon shown long before by Gauss, much the same

as that of finding the number of classes of binary quadratic forms of determinant —n.

The results do not seem to have been worked out so systematically as those for

even k, and it is not possible to refer to a comprehensive statement of them, though
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many formulae can be found in chs. vir and 1x of the second volume of Dickson’s

History and ch. x of Bachmann’s Die Arithmetik von quadratischen Formen (1 Abthei-

Tung).

There are two completcly different solutions of the 5 and 7 square problems, the

‘arithmetic’ solution of Minkowski and Smith and the ‘function-theoretic’ solution

of Hardy and Mordell. Bachmann gives an account of the first and Dickson, Studies

in the theory of numbers, ch. x111, of the second. References to the work of Hardy and

Mordell are given in the noto to § 9.4.

The formulae are generally stated, whon & is odd, in terms of primitive representation

(in which 2,,2%,....%, have no common factor), The simplest formulae are due to

Dirichlet and Hisenstein; thus the number of primitive representations of an odd n

by 3 squares is
8 824 3 ;) (n=1), 8 3S vn (n= 3).

sin nr askn n

s\. . arrHere (- is Jacobi’s generalisation of Legondre’s symbol, and the congruences are to
n

modulus 4. Hisenstcin’s formulae for 5 and 7 squares are proved by Bachmann. For

roferences see Dickson, History, ii, 263 and 305.

§9.2. The formulae (9.2.2) and (8

references given by Dickson, Hisé

There is a proof of (9.1.1), by 3

240-242; and one of (9.1.2) and (8

Algebren und ihre Zahlentheorie, x3

Vorlesungen, i, 110-113, gives an «

(9.1.1).

Ramanujan’s proof of (9.2.3) coeur

p. 139. The proof is reproduced by 1

have used similar arguments free

formulae

in, Gauss’s posthumous work. See the

atogers, in Hardy and Wright,

f integral quaternions, in Dickson,

‘iioular 181-182, Satz 22), Landau,

uetion of (9.1.2) and (9.1.3) from

fthe Papers; the formula is (17) on

ght, 311-314. Ramanujan seems to

19) points out that the familiar

en? u+ su" Rontuy = 1]

-series to be proved by clementaryappear, in the note-books, as identi

tay bo reduced to the familiar formcalculation. Formula (18) on p. 139 of the fa

§3"(u) = 6f0%(u) — Age.

Thus Ramanujan deduces the differential equation satisfied by fo(u), by direct algebra,
from its expansion as a trigonometrical series.

§9.3. The formulae for 7,)(7) is Liouville’s: see the note on § 9.1.

It may happen that e,,(n) = 0 for special forms of n. Thus

erin) = 4Py,(n) = 0

ifn is not a sum of two squares, and ¢,,(n) = 0 if m is even. These results, due to Liou-

ville, were rediscovered by Glaisher.

In order that e,,(n) = 0 for all n, it is necessary and sufficient that 2s <8. In these

cases only r,,(7) is a ‘divisor function’, represented by tho ‘singular series’ of § 9-8.

The ‘reasons’ for this have been shown in a new light recently by Siegel, Annals of

Math, (2), 36 (1935), 527-606.

The theory of the representation of x by the special form

QQ) etait... tae

can be extended to general definite quadratic forms in k variables. There are a certain

number of genera of forms of a given discriminant, each containing a certain number
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of classes. If we select: one representative of cach class of a given genus, and define

N(n) as the total numbur of representations of n by one or other of these representatives,

then N(n) is the sum of a singular series like those of § 9.8,

If the discriminant is 1, then (1) is a representative of a class in the principal genus.

In order that there should be only one such class, it is necessary and aufficient that

£58. In this case only is 7,(7m) the sum of the singular series.

T follow Ramanujan’s notation except for a factor 2. He writes

08 = 1+ 227,,(n) 2”,

so that his 72,, d,,, and , are half mine.

§9.4. The work of Mordoll and myself is contained in

Mordell, Quarterly Journal of Math. 48 (1917), 93-104 and Trans. Camb. Phil.

Soc. 22 (1919), 361-372;

Hardy, Proc. Nat. Acad. of Sciences, 4 (1918), 189-193; Trans. Amer. Math, Soc.

21 (1920), 255-284.

§9.5. ‘Ramanujan’s sum’ occurs in earlior writings, and (9.5.3) seems to be due

to Kluyver: see Papers, 343. But Ramanujan was the first to appreciate the importance

of the sum and to use it systematically. The proofs of (9.5.8) given hore are takon from

For the Mébius inversion formy

or Landau, Handbuch, 677-582.

§9.6. The three ways of sumrei

Soe. (2), 34 (1932), 194-195; Ramee

jan and Hardy prove many othor &

For the formula for o,_,(7) see, f

The theorem on multiplication of

section is proved in Landau, Hea

Hardy and Riesz quoted on p.

§9.8. Ramanujan formed ‘sir

no. 21 of the Papers are the singu

mle, Hardy and Wright, 234-237,

‘o Estermann, Proc. London Math.

“180-185; and Hardy (7). Ramanu-

samo kind.

arly and Wright, 238.

sries referred to near the end of the

and on pp. 63-64 of the tract of

us the series (11.11)-(11.41) of

m this problem, But his approach

to them is quite different; he deternaix o-function’ 6,,(n), a8 an approxi-

mation to r,,(n)}, independently, and then ‘expands it as a singular series. Here the
singular series comes first, and d,,(n) appoars as its sum.

Tho phrase ‘singular series’ has beon used differently by different writers, Thus

Littlewood and I have sometimes called £A,(n), without the outside factor, the

singular series.

§9.9. The formulae for 8, , will be found in Bachmann, Analytische Zahlentheorie,

ch. vu.

If & (here 28) wore odd, then S*, would involve a Legendre or Jacobi symbol, which

disappears when & ix even. This is the origin of the Legondre or Jacobi symbols in the

formulae for 7,(7), 75(7), ...-

§9.11. The standard treatise on the clliptic modular functions is Klein-Fricke,

Theorie der elliptischen Modulfunktionen, 2 vols, Loipzig, 1890-1892. This is very long

and elaborate. Vivanti’s Fonctions polycdriques et modulaires (French translation by

A. Cahen, Paris, 1910) is a more elementary book designed “permettre au lecteur

d’aborder sans difficultés les legons classiques de MM. Klein et Fricke”’,

Hurwitz has given a solf-contained account of the theory in two papers in the

Math, Annalen, 18 (1881), 628-592 and 58 (1904), 343-360. This contains proofs of

the theorems quoted herr.

Thero is a clear account of tho elementary geometry of the modular group in Copson’s

Theory of functions of a camplex variable, ch. Xv.

Dr Heilbronn has shown me the following simple and direct proof of the theorem
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quoted at the end of the section, Suppose that f(r) is regular and bounded for Y(r) > 0,

and that

f(r+1) = fir) A(- ; =f (7).

Then g(x) = g(e7'7) = f(r) cannot have an essential singularity at the origin (sinco

then it would assumo arbitrarily large values near tho origin), nor a pole (since then it

would tend to infinity); and so*it is regular at the origin. We may thorcfore supposo

(subtracting a constant if necessary) that f(T) -» 0 when 3¥(7) > 0.

Now | f(7) | attains its upper bound M in D at a point on the boundary of D (and not

at infinity), 80 that there is a finite 7, on the boundary of D for which | f(79) | = 24.

If f(T) were not constant, there would be a 7, near 7, for which | f(7,)|>|/ (to) | = M.
But there is a 7, in D for which f(7,) = {(7,), and so | f(r.) | > M; a contradiction.

§§9.14-15, The proof follows the second paper of Hardy quoted in the note on § 9.4.

§9.17. (9.17.2) is formula (148) on p, 159 of the Papers. 'There is an orror of sign

in formula 7 of Table VI: Ramanujan seoms to forget momentarily that g( - x) begins

with —z and not x. In any caso, as I remarked in the note on § 9-3, his 7,,(%) and eg4(7)

are half mine.

§9-18. Ramanujan’s proof of (9.18.2

theorems) in the Papers, 146-148

which is reproduced in aslightly &

ge formad (as a special case of more general

; and Hardy’s proof of (9.18.3),

xt lecture (§ 10.8), in Hardy (9).
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RAMANUJAN’S FUNCTION 7(n)

10.1. IT proved in Lecture IX that

16 * 128 n-1 96 Ir (h
(10.1.1) rag(n) = 5 ofl) + aa {(— 1-2 2697(n2) — 5127(4n)},

where o},(n) is a siraple “divisor function” of n, and 7(7) is defined by

(10.1.2) g(x) = a{(L—a2) (1-2?) = 3°1(n) x”.
T

I shall devote this lecture to a more intensive study of some of the properties

of 7(n), which are very remarkable and still very imperfectly understood.

We may seem to be straying into one of the backwaters of mathematics, but

the genesis of 7(n) 1s a coefficient in so fundamental a function compels

us to treat it with respect.

The ma

10.2. The coefficients in wx

metical meanings; thus the c

O(a} 44...)

is 7,(n). But T(n) has no such o

properties are still very obscurg

Ramanujan conjectured th

(10.2.1) r y

if (n,n’) = 1, ie. that 7(n) ts wt we; and this was proved a little

later by Mordell. Mordell’s proof is very y instructive, and sufficiently simple
for insertion here. It depends on the identity

pansions have simple arith-

pretation,’ and its arithmetical

wo

(10.2.2) NT(on) 2” = r(p) 337 T(n) x" — pS) 7(n) ze”,
T i

where p is prime.

1 Jacobi’s identity shows that

a

Si 7(n) a" = x(1— 304 5a - Tah +...)
1

Heneo rin) = XC — L)tat tate +a(Qn, + 1) (2g FL)... (2g +),

the summation being extended over all ropresentations of n— 1 as 4 sum

&

x dnm;+]) =
ie ai

of 8 triangular numbers ¢,; but this interpretation is not illurninating.
HR TI
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We write, as usual

(10.2.3) A(w;, 2) = (2) "equa 1—at)...}4,
1

where x =e", r = w,/,. Then A(w,, we) is invariant for the substitutions

_ (1 0 0-1
8(; i); (5 )

which replace w, w, by w,, 0 +, and by — sg, w, respectively. We prove

first that
p-l p--l

(10.2.4) P= A(w,, po,)+ ¥ A(pw,, ko, +o.) = u,t+ Dd »,
c=0 ca

is invariant for S, and 8,, and therefore for all the substitutions of the

modular group I.

First, 8, leaves wu) unaltered, and permutes the v,, so that P is invariant

for Sj.

Next, 8, changes P into

A(—@., pw) + A(— pw, 0,) :

= A(pis,, @ pty) + x A( — poy, ©, — KW);

and, in order to prove P invari

(10.2.5) A(— pig, &, KW + Ws),

where «’ runs through the vai

residues (mod 7p).

~1 with x, or through these

We take a=—k, b=p,

and determine c and d so that

ad—be = —Kd—pe = 1.

Then x’ = d runs through the residues required. Also

— api, + b(Wy— KW.) =Po,, —Cpidg+d(w,— KO,) = KW, + Wg,

and so A(— pig, Wy -- KW) = A(pur,, Ka, +),

which is (10.2.5).

It follows that P is invariant for I’, and therefore that

Q=,—10.2.6 =
( ) A(@,, W)

is invariant.
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Now

(10.2.7)
yr \l2 © 12 «0

A(@,, @g) = (Z.) Sr(n) wv", Aw, pws) = [- DS 7(n) aPPr,
wy, 1 * @, 1

and

p-i q7 \lk @& p-l

(10.2.8) 3S) A(ptey, Kw, +0) == (=) X 7(n) gly S$) eknertip
K-0 POY] n=l K=O

7 y" 20

-. . 20~ P = T(pn)ax ?
Poy n—L

since the sum with respect to « gives p if p|n and 0 otherwise. Hence the

expansion of P in powers of x begins with

ria 12
__ yy A ’ 2. (=) pl r( py,

while that of A(w,, ,) begins wi

It follows that Q@ = P/A is bow i therefore constant, so that

(10.2.9) P

Finally, substituting trom (10.3

with x? in place of x.

We can now prove (10,2.1}.

ba (10.2.4), we obtain (10.2.2),

5 te prove that

(10.2.10) rip ay 7

for every A, p being prime and (n, p) = 1. This is obvious when A — 0. Tf

we equate the coefficients of x” in (10.2.2), we obtain

T(pn) = r(p)7(n),

which is (10.2.10) for A = 1. If we equate those of a4’, where A> 1, we

obtain

(10.2.1) 7(pn) = 1(p) Tt p> 'n) —pYt(p**n),

and in particular

(10.212) 1(pa) = 1(p) (ph?) ~p"'7( p>),
Hence, if u, = T(np*)—7(n)7(p?),

we have. Uy = T(p)Uy-..— pu

But u, = 0 when A = 0 and A = 1, and thorefore w, »- 0 for all A.

Tr-2
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The function F(s) =2 m

10.3. From (10.2.1) we can deduce a remarkable formula for the Dirichlet’s

series

(10.3.1) #(s) = ye,
1

I proved in § 9.18 that T(n) = O(n'),

so that (10.3.1) is absolutely convergent for o = R(s) > 9. We shall see later

that much more than this is true, but this imperfect result is sufficient to

show that the transformations which follow are valid for sufficiently large o.

Since 7(”) is multiplicative, we have

(10.3.2) F(s) = tT Xp

where

(10.3.3)

We can calculate 7(p*) in ter:

We write

(10.3.4) cOn

(10.3.5) :

Then (10.2.11) gives a,—2

But a=1l=-:-

and it follows by induction that

a, = sin (AF 1)0,

sin 7,

and

ain (A+ 1)0
10.3. Ay mita, 2 MOLL Pe

(10.3.6) 7(p') = p sin 0,
Hence

- 1
10.3. = RK. Sol -9 gi eee(10.3.7) xp ind, =)? sin (A+ 1) 0, i - 2p? "eos 6, spam

- __ft
“app ph

and

1
10.3.8 F(s) = =JJ.- -—- |...

‘) I Xp My a (pypetpi
This is the analogue of Huler’s product for ¢(s). The series and product are

absolutely convergent for sufficiently large oc.
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From (10.2.1) and (10.3.6) it follows that

sin (A+1)0
(10.3.9) r(n)= nT SP

sin 0,

if m = Tp,

The function F(s) also satisfies a functional equation of the same type as

that satisfied by €(«). It will be convenient to defer the proof of this to

§ 10.9,

Congruenve properties of 1(n)

10.4. The results of § 10.2 enable us to prove a number of curious arith-

metical properties cf r(n). These have a certain resemblance to those of

p(n), which I spoke of in an earlier lecture; but they are naturally more

numerous, since 7(n’ is multiplicative.

Suppose that p is prime and that

(10.4.1) rp) 8

Thon (10.2.12) and (10.2.10} s

(10.4.2)

for every n. Ramanujan tabula

that (10.4.1) is true for

(10.4.3) Gs

so that these primes have the

The last two primes yield ii

upon the multiplicative propert

3B},

3 of 7(n), which do not depend

ite g(x) in the form

g(a) = Sr(n)a* pays IT] — 2x"),

Now (l—a?)’=s 1-27" (mod 7),

( }— gral =]—3x77" + Byl4n _ ele (mod 7),

and IT(1—2)") = Xe 2",

¢, being divisible by 7 whenever 4 is not. Also

TT(1 — a") =: S(—1y (20 + 1) abet,

by Jacobi’s identity. Hence

Xir(n)a"® = T2(— 1) (Qv+ L) eae Dt etd

and T(n) = 2(—1) (2h4 I)e,,

the summation being over all « and v for which

n= beet l+ytl.

Now d4p(v+1)=0,1,3,0r6 (mod 7),

so that nae, etl, w+2,or4+4 (mod 7).
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If n=3, 5, or 6, # cannot be a multiple of 7, and then c is a multiple of 7,

Hence T(Im+k)=0 (mod7)

for k = 3, 5, 6 as well as for k = 0.

We can prove similarly (using Euler’s identity instead of Jacobi’s) that

7(23m+k)=0 (mod 23)

when k is any quadratic non-residue of 23.

10.5. The congruences of § 10.4 are satisfied by all 7 of certain arithmetical

progressions. There are also congruences satisfied by “almost all” n.

For example

(10.5.1) t(n)=0 (mod 5)

for almost all » (in the sense of § 3.4),

We begin by proving that

(10.5.2) The

ar all n. This depends on two

ions, Viz.

where o(n) is the sum of the

identities in the theory of the 7

(10.5.3) oe

and

(10.5.4) Qe ye

where

(10.5.5) P = 1-24 l—2 iat),

x 2892 3323
5.6 = wee pe(10.5.6) Q 142405 tat )

x 2x2 BB
10.5.7 R= 1-—504( — + ——_ + ——_+ ... }.(10.5.7) L 50 (Soto ot )

The identity (10.5.3) is familiar, but I have not seen (10.5.4) anywhere

except in Ramanujan’s work.

We can deduce (10.5.4) from (9.2.5), We have

1 6 6
if = — —~—_ _— ____

400020 = 95-94-jago
1 1. @

2 an(4 cot 4) im aatoeotc?

usin 0 +u,sin204...= 2 —tg_@a=l ge,
24 1440
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U(1+u,) cos 6+ u(t +.) cos 20+...

x a 1 | 4“ 22y2

‘ay alae a aap
(I 2) te Oe

#{u,(1-- cos 6) + 2u,(1 -- cos 26)+...} = aie P+...

1 P Q os 2 1 1 x x

(59-3397 rao? ~...) ~ Ve” 24 Ti apt imme
“Q lf «a 22y? 4 ;+ 9603 aoaptacaet } Gti.

and (10.5.4) follows by equating the coefficients of 02.1

It is now easy to prove (10.5.2). For n5=n (mod 5) for all 2, and so

R=21P=P (mod),

while

Hence 1728 A7(n) a 2 (mod 5),

a ©

But Q -— P? = 288 & 83 3 wae
ve #=lv=l

so that r(n= ‘nod 5),

Jn order to prove (10.5.1), they

(10.5.8) a(n)

for almost all n.

cient to prove that

=O (mod 5)

10.6. The congruence (10.5.8) expresses a special case of the more general

theorem that

(10.6.1) o(n)=0 (mod hk)

for every k and almost all x.? We may plainly suppose that & is prime,

We denote a general prime by p and a prime of the special form km—1

by w, and write n= IL p* Io.

p+a w

' Bquating the constant terms gives

x a

HG tazapt |
which is easily verified directly.

> Still more generally, ¢,(m)=0 (mod &) for all odd sg, all k, and almoat all n,
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pat —! gett —_— l

Then a(n) = LS 7 Ua

If a is odd then
gpttl —_ i oe 1

since w+1=0 (mod) and the second factor is integral. It follows that

(10.6.1) is true unless every special prime @ occurs in n with an even exponent

a. It is therefore sufficient to prove that « is odd, for at least one w, in almost

all n.

We define b,, by

b, = 1 (if all a are even),

b, =0 (otherwise);

and we have to prove that

(10.6.2) Bla

We can in fact prove more, ¥

(10.6.3)

where x = 1/(k—1) and C depent y. The proof is very much like

Landau’s proof quoted in §§ 4

Let

1 1 ]Then Hs) = 1 (145, tat Jae 2 ge tget )

_ il _ __ Os)
= ie pall (seat fate)

for o = R(s)> 1. Hence

log F(s) = log &(s) — G(s),

where G(s) = Llog (1+7*) = Za*+ R(s),

and &(s) is regular for o > $.

. I must now take for granted some of the standard theory of the primes
of an arithmetical progression. The function 2’p~* behaves, in the ordinary

theory of primes, “sufficiently like’ log €(s); and Yw-* behaves, in the theory

of the primes of the arithmetical progression, sufficiently like « log ¢(s).

Hence log F(s) behaves sufficiently like (1 — x) log &(s), and F(s) sufficiently

like {€(s)}!-*. In fact F(s) = {£(s)}1-* H(s)
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where A(s) is regular at s = 1 and does not behave too badly for large s

whose real part is nearly 1.

If we accept all this, then the road to (10.6.3) is clear, since we have only

to repeat Landau’s argument with comparatively trivial changes; and we

have seen that (10.6.1) is a corollary. Here & is arbitrary; but the passage

o (10.5.1) depends upon the special properties of 5.

There are similar congruences for other moduli, of which the most note-

worthy is 691. Ramanujan proved that

(10.6.4) T(n)=o,,(n) (mod 691);

and Watson has deduced? that (as Ramanujan conjectured) 7(n) is divisible

by 691 for almost all n.

I may observe that (10.6.4), for odd n, follows from (10.1.1). For then

167(n)= — 128.2597(n) = 160.0 91ro.(n) = 160,,(n) (mod 691).

)

af 7(n), which I referred to at

¢ fundamental of the unsolved

10.7. I return to the probie

the end of Lecture TX. This °

problems presented by the func

Ramanujan conjectured th

(10.7.1)

that all the angles 0, of § 10.3

mje hypothesis”. If the hypothesis

for every prime p, or, what is th

are real. J shall call this the ‘Bz

is true then

1 | 31 - | VW Lh(10.7.2) | r(n) J =n! TELAT Yo) cn TE (A+) = n¥ dln),
pin! sin a, pln

and so

(10.7.3) r(n) = O(n **)

for every positive «. It is easy to prove, in the other direction, (i) that

(10.7.4) t(n)2nt

- Actually, whon & =: 5,

Me) — 4 1.,(3) Ls(s)\*2) = coon 22 a,

where h(a) is regular for o> 4, and D,(s), L5(2), O4(s) are the three Dirichlet’s D-

functions assuciated with the characters

(1.7,—72,-1), (1,-%4,-1), (1,—1,-1, 1).

» Using the theorem referred to in footnote 2, p. 167,
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for an infinity of n, so that the 4 of (10.7.3) cannot be replaced by any

smaller number; and (ii) that the truth of (10.7.3), for every positive n,

involves the truth of the Ramanujan. hypothesis."

We saw in § 9.18 that

(10.7.5) t(n) = O(n).

Ramanujan gave a more complicated proof of

(10.7.6) T(n) = O(n’),

and this is the most that has been proved by “elementary”? methods. I

proved in 1918, by the method used by Littlewood and myself in our work

on Waring’s problem, that

(10.7.7) T(n) = O(n).

Kloosterman proved in 1927 that

(10.7.8) eet)

for every positive e; Davenpe

(10.7.9) r

independently in 1933 that

and finally Rankin proved in 1&

(10.7.10) rn}

the best result yet known. Tig

than 6 by 4, 4, and } respecti

» are (apart from the e’s) less

Preo}

10.8. I prove (10.7.7) by show

1

(108.1) gle) =2f(1-2)0~24)...}"*= Of],

uniformly in #. Here z = re“ and 0<r<1. Assuming this for the moment,

we have 1

rin) = 5-.{ 9? ae,
2m J o2ttt

? For (i) take n = p4, and observe that

sin (A+1) 0, >

sin 4, 1
for an infinity of A. For (ii) take the same n and suppose @, complex. Then

6, = km +719,, where 7, is positive (since cos @, is real), and

sin (A +1) 4,| _ sinh(A+1) 9,

sind, [| sinhy,

is greater than a constant multiple of 4% or n®, where

_ 1%

logp"
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where C is the circle r = e~/". On this circle | z~" | = e, and therefore

T(n) = of Max | g(re*) } = O(n),
rae7 un

so that (10.7.7) is a corollary of (10.8.1).

We divide up C’, by the Farey dissection’ of order

p= [Jn] +1,

into arcs £,,. It is sufficient to prove that (10.8.1) is true on £,,, with

uniformity in p and q.

If zg = 2? = e! then

F(z) = h(7),

in Tannery and Molk’s notation; and

(10.8.2) h?4(T) = (a+ br)? h*4(7)

if

is any substitution of the momhy Ve take

We write O=-

Then

(10.8.3) z= ei = exp

2 2 ll.
and 2m pm —-+70,

q q n

so that

_4()_;(10.8.4) C= 5 (, ig).

c+dr_ d 1 _p 1p’ t

Also T= yor b b(a+br) q | q(p~qr) q ae
and

. Qn pm10.8.5 Z = ei7iT = ex (-+ ).( ) Mn pet¢

Finally, (10.8.2), when stated in terms of g(z) and g(Z), is

(10.8.6) g(Z) = §"9(z).

* Soo § 8.10.
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Now

(10.8.7) [Z| = er23m — exp{ -20(=}}

2 2

Also Isl< gd? <— <—

on fy q and q’n-* < py’n-* < 2n-1, Hence there are constants A > 0 and d<1

such that |Z) <en4 =

on §,93 and

(10.8.8) [9(Z)|s| 4] LI r(m)||2|*< Bl ZI,
where B is another constant.

It follows from (10.8.4), (19.8.6)

| y(z)| = |S |? | (8

B
<_

ign + 6}

} and (10.8.8) that

uniformly in p and q. This proves (10.8.1
then, by the maximum modulus principle, generally.

We have thus proved (10.7.7), and indeed a little more. We have

Qn

27?(m) 12 = zl, | (re?) |?dO = Of(1 —1r)-??}

and a fortiori x T*(m) 1?" = Of{(1—1r)-!3} = O(n”),
1

Also 2m == e—kmin > e-®

if msn, so that

(10.8.9) ¥ 72m) = O(n®).
1

This includes (10.7.7), and shows that 7(n) is O(n“) “in mean square’’.

* It would be sufficient that (10.8.1) should be true when r = e-¥/",
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7(n)
ne

Further properties of F(s) = 2

10.9. Rankin’s proof of (10.7.10) depends upon a functional equation

satisfied by
2

(10.9.1) f(s) = 2)
ni -

The simpler function F(s) of $10.3 also satisfies a functional equation, and

it will be convenient to investigate this here.

We saw in § 10.3 that

T(n) I
(10.9.2) B(8) = 2 oe = Tp pk pie

for sufficiently large o. It follows from (10.8.9) and Cauchy’s inequality that

and that the series and proc

abscissa of non-absohite conv

function

(10.9.3)

sly convergent for a > 32. The

sda upon the order of the sum

Now %) dy,

where g(x) is the function (19.1.4 | But

ater) = (=) glee)

tends exponentially to zero both when y> 0 and when y-> 00, so that the

integral is convergent for all s, and F(s) is an integral function of s. Also

I'(s) F(s) = (2ny2 | * yt38.g(e-4041v) dy
0

= (2njers | *pa-sg(e-2) dz = (27)*-12 [(12—8) F(12—s),
0

so that F'(s) satisfies

(10.9.4) (2n)-4 I'(s) F(s) = (2m)? [12 — 8) F(12—8).

1 When & | 7(2) [[ yrre-nedy = r(o) <0.
a

3 This is the special case g = 1, p = 0 of (10.8.6).
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The behaviour of #'(s)is “trivial” in the half-plane of absolute convergence ;

in particular, it has no zeros whose real part exceeds 43. The functional

equation then defines its behaviour for o <7. It has ‘“‘trivial’’ zeros for

s= 0, —1, —2,..., but no other zeros whose real part is less than 4}.

The ‘‘critical strip”, corresponding to the strip 0<a@<1 for ¢(s), is

4+<o0<43; and there are problems concerning its behaviour in this strip

corresponding to all the familiar problems about ¢(s). It has been shown,

for example, that there are no zeros on the lines o = 44 and o = 43, and an

infinity on o = 6. The ‘Riemann hypothesis’’ for F(s) is that all the zeros,

other than the “‘trivial’’ zeros, lie on 7 = 6.

There is another generating function which may be made useful in the

study of 7(n), viz.

(10.9.5) (8) = S7(n) evn,
1

It is easy to prove that

(10.9.6) H(s) = (2

10.10. We have now to in ,
function f(s) of (10.9.1); and

of f(s), valid for o > 12, viz.

(1010.1) 2(4m)-8 P(e) &(— 22) f

srresponding properties of the

ling an integral representation

ys | A(r) |? &(s, x, y) dady.Jp
Here T=ut+ty, y>O,

A(t) = e@tirf( 1 _ e2rtr) (1 _ efit) . par

(10.10.2) £(s) = &(s,#,y) = 55’ —_—
[ mr +n [2#-22?

when the dash has its usual meaning, and D is the fundamental region

—$SaS4, |x+iy|21

of the modular group.

It follows from (10.8.9) that the series for /(s) is absolutely convergent

when o > 12. From

A (r) = > T(n) e2natz~2nny
1

? So that A(7) = g(e®7'7) in the notation of § 10.1.
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it follows, by Parseval’s theorem, that

+ oo

| | A(r) |?da = 3 7?(n) etna,
-4 1

Further, if we suppose ¢ > 12, we have

a

(10.10.38) (47)-*F(s)f(s) = ¥ rin) [yte-tome dy
1 0

=| ys T*(n) e wer) dy
0 1

2 ]

-{ yay | | A(r) |?dx -{f y° | A(r) |?dxdy,
0 -+ Ss

where S is the strip —tSas4, y>0.

Since )

for large y, and

for small y,’ uniformly in 2,

ody
Jbs

is convergent for a > 12, and th ‘be transformations.

10.11. We call a modular au

(10.11.1) rar

or T, a substitution Ty if it tran + of the fundamental region D

into points 7 of a triangle Dy lyin . Since a, b,c,dand —a, —b, —e, —d

give the same substitution, we may suppose that

(10.11.2) b<0, d>0ifb=0, (b,d)=1.

Any T transforms D into a triangle lying in a strip

M~}SUSn+4,

and then T= T(r')-—n

is a Ts; 80 that there is a ZT, corresponding to any pair (b,d) which satisfies

(10.11.1). Further, if (6,d) is such a pair, and (@9,¢)) a pair which, with

(4,d), gives a 7, theu the general solution of

ad~-be = 1

is a2=A)+nh, c= cytnd;

~CgtQg7’
and then “rly - (0-08nd the T'(7') d by’

© By (10.8.1).
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gives a D, outside S except when n = 0. Hence there is just one 7, corre-

sponding to any pair (b, d) satisfying (10.11.2).

Now

(10.11.3) (477) I'(8) f(s) = = ff, ys-1 | A(r) |?dady.

If (10.11.1) is the 7, which transforms D into Dz, then elementary calcula-

tions show that ,

ya ar) _
Y= Taber’ [2 |de’| ~ [d—br"

dr}?,,,, _da'dy’
dudy = a da'dy’ = [d— br’ [*"

Also A(r) = (d—br’)* A(z’),

Hence, substituting from (10.11.1) into (10.11.3), writing m for —b, x for d,

and then dropping the dashes, we obtain

(10.11.4) (4m)-8 I'(s) f(s

where

(10,11.5) F(a, 7}

and the summation is defined

(10.11.6) Osm<am, -—w< =1l, n=lifm=0,

Finally we multiply both side :

1 1
2E(28— 22) = 2 Vm = 2 pee

1

where the dash excludes the value & = 0. It is plain that

+ = Us),
| m7 +n [2-22

where the dash now excludes the pair m = 0, 2 =0; and so we obtain

(10.10.1).

2¢(28 — 22) F(s,T) = 22”

10.12. We now require certain properties of the function

, mw .(10.12.1) K{w) = £2 exp(—"P |mr+n['),

where w > 0. The most essential is the functional equation

(10.12.2) 1+K(w) = me s(Z)h-
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This is a simple corollary of Poisson’s summation formula for functions of

two variables, viz.

(10.12.83) EX A(m,n) = SF | (E, 9) e2rlins+an dEdp,

where all summations and integrations are from —co to oo. In this case

1+ K(w) = 22'd(m,n)

with GE, 9) = exp [E(atiy) +9 ".

If we substitute this value of ¢ into (10.12.83), and use the formula

[feree-szerre) Qriim£+ ny) dédn

2

pa (an? — 2fam+ yn) ’7

- ear? {-
where a, y, and ay -- #? are poziti

We shall also need an upp

(10.12.4)

and holds uniformly for w> i Hin D,

tain (10.12.2).

*) for large w. This is

We have K(w) = 22 esp ne+mty?}).

The combination m = 0, =<

{i) The terms m = 0. n+

Also y = 4/3, since 7 is in D.

ann) * Qe -moly
DW p-tmuyy — Bi o—rity: 2 : é = 2je78 << [—enmely?

which is O(y/w) when w/y is small and O(e-"""”) when w/y is large; and so

¥ anw/y) tawlyof(1+%)e O(ye tm”)
in any case.

(ii) There remain the terms for which m+0. If we fix m, then there is

at most one 2 for which |metn| <4.

This m and n give O(e-”’7¥"), and summation with respect to m then gives

O(e-7’Y) = O(ye trlv),#

The other n give two sequences whose numerical values exceed }, 3, 3,

and so (for the fixed m) we get

Of{(e- tater +é Sawly +, ) e -mn eur,

which, as in (i), is Olyetmely e—mimey},

.

yang

'y>hkand y>hy th
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Finally, summing with respect to m, we get

Ofye-trely eo mey} = O(yetTMI¥),

This completes the proof of (10.12.4).

If y is fixed, then

(10.12.5) K(w) = O(e-4”)

for large w and a positive A.

10.13. We can now determine the principal analytical properties of &(s).

It is defined by (10.10.2) when o> 12. Also

s-l T(s—11)(!) fiat vw et {- we Boxp(— 72 | mr-tn 2) dw

for g > 11, and so

(10.13.1) (“) re-1yg

if the summation under the in legitimate. This will be so if

This integral is convergent st

Near the origin i il

K(w) = - +irek(G)
wow \w

behaves like w-!, and the integral is convergent for 7 > 12. Thus (10.13.1)

is true for all such 7, Also

y g—11

(10.13.2) (4) T(s—11) &(s)

-{° we eK wydw+ | wf — 1 +t eka) haw

fea . ] 1 i
= - 12 _ . is=| ow K(w) dw pout aciet |,” K(w) dw

1 -
~ (s—11) (e~

The integral here is an intogral function of s, by (10.12.5), for any 7 of D;

and the right-hand side is unchanged by the substitution of 23—< for s,

13) + [ (w*-22 4 ws) K(w) dw.
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Thus £(s) is regular over the whole plane, except for a simple pole at s = 12;

and

(10.13.3) (4 Tie— 1) &(s) = (2) “ruz—s)ge3—s)

10.14. We deduce the properties of f(s) from those of &(s). It follows from

(10.10.1) and (10.18.2) that

(10.14.1) 2(47) * (8) I(s— 11) £(2s — 22) f(s)

= nl | | ela [re 1) (4) ca) dady

qe-t

= (11) @—12) | pb 1A) Pdady

Now for any realc, and 7 in

is majorised, after (10.12.4), by

If ¢2 0, we replace the lower im hi Gif ¢ < 0, we omit the w° and make

the same change in the limits. In either case the integral is less than

Ay’,

where A and y depend only on c.1 Hence the treble integral in (10.14.1)

is majorised by

Ant-2 | | y | A(z) [?daedy,
D

where A and 6 depend only on g; and this integral is convergent for

every o, because A(r) = O(e2"")

for large y.

It follows that the treble integral is absolutely and uniformly convergent

throughout any bounded domain of values of s, and represents an integral

function of 3; and that

2(4m)-* I(8) P(e — 11) £(28 — 22) f(s)

1 y= o+2ifc=0, y = 2ife<0.

12-2
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is regular for all s except for simple poles at s = 11 and s = 12. Hence f(s)

is a meromorphic function of s regular except for

(i) a simple pole at ¢ = 12, with residue

— yo (4m) 10 2(10.14,2) a= 12) | ,Y | A(r) |? dudy.

(ii) poles corresponding to the complex zeros of ¢(2s — 22), all lying to the

left of o = 12.°

Finally, it follows from (10.14,1) that

(10.14.38) (2m)-2*I'(s) P(s— 11) (2s — 22) f(s)

= (2a7)#~48 (23 — 8) I'(12—s) ¢(24 — 28) f(23 —8),

Le. that

(10.14,4) $(s) = $(23—s),

where

(10.14.5) f(s) = (2ay-® Fis (28 — 22) f(s).

It also follows from these

of Tkehara, that

(10,14.6) T(1) + 728

This was a hew theorem; but F

much further by using a theor

Se , and a well-known theorem

' 1 12} ~ pean °

shown that it is possible to go

10.15. Landau’s theorem: i ppose that

(1)

2 Z(s) = 52%(2) (s)= 27

ts absolutely convergent for o> 1;

(83) 4(s) ts regular all over the plane, except for a simple pole at s = 1, with

residue p;

(4) Z(s) = Ofer!)

for large |t| and some y = y(oy,0.), in any strip 6,50 <0;

(5) I(s) P(s+11) Zs) = M1—s) F12—s8) Xe, (An),

the last series being absolutely convergent for a <0;

(6) Y 2/e,| = O().
Then _

(10.15.1) C(x) = 2 on = fx+ O(a).

* The “trivial” zeros of the zeta-function are cancelled by poles of M(s—11).

* Particularised for the application.
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We show that

(10.15.2) Z(s) = (28) (9+ 1) = zon

satisfies these conditions.

(i) Since

1 rn)

we have

(10.15.4) C= SY #20.
wren

(ii) Both series in (10.15.3) are absolutely convergent for o> 1,’ and

therefore the product series is so.

(iii) We proved that Z(s) satisfies condition (3) in § 10.14. The value of / is

(iv) It is plain from (10.3 sfies (4).

(v) The functional equatio

P(s) F(a +11) Za}

y be written as

3) P(12—s) Z(1 ~s)

2—8) Le, (1674),

where

The series is absolutely converg i

(vi) It remains only to verify condition (6), which is

Cz) = XY ¢, = O(a).
NEE

Now XM 7?(u) = O(2),
eS

by (10.8.9) and a partial summation; and, by (10.15.4),

C@)= Yer) = Ye eMrPa)t Yer e)t Y wr ut...
HS]BPSz BSE BS [x

= O(2) + O(4x) + O(fx) +... = O(z).

Hence Z(s) satisfies all the conditions (1)-(6), and (10.15.1) is true.

The formula which we actually use, however, is not (10.15.1) but

(10.15.5) D(a) = 3D nBe, = phx!? + O(n!-4).

NEL

* The second by (10.8.9).
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This follows from (10.15.1) by partial summation. In fact, if[z] = €, we have

D(a) = VAC(1)+ y v4fC(v) — C(v— 1)}

= MO) —"S {O41} 00)
1

= {e+ O(23TM} {Bat O(@H)}— F (L10#0+ OH} (20+ OW)

= P8%(1— Hp) + OCW) = yf + Oe"),

10.16, It is now easy to prove that

(10,16.1) TX 1) +722) +... +72(n) = dan? + O(n)*-4),

and to deduce Rankin’s theorem (10.7.10).

It follows from (10.15.3) that

yh) _

by (10.15.5). The main term h

Wwe lt MQ) Bay + ow} = j,aal2+ O(al?-4),
72, Isat 2 ~ 72

and the error term gives

O(at®-t) Y 1-8 = O(a}2-),
ist

Hence we obtain (10.16.1).

Finally, replacing n by n—1 in (10.16.1), and subtracting, we find that

T*(n) = O(n) + O(n?-#) = O(ni*-4),

7(n) = O(n®),
which is (10.7.10).

The sum function T(n)

10.17. There is another set of problems connected with the ‘sum

function”

(10.17.1) T(n) = ' 1(n)
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of 7(n). The dash over the Y implies, as usual, that when z is an integer the

last term 7(x) is to be replaced by 4r(z).

I can explain these problems best by stating their analogues for a more

familiar arithmetical function. If r(n) = r,(n) is the number of representa-

tions of n as the sum of two squares, then the sum function

(10.17.2) R(x) = bY r(n)
nS@

is the number of lattice points in the circle

wtwsca,

with the convention that we count } instead of 1 for a lattice point on the

circumference of the circle. It is familiar that

(10.17.3) R(x) = na +P(2),

where P(x) = O(a);

but the true order of P(z) is sti sisrpinski proved in 1906 that

and this result has been impre! at Corput and later writers. In

the other direction, Landau an:

Another problem is that of:

Voronoi in 1905 that

(10,17.4) P(x) :

where J, is the Bessel function of order 1. I proved this in 1915, and

many other proofs have been published since.

There are similar “order” and “‘identity’’ problems for T(z). They are

naturally less important, and any order results are bound to be imperfect

so long as we are uncertain about the true order of 7(7) itself. The best that

we can prove at present is that

(10.17.5) T(x) = O(2i*),

If the Ramanujan hypothesis is true, then

(10.17.6) T(x) = O(a),

It is certainly not true that

(10.17,.7) T(x) = o(#?).

In this case the identity is perhaps more interesting. It is

(10.17.8) T(x) = 28 > 1) J af4ar(ne).
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Wilton proved that

(10.17.9) T,(x) = Fart me n)*7(n) = atte ie a(n) Fi014(40(nx)*}

for «>0, and I proved more recently that this result is still true for a = 0.

NOTES ON LECTURE X

§§ 10.1-3. Ramanujan, inno. 18 of the Papers, considers the function ¥,(n) defined by

a{(1— a) (1—~aA8/2) Je = Sys, (m) wo,

where | 24, When « = 24, y(n) is 7(n).

When « is 1 or 3, w,(n) is given by tho identities of Ruler and Jacobi. When a = 12,

y,(n) is a multiple of the e,,(n) of §9.3. It is 0 if n is even, and can be defined when

n is odd by a sum extended over the representations of n as a sum of 4 squares; the

formula will be found in Glaisher’s paper referred to in the note on § 9.1.

Ramanujan conjectured that ,(n) is multiplicative in overy case, so that

Zn-ty,(n) has a product expression analogous to (10.3.8); arid he deduced formulae

for yf, (n) hon a is 2, 4, 6 and 8 AU jeetures were confirmed in Mordell’s
paper 2. ‘Mondelt says there that th raperty of y(n) had been proved
before by Glaisher, but this seer eo Glaisher, Quarterly Journal of

Math. 37 (1906), 36-38.

Rankin, in an unpublished mam

plicative property of ¥,,(n) and ¥

O(n).

§10.4. The properties discussed i

in a manuscript ‘‘ Properties of pin

algo no. 28 of the Papers), This rm

of the Papers is substantially an.

has since rewritten and completed #38 :

The proofs in §10.4 were giver: by }, but stand also in Ramanujan’s

manus¢ript: Ramanujan of course assurnds'tl iialbiplicative property of 7(n).

ad elementary proofs of the multi-

‘@ substantially Glaisher’s Q(n) and

ore all enunciated by Ramanujan

w in Prof. Watson’s possession (see

been published in full, but no. 30

Watson, in his papers 23 and 24,

§§10.5-6. The proofs here are derived partly from my old notes on Ramanujan’s

manuscript and partly from Watson’s paper 23. Watson works out in detail the proof

sketched in § 10.6.

If we replace x by g®, then P, Q, & are

12q, 04 129,w1 ' 216g,t0°

ay , n* 7

in the ordinary notation of elliptic functions; and (10.5.3) is equivalent to

A = g,— 2793.
See §9.11.

§§10.7-8. See Hardy (9); Hecke, Hamburg math. Abhandlungen, & (1927), 199-224;

Kloosterman, ibid. 337-352; Salié, Math. Zeitschrift, 36 (1932), 263-278; Davenport,

Journal fiir Math, 169 (1933), 158-176; Rankin (2). Davenport does not mention

7(n) explicitly, but (10.7.9) is, after Kloosterman’s work, an immediate corollary of

what he proves.

Everything that has been proved about the order of 7(n) has its analogue for the
coefficients c, in the expansion

wo

He, esnaiN

1
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of any modular form of ‘Stufo’ N and dimension — k which vanishes at all the rational

points corresponding to cusps on the roal axis in the modular figure. Here ‘vanishing’

means ‘‘having the limit 0 for approach along a perpendicular to the axis’. The

special function g(e?'7) is of Stufe 1 and weight — 12. The general ideas of the theory

of such modular functions were laid down by Hocke, who proves the result for general

modular forms which corresponds to (10.7.7).

The proof of (10.%.7) in Hardy (9) is arranged differently, the underlying Farey

dissection not being mentioned explicitly.

I show there that there are constants 4 and B such that

An <73(1) 4772) 4+... +73(n) < Bn,

This result is now superseded by Rankin’s theorems (10.14.6) and (10,16.1).

§10.9. The functicnal equation (10.9.4) must have been familiar to Ramanujan,

but I cannot find an explicit statement of it either in the Papers or in the note-books.

It was first stated in print by Wilton (1), who proves it as a special case of a functional

equation for an "

Pls, p,q) = B— etna,

Wilton (1) proved that F(s) has en ist
it has none on @ = 43 org = 48

§§ 10.10-16, The proof i is that ¢
His proof of the corresponding th

of goros on o = 6, and Rankin (1) that

. with a fow small simplifications.

ne of Stufe NV is more complex.

oehner, Vorlesungen tiber Fourier-

, Fourier integrals, 80-68. The case

§10.12. For Poisson’s formula

sche Integrale, 33-38 and 203-268,

here is a simple one.

§10.14: Ikehara’s theorem, in th

if a, 20, and Za,n-* is convergent f

except for a simple pole, with res

ant for its application hero, runs:

esents a function regular for o = 1,

The theorem (which has been referred to airoady in § 2.8) is based entirely on the ideas

of Wiener. There is a simple proof of the theorem, in a rather more general form, in

a paper by Bochner in Math. Zeitschrift, 37 (1933), 1-9.

§10.15. See Landau, Géttinger Nachrichten (1915), 200-243.

810.17. The ‘circle problem has been referred to already in Lecture V (§5.1 and

the note on that section).

My first proof of the identity (10,17.4) occurs in a paper in the Quarterly Journal

of Math. 48 (1915), 263-283. A number of other proofs have been given since; for

references see Hardy and Landau, Proc, Royal Soc. (A), 105 (1923), 244-258. Perhaps

the best proof is that in Landau, Vorlesungen, ii, 221-232.

Of the theorems about T(x) stated at tho end of the section, (10.17.5) is Rankin’s,

(10.17.6), (L0.17.7), and (10.17.8) my own. For (10.17.5) see Rankin (3), for (10.17.9),

Wilton (1), and for (10.17.8), Hardy (10). No proofs of (10,17.6) and (10.17.7) have

been published. My own proof of (10.17.7) depended on the identity (10.9.6).



XI

DEFINITE INTEGRALS

11.1. In this lecture I propose to speak about some theorems of

Ramanujan which have not attracted very much attention, which are, as

I said in my opening lecture, ‘“‘inevitably less impressive” than much of

his work, but which are still very interesting and will repay a careful

analysis.

Ramanujan was occupied, during most of the last year before he came

to England, with general formulae in the theory of definite integrals. He

then held a research scholarship in Madras, and submitted three quarterly

reports to the University on the progress of his researches. It is from these

that most of the formulae which I quote are taken. I owe my knowledge

of the contents of these reports to Professor Watson, who included them

in his copy of Ramanujan’s netebeoks: but most of the formulae which

I quote had been shown to x n himself.

11.2. The formulae which are as follows.

(A) I 2°-Hb(0) —agi(t) de = -

(B) I . ofA(0) FM

(C) $(0)+ A(1)+4(2}+.

= {sears {2° HO) — EO) EM) 2) ae
x{7? + (log x)?}

(D1) ["Ro- a )+5y PAC@)— | cos yee

= X~1)—-A(—3) y2+A(—-5) y4—....

(D2) [- o-Faw+F ae...) singeds

= A(—2)y—-A(—4) > +A(— 6) y—....

©) [*fa@~F,aay+...| {oy Far) +...)

= A(~ 1) 4(0) —A(— 2) w(1) +
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(F) Tf

(F1) [Fen G(fx)da = a

and

(F2) f(s) = : F(x)a*dx, g(s) = ! - Ga) 2°1dz,
then

(F3) fla)g(1—3) = =
And if

(Pa) | A) AP ei) + F(—yei)} de = BUY),
then

(F5) [Be He(ei) + 6(— yi} ade = Jay)

I shall say something about each

begin with some general rera

them. He had no real proofs

the phrase “‘real proof” not «

T must explain.

It is reasonable to say that w

truth of most analytical formul

like (A) is true for certain ¢ and

impose on ¢@ and s are ‘‘nats

on account of the weakness o Sis, but are genuine limitations

corresponding broaclly to the fat jecrems will not cover all cases

in which the formula is true, and it may be interesting and profitable to
do what we can to extend them; but the conditions under which we have

proved them would become insufficient if widened in any really drastic way.

A mathematician may have stated a formula and advanced reasons for

its truth which are inadequate as they stand, in which case he cannot be

said to have “proved” it. But it often happens that his method, when

restated and developed by a modern analyst, leads to a proof valid under

“natural” conditions, and in that case we may fairly say that he has

“really”? proved the theorem, Thus Euler “really” proved large parts of

the classical analysis, and there area great many theorems which Ramanujan

had ‘“‘really”’ proved; but he had not “really” proved any of the formulae

which I have quoted. It was impossible that he should have done so because

the “natural” conditions involve ideas of which he knew nothing in 1914,

and which he had hardly absorbed before his death. He had also, as

Littlewood says, no clear-cut conception of proof: “if a significant piece of

reasoning occurred somewhere, and the total mixture of evidence and

fthese formulae in turn, but T must

‘aémanujan’s treatment of all of

mulae; and here I am using

inary sense but in one which

. roughly, the conditions for the

say, for example, that a formula

i that the conditions which we

ss they do not intrude merely
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intuition gave him certainty, he looked no further”. In this case any “real”

proof was inevitably beyond his grasp, and the “significant pieces of

reasoning”? which are indicated in the notebooks and reports, though we

shall find them curious and interesting, are quite inadequate for the

occasion.

Formulae (A) and (B)

11.3. The first two formulae are the most important, and I shall discuss

them in more detail than the rest. Ramanujan was particularly fond of

them, and used them as one of his commonest tools. They are variants of

one another, (A) becoming (B) when we write

A(u)
p(u) = TQ +4) ’

and we may take (A) as the stand: ya.af the formulae, though we shall

sometimes find (B) more co

It is easy to give example x and the falsity of (A). Thus

Blu) = LPO) ae oa

give the formulae

© ysl 7{ Y des,
o l+z sin $77

true for 0<s<1 and for s> 9% re

is plainly false when

= Is),
sin s7i(1—s)

Mn the other hand the formula

g(u) = sinzu,

the integral then vanishing identically. The formula is an “interpolation

formula”, which defines ¢(—s) in terms of ¢(0), A(1),.... If it has been

proved for all ¢(u) of a certain class, then any ¢(u) of that class vanishes

identically if it vanishes for all non-negative integral values of u. There is

a well-known theorem of Carlson which says that if (i) J(u) is regular, and

| Plu) |< Cem,

where A<7, in the right-hand half-plane of complex values of uw, and

(ii) A(0) = A(1) =... = 0, then ¢(u) vanishes identically; and it is natural

to suppose that (A) should be true for all such ¢(w) and appropriate s. We

may also expect that the best methods for the discussion of the formula

will be those with which Carlson and others have familiarised us and whose

original source is to be found in Mellin.
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Proof of (A)

11.4. In what follows I write

“us=v+tw.

I denote the half-plane v2 ~—d, where d>0, by H(d), For the present

T suppose O<d<l.

If @(u) is regular, and

(11.4.1) | P(w) | < CePetaiel

throughout H(é), then I shall say that d(w) belongs to the class &(A, P, 4),

or simply §. We shall be concerned for the most part with functions for

which

(11.4.2) Acn.

Let us suppose now that (a) helonga to @(4, P,d), with A<7,0<d<1;

that 0<c< dé; and that

(11.4.3)

Then a simple application of

(11.4.4)

B(x) = $(0) — 29 (1) +a*6(2

vem gives

b(--u)a-“du.

The series is usually diverge:

for all positive x, by a multip

. the integrand is majorised,

and the integral converges uniformly in any interval 0<a,<x5X; and

therefore @(x) is regular, and represented by the integral, for all positive x."

We can now deduce (A) by the well-known inversion formula of Mellin,

This is expressed by the equations

"a0 1 e+iw

F(w) =|. P(x)a*- dx, F(x) mail fuja-*du;
Qt J eis

and (A) will follow if we can take

f(u) =

We may justify the use of Mellin’s formula in various ways, appealing, if

we please, to some established general theorem; but it is more interesting

to give a direct proof on the lines originally followed by Mellin himself.

W

sin U7
p(—u), F(x) = P(2).

7 If x = re, then |a-*-TM| = r-*e?”, and Ox) is regular for |@|<m—A; but we do

not use this.
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Suppose that s = o +7 and

O<a<d,

and choose c, and ¢, so that

O<c,<o7<0, <0.

Then (11,4.4) is true both with c = c, and with ¢ = ¢y.

Now

‘6 wld l 1 1g atic 7 ud

I, (a) w= mil, x ofr anqu?i )* Ue

1 eit+to W 1 1 tio —uU

=o ; p(-—u)du| x*-1dx = — ——— o(—¥) du
2770 J ¢,—ieo SIN TU 0 270 J oi SINTU 8—U

3

since R(s—w) = a —c, > 0. There is no difficulty in the inversion, the double

integral being absolutely convergent. Similarly

[oe w-ldz = (udu [ “ade
1 1bo!

since how It(s—u) = 7—c¢, < 0. these equations we obtain

00 1 Obi
s—1 =

I, P(x) ade 2t (\-"
by Cauchy’s theorem.

11.5. We have thus proved (A) for a ¢(w) of & and for 0<o <6, in

particular for 0<s <0. Itis plain that, if ¢(u) = O(e!"!), then J(u) belongs

to ®&, with P = A, so that our class of d(u) includes the Carlson class.

Hence (A) gives incidentally a proof of Carlson’s theorem.

We may also reduce the second part of the proof to an application of

Fourier’s theorem. If we put x = e+, wu = c+, in (11.4.4), it becomes

1 [°° T
-—) = —— _— d( —c— iw) eet dw:

Pe) 27 _aainm(o btw)? o— te) exer dw;

and Fourier’s theorem then gives

nob(—ce—iw) _
© ¢-Hleti(et) dE =| aetio-tsin 7(c + iw) [oe De) dé [i P(x) da,

Such a reduction of a “Mellin” to a “Fourier” transformation is of course

always possible, the transformations being formal variants of one another.
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I add one remark which applies not only here but often later in the

lecture. I have supposed A<z, in which case all the integrals occurring

are absolutely convergent, and with a good deal to spare, In many of the

most interesting examples A will be equal to 7; and the final integral may

not be absolutely convergent, in which case a more delicate argument, not

depending simply on majorisation, will be needed. The hypothesis A <7

is, here and elsewhere, a crude hypothesis; but it is at any rate a “natural”

one, the results being usually false when A >7; and I shall have no time

for any more subtle analysis.

Heuristic deductions of (A) and (B)

11.6. The formulae (A) and (3) are connected in a very interesting way

with ‘‘Newton’s interpolation formula’’.

It is well known that

where Atty = Gy~ Baby + gy vere

Hence, if s> 0 and the series

A(z) = At

is convergent for all z, we haw

° n

| A(x) a®—laa 2M) 2” dar;
0 nN:

and term-by-term integration gives

yon) | * vtattnlda = I'(s)!A(0) +540) + 9(s+ 1) A(0) +. J.
0 : 0 i

Finally

(11.6.1) = A(-s) = A(0) + 5, AAO) +

is Newton's formula.

The term-by-term integration can always be justified when the resulting

series is convergent. We can therefore prove (B) on the assumptions that

(i) 3 is ara (ii) .1(~) is an integral function, and (iii) Newton’s formula

holds for A( — 8). If (i) and (ii) are satisfied, then (B) is equivalent to Newton’s

formula.

There is a corresponding reduction of (A), based on Euler’s transformation

a(s+ 1) 2
ce APA(O) +
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It is convenient to suppose that ¢(0) = 0. Then, writing 6, for d(n), we

have formally

ba — ba? + 632? ~... = by. y+Aby. 4? 4- Ab, Pt o.,

n+1
—l —1 n[, D(x) edz = — -|° x yA 4c) dx

n _—~_TY ~ h Is+n+1)= Ba [4 »yniid = —I( s)hA by Ta+h

om (8+1)(8+2) 45ie ——g, A byt}.
In this way (A) also may be reduced to Newton’s formula,"

Ramanujan’s argument

11.7, Ramanujan supposes, in effect, that

(11.7.1)

where a is positive and y(z} origin, Then

—]}*

Ata) = 5
nO

_ ow (-ly

eo n!|

_ 2 x) ee (9) | rear
=z rte “2 r! ° ,

and | A(x)a®-tde = Y x0) | pote! Wye 1 dip
0 r=0 0

2 "(0

= Fs) 3 XO) ere = Ts) xem) = Pe) A(—8)
r=0 1!

for s>0. The inversions can be justified if (i) x(z) is regular for |z|<1,

and (ii) 8 is sufficiently small. For then

| x0 Og a

is convergent for some Z> 1,

ies | x0 )| ze yrrem = ylk xe | exear

is convergent, and

BZ LHON ES paemtrge. t dey = 7(9) ELM ON core
nm 0 r|

* (11.6.2) with d(u+ 1) for A(u) and s+ 1 for s.



Definite integrals 193

is convergent for sufficiently small positive s. In these circumstances

Ramanujan’s analysis is valid. But the condition on A(u), which demands

that A(m) should be of the form

Cateye t+ cge tan 4+,

for large n, is extremely stringent and, though it may be extended a little,

excludes practically all of Ramanujan’s examples.

It is instructive to consider a case in which an argument like Ramanujan’s

leads to a demonstrably false result. Suppose that, in (11.7.1), a = —b is

negative.“Then, if we repeat Ramanujan’s calculations, we obtain

(11.7.2) Ala) = ¥ XO) 2,
r=0 7!

and can apparently complete the proof as before. But (11.7.2) is usually

false, since A(z) is regular at the origin, while the series on the right represents

a function of w which is regular4 ight-hand half-plane and has the

imaginary axis as a singular | umptions

xu) =e (ex A(u) = ee"

ic) té cr .

would lead to X(-1)’-5 yea,
“) YES rt

which is obviously false.

Finan ions

11.8. I quote a few of Ram: al cases.

(i) If 0<s<Min (a, f), then

My) Pe) Pa~s)(B=s)

[peo F ihn ade Rey)Py—s)

Here F(a, /,y,2) is the hypergeometric function, defined for 0<a<1 by

the usual power-series and for > 1 by analytic continuation,

Gi) If 0<s<1, then

oO Tt

aL fy -a Q~4. Q-Ay2 _ nee = - 1— 7a,I. x1] a+ 3-4 )dx ain en | 8)

(ii) If 0<q<1, s>0, and 0<a<q*}, then

[oe (1 + aga) (1 +aq*x) ... wm © (L—gm-§)(1—agTM)
0 (L+a) (1+ gx) (1+ 92x)

(iv) If O0<s<4, then

oD oo (—1)*a” Is)
a-b yk. =,

[2 Salean+2) 9” ~ F2— 2s)
HR t3

ue dan =: a

~ sinsa, (1—qTM) (l—ag”)’
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Of these, (i) and (ii) are straightforward corollaries of what we have

proved. To prove (iii), we use the expansion

P(e) = , (Lt age) (1+ ag?e) -.. (1 = aq) (1— aq"). (1= 29") 19

(1+a) (1+qu) (1+)... (1—q)(1—q*)...(1—-9@")
which is easily deduced from the functional equation

(14 aqz) B(gxz) = (1+2) D(x)

satisfied by ®(x). Here = (1 ag) (Lge

em) = TT amy agiey
Finally (iv) is a formula found independently by M. Riesz, and used by him
to determine a very curious necessary and sufficient condition for the truth

of the Riemann hypothesis. On this hypothesis, the formula is true for

0<s<%. An alternative form of P(x) is

= S(-1)"
0

where (mm) is the Mébius fer

2 to obtain many expansions

n’s series. I take two examples

11.9. We can use Ramanuja

usually derived from Lagrange’s'

given by Ramanujan himself.

(i)-A problem familiar in te. of expanding e-** in powers

of xe, Ramanujan argues as s

ered ak y ym
5 ait 2

then, by (B),

I(s) (-8) = \oy s—le-aa dy = I, a8-1(1 + ba) ena—#0e dy
0

= I(s) a(a — sb);

so that A(n) = a(a+nb)*-,

The argument obviously requires that a and b shall be positive.

(ii) Itis well known that the roots of trinomial equations can be expanded

as hypergeometric series. Ramanujan finds an expansion for any power a?

of a root of aqn? +29 = 1

of nN

as follows. If = SLED an n
x n!}

a(a + butt* When the function Tatu)

does not quite satisfy the conditions of §11.4 (the “4” being 7).
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then, by (B),
oO 1 ] —72\5-1 l—x!?7 —s)j= g—L»r = gq ol 2 era

I'(s) A(—3) i a—torda I, al oa ) af qa ) .

Calculating the integral, he finds the expansion

Tat +2p—D) 9 Trt 3p—9) (r+ 3p— 29)am ——. ve —_*_.lt a 3!
I do not know whether this formula is new, and I have not attempted to

find conditions under which the analysis can be justified.

Formula (C)

11.10. The formula (C) may be regarded as one for the remainder in

the “Kuler-Maclaurin sum formula”. Since

* 0 d y

|, afm? +, ty”
ere it occurs, by any constant

% OS

(0) -—aG(1) + 27A(2)—..

factor. It is convenient to wri

hoe

$9(0) + OL) + 82) tof ala? + + (log x) aH

or, replacing J(u) by y*d(u},

(11.10.1) Ry} = & SA oy a,

where now

(11.10.2) D, (x) = 39(0) +E Gln) ar
1

and

(1.10.3) RY) = O)~ [6

The most familiar formulae for R(y) are Poisson’s, viz.

(11.10.4) Ry) = 2 | y’ p(x) cos 2nmxdx,
1/0

and Plana’s, viz.
aw, yo —

(11.10.38) Rly) = if? x ee oct Pe) to.
D _

Ramanujan's is apparently new.

* ®P,(x) := O( —x)~ 44(0), in the notation of § 11.4.

13-2
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It is convenient to begin by proving a special case of the formula, Suppose

that 1
P(u) = Td +a)

and J(y) = [vse dx = [re ny

Then [ve eS (y) dy = {° rval, omdy

= [setae = | ;
0 slogs

if s>1. Tt follows from the inversion formula of Laplace that

l etim pys

Jy) = Qn i slogs
where c> 1. If we deform the cantour.intc a lacet round the negative real

axis, and allow for the residues 1, we obtain

pee)"
11.11, Ramanujan gives » vé: s proof of this special formula.

He proves, more generally, tha

(11.11.1)

dzi” rowet{, a € Slog) os Gegaye =

if y20 and 20. If we denote ad side of (11.11.1) by p(y, &),

and differentiate with respect to E4 we find that

oe L(1-£) am Jo

1 I(€) sin nf
= y-é ciyeeeeeee4 lia =f) a |- "

Hence p(y, &) is a function P(y) of y only. But if we differentiate with respect

to y, we obtain

oO E 1

dP = (ry ye v-{° wie-v+( cos ~=n% logs) __ a
dy ~ }_,T@)" + (log)

o _pr nag dx={- Feats ao da -|" xe? (cos ne ~ log.) 2+ (logm)?

= Pl ¥y; E+ 1) = Py ).

Hence P(y) = Ce”, and we can find C by supposing that y = 0 and £ = 0.'

? We can also prove (11.11.1) by the ‘‘ Laplace transform” method.
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We may now replace ¢(«) by

in the general formula, so that we may suppose (0) = 0. We may also

suppose that ¢(z) is real for real wu. These reductions are not essential, but

they simplify our formal analysis.’

11.142. We can deduce Ramanujan’s formula from Plana’s as follows.

We suppose again that 4(u) belongs to &(A, P, 6). Then

(11.121) 6-2) = % (= Ly" p(n) 2 = sa | _ Tg (—u) du
jo SIN TU

1 f° 1 tw
== -——— x-fi ( — iw) dw;

~» sin miw

we can now take ¢ =: 0 becausg dexce

oo Pp i(-~ yt) _ i ca

[aie toe) on |
But * on geotw

8 {, afa® + (log x}?
> (ye)

and so I, arf? + (log a}
which reduces to Plana’s integ: y trivial transformations.

There is a full discussion of Plana’s formula in Lindeléf’s Calcul des

résidus. Lindeléf proves (11,10,5) under the conditions that

(i) e72alwl ye tee dv + tw) > 0

when | w|—>oo, uniformly in any finite strip —-d<v<V, and

ad o(ii) [ em Arbol fay +t) | (a + iw)| dw 0
hit

when v->o., It is plain that these conditions are satisfied if J(u) belongs

to §(A, P, 6), with A < 27, and

O<y<e?;

and in particular, for such y, by the (wu) considered here. Thus Ramanujan’s

formula (C) holds, in the form (11.10.1), and for these y, for the same (wu)

for which we proved (A).

' We could begin by verifying the formula for any special ¢() for which 4(0)+0,

but I know of none fcr which (C) becomes quite trivial.
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11.13. Tadd a remark about Plana’s formula. It may be proved directly

as a corollary of Cauchy’s theorem: but it is worth while noticing how it

can be deduced from Poisson’s formula, which, being a ‘‘real variable”

formula, is probably now more familiar. Let us write Poisson’s formula

(11.10.4) as co

RY) = 22 dn;

write e~4, where # > P, for y; and v for x, Then

J, = atl [°60) e(f-2naiw av| = ali [acy e—fiw—inaw aue| ,
0 0

again by Cauchy’s theorem; the argument here demands only that A < 27."

When we sum, we obtain Plana’s formula.

11.14. Suppose, for example, that

where r>0. Then A(u) belo

P; and (11.10.1) gives

r, any positive A, and any

re (eye

| a afr? + (log a)?} ~~
7 is an integer, and then that

mentary functions,

The integral on the left is ele

on the right can be evaluat

Fourie mulions

11.15. The formulae (D) embody a heuristic theory of Fourier transforms,
a theory which is naturally valid only under very restrictive conditions.

Suppose, for example, that A(z) is an integral function, and that

(1.16.1) A(1) = A(3) = A(5) =... = 0,
so that

(1.16.2) A(w) = 3) at = 5 4er" am

is even; and let

(11.15.3) Ay(u) = |) P0+%) 08 jun A(--u--1),

Then A,(u) is also integral, since the poles of /(1+ 4) at —1, —3, ... are

cancelled by zeros of cos }uz, and those at — 2, — 4, ... by zeros of A(— u—1);

and

(11.15.4) A,(1) = AY(3) = A\(5) =... = 0,

' Instead of A <7.
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Also A\(2m) = (- 1)” JG) 2m! A(— 2m—1)

and ‘

Ay(-2m—1)= JG) A(2m) lim {7'( — 2m.+ €) cos }(2m + 1—e) 7}
e->07

scan fee
Hence, if we write

M(x) = JG ¥ (-1)"aA(- 2m — 1) 28m
To

and denote by A,, M, the functions formed from A, as A, M are formed

from A, then A,(x) = M(x), M,(x) = A(x);

and (D1) and the corresponding formula with A, become

JG) 0 cos yx da = A
mT] Jo

These are the ordinary fi

If we suppose, instead of (11.

A(0) = At =0,

1/9\ fa
(G) M(a) cos yada = A(y).

and define A,(u) by

Alu) = JO

we are led similarly to the for

an A(—u-—1),

Sne transformation.

ie X — 34)
ku) I(-u)

Thug Aw) = +2

satisfies (11.15.1). In this case

/ O—-44 gu day qu

you) — f(E) r+) 008 Ju? " a+ bu) 2 vn = A(u)

and A(x) = M(x) = »

The formulae express the “‘self-reciprocal”’ property of e #’.

On the other hand there are many familiar reciprocities which cannot be

expressed in this way. ‘Thus

aD ] Dn, ‘

(11.15.5) f, e* eos yardt = 5 {, Vege == fme~iml,

The first of these is (when || <1) a case of (D1), with A(u) = 1; but then

Ay(u) = JG) I(1 +4) cos fur
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is not an integral function, so that we cannot account for the second formula

in this way (as is obvious because e—'#| is not expansible as a power series in y).

11.16. I worked out a theory of the formulae (D) in my paper 11. I shall

state it here in a rather more general form due to Mr F. M. Goodspeed;

his theory accounts for the formulae (11.15.5).

Suppose that y(w) is an integral function and that

x(e)(11,16,1) QT (A |v | + dw)

where A <7, for all uw. Then it follows from Cauchy’s theorem that

Fax) on Pe eu)
(1116.2) Ate) = 2 Tin th)” ~~ Omi I. sin wu 2T'(hu-+ 4)

when —l<ce<0, O<x<e-P,

< OeP rt a4iut,

the series being then convergent

any interval 0O<d<2s/4 <o

If now y>0 then

O26) JG) faeces:
== M7) {cos

=~ l(a) a,
The justification of the inversion uite trivial but proceeds on the

same lines as the discussion of the same point in 11.

tegral is uniformly convergent in

egular for all positive x.

Now | x" cos yada = I(ut1)cos4(u+ lay},
0

If we substitute this value in (11.16.3), and simplify by means of the

duplication formula for the Gamma-function, we obtain

2 (° LH sug x(u)= Of mt ae guts 2,J) I. A(z) C08 yoda oil. sin 74 2 LX _ 4u) du
1 r am ¥tx(—u-1)

Ht} nico SiN TU heh + du)2m

(with a different c, but still with —1<c<0). This integral may again be

calculated by Cauchy’s theorem, with the result

(11.16.4) JG fee cos yxdx = M(y),
rig
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where

(11.16,5) Mia) = yy Dal)

This series also is convergent for 0<a<e-?, and M(z) is regular for all

positive x. And it is plain from the symmetry of the argument that

(11.16.6) JG) fe cosyxrdxz = Ay).

11.17. Ramanujan’s own formulae for cosine transforms are slightly less

general. If we write

Xu). A(u)
HT Guss) Tutt

or

ans (11.15.1), then it will be

ose of §11.15. The ‘“‘order”

$21.16 has the advantage of

pects, In the first place, the

oting than the assumption that

ats for w= —2, —4,.... A more

}and M(x) are even analytic

1.16 they are defined by the

‘negative x by evenness.”

and suppose that A(w) satis

found that the formulae of §%

conditions are equivalent. T

symmetry, and is more genera

assumption that y(u) is integra

A(u) is integral, since it alloy

important point is that, in §

functions regular at the orig:

power series for positive x only,

Thus, if we take y(u) = ued),

2\ 1then A(x) =e, M(x) -/G) ne

for x >0. The conditions of § 11.16 are satisfied, and, if we define A(x) and

M(a) by evenness for «<0, we obtain the formulae (11.15.5).

If we take v(u) = 1

— Ma) =s,, (oPwe find that A(x) = M(x) = Doinr(ind 4)”
nm

' In (D 1) we are in an intermediate position. If we write the formula as

d (5) [ae cosyxdz = M(y),
ahs 0

then A(x) is defined like the A(x) of § 11.16, but M(y) is regular at the origin. In

§ 11.15 we make the relation symmetrical by specialisation.
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for x>0, and the same remarks apply. This A(x), which may also be

expressed by «0 wo

1 — ets | et? dt = | e~ tev dw,
x 0

is one of the examples of “self-reciprocal’’ functions given by Hardy and

Titchmarsh.

Finally, the choice m2

MO) = TE a) POF Fa)
leads to A(x) = M(x) = e-##",

This case is covered by § 11.15.

11.18. I said in my introductory lecture that Ramanujan was familiar

with most of the formal ideas which underlie the recent work of Watson,

and of Titchmarsh and myself, on ‘‘ Fourier kernels” and ‘‘self-reciprocal

functions”. Here we have a case |

It is plain that a necessary.#

to be self-reciprocal is that

(11.18.1) x

If we write

(11.18.2) y(u) = mi 4a) y(— 4),

then (11,18.1} becomes

(11.18.38)

The integral expression for A(«}

_ 1 fetio xy(u)

A(z) = — ml iw ain UT n+ pe
If we change uw into — wu, substitute for y(—w) from (11.18.2), and perform

some simple reductions, we obtain

et+tin

(1.18.4) A(z) = os oth) a-“ap(u) du,
“ E~Fo

which is (apart from a numerical factor) the formula for self-reciprocal

functions given by Titchmarsh and myself.

All this has its analogue in the theory of ‘‘general transforms”, but

I postpone this to the end of the lecture.

Formula (E)

11.19. We may write (E) as

om

(1.19.1) [,4@) Meayaz = 5 (=1)"A(=n—1)aln),
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A(x) and M(x) being the two infinite series which occur in the integrand

of (E). We may as well consider a more general formula, viz.

(11.19.2) [, AG) M@e tae = 3(- yet 9) - —n—8) n(n)
2

= Fs)|X(—3) (0) -4. (8-1) 0 1) EA (—8— 2) u(2)— a}.

We can deduce (11.19,2) formally from (B) by writing

[Ps M (at) a8-tda = » nny [ “Aenea
0

= ¥ (= 1S A(— sn) nln),
0

and there are some few cases in which this procedure can be justified. They

are however extremely spevial: raanujan seems to have had no

other argument, even when,’

quite impossible. In this case

H(2m) = ¢ 2m-+1) = 0,

and (11.19,1) redwes to (D1).

The formula becomes simpler pressed in the notation of § 11.4.

Then plu)

PM) = FE rd +u)

(x) is defined as in § 11.4 and! y, and (11.19.2) takes the form

” 4 4 —1 — ee —(11.19.38) {, D(a) Pac) ada = Sinan - o( —n—s8) y(n).

This formula is sirapler, but rather misleading, and (11.19.2) is really the

better standard form. We can sce this by considering the most obvious

special cases.

If we take A(u) = a, p(w) = £,

where 0< # <a, in (11.19.2), we obtain

| ” eat plegs-Ldyy = Tp)ars—f an s~ 1p SED go-agey

0 .

_ Ls)

(a+ A)”

which is true for all positive s. But if we take d(u) = a, y(u) = A“ in

(11.19.3), we obtain

P edz 7 dg ged g-272 nm aics

I, (Vb an) (Lipizy sine % THOR FOP) = ee
which is always faise
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The correct formula is

I gs-ldax 8 T ats — pies

o (lt+ax)(1+fxz) sinst a—-f ’

which is true for 0<s <2. We can write the right-hand side as

_ ~~ —a—-1 a 8-2 72 aot 1-8 y—2 2-8sina +a -8-1B + e+ p ae

{9 -8) (0) + 6(-8—1) WL) +... (1) YUL=8)

— $(—2) W(2—s)—..4}.

Here there are two series instead of one, and in fact, as we shall see in a

moment, the “right” formula for the general integral is not (11.19.3) but

(11.19.4)

~ sin 87

° 6(2) P(x) ade = — 71S
, sin s7 | fn) -LH(—n —1) (n+ 1=3)}.

This reduces to (11.19.38) wh : for u=—1, -2,..., a8 when

By

2). I shall not do more than

2 the standard formulae of the

gorous investigation in an

It is therefore better to work

indicate the connection of thi

theory of Mellin transforms

unpublished paper of Goodsp

11.20. We may regard (11.1! -form of the “Parseval” theorem

for Mellin transforms. This theorem asserts that, if

(11.20.1) f(«#)= [ F(x)as—"dx, g(s) =| G(x) x“ Ida,

then, under certain conditions,

fore) 1 k-+4too

(11.20.2) | F(a) G(x) ada = ~~~ ST (we) g(s—u) du.
0 271 J pio

Now in certain circumstances, which we considered in detail in § 11.4,

we have

(1.20.3)

| Ate) a°tdx = I'(s) A(—8), I . M(x) #°1de = I'(s)u(—8),

(11.20.4)

1 ore 2 ud M l ctia

mil, LOM marta, @=55]A(u) = Pu) p(—u)a-“du.
e-ia
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In fact the formulae (11.20.3) are cases of (B), and if we write

A(u) Hu)
OM) = Fa guy Y= Paya’

then the formulae (t1.20.4) become cases of (11.4.4).

Taking F(a”) = A(x), G(v) = M(x) in (11.20.1), (11.20.2) gives

| ” Fle) Gayartde =, [ore T(s—u)A(—w) a(u—s) du,
0 270 J p—tco

Tf this is true for a & between 0 and o, then the last integral, when calculated

by residues on the right, is

wo (_])n

5 rye n) A(—s—n) n(n),

and we obtain (11.14.2), The whole argument, of course, requires careful

consideration.

If we argue with ¢ and yf iz and uw, we have

° sla ge — ¢ 3-1 dy = —— y( —{, Plu) ah das = sin si adie = sin s7 ¥(—8),
] W

8—-l do = —— _ _ _I, D(a) (ar) tte Oni nu—u)a o{—u) (u—s) du,

and when we calculate this in:

is only when ¢(u) vanishes for

formula (11.19.3) is correct.

dues we are led to (11.19.4). It
‘ral values of w that our earlier

11.21. Formula (1.19.2) is a very powerful tool for the evaluation of

definite integrals. If for example

1

Alu) = Ta+t+u)TM

then A(a) = 24x Fa (ae afc), M(x) = septa (6 fx).
The formula reduces, after some trivial transformations,’ to

a. P(3s + 4a+ 3d)8-1 ae 98—-lLy~—s—b fb _ Af[7 eaten Syl) Ndr = 25~Nae-8-8 8 = T(b+1) TQ — 4s—4a— Jb)

lot dgslb i f°x F( det dora, 25 3a+4b,b+1, Ei

which is true whenever 0 < #<a and the integral is convergent.”

' ¢ for #, }(s+tatb) for s,

? Leif -a—b<s<2,
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Formulae (¥)

11.22, The last group of formulae contain a further justification of the

assertion of my own which 1 quoted at the beginning of §11.18. I shall

regard them, as did Ramanujan, simply as formulae, and say nothing at

all here about conditions for their i Suppose that, in our previous

notation, A(u) = ge p(t), wu = frq(u),

where 0<f<a and vwytew 1.
Then A(x) = Flax), M(x) = G(fx),

where F(z) =3 y= ae p(nja, Giz) = 3 3 am) at
0 o %

and (11.19.2) gives

* 4 1
(11.22.1) 5 F(ax) Gia} a+p

For example, a solution of

yi” (— 1)” _ a _

P(x) = 2 nt °°S (cya n! cosh {eJ(n +1}
Now

[oarraa [Fae GPx} ds jae | F(ax) ada
0 0 0

(Ba) da = B* 'f(s)g(1—s),

where f(s) and g(s) are defined by (2), Since the first integral here is

ON lm Tt 7 _ pea, 1

0 atf sin 77

we obtain (F3).

I now recall some fundamental formulae in the theory of “Fourier

kernels”. If K(x) is a Fourier kernel, that is to say if

(1.22.2) [7 4@ Klay) dx = Bly)

implies

(11,22.3) I, B(x) K(zy) dz = Aly)

for “arbitrary” A(z), and

k(s) -| K(x) a dx,
0

then

(11.22.4) k(s) k(1—s) = 1.
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More generally, if (11.22.2) implies

(1.22.5) i ” B(x) (cy) de = Ay),
0

and h(s) is defined like &(s), then

(11.22.6) k(s)AQ —s) = 1.

Ramanujan never, I think, writes down quite these equations, but (F 4)

and (F5) are formally much the same. For if

L -{G(wi) + G(—ai)},
(27)

then k(s) = Jon |, fee d+ |" F(—ai) ord}

r 1 . .

K(x) = <n {F(xi)+ F(—xi)}, H(x) =

\ ;—-8= 755) {i

and similarly h(s} a(s),

so that (11.22.6) becomes (F 3}

All this was naturally sirny

translation into substantial a:

his ken, Plancherel’s theory

basis is essential as. a foundati«

possessed,

in Ramanujan’s hands. Its

eas Which were quite beyond

sneralisation. But a formal

theories, and that Ramanujan

411.23. I conclude with a few remarks about the topic which T postponed

in § 11.18, the extension to “general transforms” of formulae (D).

Suppose that

(11.23.1) k(s) =
K(1—s)’

so that (11.22.4) is satisfied identically. Then

l c+40 d

= . iK(x) = Oni [ooo u

is a Fourier kernel whose Mellin transform is k(s).

If we start from the formula

Ree) = Saye Og EP ty
. qk(nt+1) oh ina -U) ,
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and argue on the forma! lines of § 11.16, we obtain

cos) } etic W r(— a) au

{, R(x) K (ay) dx | ea) [x K (ay) a dax
~ Oni c~to SiN U7 K

_ 1 petite om ru) uel

~ mil. Snare ly du
1 fett>e 7 r(—Uu)

~ Oni} oie Sin UT K(w) du

= = nh r(- n~ -n—1) ae
= 2(- 1) “K(n+1)

so that

(11,23.2)

_> n 7) on = (nn a2=) inRie) = D(A ye", Se) = E(-I

are a pair of ‘‘ K-transtag

(11,23.3)

{ ~ Rea) Kay) S(x) K(x) dae = Rly).

The condition for a “self-re (2) is that

1).

Thus if {2),

3 +3¥ +4)Beg msee BT athen ki{(s Ty t3—4s)’

and we may take K(s) = 2#I(48+ 4r+ 4).

= s — ])n r(n) -hThen R(x) x ( 1) TGn+dr+D Tgn

ad r—n-1)
d S(x) = E(— 1)" 55" 2 at

an = SM TGn tbs
are a pair of Hankel transforms.

2 1
if K(x) = a oa’

then k(s) = cot $s7,

and we may take K(8) = cosec 4am.

In this case
ao oe

R(x) = Bi(— 1)" r(2n) a, Six) = YO (—1)"7(— 2n— 1) 2;
G 0
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the integrals (11.23.38) are principal values. If r(u) = 1, then

J

R(x) = S(x) = Tpa®?

and other simple rational functions self-reciprocal for K(x) may be obtained

by making r(v) an appropriate polynomial. Here also I must restrict

myself to a mere sketch of the formal lines of the theory, adding only that

all the analysis of $§ 11.22--23 has also been made exact by Goodspeed.

NOTES ON LECTURE XI

§11.2. The quotation from Littlewood occurs in his review of the Papers.

§ 11.3. Carlson's theorem is proved in Titchmarsh, Theory of functions, 185-186.

The theorem has been generalised in various ways. In the first place, we can weaken

the order conditions on ¢(u); and secondly we may replace the conditions

AQ G

by more general conditions of

theorem of this kind which I have

and runs: if (i) J(u) is regular and

=0,1,2,...). The most general

icated to me by Mr N. Levinson,

4, in the right-hand half-plane;

log t

(ii) | “8 dw = — 0;
“=o

(iii)

where A,, is an increasing sequence s such that

Ay < BF

for some Band C; then d(u) = 0.

§11.4. For Mellin’s formula sco itehmarsh, Fourier integrals, 7-9 and 46-48,
Tho proof of (A) is that given by Hardy, Acta Math, 42 (1920), 327-339. The con-

ditions on ¢{u) may bo relaxed here also, for example to

(wu) = O(e4) (some A), P(tw) = O(| wl —FeTMTMl),

Goodspeed, in an unpublished manuscript, has proved a ‘A,,’ generalisation of (A).

fu o+w, O<An<Any, 0<AnSA,S Bn,
oo ur

vu) = Tla~—},au) = ti(.~ 53
and f (u) belongs to §(C. D, 6), where C<7/B and > 0, for some D, then the series

mo f(Ays F(An) aan
k=19 (An)

converges, when the terms are grouped appropriately, for sufficiently small x, and repre-

sents an analytic function H(x) regular for all positive x; and

I _ 4-8)

z—C,

as AH (x) dx

0 g(s)

for 0<e<8. If also Ag, —AnZzh> 0, then the series converges in the ordinary sense.

HR 14
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$11.6. The connection of (B) with Newton’s interpolation formula was pointed

out by Narayana Aiyar (2).

For the theory of Newton’s formula see Nérlund, Vorlesungen uber Differenzen-

rechnung, 222 et seq. There is much useful information, but no funetion-theory, in

Whittaker and Robinson’s Calculus of observations.

For the justification of the term-by-term integration see Hardy, Trans. Camb.

Phil. Soe. 21 (1912), 1-48 (5-6), and Messenger of Math. 39 (1910), 136-139. There

is a similar theorem relevant to the reduction of (A) at the end of the section.

§11.7. Ramanujan’s analysis may be extended, for example, to cases in which

x(2) = Z0,2",

where p, > 00, the p, need not be integers, and a finite number of them may be negative.

This extension covers the case A(u) = e*, for any real a. A case actually covered by

his analysis as it stands is

A(u) = ~ 1
a-+eTM

(O<a<l).

§11.8. There is a direct proof of formula (iii) by Cauchy’s theorem in Hardy (5).

For formula (iv) sce M. Riesz, Acta Mf ( {1916}, 185-190, and Hardy and Little-

wood, ibid. 41 (1917), 119-196 (£58236

§11.9. For Lagrange’s and 4

Watson, Modern analysis, ed. 4 (2%

The most complete results cone

are those of Birkeland, Math. Ze

references to earlior work of Mellin

§§11.10-13. The substance of the

argument in §11.11 has not been pri

Laplace’s inversion formula, uset

Seo Titchmarsh, Fourier iniegrais

For a direct proof of Plana’s fort

Le calcul des résidus, 55-62.

§§ 11.15-18. See Hardy (11) and Goodspeed (i). The penultimate example of § 11.17

occurs in Hardy and Titchmarsh, Quarterly Journal of Math. (Oxford), 1 (1930),

196-231 (210); and (11.18.4) on p. 198 of the same paper.

§§ 11.19-20. It is curious that Ramanujan scoms never to have written down

(11.19.2), or even (11.19.1) in its general form. In the notebooks and reports one of

the functions is always even.

For the Parseval formula for Mellin transforms see Titchmarsh, Fourier integrals,

94-95, There 8 = o+it, O<k<o, and a*F and «7-*G@ are L*(0,0). The integrals

(1120.1) are ‘mean square’ integrals, and (11.20.2) is true, in the ordinary sense, for

all s whose real part is o.

Goodspeed, using a method more like that of §11.4, has proved that (11.19.4) is

true whenever

(1) d(x) te an integral function, and belongs to §&(A, B,y), where A<7, for some B

and any positive 4;

(2) yr(u) belongs to &(C, D, 6), where C <7, for some D and a 6 not less than 1;

(3) O<e<2;

(4) P( —u—s) Wu) = o(e#lvl),

where E < 27, uniformly in w, when v -> cw.

for example, Whittaker and

ox. of roots of trinomial equations

}, 566-578. Birkeland gives full
nS,

feom Hardy (3), but Ramanujan’s

other formal variant of Fouricr’s.

£ Cauchy’s theorem see Lindelif,
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It should be observed that ¢(u) occurs in the theorem with arguments n, —n—8,

and —~n—1 and (uv) with arguments » and n+ 1—s. The conditions that ¢(u) should

be integral, and y(u) regular for a> — 1, are therefore natural.

§11.21. Soe the remarks at the ond of §11.5. In this case each of Af) and y(u)

behaves roughly like e”!!, and each of d(w) and y(u) roughly like e7!“|, in the direction

of the imaginary axis, and the final integral is not necessarily absolutely convergent.

It is not difficult to justify the transformations in this or any other particular case.

The integral was first covaluated by Weber and Schafheitlin: see Watson, Bessel

functions, 398-410.

$11.22. For the theory of ‘Fourier kernels’ and ‘general transforms’ see Hardy

and ‘Titchmarsh, Proc. Lendon Math. Soc. (2), 35 (1938), 116-155; Watson, ibid.

156-199; or Titchmarsh, Fourier integrals, ch. vut.

The subject has attracted a good deal of attention since the appearance of Watson’s

paper. Full references, up to 1937, will be found in Titchmarsh’s book.

§ 11.23. Goodspeed has proved that if x(x) is real on the real axis, and is the reciprocal

of a function regular for v= — 6, where § is positive ; r(u) is an integral function ; and

belong to the classes R(.1, B, 8) and

Watson transformation in which FE

14-2



XII

ELLIPTIC AND MODULAR FUNCTIONS

12.1. I must end by saying something about Ramanujan’s work on

elliptic and modular functions, and it is this which I find my most difficult

task. It is here that both the profundity and the limitations of Ramanujan’s

knowledge stand out most sharply, and that it is least possible to decide

how much he may have learnt from others. Besides, I do not know the

subject very well.

Ramanujan never professed to have made any major advance in the

general theory of elliptic functions, and it seems that he must have learnt

the fundamentals of the theory, so far as he was interested in them, from

books. There is a sharp contrast between his attitude here and his attitude

about the theory of primes, where he certainly regarded all his results as

his own. He never writes as if he had invented theta-functions or modular

equations, though he sets ou theory of them in a language

of his own. Cayley’s and Gre ‘e in the Madras University

Library, and he could have ‘al about them there. Indeed

Littlewood says that “Rain: uw acquired an effectively

complete knowledge of the forn theory of elliptic functions ”’,

and that his ignorance of comp! theory and of Cauchy’s theorem

may seem difficult to reconcile, ud adds that ‘a sufficient, and

I think necessary, explanati sab Greenhill’s very odd and

individual Elliptic functions z”’, In Greenhill’s book the

complex variable and double ¢ aré not mentioned until p. 254,

and the double periodicity is dedticed'sonichow from properties of Cartesian

ovals, In fact Greenhill knew very little more “function theory” than

Ramanujan.

I said that I did not know the subject well, and I shall rely very largely,

in all that follows, upon Professor Watson. In the first place, his lecture

to the London Mathematical Society contains a short account of the

relevant chapters of the notebooks. Secondly, he has very kindly lent me

a manuscript containing proofs of nearly all Ramanujan’s formulae,

without which I should have been very much lost,

12.2, The relevant chapters are Chs. xvi—xx1; these, in Watson’s opinion,

“show Ramanujan at his best’’. In Ch. xvi he starts with the function

IT(a,6) = (14a) (1+ab) (1+ a6?)...,
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and. all his later work is based on it. He develops a whole series of theorems,

mostly to be found in Euler, Gauss, Jacobi, Heine, or other writers, though

there are some which seem to be new.’ I shall not refer to these formulae

except when it is necessary for my immediate purpose, which is to track

down in the notebooks the proof of the modular equation of degree 3.

Ramanujan also writes

f(a, 6) = 14 (a+b) +ab(a2-+b2) +.a5b3(a3 +53) +...

(the indices of powers of ab being the triangular numbers), Thus, in the

orthodox notation* f (a,b) = 84(v,7),

where v= i log®, 7= 1 log ab;
~ ari 8B 7 Bg 8M?

or again f(a,6) = pl2,9),

where p(z, y= gran,

Ramanujan gives Jacobi’s fu

J (a, 6) = #4 Ff{—ab, ab).

Finally, he writes3

¥(q) = f(

f(-9) =f(

x(q) = 1(¢,

Thus

Further, if, with Tannery and Molk, we define q9, q), @. and qs by

a ao a

do = Ta —4@"), = I1(! +q"), dy = md +g"), dg = d—g),

then X(Q) = Qs

F(-a) = (l-9) 1-9) (l—@*) .. = Gods»

1—q?)(1—qg4) (1-4)...

HO = aap)
The last pair of formulae embody famous identities of Euler and Gauss.

We have also Wr(q2) = 497*8,(0, 7)

(a formula which we shall want later).

* Especially 16.17 (in the numeration of the notebooks), which I shail refer to again

in § 12.12.

* That of Tannery and Molk. 3 T roplace his x by the customary q.
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12.3. In this notation many fundamental formulae appear in odd

disguises. Thus the ‘inversion theorem” (there is a 7 corresponding to a

given k*) appears as follows. Writing c for &°, defining K and K’ as definite

integrals or hypergeometric series, and putting

e-TKIK .. H(e),

then the equation q = H(c)

, o*(-9)
has the solution = 1l— .

o*(9)

Again the theorem sn?u+cn?u = 1

appears in the form: if g = e-” and

_ sin 130 | singd _ c0sz9 | cos3d

SOY) sinh hy sinh yb? CON) = cosh dy | cosh3y °°”
then ee.

In fact S8(0,y) = hE kK en KO
nT 7 7

and K=}

There are proofs of these form:

Fundamenta nova and Enneper’

that Ramanujan had seen ¢

familiar to him.

et squaring of series, in Jacobi’s

funktionen. It is very unlikely

. this type of argument was

‘of degree 3

12.4. The modular equation of degree » is the relation betweeri the
moduli & and J which corresponds to the change of g into q¥/"," i.e. to

ne
Le K’

where K, K’, L, L’ are the complete elliptic integrals with moduli & and I.

Ramanujan deduced his modular equations from relations between his

functions f, ¢, yr, that is to say from relations between 3-functions. Thus

his forms of the equation of degree 5 are derived from the identities

P(g) — PG?) = 40F (9.0) F (0,97)?

and WN) - Wa) =fa MIG P)3

The first of these, in the orthodox notation, is

93(0,7) —-92(0, 6r) = 4e"9,(— 27, 5r) 94(—7, 57).

? Or into q", when L’/L = nK’/K. See § 12.7,

2 19.10 (iv). 3 19.10(y).

(12.4.1)
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The identities are proved by ‘‘elementary”’ arguments, the whole process

being ‘“‘algebraical”’, ,

I shall confine myself to the equation of order 3, and I shall begin by

explaining two of the standard methods of proof. The first rests on direct

transformations of integrals, and is Jacobi’s version of Legendre’s original

proof. The second, found much later by Schréter, is much more like

Ramanujan’s,

12.5. Jacobi’s argument is expounded in many text-books. We try to

satisfy the equation

(12.6.1) 7 =

where X = (l—2?)(1—h*s?), Y = (1—-y*)(1—Fy?),

O<k<1, O<l<1,

by taking

(12.5.2)

: of degree not excceding 3,

sitive w. It is plain (since y is

where U and V are coprime ps

and y vanishes with x and is 7

an odd funetion of x) that

U = ala+ e+ da,

where a, #, y, 6 are constant

dy fy)

for small z, so that m is positive; i when 2 = 1, since y would

otherwise have a branch point for « = 1, Further (12.5.1), and so (12.5.2),

is unaltered when we substitute 1/ka and 1/ly for x and y, so that the values

1 ol

Y= 1, —1, T ~T

at —1,-1,1,-!correspond to z=, an

dy | UV uv’

Since VY VV — U*)( (V2— BIR

we must have (V?— U?)(V?—-PU?) = 7°(1—2?) (1 — ka),

where 7 is a quartic; so that

dy _ UV~ UV"
MY TAX

UV-UV' = L
m

dx,
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Next, since no two of V+U, VilU can have a common factor, we

must have V+U =(1+2x)A2, V+IU = (1+khx) C%,

V—-U = (1-2) B8, V—-IU = (l—ke) D%,

where A, B, C, D are linear, It follows (since y is odd) that

l-y_ 1-2 (; _ “z)

l+y 1l+a\l+ce

a(2c+ 148%?

or yo rae’
for some c. This equation must be unchanged if we substitute 1/ka, 1/ly

for x, y, when it becomes

_ ke o(¢+2)+h a?

Y= T&L (Be 1) kia”
and therefore

(12.8.3) k2 = Oo ‘ fete

, (1- ~ f{1—-e\3
Qo ] 2 oe do «al—-R= aT(12.5.4) bk? =1-h 1-1 (+e)(554),

and so

(12.5.5) (kl) +f (R23

ken. This is Legendre’s form

form

when appropriate values of t

of the relation. It is easy te de

(12.5.6) us ot + j=

where k = u4 and | = v4.

Comparing the values of x and y for small x, we see that

1
m= aT

12.6. The equations (12.5.3), (12.5.5), and (12.5.6) are in fact different

forms of the modular equation of degree 3; but in order to see this, we

must show that they correspond to (12.4.1), with n = 3, as well as to

(12.5.7)

(12.5.1).

It is easy to see’ that, if 0<k?<1, then the equation

aap OF?(12.6.1) k= os

' By means of “graphical” considerations and the equation

i _ ( 20+)"

BO \ e442) ~



Elliptic and modular functions 217

in ¢ has just two real roots, one between 0 and 1 and one between —2

and —1, and that these roots make > k? and [? < k® respectively. If, in

the equations (12.5.4), we put

l—-c l-y
12.6.2 ae af

( ) Qe-1 By+i ”
then

' yr28 y+2
12.6. 2 y(2te 2a %te

( 3) k ASS i} » ay 2y+1
It now follows from the analysis of § 12.5 that

1 dz dy

ma’ \/{(1 — a) (1—U2x2)} {C1 y?) (Ly?)
]

,

ith __!Wi m I

Hence, integrating between &@.

while (12.5,1) gives

Thus

and it is only necessary to shor

FY

1
so ee __.

But mm = (Qe+ 1) @yet i)

and Wt] = 3 mm =1ytl=s 4p =}

by (12.6.2).

12.7. The equation (12.5.5) is symmetrical in & and 1, and corresponds to

L' K’

EO "K

(i.e. to the change of q into g”) as well as to (12.4.1). We can see this more

directly. If we put
c+2

2641
_~ 0+?
~~ Qe! 4 Lv c=

in (12.5.3), we obtain
t= (srr y, Pe c'¥(c! +2)

2

a piy? P= aS
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ive. (12.5.3) with c’ for ¢ and k.and I interchanged. Also c’ lies between — 2

and — 1 when c lies between 0 and 1, and conversely, so that c’ is the second

root of (12.6.1). If y’ is associated with c’ as y is with c, then

(14 2c)(1+2c')=—3, (1+2y)(14+2y’) = ~3,

and so (1+ 2c’) (1+ 2y') = 3

L Kk’
and Lo 3°

12.8. The second method of proof depends on direct manipulation of

theta-series. The equation (12.5.5) is equivalent to

(12.8.1) 3(0, 7) 0,(0, 37) —3,(0, 7) 3,(0, 37) = 0,(0, 7) 9,(0, 37)

or to

(12.8.2) CAROLE)?

where S indicates summatio#i and +” summation over all

integers of opposite parity. T

Mm + ho U,

so that

utv\? /n-m+ 3n2 = ( 3 ) +3 +0 = (u— dv)? + 3(h0)?,

then the left-hand side of (12

Next, if we put u-—jo=pth, v=v+h,

so that w=pe+vs+l, v= 2+,

and let 4 and v run through all values of opposite parity, then u and v run

through all odd values, and so

— 2 2 3 2a qt hv)? +340)? _ > , gut) +3+4) >

4,0 01

where the dash has the same meaning as before. Finally, if

?
wa=—-e-l, v=»,

then (1H! + AP + 80+) = (Wt BY BOOED,
and y’ and v’ run through all values of the same parity. Hence

a

x qth? +8044) = 23) qe tayP +34? =2>’ gritsnt
—-@

which is (12.8.2).
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12.9. This proof is much like those given by Schréter of the equations

for this and certain higher degrees. Schréter found the general identity

(12.9.1) (2, a7) 9,(y, Br)

at+f-1 .

= YM gre fatytrar, (a+ f)r} g(x — ay t+ rapr, aBla+ B)7},
ras]

where a and f are any positive integers. There is a fairly simple proof of

this formula in Tannery and Molk, where it is applied to the cases n = 3

and » = 5, Schréter also worked out the cases 11, 23 and 31; thus his

form of the equation of degree 23 is

(kbyt + (RT) + Q4KIRV) 2 = 1,

which also appears in the notebook." It would seem that Ramanujan must

have known (12.9.1). He has a formula? for

bE le 2D),fis

alinite series, which was also

‘ries becomes finite. ‘‘ These

36 given in the notebook, but

» he does give, he must have

ie. for 0,(v,7)04(2",7'), as th

found by Schrater, and in cé

compact formulae’, says Wat

in view of the numerous speci

been aware of their existence

Ramanujan gave the known

4 new forms for

R71.

(with many variants in the s

13,3

Thus the equation of degree 13 appears as3

= (aE (ey 2m= (; +p ~(ie ae)
13 (RYE (RY) _ (kk (kk

am NT “(7 ha} ~ (a
and that of degree 17 as‘

_ I\t \t a) ~2 iz) (E+ i) =)

m= (;) (p +(e (Le (; +p |,
17 (k\t [k’\ [kk'\® [bk'\t{ [kt [k’\t

mali) +r) (ar) Gir) (i) +() }
Watson has now worked out proofs of all of these. He remarks that

“although modular equations of degrees 13, 17 and 19 have been obtained

TM 90.16 (i). 2 16.36 (i), (ii).

3 20.8 (iii), tiv). ¢ 20.12 (iii), (iv).
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by other authors, they have usually been given in more complicated forms;

and in fact, when dealing with Ramanujan’s modular equations generally,

it has always seemed to me that knowledge of other people’s work is a

positive disadvantage in that it tends to put one off the shortest track”’.

There are also many “‘mixed’’ modular equations or equations of com-

posite degree. For example, if the moduli k, x, 1, A correspond to q, g°, q°

and q15 respectively, then"

(KA) (kA) = (xl)t — (xT)
and?

(hA)E{(1 + k)* (1+ A)t— (1) (LA) H

H(RA' VELA +R) +A)E- (1 BJF (LA) = 2.

I shall say no more about results of this kind. I prefer to disentangle

from the notebook Ramanujan’s own proof of the equation of degree 3,

which appears there as the clir

It is of course quite likely +

of § 12.8,

12.10. Ramanujan actually!

identities} involving series of t

(12.10.1) gh(q?) W(9*) = =

8.1) and (12.5.5) from two

* type, viz.

qui

(12.10.2) (9) 4(@8) = 142

duius 6. From these it follows that

(12.10.38) 4aqyh(q?) (9°) = B(g) (9°) — B(-@) H(-49°);:4

and, since

$(9) = 93(0,7), (—-q) = 94(0,7), Wg) = 39¢°*9,(0,7),

(12.10.3) is equivalent to (12.8.1). It remains to trace the genesis of (12.10.1)

and (12,10,2): this I have only been able to do with the help of Watson’s

solutions.

T call a relation between f, ¢, yr ‘‘trivial”’ if it is a direct consequence of

their expressions as products. Thus

the signs in each series recurring

feat q) _ $(9)(12.10.4) Hoag de)

is ‘‘trivial”’, For if we write

—q"=(n), l+q"=(M),

© 90.11 (iii). 90.11 (vi). 3 19.3 (i), (ii).

4 This formula does not occur explicitly in the notebook.
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then it is

(1) (4) (7) (10). 2G) ane 218) (8)- RGR

(1) (4) (7) (TO)... (21(5)(B) (U1)... (6) (12) (18)... (3)? (9)? (TB)...

Such a formula may be verified by observing that

—, _ (22)

Gn)
and comparing factors,

Similarly
Pd A BR

(2.00.5) EL 1) geqsy ge) = quia?) a?)
8 “‘trivial”’.

12.11. The proofs of (12.10.1) and (12.0.2) may be traced back to earlier

formulae, viz.

f a + &2 + T

1l+a%? 07"

f(a,6)(12.11.1) oa oy

and

(211.2) f%a,b)-f%(-@ La) Wart?)

Let us assume these forniul The series in brackets in

(12.11.1) is

ally.

ate + br 439

ipymn mn Aim4 In

nr “Tp a" no hove b rq é }
AT Bie qm pms

(i= gurl pm I - am pmtis’

Hence (2.11.1) is equivalent to

f(a,b) 2( _ oe m(

f(-a yh —ab)=1+2 df )
If we put a = q, 6 = —g*, and use (12.10.4), then (12.11.3) gives (12.10.2).

It also follows from (12.11.3) that

[fiw—0)_f.-ab)

(12.11.3)

qmtl pm ar beet 1

l—qmtt pm l —am pm ,

\f(- fia, -6

If we transform the left-hand side by (12.11.2) and tho “‘trivial’’ identity

i (a, —b)f( -@,b) = f(—a*, —b*) d(ab),

T 16,33 (corollary).

2 16.30(vi).

dab) = 4 5
m=

quer ipm qm hm #1

l—g2mi 2pam | — gimpemra}’
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we obtain

fra, —b —b)- —fX—a, 6) Hab) = saf( - —a*6)

f(a, —6) f(~ a,b) ~ f(a, ~b) f(a, b)

saf(~?, ~a*s)

*(ab) yr(a?b*)

bene “Fae oy (ab) y(a*6?).

F(aak, oa P02) Ha") = 3(7 a2rre jem | amienit)
Finally, if we replace a and 6 by q and q°, and use (12.10.5), we obtain

6m+1
genre

g(a?) W(g®) =

which is (12.10.1). .

Thus everything is reducet

64-5

eee
J— qhem4 10f?

{12.11.1) and (12.11.2).

12.12. The first of these fo Avalent to

~ qv / B(v+4,7

12,12.1 y - eos 2( ) 2421 gen 0 ort es

type by means of Cauchy’s

2.1) by putting

q = eT a

and then making a “trivial” transformation, Ramanujan’s proof is natur-

ally very different. He deduces (12.12.1) from a remarkable formula!

with many parameters, viz.

(12.12.2)

Ixy, x?) ne ; ) U(— 2°, x?) TT —afx?, x?)
= 1+ (ay; l-a #1 4)

et
Tey, 2°) 112, 2) I - ox, 2%) TT( — B®, 2%) i— pe y tax

(_- oe) (x? —«a) x\? (1-~ £) (2?

+ [eur = Bac?) (1 — Bee (;) asi ans]
_(l~a) (x? — x) (a4 — (x4—a)

+{ewg (fe?) (1 — fixt) (T= Be) bed ten

> * 16.17,
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This formula seems to be new. It is however deduced from one which is

familiar and probably goes back to Euler, viz.

HM(b,z) pat (at oy(atox)
TI(-a,x) ~ J--a (L-a)(l—28) 007"

In the application of (12.12,2) to the proof of (12.11.1)

xz
= =m “ = pj=— 1,xy = a, y b~ a=

12.13. Finally (12.11.2) is equivalent to

H(v, 7) —B2(v, 7) = 29,(0, 27) 9,(20, 27),

which is derived by ‘Tannery and Molk {rom the theory of Landen’s quadratic

transformation. Ramanujan deduces it from

f(a, b)f(e,d)—/(-—a, —b) f(--¢, ~d) = 2as(j.4, abed) (( Abed).
where

ple, if we write the left-hand

+4) din(n—l)

The direct proof of this for

side as 2 0 at

mineven

and put M+ th

12.14. Ttis obvious that th

as a proof of Legendre’s equ:

12.10-12.13, regarded simply

ong and complicated, and will

not bear comparison with th L proofs of §§ 12.5-12.8. The

comparison, however, is not at ail: . The proof of § 12.8, for example,

is an ad hoe proof, a short cut to a particular formula; and it seems almost

certain that Ramanujan must have possessed short cuts of the same kind.

He certainly used similar methods sometimes (as is shown by the argument

which T quoted in § 12.13), and the proof of § 12.8 is one which, whether he

knew it or not, he could certainly have constructed. The proof which T have

pieced together in §§ 12.10-12.13 is one of an entirely different kind; it

wanders over large parts of the theory of elliptic functions, and the modular

equation appears only as one of the climaxes of Ramanujan’s reconstruction

of the theory.

Singular moduli

12.15. J shall say less about Ramanujan’s work in the closely connected

theory of ‘singular moduli’. A good deal of this work is already in print;3

and Watson, in his series of papers on s. gular moduli, has proved all

* 16.2, There .s a+imple proof of this formula in the Papers, no. 11, 57--58.

7 {6.29 (ii), 3 Papers, no. 6, 23-39,
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Ramanujan’s results, and done a great deal to elucidate his probable

method of procedure. I begin with a very short summary of the foundations

of the orthodox theory.

It is familiar that

(12,15.1) (HU, Oy, Ws) = R(g),

where f2 = (A(u) = Ga(u, @,, O2),

and Risa rational function, when is an integer. Can this be true for other 4?

If so, then 24w,, 24w, are periods of g(u), and

fy = A+ Bug, pO, = YW, -+ dws,

where a, f, y, 6 are integers with

(12.15.2) f+0, y+0, ad— Py +0.

We may suppose

(12.15.38)

(since otherwise we can che

when these conditions are sat

1, Wy, and so a rational funct

a rational function of (9 only.

The situation is not affected i

that only the ratio

2, y, d and “). Conversely,

a elliptic function with periods

. Finally, since it is even, it is

8 @ and w, by Aw, and Aw,, so

ai] say that “there is complex

eceasary and sufficient that

is relevant. In these circums

multiplication by wu for 7”. Kor:

(12.15.4) w= atfr, pr= ytd,

so that

5
(12,15.5) _ Yrer

= pr

with integral «, , y, 6 satisfying (12.15.2) and (12.15.3). Thus 7 is the root,

with positive imaginary part, of

(12.15.6) fret (a—d)r—-y =O.

It is easily verified that any number A -|- Bu, where A and B are integers,

is a multiplier for 7 if u is one.

12.16. We write

(12,16.1) p=(-y,a—-6,f)>0

and

(12.16.2) -~y=ap, a-d=bp, fP=cp.
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Then

(12.16.3) a+br4cr? = \,

where

(12.16.4) a>0, e>0, L?-—4uce = -n<0,

and bos

b—ialn(12.16.5) T= aN
Further, we wriie

(12.16.6) ats = py.

Then Pp, tbp = 22=0 (mod 2),

(12.16.7) a= $ip,tbp), P=cp, y=-ap, 3 = 3(p,—6p),

and

(12.16.8) - bw et fr:

Conversely, if there are ix

satisfying

(12.16.9) p>,

a, f, y, dare then defined by QQ:
there is complex multiplication

Further, if

(12.16.10) ée=0 {6

(12.16.11) M

then M is also a multiplier for 7. |

(12.16.12) #=a—1(b—e)p+pM,

(12.16.13) M = k(b-e) ter, Mr= -a—}(b+e)r.

Since the last equations are of the form (12.15.4), Mis a multiplier (when

# is one),

On the other hand, if M is a multiplier for 7, it follows from (12.16.12),

and the last remark of § 12.15, that is a multiplier.

or it is casy to verify that

12.17. If7 satisfies (12.15.5),.4, B, C, Dare integers with AD-— BC = 1,

and

, ©+4+Dr
(12.17.1) l= ie

so that

(12.17.2) J(1') = J(1),

then 7‘ satisfies an equation

(12.17.3) a'+b'7' +¢'T'%= 0
HR 5
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with the same determinant as (12.16.3), so that b’ has the same parity as 5,

and the e’ and M’ corresponding to 7’ are the same as ¢ and M. It follows

that there is multiplication for 7’ by M, and therefore by any « which is a

multiplier for 7. The values of 7 for which there is multiplication, and the

corresponding multipliers, are determined uniquely by the values of J(7).

12.18. If 7 and any positive integer m are given, the values of

3)
for different «, £2, y, 6 satisfying

ad—fy =m,

are the roots of an equation F(z, J) = 0,

where dae T),

of degree m. If 7 satisfies (1

(12.18,1)

ch there is complex multiplica-

Ht these J(7) singular invariants,

i; the singular moduli also satisfy

ii soluble by radicals (though

sey of which Ramanujan knew

Hence each J(7) corresponding

tion satisfies an algebraic equs

and the corresponding £?(7) gin

algebraic equations. These og

this depends on consideratio

nothing).

12.19. All this is connected with the theory of arithmetical forms,

Suppose that f = an?+ bay +042,

where (a,b,c) = 1,

is equivalent to fi =x? +d'x'y' +c'y",

with x =ac+py, y= yx+dy, ad—fpy=1,

so that

(12.19.1)

a=a'e+bayte'y*, b = 2a’af t+ b' (Py + ad) + 2c’yd, ¢ = a'f* + 6'2d4+0'82,

(a’,6’,c’) = 1,

b? —4dac = b—4a’e’ = —n.

Then 6 and b’ have the same parity and, if 7 and 7’ are roots of

(1219.2) a+br+er?=0, a’+6'r'+c'r'? = 0,
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the M of § 12.16 has the same value for 7 and 7’. Thus there is complex

multiplication by M for both 7 and 7’. Also 7 and 7’ satisfy

‘ ,_ ytor
2.19, _ Ry =(12.10.3) T = thr (ad — fy = 1)

and so

(12,19.4) J(r’) = J(r).

Conversely, su»pose that (12.19.4) is true, that there is complex multi-

plication for 7 and 7’, and that 7 and 7’ satisfy equations (12.19.2), with

(a,b,¢) = 1 and (a’,6’,c’) = 1. Since (12.19.4) ix true, there are integers

a, #, y, & satisfying (12.19.3). Hence the equation

a at PrP +b'(a + Br) (y +87) -+e'(y +dr)® =

has the same roots as at+br4-er? = 0.

From this it follows easily thate (12.19,1), and that the forms

f and f’ are equivalent.

‘Thus (12.19.4) is a neceass

and the degree of (12.18.1) ix t8

It seems clear that Ramane

side of the theory.

‘ condition for equivalence,

ex h(—n) for determinant —n.

obhing about the arithmetical

light when stated in terms

unctions are more convenient,

i have large coefficients.

12.20. The theory appears

of J(7). For numerical work, of!

since the equations satisfied by

It is usual tc write

fey Tsay = (Ga)

Ao) = ria) = AE)",

2 4k?) t's
f(t) = Qige [[(lL+¢e") = (=) .

1

‘Then fPafitsh Phils = V2.

if n= 4dac—l? = 8m+3 340 (mod 3),

then the simplest. invariant is

Sil(-)} =Sn =f,

while if n= 8m—1 40 (mod 3),

it is 2YULf-—nj= PF, =F.

15-2
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Ramanujan, however, uses the invariants

G,, = 2-tf{y(—n)} = 2-#f, (m odd),

In = 2 +f {/(—n)} (nm even).

The equations connecting /, f, and f, with J(7) are

. 1—k* +k)j(7) = 1728 J (7) = 256 Ta aye

_ (fh — 16)? _ (fit 16)? _ (fat + 16)?
f* — ff? — fi ’

and f%4, —f24, — 24 are the three roots of

(x — 16) —aj(7) = 0.

12.21. Ramanujan obtained the values of the simplest of his singular

moduli directly from modular equations. He gives the complete proof in

one case only, viz. n = 5. Hers

and

(from the transformation 7’

If ua ou “hy (5r),

u\3 1then (*) + zm):

This is Schlafii’s form of the # ation of degree 5, which occurs

also in the notebook.! If 7 = #/ iW’, then

ut—y-* = I,

V5+1 t

and G, = (“) :

Similarly, if we use the form?

Q+a+7 = 2 P +5),
‘\t

where P =k}, Q= v ,
kk

of the modular equation of degree 7, we can show that

G, = 24.

Watson, in his paper 20, works out the values of all of Ramanujan’s new

singular moduli which it seems likely that he could have found in this way,

* 19.13 (xiv). * 19.19 (ix).
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12.22. There are also many cases in which Ramanujan gives the values

of singular moduli which he can hardly have determined rigorously.

Let us suppose, to fix our ideas, that

n= 8m—140 (mod 3).

If the number of genera of classes of forms with determinant —n is N, and

the number of classes in each genus is r, so that the class number is h = Nr,

then j(7) and F, satisfy equations of degree h, soluble by radicals. The

solution of the equations depends on that of a number of subsidiary

equations, the number and degree of these equations being specifiable in

terms of N andy, Thus when n = 7, N = 1,7 = 1, and F, = 1 is rational,

and when n = 23, N = 1, r = 3, and #,, is given by a single cubic

F—-F-~1=0,

In Watson’s paper 13 he deais with. cases ia which N= 1, in 25 also with

cages in which N =2 or NV =4 wo equations are required.

Thus if n = 55, N =2,7r = the quartic

fs 0

which reduces to

by the adjunction of ./5. If x

an equation of degree 20 which

of ./5 and ,/13.

Ramanujan did not know an

was dealing with large values of m, where no modular equation was available,
must have been guided a good deal by guesswork and intuition. Watson,

in his papers 8. 9, and 19, has made a very plausible reconstruction

of the arguments which Ramanujan seems to have used. These all involve

assumptions that certain numbers satisfy equations of appropriate degrees.

In these assumptions, which always accord with the arithmetical theory,

he seems to have been guided by a mixture of intuition and computation.

Thus in 8 Watson reconstructs Ramanujan’s calculation of go) (a

value found also by Weber), and deduces one of the most striking of

Ramanujan’s results, viz. that

= (¥2—1)* (2-- ¥3) (7 — 6)? (8 — 3.7) (10 — 3) (4/15)

x (15 —,/14) (6 — 4/35)

x = 5, h = 20; and F satisfies

“to a quintic by the adjunction

when g = evry alo,

This result Ramanujan proved rigorously, granted the value of go, by @

very curious algebraical lemma.
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NOTES ON LECTURE XII

§ 12.1. Tho catalogue referred to on p. 20 (note on p. 10) contains Cayley, Greonhill,

Tannery and Molk, A. C. Dixon’s The elementary properties of elliptic functions, Appell

and Lacour’s Principes de la théorie des fonctions elliptiques, and the first edition of

Whittaker’s Modern analysis, It is however clear that Ramanujan had not read any

account of elliptic functions based (like those in Tannery and Molk or Whittaker) on

general function theory.

Tho quotation from Littlewood is from his review of the Papers.

§ 12.2. There are proofs of Jacobi’s identity, and deductions of those of Euler and

Gauss, in Hardy and Wright, §§ 19.8 9.

§ 12.3. See Watson's lecture 10, Jacobi, Kundamenta nova, $41, and Enneper,

Elliptische Funktionen, § 13.

The last sentence is justified by the proof (from no. 18 of the Papers) reproduced in

§ 9.2.

§ 12.5. Seo Cayley, chs. vit and vu (especially pp. 188-190), Greenhill, ch. x

(especially p. 323), There is a better a f the general theory in Enneper, ch. 1x

(especially pp. 225-237), but Jaca! ho special case 2 = 3 is stated very

shortly in an appendix (p. 518).

§ 12.9. See Tannery and Molk,

§ 12.12. For (12.12.1) see Tanne 120 134 und iv, 106 (Table CVITT).

(12.12.2) reduces to Jacobi’s furr $12.2 whona =f = 0.

§ 12.13. See Tannery and Molk, 4; i 288 (Table XLVII).

§§ 12.15-19. My sketch of the ort i

254-260.

§ 12.19. The classnumber here}

we have supposed throughout +!

Kronecker’s theory of forms ac? + é: ch 6 is not necessarily even and the

determinant is b?—4ac: thus a?+ 73 sdotpuminant — 28. In the older theory of

Gauss, tho form is av? + 2bry + cy? und the determinant b?—-ac, so that w«? + 7y? has

determinant — 7.

T have in my possession a lotter to Ramanujan from Professor W, H. H. Berwick

which throws some light on the last sentence of this section. Professor Berwick, after

acknowledging the recoipt of Ramanujan’s paper ‘‘ Modular equations and approxi-

mations to 7” (no. 6 of tho Papers), and giving a number of references, explains that

J satisfins an irreducible equation of degree hk, and that k? can sometimes, but not

always, bo expressed rationally in terms of J. Ln particular he points out that J(é./257)

and k?(4./257) satisfy equations of degree 16 soluble by chains of four quadratics,

§ 12.20, See Watson (13).

§ 12.21. The proof for n = 5 is given in no. 6 of the Papers,

, 230-231, 242-244,

based on Tannery and Molk, iv,

mitive classes of determinant ~ 7:

he wholo argument is based on

§ 12.22. All the examples are taken from Watson’s papors.
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